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Abstract
The study of the relationships between the different structures of the human locomotor system 
still raises great interest. In fact, the human body networks and in particular the “myofascial sys-
tem network” underlie posture and movement and new knowledge could be useful and applied 
to many fields such as medicine and prosthetics. The hypothesis of this study was to verify the 
possibility of creating a structural network representing the human locomotor system as well as 
to study and describe the relationship between the different structures considered. The graph 
theory was applied to a network of 2339 body parts (nodes) and 7310 links, representing the 
locomotor system. The open source platform software Cytoscape was used for data entry (nodes 
and links) as well as for debugging. In addition, the “NetworkAnalyzer” plugin was used for 
the descriptive statistics of the network obtained. In order to achieve a better rendering, the 
results of the network parameters gained were then imported into Gephi graph platform. At the 
end of this procedure, we obtained an image of a human being in an orthostatic position with a 
precise distribution of the nodes and links. More specifically, “the shortest pathways analysis of 
the network” demonstrated that any two randomly selected nodes on the network were connect-
ed by pathways of 4 or at most 6-8 nodes. Moreover, the Edge Radiality Distribution analysis 
was carried out in order to define how a single node is functionally relevant for other nodes: the 
probability distribution ranged from 0.4 to 0.77. This indicates that the majority of nodes tend to 
be functionally relevant for the others, but none of these is predominant. As a whole, the Cluster 
Coefficient (0.260) demonstrates that the network is neither random nor “strongly organized”.
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Introduction

Although in some branches of medicine such as anatomy and kinesiology as well 
as osteopathy the relationship between different parts of the body and in particular of 
the musculoskeletal system is taken into consideration, no precise indications are yet 
given in this regard (Esteve-Altava et al., 2011; Swanson, 2013; Diogo et al., 2015).

The human locomotor system is a complex system that affects thousands of ana-
tomical structures; each part with its own morpho-functional peculiarities, showing 
specific functions both individually and together (i.e. to support the person and allow 
movements, connect, protect other organs), thus creating a complicated system of 
relationships that characterizes the musculoskeletal system itself.
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Consequently, studies aimed at an increasing in-depth knowledge of the human 
body and the relationships between the different systems in static and dynamic con-
ditions is still raising great interest (Diogo et al., 2015; Esteve-Altava et al., 2011). 

Some authors have tried to answer this question by applying the principles of 
tensegrity to the study of the musculoskeletal system, human movement and posture 
and relationships between the different body segments (Levin, 2002; Swanson, 2013; 
Dischiavi et al., 2018).

Tensegrity refers to structures that maintain their integrity by balancing continu-
ously braided tensile forces along the structure (Chen and Ingber, 1999; Ingber, 2008). 
In this sense, it is known that the forces acting in human connective tissue can be rep-
resented as a continuous network affecting all structures of the musculoskeletal sys-
tem. This would allow us to overcome the limits of a segmental study and to explain 
more complex properties of locomotor system through a holistic approach (Chen and 
Ingber, 1999, Dischiavi et al., 2018). 

Moreover, in recent years the human body and the relations between its different 
parts has been studied using the theory of networks (Bolwijn et al., 1996; Fling et al., 
2014; Esteve-Altava et al., 2015). This approach has allowed the study of the human 
body from a different perspective.

The results achieved by the generation of a structured network representing the 
musculoskeletal system can be further studied and graphically represented with the 
use of the graph theory (Mason and Verwoerd, 2008; Murphy et al., 2018).

In this sense, graph theory in scientific literature is applied to several fields, 
including the medical (Bullmore and Sporns, 2009, van Wijk et al., 2010) and social 
one (Makagon et al., 2012; De Vico Fallani et al., 2014; Zang et al., 2018). Recently, 
some authors have studied the human posture by applying the graph theory to 
achieve a simple model, but at the same time an accurate and faithful picture of the 
original system (Thome et al., 2006; Tahir et al., 2007; Liu and Zhan, 2013; Boonstra et 
al., 2015). In particular, the graph theory can allow the objective representation of the 
data set of the network obtained from the anatomical examination of the human mus-
culoskeletal system, as has been done in the present study.

An approach considering these theories, as a mathematical measure of the rela-
tionships inside the musculoskeletal system, could help to better understand the rela-
tionships between the different structures of this system and become a new way to 
investigate anatomical complexity, that could be widely applied.

The aim of the present study was to verify the possibility to create a network rep-
resenting the human musculoskeletal system and then define a structural network 
applied to anatomy to study and describe the relationship between the different 
structures considered.

Materials and Methods

In this study, as a whole, numerous interconnected parts (nodes) of the musculo-
skeletal system were identified, in order to create a structural network that allows an 
in-depth topological analysis of the musculoskeletal system itself. In this sense, we 
considered a total of 2339 anatomical structures (Table 1). Specifically, all the osteo-
musculo-ligamentous structures of the arthrodial system, the diaphragm, the pelvic 
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floor muscles, the supra and subhyoid muscles and 
the pharyngeal muscles were considered. Bone, cap-
suloligamentous and joint structures of the inner ear 
were not considered.

Among these structures (nodes), the undirected 
links (the connection is not associated with a direc-
tion) have been defined according to the existing ana-
tomical relationship. The study of the network follow-
ing the analysis of such a large number of nodes, that 
is, the “graphic” representation, even if not univocal, 
of every single part of the musculoskeletal system was 
aimed at obtaining a graphic representation of such 
network (graph) and therefore of the relationships 
between the structures.

In this sense, the open source software platform 
Cytoscape (www.cytoscape.org) was used for data 
entry (nodes and links) as well as for their debugging. 
In addition, the plugin “NetworkAnalyzer” was used 
for the descriptive statistics of the network obtained.

The resulting network parameters were then imported into the open-source and 
multiplatform software Gephi (www.Gephi.org) for a better rendering, using the 
plugin “ForceAtlas 2” with the option “Dissuade hubs”. 

The structured network obtained and expressed through a graph was character-
ized by its own density. The formula applied to calculate the network density, that is, 
how many links are there in the network compared to the maximum number of links 
that a network with the same number of nodes N can have was the following:

where D is the graph density, N is the number of nodes inside the network and E is 
the number of possible links that a network with N nodes can contain.

The diameter of a graph G it is the greatest distance between any pair of vertices 
and it was considered as the number of edges in the shortest path between the most 
distant vertices.

The clustering coefficient is the measure of the degree to which nodes in a graph 
tend to cluster together and results from the number n of links existing between the 
ki nodes next to i and the maximum number of possible arches between them. This 
value was calculated as follows: 

where ki is the number of neighbours of the i’th node and ei is the number of con-
nections between these neighbours. Closeness centrality measures the importance of a 
node in a network according to the notion that “An important node is typically close 
to, and can communicate quickly with, the other nodes in the network”; it was cal-

Table 1. Body parts considered 
in this research: typology and 
number.

Anatomical structures N°
Ligaments 1062
Bones 216
Muscles 590
Fasciae 103
Cartilages 124
Innards (eye) 2
Other 5
Tendons 237
Total 2339
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culated as the sum of the length of the shortest pathways between the node and all 
other nodes in the graph (Friedkin et al., 1981; Mason and Verwoerd, 2008; Opsahl et 
al., 2010).

Results

This study allowed us to create a network and thus obtain a connected graph in 
which self-organization shows a clear reconstruction of the human musculoskeletal 
system. In particular, the topological analysis defined a network of 2339 anatomical 
parts (nodes) and 7310 links (Tables 1, 2).

The definition of the network is the result of two consecutive steps. After the full 
definition of a first network (preliminary network), debugging was carried out to find 
imperfections and oversights. At the end of the debugging process, data entry errors 
(about 100) were found and were corrected, obtaining the “final” network considered 
in this study. From the comparison of the two networks (preliminary vs. final) it was 
possible to verify how the difference in the numerical results achieved was less than 
the fourth decimal place (<10-4 error).

The descriptive parameters of the final network achieved by Cytoscape process-
ing are listed in Table 2. In particular, the network density was 0.003, while the graph 
diameter graph resulted 14, and the clustering coefficient was 0.260. 

The shortest pathway analysis of the network demonstrated that any two randomly 
selected nodes on the network were connected by pathways of 4 or at most 6-8 jumps 
and each network node was connected on average with 6.25 other nodes (Figure 1).

The results of the Edge Radiality Distribution analysis showed that the “probabil-
ity” of a node to be functionally relevant for several other nearby nodes ranged from 
0.4 to 0.77.

Discussion

In this study, we created an anatomical network model of the locomotor system 
by evaluating all its anatomical structures and, within this set, the relationships that 
each single structure (node) has with the others through the definition of edges.

Table 2. Anatomical network parameters.

Clustering coefficient: 0.260 Number of nodes: 2339
Connected  components: 1 Network density: 0.003
Network diameter: 14 Network heterogeneity: 1.397
Network centralization: 0.033 Isolated nodes: 0
Shortest paths: 5468582 (100%) Number of self-loops: 6
Characteristic path length: 6.682 Multi-edge node pairs: 7310
Avg. Number of neighbors: 6.253 Analysis time (sec): 9.389
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We carried out this study with the same approach as previous ones on the human 
head (Esteve-Altava et al., 2015), body (Thome et al., 2006) posture (Tahir et al., 
2007) and hand grasp posture (Liu and Zhan, 2013) and analysis using the theory of 
data graphs has allowed a new and more detailed description of the locomotor sys-
tem. This result could be an important step forward in the study of the relationship 
between the different structures of locomotor system and of this with other body sys-
tems and the environment in static and dynamic conditions. Contrary to other studies 
(Murphy et al., 2018) we defined nodes as all the structures considered, while links 
indicate an anatomic relationship between the nodes.

In particular, processing the network step by step (see Figures 2-5) created an 
image of a man in orthostatic position, that is a precise distribution of the nodes and 
the links resulted from the graphic representation of the outcomes.

It is worthy noting that the data histograms, screened by the plugging network 
analysis of Cytoskape (Network Analizer), fitted precisely with the theoretical curves 
without points that distinctly deviate from those curves (Figures 2). 

At the same time, the density value of the generated network demonstrated that 
the network and its structure is very flexible and elastic, the Cluster Coefficient 
obtained from the analysis of the network resulting from this study is 0.260, which 
can be considered a intermediate value indicating that the network is neither ran-
dom nor “strongly organized”. In this sense it is known that the Cluster Coefficient 
(or transitivity) value of a randomly generated network tends to be very low while 
in networks resulted from “engineered” structures it is usually a higher value. The 
heterogeneity of a network should measure the diversity in the node degrees com-
pared to a full homogeneous network with the same number of nodes. In this study 
it was 1.397 indicating that there are no structural holes in the network and its 
nodes, that affect the whole network (Burt, 2004; Mason and Verwoerd, 2008; Jacob 
et al., 2017).

Figure 1: Shortest Path HistogramFigure 1. Shortest Path Histogram.
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All this suggests that the “locomotor” network of a human being is at the same 
time robust, elastic, redundant. In the analysis of these results, we did not the need 
to consider this structure to adapt to the environment in which it lives and, therefore, 
the reciprocal relationship between man and the environment; this network could 
paradoxically appear not “perfected”. 

The approach to the analysis of the musculoskeletal system of this pilot study 
could open new perspectives and find areas of application in many disciplines inter-
ested in the study and treatment of the locomotor system. In fact, this method could 
lead to an integrated study of human movement and posture considering the rela-
tionships between each structure by also applying the principles of tensegrity. As 
previously reported, among the several fields of this approach application there are 
the medical and movement ones. Within these branches, there are real global health 
emergencies such as patients with diabetes and in particular with history of neuropa-
thy, or greater or lesser amputation who could be studied by the approach proposed 
in this study for the serious and typical alterations of movement caused by this con-
dition (Anichini et al., 2017; Francia et al., 2017, 2018). This should theoretically be 
useful for the definition of tailored patients treatments for impairments affecting the 
musculoskeletal system.

Figure 2: Anatomical Network data rendering with Cytoscape

Figure 2. Anatomical Network data rendering with Cytoscape.
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Conclusions

By applying certain concepts of tensegrity to the human body, in this study it has 
been possible to develop a complete anatomical network of the locomotor system and 
its graphical representation. The resulting network is well representative of the differ-
ent anatomical parts of the locomotor system and describes important structural char-
acteristics of the system and of their interdependent relationships. This result can be 
a useful means for further understanding the musculoskeletal system and designing 
better targeted treatment and therapy of disease.

Figure 3. Cytoscape Rendering imported in Gephi.

Figure 3: Cytoscape Rendering imported in Gephi
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