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HOW A MINIMAL SURFACE LEAVES A THIN OBSTACLE

MATTEO FOCARDI AND EMANUELE SPADARO

ABSTRACT. We prove the optimal regularity and a detailed analysis of the free boundary of the
solutions to the thin obstacle problem for nonparametric minimal surfaces with flat obstacles.

1. INTRODUCTION

The present note focuses on the analysis of the thin obstacle problem for nonparametric minimal
surfaces. This is a well-known variational problem which has been extensively considered in the
literature, cf. the classical works by Nitsche [45], Giusti [30, 31, 32], Kinderlehrer [36] and Frehse
[24, 25]. In this respect, the vast literature on thin obstacle problems with quadratic energies,
which correspond to the linearization of the area functional, has to be taken into account. Starting
with the pioneering contributions by Lewy [40, 41], Richardson [46], Caffarelli [5], Kinderlehrer
[37], and Ural’tseva [49, 51, 50], a renewed impulse towards a deeper understanding of the problem
has started more recently with the works of Athanasopoulos and Caffarelli [1], Athanasopoulos,
Caffarelli and Salsa [2], Caffarelli, Salsa and Silvestre [6] and has been then developed by many
others [20, 21, 35, 26, 38] etc... we warn the readers that this is only a small excerpt from the
literature on the topic. To complete the overview on the topic we also mention the parametric
approach to minimal surfaces with thin obstacles, which has been started by De Giorgi (identifying
the relaxation of the problem via the introduction of the nowadays called De Giorgi’s measure) and
developed in the monograph by De Giorgi, Colombini and Piccinini [10], and then in the papers by
De Giorgi [9] and by De Acutis [7]. Very recently it has been further extended by Ferndndez-Real
and Serra [16].

Despite the nonlinear thin obstacle problem naturally arises in several applications and has
attracted the attention of distinguished mathematicians, some of the most important questions
concerning the regularity of the solutions remained unsolved for many years. For partial results in
this regards, aside from the quoted papers by Nitsche, Giusti, Frehse and Ural’tseva on nonlinear
variational operators, we mention the more recent contributions by Milakis and Silvestre [42],
Ferndndez-Real [15], Ros-Oton and Serra [47] in the fully nonlinear case.

Building upon the works by Frehse [25] and Ural’tseva [51] together with our previous work [23],
in the present paper we give the first comprehensive analysis in the relevant geometric setting of
nonparametric minimal surfaces with thin obstacles, developing an approach which can be further
extended to more general nonlinear operators. For the sake of simplicity, we confine ourselves
to the following elementary formulation of the thin obstacle problem for the nonparametric area
functional: given g € C?*(R™"!) satisfying glgnx(oy > 0 and g(2/,2n11) = g(a/, —zp41), we
consider the variational problem

vEL,

min / V1+|Vo|2de (1.1)
By

where @, = {v € g|p, + Wy (By) - vlp; > 0, v(2),2n41) = v(2',—2p41)}. Here B =
B; N {zp+1 = 0}, in addition we set Bf' := By N {xp+1 > 0}. As reported right below, the
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2 M. FOCARDI AND E. SPADARO

assumption of flat obstacles allows to solve the problem in the space of Lipschitz functions, while
for non-flat obstacle the right space to work with is that of functions of bounded variation. Part
of the results of this paper can be generalized to non-flat and non-zero obstacles (see, e.g., the
techniques in our paper [23] on the fractional obstacle problem), but to the best of our knowledge
a complete analysis in the general case is still missing.

Existence and uniqueness of a solution w in the class g|g, + VVO1 "°°(By) has been established by
Giusti [30, 31, 32] (following the analysis of minimal surfaces with classical obstacles by Giaquinta
and Pepe [29] — see also Giaquinta and Modica [28]), showing that w can be characterized as the
weak solution to the system:

dlv(\/ﬁ) =0 in Bi",

Ont1u <0 and uOptu=0 on Bj.

(1.2)

Lipschitz continuity for u is the best possible global regularity in B;, as simple examples show.
Nevertheless, the solution is expected to be more regular on both sides of the obstacle, thus leading
to the investigation of the one-sided regularity on Bf U Bi. This is a central question in under-
standing the qualitative properties of the solutions to variational inequalities with thin obstacles
and several important results have been achieved in the last decades. The first contributions to
this issue were given by H. Lewy in the two dimensional setting [40, 41]. Lately, continuity of
the first derivatives of u taken along tangential directions to B} in any dimension and one-sided
continuity (up to Bf) for the normal derivative in two dimensions (i.e. n = 1) were obtained
by Frehse [24, 25] for solutions to very general variational inequalities. On the other hand, for
the corresponding problem in the uniformly elliptic setting, more refined results on the one-sided
regularity are available: in particular, the Holder continuity of the derivatives, firstly established
by Richardson [46] in dimension two and by Caffarelli [5] in any dimension, is shown by different
proofs and in different degrees of generality, see [37, 49, 51, 50, 1, 26, 35, 38] only to mention few
references.

Despite all the mentioned recent achievements, for the geometric nonlinear case of nonparamet-
ric minimal surfaces the C1'* one-sided regularity of solutions was not known in general (except
for the two dimensional case considered by Frehse [24] and more recently by Ferndndez-Real and
Serra [16]'). In this paper we establish the first result on the optimal C''/* regularity (to the
best of our knowledge there are no other examples of optimal regularity for nonlinear variational
inequalities with thin obstacles) and we provide a detailed analysis of the free boundary of the
coincidence set. Our approach is based on the pioneering analysis by Frehse [24, 25], by Uralt’seva
[49, 51, 50] and on our previous analysis of the Signorini problem [20, 23]. Starting from these
results, we develop here a blowup analysis for the study of nonparametric minimal surfaces with
thin obstacle, which can be further extended to other nonlinearities. In particular, we do not
use the optimal regularity for the scalar Signorini problem established in [1], but we can actually
reprove it easily adapting the arguments of the present note.

The following is the main result of the paper (actually, more refined conclusions will be shown,
cf. the statement of Theorem 6.1).

Theorem 1.1. Let u be a solution to the thin obstacle problem (1.1) and let T'(u) be its free
boundary, namely the closure of {(z',0) € By : u(z’,0) = 0} in the relative topology of Bj. Then,

(i) we CL2(Bf UB));

loc
(ii) T'(u) has locally finite (n — 1)-dimensional Hausdorff measure and is H"~'-rectifiable.

More in details, concerning the proof of the results we proceed in several steps. Complementing
Frehse’s result [25], we establish first in Section 3 the one-sided C'-smoothness of the normal
derivative of the solution u. Then, we show the Holder continuity of the first derivatives (one-
sided for the normal one) in Section 4. In doing this we use a penalization argument together with

L After the appeareance of this manuscript, in the second version of the preprint [16] the authors establish the
almost optimal regularity in any dimension, proving that the solutions to the parametric thin obstacle problem for
Caccioppoli sets are C1:1/2—¢ regular for every € > 0. This improvement gives a different proof of the non-optimal
C1:Y/2=¢ regularity provided in this note.
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the celebrated De Giorgi’s method to prove Holder regularity, following the approach outlined
by Ural’tseva [51] in the strongly elliptic case. Optimal regularity then follows by an interesting
connection with the theory of minimal surfaces highlighted in Section 5. More precisely, we
show that solutions to the thin obstacle problem for the area functional correspond to two-valued
minimal graphs. Given this, we can exploit the recent results by Simon and Wickramasekera [48]
to infer the optimal one-sided C'"'/? regularity. This association links thin obstacle problems with
the program started by Krummel and Wickramasekera [39] about the regularity of multiple valued
solutions to the minimal surface system. In this regards, the results in [39] are mostly concerned
with the regularity of harmonic multiple valued functions (see also [12, 19, 11] for more results),
while their extension to the minimal surface system are not yet known: further investigations in
this direction are needed to extend the approach developed here and in [11, 17, 21] to prove the
regularity of multiple valued minimal graphs.

In the last section of the paper, we consider the free boundary analysis, i.e. the study of the
measure theoretic and geometric properties of the free boundary set I'(u), defined as the topological
boundary in the relative topology of By of the coincidence set A(u) = {(z',0) € B : u(z’,0) = 0}.
In this respect we follow our recent paper on the Signorini problem for the fractional Laplacian
[21, 22, 23] and show the H"~!-rectifiability of the free boundary and the local finiteness of its
Hausdorff measure (actually of its Minkowski content). In Section 6 we provide the essential key
tools to follow the strategy developed in [21, 23]. In particular, we prove a quasi-monotonicity
formula for the Almgren’s type frequency function

— Vul?
rf o) A—da
2

|z—xo]| 1 u
_fqb’( T ) [e=zo] /T4 [Vl dx

for r < 1 —|zo| and xo € B} (see Section 6.2 for the definition of the auxiliary function ¢ and the
details).

L(xg,7) := (1.3)

2. PRELIMINARIES
Throughout the paper we use the following notation: for any subset E C R"*! we set
Et:=FEn {m eR"™ : 4x,00 > 0} and E' :=FEnN {$n+1 = O}.

For z € R" ™! we write x = (2/,7,41) € R" x R and B,.(z) C R"™! denotes the open ball centered
at z € R"*! with radius » > 0 (we omit to write the point z if the origin and, when there is no
source of ambiguity, we write 2’ for the point (2’,0)).

In what follows we shall use the terminology solution of the thin obstacle problem for a minimizer
u of the area funtional on Bj" with respect to its own boundary conditions and additionally
satisfying the unilateral obstacle constraint u|p; > 0.

We recall the following two results which will be used in the sequel.

Proposition 2.1. Let u and v € W (By) be two solutions to the thin obstacle problem. If
ulop, < vlop,, then u < v on Bj.

The proof is a direct consequence of the comparison principle for minimal surfaces (cf. [34,
Chapter 1, Lemma 1.1}).

The second result we need is due to Frehse [25]. In order to state it, we introduce the following
general formulation: let F: R"*! x R x R"*! — R be a smooth function (we denote its variables
by (z,z,p)) and consider the corresponding functional

F(u) ::/B F(z,u(x), Vu(x)) dz.

3*F )
Spiapj 7,7=1,...,n+1
positive definite) and bounded. The thin obstacle problem related to F is then obtained by

minimizing F among all functions in A,.

We assume that the Hessian matrix ( of F is uniformly elliptic (i.e. uniformly
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Theorem 2.2 ([25]). Under the assumptions above on F', the Lipschitz solutions u to the corre-
sponding thin obstacle problems satisfy:

(i) ifn =1, then u € C*(By U B}) with
[Vu(@) = Vu(y)| <wo(le —yl) Va,yeB UB
where wo(t) = C|logt|~% with ¢ > 0 is any constant and C' > 0;
(ii) if n > 2, then the tangential derivatives d;u € CO(By U BY}) fori € {1,...,n} with
Ouu(e) — Byuly)| <wi(z—yl) Va,ye BfUB,
where wy(t) = C|logt|~4™) with q(n) € (0, er)"’ﬁ) and C > 0.

3. C'! REGULARITY

The existence, uniqueness and the Lipschitz regularity of the solutions to the variational problem
(1.1) have been studied in [30, 31, 32]. In this section we show that the solutions to the thin
obstacle problem have one-sided continuous derivative. In two dimension, this result is due to
Frehse [25] for general nonlinear variational inequalities. In higher dimensions, this is not known
in this generality and here we provide a proof for the specific case of the area functional.

Proposition 3.1. Let u € Wh*°(By) be a solution to the thin obstacle problem. Then, u €
CY(Bf uB).

For the proof of the proposition we start with the following two lemmas.

Lemma 3.2. For every a > 0 there exists € > 0 such that the solution w. : By — R to the thin
obstacle problem with boundary value g.(x) = —a|zp41| + € satisfies

welg:  =0. (3.1)

3/4
Proof. From the uniqueness of the solutions to the obstacle problems (1.1) and the radial sym-
metry of the boundary value g.(2',2,11) = 9:(v', Tnt1) if |2'| = |v/|, we deduce that w.(z) =
¢e(|2'], 2y41) for some function ¢, : By C R? — R. Moreover, from the regularity of w. (see, e.g.,
[33, Theorem 4]) and from its variational characterization, it follows that ¢ is locally Lipschitz
and solves the variational problem

¢e € argmin¢ec/3 1L+ [Vo(p,t)2 p" * dpdt (3.2)
1

with

C:={lop; >0 and ¢(p,t) = —alt|+c Y (p,t) € OB}
In particular, from Theorem 2.2 (i) it follows that where the integrand is uniformly elliptic, the
solutions ¢, have uniform continuity bounds on their derivatives. Thus, in particular,

V6 (x) ~ Vo (y)| < wollz—y)) ¥,y BS,\ B,

where wy is the modulus of continuity in Theorem 2.2 (i). In particular, from Proposition 2.1 it
follows that w,. converge in C’l(B;;4 \ B;Z) t0 Weo (T) := —aw, 1 and
;i_ff(l) |On 41w + a||Loo(B;/4\Bj/4) =0. (3.3)

We then infer that there exists g > 0 such that

On1we(z) < —af2 Vee(0,6), Ve B

5\ BY

1/4a

and in view of Theorem 2.2 (i)

t) — 0

Onr1we(z,07) == lim we (@, t) = we (', 0) < —afy (3.4)
t—0+ t

for e € (0,20) and 2" € By, \ By ,. Recalling the Euler-Lagrange equations associated to the thin

obstacle problem (1.2), this implies that By, \ B}, C A(w.) for all € < &.
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We need only to show that B{/4 C A(w,) if € is suitably chosen. To this aim we show that, for
¢ sufficiently small, we have that

6:(pt) S =5tV (p,t) €OBip. (3.5)

Indeed, given for granted the last inequality, the comparison principle for the solutions to the thin
obstacle problem in Proposition 2.1, yields that w.(x) < —§ |z,,41] for every x € B, from which
Bi,, C A(w) readily follows. In order to show (3.5), we notice that by (3.3)

be(p,t) < —gt Vee (0,60), ¥ pe (11,1/2) and ¥ t € (0,V5/),
where we used that (2/,t) € B;;4 \ B;‘;4 if |2'| € (Y/4,1/2) and t € (0,v5/4). Moreover, since ¢,
converges to —at in Bj}4 \ B[’; .» we also infer that there exists £; > 0 such that
5
¢e(p,t) < —at + %ﬁ < —gt Vee (0e1), Y(pt) €9B),, t =1/
Putting the two estimates together, we deduce that (3.5) holds for every ¢ < min{ep,e1}, thus
concluding the lemma. O

We prove next an auxiliary result.

Lemma 3.3. Let u € W1°(By) be a solution to the thin obstacle problem (1.1). Then, for any
sequence of points zy, € T'(u) and of radii t, L 0 (with t;, < 1 —|zi|), the functions

u(zr + trx
u(z) = L+ 12) o )

converge to 0 uniformly on By .

Proof. The functions uy, are equi-Lipschitz continuous (with Lip(ux) < Lip(u)) and are solutions to
the thin obstacle problem with 0 € T'(ug). Therefore, up to passing to a subsequence (not relabeled
for convenience), uy converges uniformly on Bj to a function u., which is itself a solution to the
thin obstacle problem. We need now to prove that u., = 0.

We start noticing that, in view of Theorem 2.2 (ii), we have

[Vur(2) = Viue (y)| = [V'ulter + zx) — V'ultey + 21)] < witelz = y)), (3.6)

where V' = (04,...,0,) denotes the horizontal gradient. Thus, by (3.6) and since V'uy(0) = 0,
[IV'ug||oo converge to 0. Being V'uy equi-continuous (with modulus of continuity wi), we then
infer that V'uy converges to V'us, uniformly and V'us, = 0, i.e. uy is a function depending
exclusively on the variable x,41. By direct computation one can show that the only solutions
depending on one variable are the linear functions of the form

Uso(z) = —aw,y1  on By, for some a > 0.

The thesis is then reduced to proving that a = 0. Assume that a > 0: let € > 0 be the constant
in Lemma 3.2 and notice that, since uj converges to Uy, = —aw,+; uniformly on Bj", it must be
uglop, < welop, definitively, where w, is the solution to the thin obstacle problem with boundary
value g.(r) = —alrp41] + €. By the comparison principle of Proposition 2.1 ug|p, < w.|p, for
k sufficiently large, which in turn by Lemma 3.2 leads to uy| By, = 0. This is a contradiction to
0 € I'(uy,), thus establishing that a = 0.

Finally, since we have shown that any convergent subsequence of uy is uniformly converging to
0, we conclude that the whole sequence wu, converges uniformly to 0 on B;. O

Proof of Proposition 3.1. By Frehse’s Theorem 2.2, we need only to prove that the normal deriva-
tive O, 11w is a continuous function in B UB]. Moreover, since d,, 11u is analytic in Bi- UB}\T'(u),
we have only to check its continuity at points of the free boundary I'(u) C Bj.

Without loss of generality, we can assume that 0 € T'(u) and we begin with showing that u is
differentiable at 0 with zero normal derivative:

lim u(0,?)
t—0+ t

=0. (3.7)
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We apply Lemma 3.3 to any sequence (tk)k@\L with t; | 0 and 2z = 0 for all k: the functions
uy () = t;, 'u(tyz) converge uniformly to 0 in By. In particular,
u(O, tk)

lim ——— = lim wuy(e =0.
k—oo  tg k—o0 k( n+1)

From the arbitrariness of the sequence (t)ken, (3.7) in turn follows.

Next we prove the J,,41u is continuous in 0 € I'(u). Let yx € Bff U (Bf \ T'(u)) be a sequence
of points converging to 0. Let ¢ := dist(yx,I'(v)) = |yx — 21| — 0, with z, € I'(u). Therefore
By, (yr) N T(u) = 0, and either By, (yx) N A(u) = @, in which case we set v(z) := u(z) for all
x € By, (yk), or By, (yr) N By € A(u) and we set

o) = u(z)  if xpge >0,
" —u(z) if apg <O.

In both cases v is a solution to the minimal surface equation in By, (yx) (indeed, w solves the
minimal surface equation in Btt_ (yx) either with null Neumann or with null Dirichlet boundary
conditions on By, (y) N By, respectively; therefore v is readily regognized to be a solution in both
cases). Set 7 := 2|y — zx| and let vy : By — R be given by

on(z) = M
Tk
By Lemma 3.3, v is uniformly converging to 0. Moreover, by possibly passing to a further subse-
quence, we can assume that py := % — p € dByy,. Since, the functions vy are solutions of the
minimal surface equation in Bij,(p) and they are converging uniformly to 0, the regularity theory
for the minimal surface equation implies that the convergence is in fact smooth. In particular, in
both cases discussed above we get

lim 5n+1v(yk) = lim 8n+lvk(pk) = 03
k—o0 k—o0

thus concluding the continuity of d,,11u at 0. O

4. C* REGULARITY
This section is devoted to show the one-sided C1*(Bj" U B}) regularity. To this aim, we need
to consider approximate solutions produced by the method of penalization.

4.1. The penalized problem. Let g € C?(R") be a fixed boundary value for (1.1) and let
u € WH°°(By) be the unique solution to the thin obstacle problem. For the rest of the section,
we set L := Lip(u).

We start off considering the following penalized problem: let 8,y € C°°(R) be such that

H-1<|BOI<[tl Vt<0, B)=0 Vt>0, F(t)>0 VtcR,

0 for t< L
t) = - "t)>0 VteR.
x(®) {;(tQLP for t>30, X (12

For every € > 0 set 3.(t) := e 15(t/:) and we introduce the energy
&(v) == / (\/1 + Vo2 + X(|W|)) dz +/ F.(v(a',0)) o,
By B

where F_(t) := fot Be(s)ds. Since the energy & is strictly convex and quadratic, there exists a

unique minimizer u. € g+ VVO1 ’Q(Bl). Moreover, from the symmetry of g, it follows that u. is also
even symmetric with respect to x,41.
The Euler—Lagrange equation satisfied by wu. is then given by

/+ A(Vue) - Vndx + Be(us) ndz’ =0 Ve Hy(By), (4.1)
B; By
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with A : R**! — R™*! being the vector field

Ap) = (L +1p2)772 + X/ () ol p.

Note that for |p| < L the second addend is actually null.
The following lemma establish the connection between the solutions of the penalized problems
and the solution to the thin obstacle problem.

Lemma 4.1. Let g € C?(R"1) be even symmetric with respect to x,+1 and g

R x {0} 2 0. Then,
the minimizers us of & on g+ Wol’z(Bl) converge weakly in W2 as e goes to 0 to the solution u
to the thin obstacle problem (1.1).

Proof. From the definition of x one readily verifies that there exists a constant C' > 0 such that
t2 < C(1 + x(t)) for every t > 0. Thus, it follows that the approximate solutions u. have equi-
bounded Dirichlet energy:

/ |Vu|*de < CL" ™ (B) +C | x(|Vue|)de < CL"™(By) + CE.(ue)
B, By

< CLMH(BY) + C&(u) = CL Y (By) + c/ V17 [Vul? da.
B

Then, up to extracting a subsequence (not relabeled), there exists a function ug € g + Wy *(By)
such that u. converges to ug in L?(B;) and the trace uc|p; converges to ug|p; in L*(B}).

We next show that w| p; > 0. Recalling that F is positive and monotone decreasing, we have
by Chebyshev inequality

Fo(—8) £ ({ue < —8} N BY) < /

F.(us)dz < &.(u.) < / V1+|Vu|?de.

Bj B

Since F.(t) T oo as e | 0 for all t < 0 and ue|p; — ug|p; in L?(B]), we conclude that
L"({uo < =6}NBY) =0 V>0,

which implies wuo|p; > 0, i.e. ug € B, where

B, := {w € g+ Wy (By): wlpr > O}.

Furthermore, ug is the unique minimizer in B, of the energy .# : W2?(By) — [0, 00) defined by

F(w) = /B (VI+IVul? + x(Vu))) de.

Indeed, by convexity of .#, for every w € B, we have that

F(ug) < liminf % (ue) < liminf &.(u.) < liminf &, (w) = Z#(w),
e—0+ e—0+t e—0+

since By C g + Wy2(By) and F.(w) = 0 for all w € Bg. To conclude, we only need to notice that
the unique minimizer of .# on B, is exactly the solution to the thin obstacle problem u. Indeed,
Ay C By and for every w € B, we have that

y(u):/B \/1+|Vu|2dx§/B V1+|Vw|2de < F(w),

where we used that x(]Vu|) = 0 and that u is a minimizer of the thin obstacle problem for the area
functional among all competitors in By, and not only in A, (this follows from an approximation
argument).

Finally, being the solution to the Signorini problem unique, by Urysohn property we conclude
that the whole family (uc)eso converges to w. O
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4.2. W?? estimate. Next we show that the solution to the penalized problem, as well as the

solution to the thin obstacle problem, possess second derivatives in LQ(Bfr ). The proof is at all

analogous to the standard L?-theory for quasilinear equations: we report it for readers convenience.
We recall the standard notation of the difference quotient

mhaif () == h™ (f (@ + he;) — f(z)),
ifxe{ye By:y+he € B1} and 7y, f(z) := 0 otherwise, where f : By — R is any measurable
function and e; a coordinate vector, i € {1,...,n+ 1}.

Proposition 4.2. The solutions u. to the penalized problems (4.1) for every e > 0 and the
solution u to the thin obstacle problem satisfy the following property: there exists a constant
C = C(n,L) > 0 such that, if either v = u. or v =u, then

c _
V2l dz < = |V'o|?dz Vo€ Bf UB, V0<r< =l (42
B (a0) % /B, (x0)

Proof. The result is classical if o € By and B,.(x¢) CC B;. We shall prove only the case in
which z¢ € Bf, and the general case follows by a covering argument. Without loss of generality
we may assume xg = 0.

We provide first an estimate for the horizontal derivatives of the weak gradient of w.. Let
¢ € CY(Bay,), 2r < 1, be a test function with ¢ =1 in B, and |V(| < Cr~! for some dimensional
constant C' > 0. We test (4.1) with 5 := 7_5;(¢(* Th,iuc), with [h| <1 —2r and i € {1,...,n}.
For convenience, in the following computation we omit to write the index ¢ € {1,...,n} in the
notation of the difference quotients. We start off noticing that the first addend in (4.1) rewrites
as

A(ue) - Vnda = / Th (A(Vua)) . V(C2 Thue) dz, (4.3)

B B

where we used the basic integration by parts formula for discrete derivatives

/(Thf) pdr = /f (T_np)dx  Vf, @ measurable, ¢ having compact support .
We now compute as follows: set
P(t) :== A((l —t)Vue(x) + tVue(z + hei));

then,

e e

h(A(Vue)) = - / P (t)dt = E/ VA((1 = t)Vue(z) + tVuc(z + he;)) dt 71, (Vue)
0 0
= AP (@) (Vue).
Note that there exist constants 0 < A < A (depending on L = Lip(u)) such that
AMd, ¢ < AMz) <Ald,. Ve B,

because

VA(p) =V (p +X'(Ipl) p)

V14 [p? Ip|
Id s _ PRp
=+ (A + [p) "+ H(pPldpsr —p@p) + X
ERPDEE (A +1p* X' (Ipl) Ip1~?) (Ip* Tdny1 — p @ p) XQM)@P

is uniformly elliptic and bounded. Therefore, we can rewrite (4.3) as

/ A(ue) - Vnda = / A? 7h(Vuye) ~V(C2 Thus) dr
B Bf

1

= / (CQ Ag Th(Vue) - m(Vue) + 2¢ (Thue) A? Th(Vue) - VC) dz.
Bf
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On the other hand, by the monotonicity of 8. the second addend in (4.1) is non-positive. Indeed,
being [. increasing, we have

/ Be(ue)T—p (¢* Thue) da’ = / 7 (Be(ue)) (Thue) ¢ da’
B B}

1

[ Beluele’ +he)) — Be(ue()) uele! +he) ~ue@) 5y o
5 h h

Thus, from (4.1) we infer that

/+ (Ag Ta (Vi) - 7 (Vue) € + 2C 7 (ue) AP 7 (Ve ) - vg) de < 0.
Bl
Hence, in view of Cauchy-Schwarz inequality and of the ellipticity of A" we conclude that
A
/ |7 (Vu)|? ¢ da < 4—/ |Thue|? | V¢|* da.
B A B

The latter estimate implies that Vu. has weak i-th derivative in L?(B,"), for all i € {1,...,n},
r < 1/2, with

c
/ 10,(Vu) P d < & / 51| da, (4.4)
By r? Jpj,
for a constant C' > 0 depending only on L.

To conclude the proof for v = w, it suffices to prove that 9,11u. has (n+ 1)-th weak derivative
in Bf". Writing A(p) = (A'(p),..., A" (p)), we have that

('“)in(VuE)aijuE =0.
Moreover, A < 0,11 A" (p) < A for every p € R**L, from which we deduce that

1
Rt = 50— S A (Vu)Pue € L (BY). (4.5)
8n—|-114 (vus) ..
(i,9)#(n+1,n+1)

Hence, from (4.4) and the fact that VA is bounded, we get the estimate

/ 1O (V)P de < & Z/ V(0u.) 2 de < 9/ V|2 dz, (4.6)

r

with C = C(n, L) > 0. Being estimates (4.4) and (4.6) uniform in e, in view of Lemma 4.1, we
can pass to the limit as € | 0 and infer that the same estimates hold for u as well. O

4.3. C1® estimate. Next we prove that the minimizer u of the Signorini problem has weak
derivatives in suitable De Giorgi classes on the flat part of the boundary. Here, we do follow the
approach by Ural’tesva [51] in conjunction with the one-sided continuity of the derivatives shown
in Proposition 3.1. In particular, the latter result is instrumental to establish the ensuing estimate
(4.7) for £0p41u.

Proposition 4.3. Let u be the solution to the thin obstacle problem, then for some constant
C =C(n,L) > 0 the function v = £0;u, i € {1,...,n+ 1}, satisfies for all k >0

c
/ [Vol*dz < = (v—k)2de Vap€Bl, 0<r<i= Ix"‘ (4.7)
B (z0)N{v>k} T JBS (x0)

Proof. We start off writing the equation satisfied by the horizontal derivatives of the solution to
the penalized problem (4.1) and by testing it with n = 9;¢, i € {1,...,n}, for ( € W*2(B;) even
symmetric with respect to z, 1 and spt{ N 9By = 0:

0= / 8, (A(Vun)) - VCde + | 0i[Be(ue)] ¢ da’
Bf By

= VA(Vu:) V(Oiue) - V¢dz + | BL(ue)Oue ¢ da'. (4.8)
B

B
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Note that (4.8) makes sense as soon as ¢ € W12(B{") with spt¢ N (9B;)" = (), thanks to the
integrability estimates in Proposition 4.2. Therefore, as u. € WQ’Q(BT) we can choose (. :=
(Oiue — k)4 ¢ for k > 0 and having fixed ¢ € C}(By), because (. € W12(B;) with spt (. N
(0B1)" = (. With this choice at hand, note then that

/ BL(ue)iue (o da’ = BL(ue)Oiue (Ojus — k)4 ¢* da’ > 0. (4.9)
B B

For what concerns the remaining terms, we recall that V(. = ¢*V(diuc)X10,u. >k} + 20(diue —
k)+V¢. Therefore, we have that

0> / $*VA(Vu.) V(05ue) - V(dyu. ) da
B n{d;u.>k}

+ / 20(0iue — k)1 VA(Vu:) V(0;ue) - Vo da.
B+

1

Then, a standard argument implies
A
/ 62|V (95 )[2 dar < 47/ (Opue — k)2 |Vo[? da
B n{8iu.>k) A JBf

In particular, for every k > 0 and for every zo € B} and 0 < 2r < 1 — |xg| if ¢ € C}(Ba,(20)) and
¢ =1 on By(xp) with |[V¢| < C/r

C
/ VO Pdr< S [ (e — 1) e, (4.10)
B n{8iu.>k} ™ JB3,

for some C' = C(L) > 0. In exactly the same way, by testing (4.1) with (. := (—0;uc — k) 7%, we
derive the analogous estimate

/ V(@) |2 da < 92/ (—Ou. — k)% de, (4.11)
B n{8;u.<—k} ™ JBi,

for all kK > 0 and ¢ € {1,...,n}. Estimate (4.7) for £0;u, with i« = 1,...,n, follows at once by
passing to the limit as € | 0 in (4.10) and (4.11), respectively.

For what concerns the partial derivative in direction n + 1, we test the equation (4.8) with
On11C, for ¢ € W22(B]") with spt¢ N (0B;)*" = 0:

:/ On+1 (A(Vue)) - V(¢ dx Jr/ A(Vu,) - V¢da' — Be(ue) Opy1¢ da’
BY By

/
1

:/ Oni1 (A(Vup)) - V¢dz Jr/ A'(Vu)-V'¢da’, (4.12)
BY

/
1

where we set A’(p) := (Al(p),..., A"(p)). The last equality holds thanks to Euler-Lagrange
condition induced by (4.1):

{dw(A(VuE)) =0 in By, (4.13)

A" (Vu.) = B (ues) on Bl

For 0 < k < ||3n+1u|\Loo(Bfr) set

G = 0?5 (—Onpru — k),

where § > 0 will be suitably chosen, vs € C°°(R) is an increasing function such that vs(t) = 0
for t <0, vs(t) > 0 for t > 0, v5(t) =t — 6 for t > 26, |75(t)| < 1 (such a function can be easily
exhibited), and ¢ € C°(Bar(20)), |, (o) = 1, |Vo| < C/r. We use Opy1u € CO(Bf U BY) (cf.
Proposition 3.1) to infer that for k& > 0 the set Bf N {0p+1u < —k} is an open set with compact
closure in A(u) (recall that 0,114 = 0 on Bj \ A(u)). This implies that, if § > 0 is sufficiently
small, {5 € C°°(B;") with spt(s N (0B1)* = 0. Indeed, u € C=(B;} (yo)) for all yo € B} Nspt (s
and r < dist (B} N {0h11u < —k}, B{ N {0p4+1u = 0}), being u itself minimum of the area problem
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with null Dirichlet boundary conditions on Bl (yo). Taking ¢ = {5 we evaluate each addend in
(4.12) separately. To begin with, the first term rewrites as

[ = / N Ont1 (A(Vue)) - V(s do =2 / N ¢ 75 (=Ons1u — k)VA(Vu)V(Ipt1ue) - Vo dr
Bl Bl

- /+ > (=Ops1u — K)VA(Vu )V (Opy1te) - V(Opy1u) da.
Bl

Taking the limits as € | 0 in each term above, since VA is a Lipschitz function and Vu. — Vu in
L? and V(9p11ue)— V(9n11u) in L2, we conclude that

lim I5° = 2 ¢ v5(—=O0pi1u — k)VA(VU)V(9p41u) - Vo da
e—0 B;r

_ / (B — H)V ATV (D 10) - V(D)o
Bl
Moreover, since vs(—0p11u — k) — (=0n11u — k)4 strongly in W2(B;") as 6 | 0, then we infer

. . €8 _ . . )
%ﬁ)llslg)l[ 2 quﬁ( Ont1u — k)1 VA(Vu)V(0p41u) - Vodx

- / P*VANVU)V (Opy1u) - V(Opi1u) de.

Bf n{0n11u<—k}
Similarly, to deal with the second addend in (4.12) we argue as follows: as Vu. — Vu strongly in
L2 _(B) by Proposition 4.2 and the compactness of the trace operator, the Lipschitz continuity

loc

of A’ implies for all § > 0 that

lim A (Vu.) - V'¢sda’ = / A (Vu)-V'¢s=0.

=0.JB; B
In the last equality we have used that B} Nspt (5 CC A(u), and being (the trace of) u in W12(B})
by Proposition 4.2, then V'u = 0 L™ a.e. on Bj Nspt (s, so that A’(Vu) =0 L™ a.e. on BjNspt (s.

Hence, by using the ellipticity of VA we infer that for every k > 0, by Holder’s inequality
C

V(O )P dz < & / (O k)% de (4.14)

2
/Bﬁrﬂ{3n+1u<k} T

Clearly, (4.14) holds for k = 0 by letting ¥ | 0 in the inequality itself, and also for k& >
([On+1ull oo ) being trivial in those cases. The case of On+1u is treated similarly. O

27

We are now ready to establish the claimed one-sided C® regularity of u: the argument follows
closely Ural’tesva [51, Lemmata 2, 3] and Giaquinta and Giusti [27].

Corollary 4.4. Let u be the solution to the thin obstacle problem, then u € C’llo’?(Bf' U BY) for
some a € (0,1).

Proof. By standard results in elliptic regularity we have that u € C*(By). Let zg € B, p €
(0,1 — |zo]) and p; :=277p, j > 0. We start off considering the case

LM (A(u) N B;j (zg)) > 1/ E”(B;)j (20)). (4.15)
Then for all ¢ € {1,...,n} we also get
L"({0u =0} N B, (x0)) > 1/2L" (B, (x0)).
Let i € {1,...,n} be fixed and set k; := %(maXB/gj (z0) Oitb + minB//]j (z0) Osu). Without loss of
generality, we can assume that k; > 0 (if this is not the case, we consider —0;u). Then,
L"({oiu < k;}n B, (z0)) =1/ ,C"(B;)j (z0)).
By Proposition 4.2, a contradiction argument yields that the Poincaré type inequality

1@~ B2y < CIV @t = k)il gy ¥k = ks >0,
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for some constant C' = C'(n) > 0. Hence, by taking into account (4.7) in Proposition 4.3, the usual
De Giorgi’s argument can be run to conclude that

OSCB;errl(xO)(ai’u,) < KosCpy (o) (Oi00) (4.16)

for all i € {1,...,n}, where x € (0,1) depends only on L (cf. [34, Lemma 7.2]).
On the other hand, if (4.15) does not hold, then by virtue of the (ambiguous) boundary condi-
tions in (1.2)
L"({On41u =0} N By, (20)) > 1/2L"(B,, (20))-

Note that d,11ul[p; < 0, therefore kj41 := 1 (maxp (20) (—Ons1u) + ming: (50)(=0py1u)) > 0.
Py 2

Thus arguing as above, in view of (4.7) we conclude that

OSCp+ (8n+1u) < KOSCp+ (xo)(an—i-lu) (4.17)
Py )

41 (o)

where k € (0,1) depends only on L.
By means of estimates (4.16) and (4.17), we next show that for some constant C' = C(L) > 0
and for all r € (0,1 — |zo|)
0SC it (40) (V) < O, (4.18)
either for v = d;u for all i € {1,...,n}, or for v = 9, y1u. With this aim, fix N € N and consider

the radii p; for 0 < j < 2N —1. Clearly, we can find (at least) N radii p;,, h =1,..., N, such that
one between (4.16) and (4.17) holds for all such A’s. In particular, we infer that forall 1 < h < N

OSCBIMH (o) (V) Koscpy (o) (V)5
with the function v being equal either to d,41u or to d;u, in the latter case any i € {1,...,n}

works. Thus, iteratively, we conclude that
N+1
osCpy (o) (V) < oscB;jNJrl (o) (V) S K oscB;(xO)(v).
Therefore, if r € (0, p) let N € N be such that r € [panyt1, p2n) We conclude then that

| logo N\/Q -
0SCp+ (40) (V) < OSCB;rZN(xO)(’U) < (/o) oscB;(xU)(v) =Cre.

Actually, the last inequality always holds true for d,11u. Indeed, considering the level k =
0Vming+ v in Proposition 4.3, with v = +0;u and 7 € {1,...,n}, from (4.18) we infer that

/ |Vol?de < O pn—it2e
B (zo0)

Hence, if (4.18) holds for v = d;u for all ¢ € {1,...,n}, then by using the estimate deriving from
(4.6) as € | 0+ and the latter inequality we conclude that

/ |V (Opp1u)?da < O i+2e,
B (z0)

In turn, Morrey’s theorem implies that

0SCt (4) (Ony1u) < O

Hence, in any case we have shown that 9, 1u € Cloo’co‘ (B1). In particular, we can infer that the

co-normal derivative of u is Holder continuous in Bj in view of the boundary conditions in (1.2):

an+1u o an+1u
VI+H[Vu2 /14 [0ni1ul?

Note that the co-normal derivative is zero on B \ A(u).
We next use interior regularity and boundary regularity for the Dirichlet problem for the min-
imal surface equation together with an ad-hoc argument to infer that u € C.°(Bf U B}) for

some 8 = f(n,L) € (0,a), recalling that L = Lip(u). For the sake of simplicity we show that

u € C’LB(B;;4 U B§/4). Let o € B§/4 and r € (0,1/4). If Bl(z9) C A(u), we conclude by the

e CY¥(BY).

loc
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regularity theory for the Dirichlet problem for uniformly elliptic equations (cf. [27]) that for some

0
o= n+28
(0, p) ;:/ IV~ (V) e < C(2) (0, 1), (4.19)
B (z0)

provided that p < r, where (v)g := f,v(z)dz denotes the average of a function v in the set E.
Instead, if there exists z € I'(u) U (BL.(zo) \ A(w)), then we show that

14 n+2p n+2a
D (z0,p) < C(;) ®(z9,7) + ClglZ0.a By (4.20)
provided that 4p < r. Note that (4.20) and [34, Lemma 7.3] yield for all p < r < 1/4

O (o, )<C( +2ﬂ<1>(x077‘)+[g]%o,a(Bgm))pn—&—Zﬁ’ (4.21)

with C' = C(n, L, o, 8) > 0.
With the aim of proving (4.20), let w be the solution of

div(iw ) =0 Bf(z),

v
8n+1w =0 B;,(,To),
w=u (0B, (z0)) ™.

The existence of w is guaranteed by an even reflection across B..(xg) of the boundary datum and
by applying classical results on the existence of minimal surfaces with given Dirichlet boundary
conditions (cf. [34, Chapter 1]). By simple triangular inequalities, we have

O (z0,7) < 6/ |Vu — Vw|?dz + 4/ [Vw — (Vw)BJ_r(%)Pdm. (4.22)
B (z0) B (x0) '
We estimate the right hand side in (4.22) starting with the first addend. With this aim test (1.2)
with u —w € H}(B,(x0)) to deduce that

Vu Vw ) / / / / /
— -V(u —w)dx + g(@)(u(z") —w(z"))dx" =0
e Ongauw 0,00/ 1/ _ .
where we have set g := T on Recall that g € C} ;. (B]) and g(z) = 0. In particular, by the

Divergence theorem we get

e [ el [ ) gl —wid

B (z0)

< [9}C0=‘¥(Bé/4)(27“)a/ |u(;c’) _ w(m’)‘dx/

Bl.(zo)

< (gl (5 (20)° / div(lu — wlens:)de

Bi(wo)
< lgleveay 0" [ 9w
r (Zo
< 20tw711/2 [g]co,a(33/4)ra+"/2||V(u — w)||L2(Bj($O)) . (4.23)

Hence, for some constant C' = C(n, L) > 0 we deduce that
/| o [T 0 <l (1.21)
o

For the second term, we note that w € W?2?2 (B;(:Eo)) for every p < r by arguing as in Proposi-
tion 4.2. Moreover, if ¢ € {1,...,n} the function d;w is a solution of

div(B(z)V(0;w)) =0 B (z0),
{@w Ple . (4.25)
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where the measurable matrix field B is given by
1d Vw ® Vw
B(z) := = — 5\
VIt [ Vw? (14 [Vwl?)

By the a priori gradient estimate for the minimal surface equation by Bombieri, De Giorgi and
Miranda [4], there exists a constant C' > 0 such that

wl| oo = _ Cr™||u|| Lo = CL
1Dl (B, a(ayy < O I Brz0n = GO Il o, on < CeCF,

In particular, the matrix field B is coercive and bounded in B./,, with bounds depending only on
the Lipschitz constant L of the solution u to the thin obstacle problem. Thus, by De Giorgi’s
theorem [8] we have that d;w € C>?(B) with 8 = 8(n, L) and

loc
diw — (9 240 < o(2)" diw — (9 2de V2 1.2
In addition, being 9;w a solution of (4.25), it satisfies a Caccioppoli’s inequality
C
V(9w)|? dz < —/ O;w — (O;w) g+ 2dx, 4.27
/Bﬂm Vo) P* JBg, (@0) | (01t ) 34, o (427

with 4p < r. Using the equation we can bound 92 ,;w with the other derivatives (cf. (4.5) and
(4.6)) as follows

IV (Os1w)2dz < C / V(95w)|? e, (4.28)
/B;r(ﬂfo) Z +(9¢o)
with C' = C(n, L) > 0. Then, Poincare’s 1nequahty together with (4.26), (4.27) and (4.28) give

Z/Bﬂm) = 00 P

Estimate (4.20) then follows at once from (4.22), (4.24), (4.26) and the latter inequality.
In addition, if zo € By and r < dist(zg, B}), then B,.(z9) C Bj". Hence, by the standard
regularity theory for uniformly elliptic equations we have for all p < r

n+243
(a0.p) < C(2) " @(ao,7),

n+2
/+ |8n+1w — (8n+1w)3+| dx < C
By (zo)

C =C(n,L) >0 (cf. [34]).
From what we have proven, we deduce that there exists C' = C(n, L, o, ) > 0 such that for all
T € B;;4 and p < 1/

(I)(l'o, ) < Cpn+2ﬁ7

from which the conclusion u € C'# (Bj/ U B, /4) readily follows by Campanato’s theorem [34]. O

5. OPTIMAL C1'/2_REGULARITY

In this section we deduce the optimal C''/>-regularity of the solutions u to the thin obstacle
problem from results by Simon and Wickramasekera [48] on stationary graphs of two-valued func-
tions. We give few preliminaries on the topic. We consider pairs of real valued Lipschitz functions
U = {u1,us} with the components u; defined on an open subset Q2 C RY. The union of the graphs
of uy, us, namely

Gy = {(z,u;(z) : 2 €Q, i =1,2}
naturally inherits the structure of rectifiable varifold, which by a slight abuse of notation we keep
denoting Gy. Note that, Gy = Gy, + Gy, as varifolds, where G,,, denotes the varifolds associated
to the graphs of the real valued functions u;. Following [48] we say that u is a two-valued minimal
graph if Gy is stationary for the area functional, i.e.

/ divg, YdH" ™ =0 VY € C(Q x R),
Gu
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where divg, Y denotes the tangential divergence of Y in the direction of the tangent to Gy.
Clearly, if u; and us are both solutions to the minimal surface equation, then u is a two-valued
minimal graph, but the vice-versa does not hold. For more on multiple valued graphs we refer
to [12, 13]. In particular, we recall the definition of the metric for two-points: U = {u1,us} and
V= {Ul, ’UQ}7

GUu,v) = min{\/\ul —v1|? + |ug — vs|?, \/|u1 — v2)? + |uz —v1|2}.

For two-valued functions the usual notion of continuity and Holder continuity can be accordingly
introduced. Moreover, a two-valued function U is C! if there exists a continuous two-valued
function DU = {Duy, Dus} with Du; € R™ such that, setting Vi (y) = {ui(x) + Dui(x)(y —
x),uz(x) + Dug(z)(y — )}, we have

tim 90 ®). Ve (y))

yoz |z =y

=0.

Finally, we say that U is C%® if DU is Hélder continuous with exponent a.
The link between the thin obstacle problem for the area functional and the two-valued minimal
graphs is given in the next proposition.

Proposition 5.1. Let u be a solution to the thin obstacle problem (1.1). Then, the multiple-valued
map U = {u, —u} is a minimal two-valued graph.

Proof. According to the definition of minimal two-valued graphs, we need to show that

/G divg, YdH" ™ =0 VY € CL(B; xR). (5.1)
To this aim, we set U
G1 =G,z C2=Gul, < G3 =Gl y0y 80d Ga =Gy, oy
Clearly, we have that
; divg, Y dH" ! = 24:/(} divg,Y dH" ™ VY € C°(B; x R). (5.2)
u i1 7/ Gi

Note that u[(,, ,, >0 and ul(,, ., <o} are C! functions (cf. Proposition 3.1), therefore, Gy, G, G3,
Gy4 are C'-smooth submanifolds with boundary. Let n; € R"*2 be the external co-normal to 9G;
(i.e. |n;| = 1, n; is normal to G; and tangent to G;, pointing outward with respect to G;). For
instance, regarding 11 we have that for every point (z,u(z)) € 8G; N {zp41 =0}

m(z,u(x))  ent1 <0, mlz,u(@))- (- Vu(z),1) =0
and 71 (2, u(z)) - (e; + Ou(x) €pt2) =0 Vi=1,...,n.

Therefore, by taking into account that d;u - Opy1u = 0 on By for i € {1,...,n}, in view of (1.2)
and Proposition 3.1, simple algebra yields that for every x = (2’,0) we have

1 Ony1u(z)
1(z,u(z)) =10,- T .

Similarly, we have

1 - n+1u(m)
z,u(z)) = |0, ' ’
12(, u(x)) ( St P u(@)]? \/1+|8n+1u(x)|2>

1 an+1u($)
z,—u(z))={0,— ' 7
el =) ( VI+ (@) ¢1+Ié‘n+w<w>|2>

and

1 On+1u(z)
xz,—u(z)) = |0, ’ ’
N4 ( (7)) < \/1 + Oy ru(@)]? \/1 + |3n+1U(z)|2>
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't)

where 9y, 11u(2’,0) = limg o = for every (z/,0) € A(u). Hence, using Stokes’ theorem we infer

that

4 4
> /G divg, Y dH" T = Z / Y - dH”
i=1" i i Gi
= Y -n; dH® Y - dH™
Z/GG i\ (A(u)xR) 7 - Z/H 7

GiN(A(u) xR)

We couple the different terms as follows:

Y m dH" + Y - dH?

/8G1\(A(u)xR) /8G2\(A(u)><R)

= / {(Y(m’, 0,u(x’,0)) - m(z',0,u(a’,0)) + Y(z',0,u(z’,0)) - n2 (x’,(),u(x'70)))-
BI\A(u)
1+ |V’u(x’,0)|2} da’ =0,

because my (¢, 0, u(z’,0)) = —na(2’, 0, u(z’,0)) = —ey, 41 for every (2/,0) € B\ A(u). For the same

reasons
/ Y-rp,d?-[”—&—/ Y -mdH" =0
0G3\ (A(u)xR) 0G4\ (A(u)xR)

Next we pair

/ Y-de”Jr/ Y g dH”
8G1N(A(u) xR) 8G4N(A(u) xR)

= / <Y(x’,0,0) X (x’,O,O)Jr
Aw)
Y (2/,0,0) - na(, 0,0)) 1+ [Vu(z', 0)2dz’ =0,

where we used that m; (Jc’, 0, O) + My (x', 0, 0) =0 for all (2/,0) € Bj. With a similar argument, we

also have
/ Y-’I]gd/Hn—‘r/ Y -n3dH" =0
G 2N (A(u)xR) 8G3N(A(u) xR)

Collecting the estimates above we conclude the proposition. O

Finally, Proposition 4.3, Proposition 5.1 and [48, Theorem 7.1] imply the optimal regularity for
the solution to the thin obstacle problem.

Theorem 5.2. Let g € C?(R") be even symmetric with respect to xny1 with gl —oy >0, and
let u € W (By) be the solution to the thin obstacle problem (1.1). Then, u € Cp /2(B+ U Bj).

loc

Proof. By Proposition 4.3 we have that there exists o € (0,1) such that the two valued function
U = {~u,u} € CL%(By), because [DU]co.a(B,) < [Du}co,a(Br) (here [-]co.a(g) denotes the Holder
seminorm of the relevant function on the set E). By Proposition 5.1 we have that the graph of

U induces a two-valued minimal graph; we are in the position to apply [48, Theorem 7.1] and
conclude that U € C2/*(By), or equivalently u € C2/*(B;i U BY). O

loc loc

6. THE STRUCTURE OF THE FREE BOUNDARY

In this section we provide a detailed analysis of the free boundary points for the thin obstacle
problem for the area functional. As mentioned in the introduction we prove more refined conclu-
sions than those contained in Theorem 1.1, recovering the analogous results shown for the Dirichlet
energy in [2, 21].
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To state the result we need to introduce three classes of functions ®,,, ¥,, and II,, for m €
N\ {0}, that are explicitly defined as follows:

@, (21, 22) == Re [(xl + ¢|x2\)2m}, (6.1)
U, (1, 20) = Re[(a:1 + i|x2|)2m*1/2}, (6.2)
I (21, 22) == Im[(xl + i\x2|)2m+1] (6.3)

Such families of functions exhaust the homogeneous solutions to the thin obstacle problem with
null obstacle for the Dirichlet energy having top dimensional subspaces of invariances (cp. [21,
Appendix A)).

Moreover, we recall that I,,(zo,-), o € By, denotes the frequency function defined in (1.3) that
shall be studied in the next subsection. In particular, we shall prove that there exists finite its
limit value in 0T denoted in what follows by I,,(zg,0%") for all zg € T'(u).

The following is the main theorem.

Theorem 6.1. Let u be a solution to the thin obstacle problem (1.1). Then,
(i) T'(u) has locally finite (n — 1)-dimensional Minkowski content, i.e. for every K CC Bj
there exists a constant C(K) > 0 such that
LYT(C(w)NK) <C(K)r?* Vre(0,1), (6.4)
where T.(E) := {x € R"™! : dist(z, E) < r};
(ii) T'(u) is H" L-rectifiable, i.e. there exist at most countably many C'-reqular submanifolds
M; C R™ of dimension n — 1 such that
H* (T (u)) \ UienM;) = 0; (6.5)
(iif) Tap(u) := {wo € T(u) : Iy(wo,0T) = 3/2} is locally a CH* regular submanifold of dimen-
sion n— 1 for some dimensional constant o > 0.
Moreover, there exists a subset ¥(u) C I'(u) with Hausdor(f dimension at most n — 2 such that

Iu($070+) S {Qm, 2m — 1/27 2m + 1}m€N\{0} Y xg € F(u) \ Z(u)

Theorem 6.1 generalizes to the nonlinear setting of minimal surfaces the known results for the
regularity of the free boundary shown for the fractional obstacle problem. The conclusion in (iii)
extends the analysis of the regular part of the free boundary done in [2] and its proof follows
from [26] as a consequence of the epiperimetric inequality established in [20, 26]. While for the
rest, the statements are modelled on our results in [21] and the proof is accomplished by the same
arguments exploited for the Dirichlet energy in [21]; for the sake of completeness, in the following
we provide the readers with the details of the needed changes.

6.1. Obstacle problems for Lipschitz quadratic energies. Given a solution u to (1.1), it
follows from (1.2) that w minimizes the following thin obstacle problem for a specific quadratic
energy:

Q: A;5v+— % I(z)|Vo(x)|? de, with J(z) == (1+ |Vu(x)|2)71/2. (6.6)
B1

Note that the above functional is coercive because
0<(1+1%) " <v@) <1, (6.7)

where as usual L = Lip(u). Actually, 9(z) = 1if 2 € I'(u). Moreover, we have that 9 is a Lipschitz
function, as proven in the following lemma.

Lemma 6.2. Let u be a solution to the thin obstacle problem (1.1), then ¥ € W1>°(By).

Proof. Setting d(z) := dist(xz,I'(u)), © € Bj, by the regularity result in Theorem 5.2 and the
classical Schauder estimates we deduce that

lu(z)| < Cd*(z), |Vu(z)] <Cd(x) and |VZu(z) < Cd™(x),
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for some constant C' > 0, and therefore
Vo] = (1+|Vul?) " |V2uVul < C. O

The basic idea of exploiting the regularity of u itself to reduce the problem to quadratic energies
with Lipschitz coefficients has been recently considered in the literature for the classical obstacle
problem (see, e.g., [17, 43, 18]).

6.2. Frequency function. Given the Lipschitz continuity of 1 we can prove monotonicity of the
following frequency type function at a point xg € Bf defined by

I, (zo,t) := m Vr<1-—|zol,
where
(ot / o2 0(w) V(o) Pd,
and
u(To,t) : /(Z) lz mo‘ (@)1, (;Ug‘ dx.
Here, ¢ : [0, 4+00) — [0,400) is the function given by
1 for 0 <t< %
o) :=2(1—1t) for $<t<1,
0 for 1 <t.

It is also useful to introduce
2
s t)i= [ ¢ (1520 0(a) 5l (Tula) - =) da

In what follows, we shall not highlight the dependence on the base point xg in the quantities above
if it coincides with the origin.

By exploiting the integration by parts formulas used in [17], we show the following variant of
the monotonicity formula for the frequency.

Proposition 6.3. Let u be a solution to the thin obstacle problem (1.1) in By. Then, there exists
a nonnegative constant Cs3 depending on Lip(u), such that for all xo € By, and for L' a.e.
te (0,1 — |xgl|)

2t
H2(xo,t)
with |Ry(xo,t)| < Coslu(x0,t). In particular, the function (0,1 — |xg|) 3 t = e“o38 1, (20,t) is
nondecreasing and

IL‘(I'Oat) = (Hu(x()vt)Eu(xOvt) - DZ(‘T()? )) + R (‘T07 ) (68)

"o2geCost

0 H? (an )
for 0 <ro<r <1—|zo|, and the limit I, (xo,0") = limy o I, (xo,t) exists finite.

¢ I (w0, 11) — 7O, (20, 70) > (Hu(@o, ) Bulwo,t) = D(xo,0)) dt,  (6.9)

Proof. We need to estimate the derivatives of D,, and H,: by exploiting the integration by parts
formulas used in [17] one can show that for every xo € B} and for £ a.e. r € (0,1 — |zo]),

n —

1
D! (zg,7) = Dy (zo,7) + 2E.(x0,7) + ep(z0,7), (6.10)

and
H' (z0,7) = ;Hu(;vo,r) + 2D, (20, 7) + £ (20, 7), (6.11)

with [ep(xo,7)| < C Dy(xo,7) and |eg(xo,r)| < CHy(xo,7) for some constant C' > 0 depending
on Lip(u). Moreover, for all 0 < r < 1 — |zg],

Dy(wo,7) = =1 [ ¢/ (E52) (2 )u(e) Vu(z) - 2222 dar (6.12)
The details of (6.10), (6.11) and (6.12) are postponed to the appendix.
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For the sake of simplicity assume xy = 0 (recall that in this case we drop the dependence on the
base point in the relevant quantities). By (6.11) and (6.10), we compute the derivative of log I,,(t)
as follows:

L) 1 Dyt  H() _,Eut) ,Dult)  ep) eult)
L(t) t Dut) H,() "~ Dut) “Hu()  Du(t) Hut)
D, (t) and |eg(t)] < CHy(t), (6.8) readily follows. In addition,

IL0)+ Coalu(t) > gracs (L0 EL(0) — D).

Hence, being |ep(t)| <

thus leading to inequality (6.9) by multiplying with e“#* and integrating. Finally, by (6.12) and

the Cauchy—Schwarz inequality, the map ¢~ e“-3¢T, () is non-decreasing. O
We also derive additive quasi-monotonicity formula for the frequency.

Corollary 6.4. Let u be a solution to the thin obstacle problem (1.1) in By. For every A > 0 there
exists Cs.4 = Co.4(Lip(u), A) > 0 such that for all zg € By with I,(xo,7) < A, r € (0,1 — |zo]),
then

(0,7] 3t — L,(x0,t) + Cs.4t  is nondecreasing. (6.13)

Proof. Proposition 6.3 implies that I, (zo,t) < e“s# A for all ¢t € (0,7]. Therefore, from inequality
(6.8) and the estimate on the rest R, (x,t), we deduce the conclusion with Cs 4 := C3e%2 4. O

6.3. Lower bound on the frequency and compactness. The frequency of a solution to (1.1)
at free boundary points is bounded from below by a universal constant. A preliminary lemma is
needed.

Lemma 6.5. Let u be a solution to the thin obstacle problem (1.1) in By. Then, there exists
a constant C = C(n, [VU]COJ/Z(BJ? )) > 0 such that for every xo € I'(u) N By and for every
3/4

O<r<lif

/ lu(x)]*de < C?“/ |Vu(z)|?dz + Cr™*3. (6.14)
0B (z0) Br(zo)

Proof. By Poincaré-Wirtinger inequality we have

2
/ () [2dH" < Cr / V() Pz + Or ][ u(x) dH" ), (6.15)
9B (z0) By (z0) O0Br(w0o)

for some dimensional constant C' > 0. To estimate the mean value of u we argue as follows. By

direct calculation d
T
— u(zx)dx :][ Vu(x), —)dx.
dr(ﬁm) @) = f (.

Therefore, recalling that Vu(z) = 0 since xo € I'(u), by one-sided C*'/* regularity we find that

% ( ]{BT(IO) u(x) dx)

with C' = C(n, [Vu]cg,l/Q(BJf/ )) > 0. Hence, recalling that u(zo) = 0, by integration we infer that
3/4

][ u(z) dx
B, (zo)
Finally, noting that

(1 (] 1
— u(x)der ) = w(x) dH™ — u(x) dw
d?"< B (o) ) ) T ( 9B, (o) ) By (20) () )

we conclude from (6.16) and (6.17) that for some C' = C(n, [Vu]co,l/Q(BJF/ )) > 0 we have
3/4

][ u(z)dH"
6B7,(m0)

< ][ |Vu(z)|dz < Cr'/? (6.16)
B (170)

<Crl, (6.17)

< Or’,




20 M. FOCARDI AND E. SPADARO

In turn, the latter inequality and (6.15) yield (6.14). O
A first rough bound from below on the frequency then easily follows.

Lemma 6.6. Let u be a solution to the thin obstacle problem (1.1) in By. There exist a constant
Cs.6 = Cs6(n, L, [VU]COYI/Q(B;M)) > 0 and a radius r¢.6 = re.6(n, L, [VU]CU,I/Q(B;M)) € (0,1/2) such

that, for every xo € I'(u) N Biy, we have for all v € (0,76.6)

L(x0,7) > Cs.6- (6.18)
Proof. The co-area formula and an integration by parts give
" dt
Ha(zo,7) = 2 / dt / (@) |u(@) AR (), (6.19)
5t JoBi(ao)
and
w(To, T / dt/ z)|Vu(z)? de (6.20)
By ( 910)

(cf. [21, Lemma 2.9]). Moreover, recalling that ¢ € Lip(B;y) with ¥(z9) = 1 as z9 € I'(u) and
0 < d(x) <1 for all x € Bj, we conclude from (6.19) that

dt
(0,7 _2/ / 2)[2dH" ( <2L/ dt/ 2)PdH" ()
3Bt($o) 331(560)

= 2L/ lu(z)|? dx S 20\/1 4 L2 e 2"y H, (20, 7).
(0)\By/2(z0)

Hence, we find that

(0,7 <4/ dt/ 2)[2dH (x) (6.21)
6Bt($0)

provided that 0 < 7 < rg¢ < (4L/1+ L2 e4:2)~1
Analogously, by taking into account (6.20) we have that

2 T T

D (xg,7) — 7/ dt/ |Vu(z)|?dH" ()| < 2L/ dt/ |Vu(z)|*dH"(z),
rJz By (zo) 5 By (o)

from which we deduce that

%/ dt/ |Vu(z)|?dH" (z) < 4D, (zo,7) (6.22)
% Bt(m(])

asO<7“§T6A6§i
In particular, from the Poincaré inequality (6.14) and estimates (6.21), (6.22) we get for some
constant C = C(n, [VU]COJ/Q(B;M)) >0

H,(zg,7) < CrDy(xo,7) + Crt3

for all 7 € (0,7) provided that rs s < (4Lv/1+ L2 e%42)~1Al/2. Then, either e“62 " I, (xq,7) > 1 for
every r € (0,76.), from which we infer I, (zg,r) > e~ for all r € (0,76.); or €762 "I, (20, 7) < 1
for all r € (0,74,), T2, < T6.6, by Proposition 6.3. In the last instance, I,(zg,7) > e~ for
all v € [rg,,76.6), and I,(xg,7) < 1 for every r € (0,7ry,). Thus, we have that H,(xo,r) >
e 1 (20, 72,)

such radii we conclude that

1
- for all radii » € (0,74,) (cf. (A.7) in the appendix). In particular, for
zo

7,.n+1

1
I (zg,7) > = —eFrz—_%0 ;2
ul ) C Hy,(x0,72,)

and thus there exists p,, < r4, such that
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for all r € (0, py,). In turn, this and the quasi-monotonicity of the frequency in Proposition 6.3
yield that for all r € (0,r64)

efc(i.ﬁ

2C H

Iu(x()a T) Z

6.4. Blowup profiles. An important consequence of the quasi-monotonicity of the frequency in
Proposition 6.3 and of the universal lower bound for the frequency in Lemma 6.6 is the existence
of nontrivial blowup profiles. For u : By — R solution of (1.1) we introduce the rescalings

P2 u(zo + 1Y)

uxo,r(y) = H1/2(m0’r) Vre(0,1—|zol), Vye€ Bl*\r’ﬁo\ . (6.23)
By the same arguments exploited in the blowup analysis in [21, Section 2.5], for every z € I'(u)
and for every sequence of numbers (7;)jen C (0,1 — |zo|) with r; | 0, there exist a subsequence

(rj, Jken and a function uy € I/Vlif (R™*1) such that
Uz, — U0 in VV&)’CQ(RnJrl)_ (6.24)

Moreover, ug is the solution to the Signorini problem for the Dirichlet energy on R™*!, i.e. satis-
fying

(6.25)
Ont1ug <0 and wgOpy1uo=0 on {x,y; =0},

{Auo =0 in {zp+1 >0},
and wug is I,,(xo,0")-homogeneous, because by rescaling I,,, (0, r) = I,(xo,0") for every r > 0.
In particular, the classification of the blowup profiles is the same as for the Dirichlet energy,
and counsists in the functions ®,,,, ¥,,, I1,, in (6.1), (6.2) and (6.3) in case the subspace of invariant
directions has maximal dimension.

6.5. Spatial oscillation for the frequency. Next we recall the basic estimate on the spatial
oscillation of the frequency which is at the heart of the analysis in [21]. We introduce the notation:
for a point z € B} and a radius 0 < p < r, we set

Al(z) := Lu(z,7) + Co.ar — Lu(x, p) — Cs 4p.

Note that Aj(z) > 0 in view of Corollary 6.4.
The following proposition is a straightforward extension of [21, Proposition 3.3].

Proposition 6.7. For every A > 0 there exists Cs.7(n,Lip(u), A) > 0 such that, if p >0, R > 9
and u : Bygr,(xo) — R is a solution to the thin obstacle problem (1.1) in Bag,(zo), with zo € T'(u)
and I, (xo,4Rp) < A, then

1/2 1/2
| Lu(@1, Rp) = Lu(w2, Rp) | < Co.z [(A?é’it?ig(xl)) + (AT (22) }mep, (6.26)

!
for every x1,x2 € B,

Proof. The proof is a variant of [21, Proposition 3.3]. For readers’ convenience, we repeat some of
the arguments with the necessary changes.

Without loss of generality, we consider zo = 0. With fixed 1,22 € By, let z; := txy + (1 — )z,
t € [0,1], and consider the map ¢ — I, (z¢, Rp). Set e := x1 — xo, then e - e,41 = 0. Since the
functions x — H,(z, Rp) and x — D, (z, Rp) are differentiable, we get

1
I,(z1,Rp) — I, (2, Rp) = / Ocly(x¢, Rp) dt. (6.27)
0
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To compute the last integrand, we start off with noting that for all A € R

Oc Hy (w1, Rp) = /¢ () 4 (20(y + m0) uly + 20) Deuly + 1) + 0Dy + ) v (y + 1)) dy
=2 [ /() oty + o) uly + ) Gy + 1) = Ny + ) y

+ 2\H, (x4, Rp) — /gb Rl 0V (y + 1) 2(1(;‘“)(1% (6.28)

and by Proposition 4.2
deD, (14, Rp) = / S () (20(y + ) Vuly + 1) - V(0eu)(y + 7) + 09y + 24)|Vu(y + z,)[?) dy
/ ¢ (J) 9y + 2)0euly + @) Vuly + 1) - 2 dy
/¢ (Yo, 9(y + 2) [ Vuly + =) dy

dy

€12 Rp /¢ ly‘ + ) (aeu(y +x¢) — Au(y + mt))Vu(y + 1) - ﬁ

+ 2Dy (2, Rp) + /¢ WYo,0(y + ) [Vuy + ) dy. (6.29)

To deduce the second equality we have applied the divergence theorem to the vector field V (y) :=
qﬁ(g))) V(x4 y) Deu(y + ) Vu(y + z) (note that V' € C*(Bg, \ By,), V has zero trace on dBg,
and the divergence of V' does not concentrate on Bj).

Then, by formulas (6.28) and (6.29), we have that

Oc Dy (¢, Rp OcHy(xy, Rp
et (o ) = oo ) (T e T~ S )

=1 (xt,Rp f¢/(‘z xtl) ‘f(?tl (aeu(z) — )\u(z)) (Vu(z) (2 —x¢) — L(24, Rp)u(z)) dz
+ [I)u((tht,%/;) f¢(|z wt\)a 9(2)|Vu(2)2dz — It(a;t;??/;)) f¢/(lz wt\) Iz )IZ (;t)‘ dz
= JP + 3 + I, (6.30)

The estimate of Jt(l) is at all analogous to the estimate in [21, Proposition 3.3] and yields

D <o (a2B2030) 4 o(A2IHD0(5,)) (6.31)

Rp/2—2p Rp/2—2p

Recalling that ¢ is Lipschitz continuous, for Jt(z) and Jt(s) we get that there exists a constant
C = C(Lip(u), A) > 0 such that

\Jt(Q) + Jt(3)| < Clzy — 2o (6.32)
By collecting (6.27), (6.30), (6.32) and (6.31) we conclude. O

6.6. Proof of Theorem 6.1. For the proof of the main theorem is now a straightforward adap-
tation of the arguments in [21]. We omit it the details and only recall the main steps of the
proof.

6.6.1. Mean-flatness. Using the estimate on the spatial oscillation of the frequency in Proposition
6.7, one can easily prove the analog of [21, Proposition 4.2]: for every A > 0 and R > 6 there
exists a constant C' > 0 such that if u is a solution to (1.1) in B(4g410)r(70), With zo € I'(u) and
with I, (20, (4R + 10)r) < A, then for every p finite Borel measure with spt (1) C I'(u) and for all
p € I'(u) N Bl.(xo) we have

B < ( /B ( )A&ﬁﬁ;@) du(@) +1*u(B,(p))), (6.33)

,rTL
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where the mean flatness of p is defined by
2 e
Bu(x,r) = inf (7"_"_1/ dist (y,ﬁ)du(y)) , (6.34)
L B (x)

the infimum being taken among all affine (n — 1)-dimensional planes £ C R™*1.

6.6.2. Rigidity of homogeneous solutions. We set for xo € By and t < 1 — |x¢]
Ju(20,t) := ec‘“‘*tlu(:co,t)

and given 7,7 > 0, 4r < 1 — |xg|, we say that a solution u : By,(z9) — R, zg € {z,+1 = 0}, to the
thin obstacle problem (1.1) is n-almost homogeneous in By, (xq) if

Ju(zo, 1) — Iy (:170, T/Q) <n.

Then, by the compactness argument in [21, Proposition 5.6], the following rigidity property holds:
for every 7, A > 0 there exist n > 0 and ro > 0 such that, if »r < ro and u : Bg-(x9) — R, with
xg € {xn11 = 0}, is a p-almost homogeneous solution in By, (zg) of the thin obstacle problem
(1.1) with ¢ € I'(u) and Jy,(zo,4r) < A, then

(i) either for every point x € T'(u) N Ba,(x0) we have
|Ju(3377°) - Ju($07 7")| S T, (635)

(ii) or there exists a linear subspace V' C R™ x {0} of dimension n — 2 such that

y € Tu) N Bar(0), = dist(y, V) < 7. (6.36)
Ju(y,’l’) - Ju(ya T/Z) < n

6.6.3. Proof of Theorem 6.1. Finally, the main results can be obtained by following verbatim [21,
Sections 6-8] (see also [22]). Indeed, [21, Proposition 6.1], that leads to the local finiteness of
the Minkowskii content in item (i) of Theorem 6.1, is based on a covering argument that exploits
the lower bound on the frequency in Lemma 6.6, the rigidity of almost homogeneous solutions in
Subsection 6.6.2, the control of the mean oscillation via the frequency in Subsection 6.6.1 and the
discrete Reifenberg theorem by Naber & Valtorta [44, Theorem 3.4].

Similarly, the H"~!-rectifiability of I'(u) in Theorem 6.1 (ii) is a consequence of the rectifiability
criterion by Azzam & Tolsa [3, Theorem 1.1] and Naber & Valtorta [44, Theorem 3.4] together
with the estimate in Subsection 6.6.1 and item (i) of Theorem 6.1 itself.

The C1®-regularity of I's/,(u) follows from the approach via an epiperimetric inequality [26]
being ¥ Lipschitz continuous (see also [20] for the proof of the epiperimetric inequality).

Finally, the classification of blow-up limits is exactly that stated in [21, Theorem 1.3], and
proved in [21, Section 8] (see also [22]).

APPENDIX A. VARIATION FORMULAS

In this section we show the computations for the monotonicity of the frequency based on the
integration formulas exploited in [17] for the classical obstacle problem.

Proposition A.1. Let u be a solution to the thin obstacle problem (1.1) in By. There exists a
non negative constant C4., depending on Lip(u), such that for every xo € B} and for L' a.e.
re (0,1 —|zo|),

n—1

Dl (zo,7) = Dy (z0,7) + 2Ey(20,7) + ep(z0,7), (A1)

with lep(zo,7)| < Ca1 Dy(xo,7).
Moreover, for all 0 < r <1 — |z,

Dy(0,7) = =1 [ ¢/ (52]) 0(@)u(@) Vu(e) - 222 da, (A.2)

- r T—x0]
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Proof. Without loss of generality we may assume xy = 0. By direct differentiation we have
/qs 'x' ‘1'19 (z) |[Vu(z)|? dz. (A.3)
Consider the vector field W € C°°(B,. \ B.,R"!) defined by
W(x) := ¢<|Ti|>19(z) (%x — (Vu- x)Vu) ;

and note that W € CO Walal i iae 2(BjE U B}, R™* 1) by the regularity of u (cf. Proposition 4.2,

loc
Theorem 5.2 and Lemma 6.2). Then, the distributional divergence of W is a measure that might

have a singular part concentrated on B. by the trace theorem in W12, On the other hand,
recalling that u 0, 11u = 0 on B} we find W(z/,0%) - e, = 0 for all (2/,0) € B.. Therefore, since
w minimizes (6.6), the distributional divergence of W is the L!(B,.) function given by

divIv(e) = ¢' () - 20() (TLe — (Vu- 2) V) + () (0 - 1)i(@) + (V9 - 2)) T2l

Being W with zero trace on 0B, we conclude that

O—/de dx—/qi) ‘ml mﬂ x) |[Vu(x)|? dz

n—1

+rE,(r) + Dy(r) + / s (12) (Vo - 2) Y2 g (A.4)

Equation (A.1) follows thanks to the equalities (A.3), (A.4), and the Lipschitz continuity of 9 (cf
Lemma 6.2).
Next, we establish (A.2) with a similar argument. To this aim, consider the vector field V(x) :=

o(ZD)9(2) u(z) Vu(z). Clearly, V € C(B; \ B}, R™*), with
V(@) ensr = ¢(2) (@) u(e) Oy iru().

Note that, V € C|).//" N Wéf(Bf U B}, R""1) by the regularity of u, so that V(z',0) - e,+1 = 0 on
Bj recalling that u8n+1u = 0 on Bj. Thus, by taking into account that V" has zero trace on 0B,
and that u minimizes (6.6), the distributional divergence of V is the L'(Bj) function given by

divV(z) = ¢/ (1) 0(2) u(@)Vu(@) - 757 + 6 (2)0(2)| V().

In conclusion, (A.2) follows at once from the divergence theorem. O

0/2

Let us now deal with the derivative of H,,.

Proposition A.2. Let u be a solution to the thin obstacle problem (1.1) in By. There exists a
non negative constant C 5 depending on Lip(u) such that for every xo € By and for L' a.e. r €
(0,1 — |ao]),

H! (xg,7) = ;HU(CEO,T’) + 2D, (zo,7) + em(zo,7), (A.5)
where |eg (zo,r)| < CaoHy(xo, 7).

Proof. As usual we assume zo = 0. Equality (A.5) is a consequence of (A.2) and the direct
computation

L) = & (—r" [ 6 ll) 0 9) 52 )
=2 H,(r) = 1 [ ¢ (|y]) (Vﬁ(ry)uz(ry) +20(ry)ulry) V“(”’)) T
D n 1, () + 2Du(r) + e (r).
where |eg ()] < Cy2 H,(r) in view of the Lipschitz continuity of ¢ and (6.7). =

From Proposition A.2 we immediately deduce a monotonicity formula for H,.
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Corollary A.3. Letu be a solution to the thin obstacle problem (1.1) in By. Then, for allxzg € Bj
and 0 < ro <r; <1—|xg|, we have

H’U. ) Hu Y n Iu ’t 7t
($2 r1) = (mg ro) exp (/ (2 (20, ) + ZA{CH ))dt> . (A.6)
1 To 0 t Hu(an t)
In particular, if Ay < I(xg,t) < Ay for every t € (rg,r1), then
H’U. ) . .
(ro,r1) 27+ e*C“T% is monotone decreasing, (A.7)
Cpor HHul\L0,
(ro,r1) D1+ 42 —ni2A, 8 monotone increasing. (A.8)
Moreover, for all 0 < r <1 — |zg|
Z H,(zo,7) < / lul?dz < 24/1 + L2 e%42"r H,(x0,7). (A.9)
Brp(wo)

Proof. The proof of (A.6) (and hence of (A.7) and (A.8)) follows immediately from the differential
equation (A.5).
The proof of the second inequality in (A.9) is now a direct consequence of (6.7) as follows

lu|? dz =
s/Br(aio) Z

/ lu|? dz
keN’ B,k \B, pi+1(20)

<+1+1L2 %Hu(xo,r/f) < 2v1+ L2 eC*"”rHu(mo,r),

keN
where in the last inequality we used that e“425H,(z¢,s) < e“42"H,(xo,7) for s < r by (A.8).
The opposite inequality is elementary in view of (6.7). O
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