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We explore the symmetry group of the pressure isotropy con-
dition in isotropic coordinates finding a rich structure. We work
out some specific examples.
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1. Introduction

There is an extensive literature describing perfect fluid solutions in general relativity. A perfect
fluid is a fluid that is completely determined by its mass density at rest µ and isotropic pressure p.
Perfect fluids do not have shear stresses, viscosities or heat conduction.

The perfect fluids are used in general relativity as idealized models to describe the interior of
a star such as white dwarfs and neutron stars, or as cosmological models ( examples are the dust
(p = 0) or the radiation fluid (µ = 3p)). A model of an isolated star generally consists of an internal
region filled with fluid and an external region which is an asymptotically flat vacuum solution.
These two charts must be glued together through the outline of the star (the spherical surface of
zero pressure).

For perfect fluid configurations Einstein’s equations give rise only to the pressure isotropy
condition. This condition together with the equation of state of the fluid determines a regular
distribution of matter in a unique way [1,2]. However this road turns out to be impractical for most
of the equations of state and it is worthwhile to follow other paths. One way is the transformation
of the field equation into a form which is algebraic in one variable [3,4], using the other variable as
a generating function. Kuchowicz [5] does the same in isotropic coordinates, followed by a similar
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method due to Glass and Goldman [6,7]. They also gives sufficient conditions on the generating
function which ensures that the resulting metric is interesting for physical applications.

Another possibility is introducing a method that can be used to generate new solutions from
known ones [8,9], which however requires calculations of integrals or solutions of a differential
equation (see also more recently the series of papers [10–13]).

In this article we focus on determining the symmetry group of the pressure isotropy condition
elaborating from the method introduced in [6,7], and we are able to find a sufficiently general
algebraic structure that does not require the calculation of integrals or solve differential equations.

The article is organized as follows. First we introduce the general formalism and the new
technique to generate perfect fluid solutions starting from those already known. We discuss the
physical conditions that the perfect fluid must satisfy in order that the solution is physically
acceptable [14]. We then move on to concrete applications. We start from the famous Schwarzschild
internal solution obtained through our technique starting from one elementary solution. Then our
transformation is applied again to obtain a deformation of the Schwarzschild internal solution
(already known in the literature) and we discuss in great detail the physical constraints. Finally
in the last paragraph we introduce a completely new solution studying the space of the parameters
in which it is physically acceptable.

2. General formulas

We want to describe here the relativistic stationary solutions of perfect fluid with the following
choice of isotropic coordinates:

ds2 = −A2(r)dt2 + B2(r)(dr2 + r2(dθ2
+ sin2θdφ2)) (2.1)

We define A2(r) = e2ν(r) and B2(r) = e2ω(r). Einstein’s equations in the presence of a fluid perfect
are defined by

8πµ = −e−2ω
[
2ω′′

+ ω′2
+

4ω′

r

]
8πp = e−2ω

[
ω′2

+ 2ω′ ν ′
+

2ω′

r
+

2ν ′

r

]
8πp = e−2ω

[
ω′′

+ ν ′′
+ ν ′2

+
ω′

r
+

ν ′

r

]
(2.2)

where µ and p are respectively the density and the pressure of the perfect fluid. From these
equations we derive the constraint due to the condition of pressure isotropy:

ω′′
+ ν ′′

+ ν ′2
− 2ω′ν ′

− ω′2
−

ω′

r
−

ν ′

r
= 0 (2.3)

In this article we want to discuss the symmetry group of this equation, which we will allow to
generate new stationary perfect fluid solutions starting from known ones.

Define

ω′
=

α

r
ν ′

=
β

r
(2.4)

the pressure isotropy condition can be recast as

β2
− α2

− 2αβ − 2(α + β) + r(α′
+ β ′) = 0 (2.5)

Define α̃ = α + β , x = r2, Eq. (2.5) can be rewritten as

2β2
= α̃2

+ 2α̃ − 2x
d
dx

α̃ (2.6)

Replace α̃ = x/f (x), β = x g(x)/f (x), the pressure isotropy condition becomes
d
dx

f (x) = g2(x) −
1
2

(2.7)
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Define

f̃ (x) = f (x) +
x
2

(2.8)

Eq. (2.7) reduces to

d
dx

f̃ (x) = g2(x) (2.9)

It is now easy to study the symmetry group of the perfect fluid solutions with the choice
of isotropic coordinates. This equation is in fact invariant with respect to the following Moebius
transformations:

f̃ (x) →
ãf (x) + b
c̃f (x) + d

ad − bc = 1

g(x) →
g(x)

c̃f (x) + d
(2.10)

We can thus build from a known solution a more extensive one (depending on three arbitrary
parameters). Obviously many of these solutions will be discarded because they do not meet the
necessary physical requirements (negative pressure and density, velocity of the sound greater than
c, and so on...) which we will discuss later. We note that under the Moebius transformations (2.10),
the quantities α̃(x), β(x) transform in a much more complex way:

α̃(x) →
( 2dx + cx2 ) α̃ + 2cx2

( ax + 2b − cx2/2 − dx ) α̃ + 2ax − cx2
ad − bc = 1

β(x) →
2xβ(x)

( ax + 2b − cx2/2 − dx ) α̃ + 2ax − cx2
(2.11)

Also the metric can be defined in terms of f and g :

ln A2
=

∫
dx

g(x)
f (x)

+ c1

ln B2
=

∫
dx

1 − g(x)
f (x)

+ c2 (2.12)

The other Einstein equations determine the pressure and density of the perfect fluid in terms of
f (x) and g(x):

p =
1

8π f 2B2 [ 2f − x(g2
− 1) ]

µ = 3( g − 1 )p −
xg ( g2

− 1 )
8π f 2B2 +

xg ′(x)
2π fB2

= ( 4g − 3 ) p +
1

4π fB2 ( 2xg ′
− g ) (2.13)

which can be recast as

µ =
1

8π f 2B2 [ 6f ( g − 1 ) − x ( g2
− 1 )( 4g − 3 ) + 4xfg ′

] (2.14)

In the following we will need to know the derivatives of p and µ:

dp
dx

=
1

8π f 2B2

[
g ( 2 − 3g ) +

x g
f

( 2g − 1 )( g2
− 1 ) − 2xgg ′

]
(2.15)

We can easily verify that the following relationship is satisfied:

dp
dx

= −
g
2f

(p + µ) (2.16)



4 P. Valtancoli / Annals of Physics 418 (2020) 168192

Furthermore, the density derivative µ can be calculated as follows:

dµ
dx

=
1

8π f 2B2

[
− 5g ( 2g − 1 )( g − 1 ) − 2xg ′( 8g2

− 5g − 1 )+

+
xg
f

( 2g − 1 )( g2
− 1 )( 4g − 3 ) + 2f ( 5g ′

+ 2xg ′′ )
]

(2.17)

Finally, the sound speed dp/dµ can be represented as:

dµ
dp

= 4g − 3 +
g ( 2g2

− 2g + 1 ) − 2xg ′ ( 4g2
− 2g − 1 ) + 2f ( 5g ′

+ 2xg ′′ )
− g ( 3g − 2 ) + (x g/f ) ( 2g − 1 )( g2 − 1 ) − 2xgg ′

(2.18)

There are important physical constraints that the perfect fluid solutions must meet:

(1) ∞ > µ > p > 0
(2) p′ < 0 µ′ < 0

(3)
dp
dµ

< 1

(4) ∞ > A2 > 0
(5) ∞ > B2 > 0 (2.19)

Pressure and density must be positive and must be decreasing functions up to the radius where
the pressure p becomes null (outline of the star). The sound speed dp/dµ must be less than the
speed of light. The metrics A2 and B2 must be positive definite and must not have singularities
(even if apparent) as in the case of black hole. Note that a sufficient condition that satisfies all
these physical requirements is that g ′′ > 0 (see Ref. [6,7]).

Given generic f and g it is not always guaranteed that there is a surface at which p = 0

2f = xb ( g2
− 1 ) −→ xb = φ(xb) =

2f
g2 − 1

(2.20)

For this to happen, condition φ′
≤ 1 must be satisfied which in turn implies that

g ′
≥

g ( g2
− 1 )

4f
(2.21)

The solution must then satisfy the condition that the sound speed is lower than light speed. In
particular, it is important to discuss the following cases:

dµ
dp

(0) > 1 → 0 < f0 <
g0

10g1
( 10g2

0 − 18g0 + 7 )

dµ
dp

(xb) > 1 (2.22)

where

dµ
dp

(xb) =
6g2

− 5g + 1
g

+
x ( g2

− 1 )
g

(
g ′

+ 2xg ′′

g − 2xg ′

)
(2.23)

3. Schwarzschild interior solution

This formalism also contains the black hole solution (p = µ = 0):

f̃ (x) =
2x2

M2

g(x) =
2
√
x

M
(3.1)
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We note that the black hole solution is not analytical in x = 0 and therefore even if we apply
the Moebius transformation (2.10), the perfect fluid solution generated by black hole is not physical
(for example the pressure p can be negative).

Now let us apply the general formalism of the previous section to get already known solutions.
The most famous is undoubtedly Schwarzschild’s internal solution. The latter one can be obtained
from the following non-physical solution:

f̃ (x) = x
g(x) = 1 (3.2)

applying the following Moebius transformation:

A =
3a − 1
2a

B =
( a − 1 )( 2a − 1 )

2ab
AD − BC = 1

C = −
b
a

D =
1
a

(3.3)

from which we obtain

f̃ −→
Ãf + B
Cf̃ + D

=
a2

b( 1 − bx )
+

1 − 3a
2b

g −→
g

Cf̃ + D
=

a
1 − bx

(3.4)

This is the internal solution of Schwarzschild in the isotropic coordinates. Let us recall some of
its properties:

f (x) =
(1 − 2a − bx)(1 − a − bx)

2b(1 − bx)
g(x) =

a
1 − bx

(3.5)

The metric takes the elementary form:

A2
=

(
1 − a − bx
1 − 2a − bx

)2

B2
=

1
(1 − 2a − bx)2

(3.6)

The condition φ′(x) ≤ 1 is always satisfied in any case. So there is an x = xb for which the
pressure is zero:

xb =
2f (xb)

g2(xb) − 1
=

2a − 1
b( 3a − 1 )

(3.7)

In general the pressure is:

p =
b
2π

( 1 − 2a − ( 1 − 3a )bx )
1 − a − bx

(3.8)

and in the origin it is always greater than zero:

p0 =
4b( 1 − 2a )
( 1 − a )

> 0 (3.9)

because a = 1 + µ0/(3p0) > 1.
The density is constant:

µ = µ0 = 3p0(a − 1) (3.10)

and therefore the solution is not physical because dµ/dp = 0.
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The connection with the external black hole solution for x = xb implies that:

g(xb) = 3a − 1 =
2
√
xb

M
−→ xb =

M2

4
(3a − 1)2 (3.11)

from which we derive that

b =
4
M2

2a − 1
(3a − 1)3

(3.12)

The connection with the external solution fixes b = b(a) while the parameter a is linked to
pressure and density at the origin.

4. Extended Schwarzschild interior solution

Let us start from Schwarzschild’s internal solution

f̃ =
a2

b ( 1 − bx )
+

1 − 3a
2b

(4.1)

and apply the following Moebius transformation:

f̃ −→
f̃

1 + k̃f
=

ã2

b̃ ( 1 − b̃x )
+

1 + 2α ã
2̃b

g −→
g

1 + k̃f
=

ã
( 1 − b̃x )

(4.2)

a deformation of α = − 3/2 where the old and new quantities are linked by the condition:

ã =
a
D

b̃ =
b
D

(
1 + k

(
1 − 3a
2b

))
D = 1 + k

(
1 − 3a + 2a2

2b

)
α = −

3
2

−
( D − 1 )

2a
(4.3)

This model has been already studied in Ref. [7], but we will add some details. The perfect fluid
solution that we will discuss in this chapter is therefore:

f =
a
b

[ a
z

+
z
2a

+ α

]
, z = 1 − bx

g =
a
z

(4.4)

The metric can be easily integrated leading to the following formulas:

A2
=

(
z + z2
z + z1

)−
2a

(z1−z2)

B2
=

(z + z2)
2(z2+a)
(z1−z2)

(z + z1)
2(z1+a)
(z1−z2)

(4.5)

where z1,2 = a ( −α ±
√

α2 − 2 ).
Also this extended model has a value for which the pressure is zero. Indeed the condition

2f = x (g2
− 1) translates into the variable z as:

( 1 + 2αa ) z2 + 3a2z − a2 = 0 (4.6)

from which

zb =
−3a2 + a

√
9a2 + 4( 1 + 2αa )

2( 1 + 2αa )
(4.7)
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For α = − 3/2 we obtain zb = a/(3a − 1).
It is easy to extrapolate the following particular values from the solution (4.4):

f0 =
1
b

(
αa + a2 +

1
2

)
g0 = a g1 = ab (4.8)

from which the condition dµ
dp (0) > 1 implies the following constraint on α:

−a −
1
2a

< α < −1.8 +
0.2
a

(4.9)

The sound speed, applying Eq. (2.18), becomes:

dµ
dp

=
4a
z

− 3 +

4a2( 1+2α+3a )
z3

+
2a2( α−3 )+6a

z2

2a
z −

a2
z2

−
2a2
z3

+
2a( 1−z )

( z2+2αaz+2a2 )

( 2a
z − 1

) (
a2
z2

− 1
) (4.10)

Obviously for α = − 3/2 this expression simplifies and reduces to 0.
By plotting the solution (4.10), we obtain that it satisfies the condition d

(
dp
dµ

)
> 0 and

therefore the condition dp
dµ (xb) < 1 is more restrictive than the one at the origin.

Let us calculate dµ
dp (xb) at the point where the pressure becomes zero. The denominator of

Eq. (4.10) simplifies considerably
dµ
dp

(xb) =
4a
zb

− 3 +
4a( 1 + 2α + 3a ) + [ 2a( α − 3 ) + 6 ]zb

a( 3zb − 2 )
> 1 (4.11)

It is difficult to find a general formula for this condition and one has to resort to numerical
calculation. However, for the following class of models an analytical constraint can be obtained:

α = − a +
1
2

−→ zb =
a

1 + 2a
(4.12)

Now the constraint (4.11) becomes calculable:

dµ
dp

(xb) > 1 −→ a >
−1 +

√
113

4
≃ 2.4075 (4.13)

5. New solution

Finally, we introduce a new solution, inspired by Eq. (2.9) and by the condition g ′′ > 0:

f̃ (x) = 2k2 e2x k > 0
g(x) = 2k ex (5.1)

Thus we have that f (x) = 2k2 e2x − x/2. This solution admits a zero of the pressure for

xb = 1 (5.2)

where the decreasing function φ(x) satisfies the conditions:

φ0 =
4
3

φ∞ = 1 (5.3)

The metrics A2 and B2 are not analytically calculable, but we can prove that B2 is an regular
increasing function of x in the range 0 < x < 1. The pressure can be calculated as follows:

p =
k2

2πB2

( 1 − x )e2x

( 2k2e2x −
x
2 )2

(5.4)

where p > 0 in the range 0 < x < 1 if k > 1.
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We also calculate the derivative of the pressure with respect to the variable x:

dp
dx

=
k2e2x

2πB2( 2k2e2x −
x
2 )3

[
2k2e2x( 2x − 3 ) + 2kex( 1 − x ) + x2 −

x
2

]
(5.5)

The density can be easily calculated

µ =
k

2πB2f 2

[
( 8kex − 3 )ke2x( 1 − x ) + ex( 2x − 1 )( 2k2e2x −

x
2

)
]

(5.6)

Graphically we can check that it satisfies the condition ∞ > µ > p > 0 for k > 1.
The sound speed is in general

dµ
dp

= ( 8kex − 3 )

+
2kex( 8k2e2x − 4kex + 1 ) − 4kxex( 16k2e2x − 4kex − 1 ) + ( 4k2e2x − x )(10kex + 4kxex )

−4kex( 3kex − 1 ) +
2kxex

( 2k2e2x− x
2 )

( 4kex − 1 )( 4k2e2x − 1 ) − 8k2xe2x
(5.7)

We can analyze the sound speed at the origin:

dp
dµ

(0) < 1 −→ k >
9 +

√
46

10
≃ 1.578 (5.8)

Graphically this solution satisfies the condition

d
(

dp
dµ

)
< 0 (5.9)

and therefore the constraint dp
dµ (xb) < 1 does not give further constraints and it is always

automatically verified if Eq. (5.8) is valid.
Finally we can add another parameter to the solution

f̃ (x) = 2k2 a e
2x
a

g(x) = 2k e
x
a (5.10)

by moving the zero of the pressure at point x = a, but the solution is qualitatively the same as in
case a = 1.

Let us apply the Moebius transformation (2.10) on the solution (5.10), we obtain

f̃ (x) = k2 a tanh
( x
a

)
+ c

g(x) =
k

cosh( xa )
(5.11)

We immediately notice that g ′′(x) < 0 around x = 0 (the center of the star), and graphing p(x)
we see that it has a bizarre behavior and does not satisfy to the condition dp

dx < 0, so let us classify
the solution (5.11) as not physical.

If we take (5.11) as seed and apply the Moebius transformation (2.10) we get again a three
parameter extension of solution (5.11), which may contain some physically interesting ones.

6. Conclusions

Although most of perfect fluid solutions in general relativity have been studied in the
Schwarzschild coordinates, we found a remarkable simplification in the isotropic coordinates, where
we have developed an algebraic method to generate new solutions starting from already known
ones. The symmetry group we have identified is practically the group of Moebius transformations
and we are therefore able to generate extended solutions with three arbitrary real parameters with
respect to the original ones. Obviously a strong selection of these solutions is necessary to meet
the essential physical requirements (positive pressure and density, sound velocity less than c and
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so on). We have applied our method to the Schwarzschild interior solution and to a deformation of
it, in which we have discussed the physical requirements in great detail. We think the method that
we have developed here could be useful in the future to identify new interesting solutions and to
attempt a general classification of them.
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