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Abstract: Oxidative stress plays a major role in critical biological processes in human reproduction.
However, a reliable and biologically accurate indicator of this condition does not yet exist. On these
bases, the aim of this study was to assess and compare the blood and follicular fluid (FF) redox
status of 45 infertile subjects (and 45 age-matched controls) undergoing in vitro fertilization (IVF),
and explore possible relationships between the assessed redox parameters and IVF outcomes.
Reactive Oxygen Species (ROS) production, assessed by flow cytometry analysis in blood leukocytes
and granulosa cells, significantly increased (p < 0.05) in infertile patients. Also, oxidative stress
markers—ThioBarbituric Acid-Reactive Substances (TBARS) as an index of lipid peroxidation, and
Oxygen Radical Absorbance Capacity (ORAC) to account for total antioxidant capacity, both assayed
by fluorometric procedures—in blood and FF were significantly (p < 0.001) modified in infertile
patients compared to the control group. Moreover, a significant correlation between blood redox
markers and FF redox markers was evident. An ORAC/TBARS ratio, defined as the redox index (RI),
was obtained in the plasma and FF of the patients and controls. In the patients, the plasma RI was
about 3.4-fold (p < 0.0001) lower than the control, and the FF RI was about six-fold (p < 0.0001) lower
than the control. Interestingly, both the plasma RI and FF RI results were significantly correlated
(p < 0.05) to the considered outcome parameters (metaphase II, fertilization rate, and ongoing
pregnancies). Given the reported findings, a strict monitoring of redox parameters in assisted
reproductive techniques and infertility management is recommended.

Keywords: oxidative stress; in vitro fertilization (IVF); infertile women; follicular fluid (FF);
granulosa cells
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1. Introduction

Oxidative stress is a condition caused by an imbalance between reactive oxygen or nitrogen
species (ROS/RNS) production, and/or a decrease in antioxidant defense systems. This process is
initially responsible for an adaptive response consisting of the induction of an antioxidant response,
and following antioxidant depletion, cellular injury and dysfunction [1–3]. The loss of balance
between oxidant and antioxidant molecules in serum and in follicular fluid (FF) has been suggested
to be responsible for anomalous oocyte development, due to DNA and cell membrane damage,
which would then result in reduced egg quality, but also in altered fertilization, embryo quality,
implantation, and embryonic development [4,5]. Several studies have reported signs of oxidative stress
in serum and in the FF of infertile women [6–8], but data on the simultaneous presence of oxidative
stress markers in blood (particularly plasma and leukocytes), FF, and granulosa cells are lacking.
Such information would be useful for a better understanding of the ethiopathogenic mechanisms
involved in infertility, due to the still debated role of oxidative stress in infertile patients. Interestingly,
FF composition reflects all of the metabolic and hormonal processes occurring in the microenvironment
of the maturing oocyte, and can represent a predictor of outcome parameters such as fertilization,
embryo cleavage, and pregnancy rates in IVF [9]. At present, in the literature, contrasting results
related to the detrimental or beneficial effects of ROS during in vitro fertilization (IVF) procedures are
present. Some authors suggested that oxidative stress alters the oocyte and embryo quality, and thus
the fertilization rate [10], while other authors [11] reported that signs of lipid peroxidation in FF do not
reflect the reproductive potential of oocytes. Furthermore, it has been shown that higher ROS levels
and signs of lipid peroxidation [12,13] are present in women who became pregnant by IVF, but also
that a higher total antioxidant capacity (TAC) is associated with increased fertilization potential in
women undergoing IVF [7]. Thus, there does not yet exist a general consensus on the role of oxidative
stress in the processes regulating fertilization and embryonic development, nor on the relationship
between the redox parameters in blood and FF, and their effects on oocyte, embryo quality, and finally
IVF outcomes.

Based on this background, in this study, we estimated both in infertile and control patients through:
(1) leukocyte ROS production and plasma oxidative stress markers in blood samples; and (2) granulosa
cell ROS production and oxidative stress markers in FF samples. Indeed, our primary aim was
to compare the obtained redox index (RI) in plasma and in the follicular fluid of infertile patients,
and search for a correlation between these parameters and the outcomes of IVF procedures.

2. Results

2.1. Assessment of Oxidative Stress in Blood Samples and in Granulosa Cells

Oxidative stress in the plasma of infertile patients was indicated (Figure 1A) by the significantly
decreased total antioxidant capacity (23.42 ± 3.69 vs. 17.86 ± 4.02, p < 0.0001) and the significantly
increased thiobarbituric acid-reactive substances (TBARS) level (an index of lipid peroxidation,
0.34 ± 0.06 vs. 0.97 ± 0.32, p < 0.0001).

For plasma total antioxidant capacity and lipid peroxidation, we calculated a sample size (to reach
statistical significance, p < 0.05, between groups) of 10 and 19, respectively. In infertile patients, redox
alterations were also evident in FF (Figure 1B), where total antioxidant capacity was significantly
reduced (21.35 ± 2.72 vs. 12.59 ± 5.72, p < 0.0001), and lipid peroxidation was significantly increased
(0.25 ± 0.03 vs. 1.02 ± 0.40, p < 0.0001). For FF total antioxidant capacity and lipid peroxidation,
we calculated a sample size (to reach statistical significance, p < 0.05, between groups) of 13 and
20, respectively.

The presence of oxidative stress in infertile patients was also confirmed by the significantly
enhanced ROS production in leukocytes (lymphocyte, monocyte, and granulocyte) and granulosa
cells (Figure 1C,D) compared to controls. We calculated a sample size (to reach statistical significance,



Int. J. Mol. Sci. 2018, 19, 592 3 of 15

p < 0.05, between groups) of 13, 28, and 29, for lymphocytes, monocytes, and granulocytes, and of 20
for granulosa cells, respectively.Int. J. Mol. Sci. 2018, 19, 592 3 of 15 

 

 
Figure 1. Oxidative stress parameters in the plasma and follicular fluid of infertile patients and 
controls. Total antioxidant capacity and lipid peroxidation in plasma (A) and follicular fluid (B), 
leukocyte and granulosa cells reactive oxygen species (ROS) production (C,D) in infertile patients  
(n = 45) and controls (n = 45). * indicates that differences are statistically significant at the p < 0.05 level.  

2.2. Redox Index Calculated as ORAC/TBARS Ratio as a Mirror of Oxidative Stress 

To achieve a reliable estimation of the redox status in infertile patients and controls, we 
calculated, both in plasma and in FF, a redox index (RI) obtained as an oxygen radical absorbance 
capacity (ORAC)/TBARS ratio. In infertile patients, the plasma RI result was about 3.4-fold (p < 0.0001) 
lower than in controls, and the FF was six-fold (p < 0.0001) lower than in controls (Figure 2). For the 
plasma RI and FF RI, we calculated a sample size (to reach statistical significance, p < 0.05, between 
groups) of 16 and 9, respectively. 

Figure 1. Oxidative stress parameters in the plasma and follicular fluid of infertile patients and controls.
Total antioxidant capacity and lipid peroxidation in plasma (A) and follicular fluid (B), leukocyte
and granulosa cells reactive oxygen species (ROS) production (C,D) in infertile patients (n = 45) and
controls (n = 45). * indicates that differences are statistically significant at the p < 0.05 level.

2.2. Redox Index Calculated as ORAC/TBARS Ratio as a Mirror of Oxidative Stress

To achieve a reliable estimation of the redox status in infertile patients and controls, we calculated,
both in plasma and in FF, a redox index (RI) obtained as an oxygen radical absorbance capacity
(ORAC)/TBARS ratio. In infertile patients, the plasma RI result was about 3.4-fold (p < 0.0001) lower
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than in controls, and the FF was six-fold (p < 0.0001) lower than in controls (Figure 2). For the plasma
RI and FF RI, we calculated a sample size (to reach statistical significance, p < 0.05, between groups) of
16 and 9, respectively.Int. J. Mol. Sci. 2018, 19, 592 4 of 15 

 

 
Figure 2. (A) Plasma redox index (RI) and (B) follicular fluid redox index values in infertile patients  
(n = 45) and controls (n = 45). * indicates that differences are statistically significant at the p < 0.05 level. 

2.3. Correlation between Investigated Parameters 

As shown in Figure 3, plasma RI significantly correlates with lymphocyte ROS (r = 0.557,  
p < 0.0001), monocyte ROS (r = 0.616, p < 0.0001), granulocyte ROS (r = 0.624, p < 0.0001), FF TBARS 
levels (r = 0.676, p < 0.0001), and granulosa cell ROS (r = 0.340, p < 0.05), but not with FF antioxidant 
capacity (r = 0.076, p = 0.6201). 

 
Figure 3. Plasma redox index correlation analyses. Relationship among the investigated redox 
parameters and the plasma redox index. Statistical significance was considered at the p < 0.05 level. 

Figure 2. (A) Plasma redox index (RI) and (B) follicular fluid redox index values in infertile patients
(n = 45) and controls (n = 45). * indicates that differences are statistically significant at the p < 0.05 level.

2.3. Correlation between Investigated Parameters

As shown in Figure 3, plasma RI significantly correlates with lymphocyte ROS (r = 0.557,
p < 0.0001), monocyte ROS (r = 0.616, p < 0.0001), granulocyte ROS (r = 0.624, p < 0.0001), FF TBARS
levels (r = 0.676, p < 0.0001), and granulosa cell ROS (r = 0.340, p < 0.05), but not with FF antioxidant
capacity (r = 0.076, p = 0.6201).
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parameters and the plasma redox index. Statistical significance was considered at the p < 0.05 level.
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Figure 4 shows that FF RI significantly correlates with lymphocyte ROS (r = 0.472, p < 0.005),
monocyte ROS (r = 0.544, p < 0.0001), granulocyte ROS (r = 0.534, p < 0.001), plasma antioxidant
capacity (r = 0.436, p < 0.005), plasma TBARS (r = 0.396, p < 0.01), and granulosa cell ROS (r = 0.460,
p < 0.005).

Int. J. Mol. Sci. 2018, 19, 592 5 of 15 

 

Figure 4 shows that FF RI significantly correlates with lymphocyte ROS (r = 0.472, p < 0.005), 
monocyte ROS (r = 0.544, p < 0.0001), granulocyte ROS (r = 0.534, p < 0.001), plasma antioxidant capacity 
(r = 0.436, p < 0.005), plasma TBARS (r = 0.396, p < 0.01), and granulosa cell ROS (r = 0.460, p < 0.005). 

 
Figure 4. Follicular fluid redox index correlation analyses. Relationship among the investigated redox 
parameters and the follicular fluid redox index values. All of the correlation analyses were statistically 
significant at the p < 0.05 level. 

At partial correlation analyses, oxidative stress-related parameters (ROS production and lipid 
peroxidation) were significantly related with plasma RI and FF RI after controlling for endometriosis, 
age, smoking habits, body mass index (BMI), in vitro fertilization-embryo transfer (IVF-
ET)/intracytoplasmic sperm injection (ICSI), follicle stimulating hormone (FSH), luteinizing hormone 
(LH), estradiol (E2), Anti-Müllerian Hormone (AMH) and duration of infertility (Table 1). In 
particular, plasma RI is significantly related to plasma ORAC (r = 0.838, p < 0.001), plasma TBARS (r 
= −0.905, p < 0.001), lymphocyte ROS (r = −0.640, p < 0.001), monocyte ROS (r = −0.669, p < 0.001), 
granulocyte ROS (r = −0.724, p < 0.001), FF TBARS (r = −0.748, p < 0.001), and granulosa cell ROS (r = 
−0.400, p = 0.019). FF RI is significantly related to plasma ORAC (r = 0.474, p = 0.005), plasma TBARS 
(r = −0.506, p = 0.002), lymphocyte ROS (r = −0.434, p = 0.011), monocyte ROS (r = −0.520, p = 0.002), 
granulocyte ROS (r = −0.489, p = 0.003), FF ORAC (r = 0.761, p < 0.001), FF TBARS (r = −0.520, p = 0.002), 
and granulosa cell ROS (r = −0.528, p = 0.001). 

  

Figure 4. Follicular fluid redox index correlation analyses. Relationship among the investigated redox
parameters and the follicular fluid redox index values. All of the correlation analyses were statistically
significant at the p < 0.05 level.

At partial correlation analyses, oxidative stress-related parameters (ROS production and
lipid peroxidation) were significantly related with plasma RI and FF RI after controlling for
endometriosis, age, smoking habits, body mass index (BMI), in vitro fertilization-embryo transfer
(IVF-ET)/intracytoplasmic sperm injection (ICSI), follicle stimulating hormone (FSH), luteinizing
hormone (LH), estradiol (E2), Anti-Müllerian Hormone (AMH) and duration of infertility (Table 1).
In particular, plasma RI is significantly related to plasma ORAC (r = 0.838, p < 0.001), plasma TBARS
(r = −0.905, p < 0.001), lymphocyte ROS (r = −0.640, p < 0.001), monocyte ROS (r = −0.669, p < 0.001),
granulocyte ROS (r = −0.724, p < 0.001), FF TBARS (r = −0.748, p < 0.001), and granulosa cell ROS
(r = −0.400, p = 0.019). FF RI is significantly related to plasma ORAC (r = 0.474, p = 0.005), plasma
TBARS (r = −0.506, p = 0.002), lymphocyte ROS (r = −0.434, p = 0.011), monocyte ROS (r = −0.520,
p = 0.002), granulocyte ROS (r = −0.489, p = 0.003), FF ORAC (r = 0.761, p < 0.001), FF TBARS
(r = −0.520, p = 0.002), and granulosa cell ROS (r = −0.528, p = 0.001).
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Table 1. Partial correlation coefficients between the investigated oxidative stress-related parameters after controlling for endometriosis, age, smoking habits, body
mass index (BMI), in vitro fertilization-embryo transfer (IVF-ET)/intracytoplasmic sperm injection (ICSI), follicle stimulating hormone (FSH), luteinizing hormone
(LH), estradiol (E2), Anti-Müllerian Hormone (AMH) and duration of infertility.

Redox Parameters Plasma ORAC Plasma TBARS Lymphocyte ROS Monocyte ROS Granulocyte ROS FF ORAC FF TBARS Granulosa Cell ROS

Plasma Redox Index (RI)
r = 0.838 r = −0.905 r = −0.640 r = −0.669 r = −0.724 r = 0.083 r = −0.748 r = −0.400
p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.639 p < 0.001 p = 0.019

FF Redox Index (RI)
r = 0.474 r = −0.506 r = −0.431 r = −0.520 r = −0.489 r = 0.761 r = −0.520 r = −0.528
p = 0.005 p = 0.002 p = 0.011 p = 0.002 p = 0.003 p < 0.001 p = 0.002 p = 0.001

Lymphocyte ROS r = −0.618 r = 0.581 - r = 0.925 r = 0.914 r = −0.150 r = 0.664 r = 0.645
p < 0.001 p < 0.001 - p < 0.001 p < 0.001 p = 0.397 p < 0.001 p < 0.001

Monocyte ROS r = −0.695 r = 0.621 r = 0.925 - r = 0.937 r = −0.211 r = 0.761 r = 0.619
p < 0.001 p < 0.001 p < 0.001 - p < 0.001 p = 0.231 p < 0.001 p < 0.001

Granulocyte ROS r = −0.749 r = 0.645 r = 0.914 r = 0.937 - r = −0.134 r = 0.759 r = 0.680
p < 0.001 p < 0.001 p < 0.001 p < 0.001 - p = 0.451 p < 0.001 p < 0.001

FF ORAC
r = 0.124 r = −0.238 r = −0.150 r = −0.211 r = −0.134 - r = 0.027 r = −0.159
p = 0.485 p = 0.175 p = 0.397 p = 0.231 p = 0.451 - p = 0.880 p = 0.368

FF TBARS
r = −0.728 r = 0.682 r = 0.664 r = 0.761 r = 0.759 r = 0.027 - r = 0.557
p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.880 - p = 0.001

Granulosa cell ROS
r = −0.529 r = 0.394 r = 0.645 r = 0.619 r = 0.680 r = −0.159 r = 0.557 -
p = 0.001 p = 0.021 p < 0.001 p < 0.001 p < 0.001 p = 0.368 p = 0.001 -

ORAC: Oxygen Radical Absorbance Capacity; ROS: Reactive Oxygen Species; TBARS: Thiobarbituric Acid-Reactive Substances.
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2.4. Systemic Oxidative Stress Parameters are Related to Assisted Reproductive Technologies (ART) Outcome

In order to verify the possible role of redox alterations in the main outcomes of ART procedures
in infertile patients, we performed suitable correlation analyses among the plasma/FF oxidative
stress-related parameters and fertilization rate (%), and retrieved the oocyte metaphase II (%) ongoing
pregnancies indexes.

As shown in Table 2, at partial correlation analyses, % metaphase II oocytes significantly correlated
with plasma TBARS (r =−0.540, p = 0.001) and ORAC (r = 0.524, p = 0.001), lymphocyte ROS (r = −0.542,
p = 0.001), monocyte ROS (r = −0.494, p = 0.003), granulocyte ROS (r = −0.572, p < 0.001), granulosa
cell ROS (r = −0.654, p < 0.001), FF TBARS (r = −0.451, p = 0.007), and both with plasma RI (r = 0.463,
p = 0.006) and FF RI (r = 0.459, p = 0.006) values, but not with FF antioxidant capacity (r = −0.212,
p = 0.229), after controlling for endometriosis, age, smoking habits, BMI, IVF-ET/ICSI, FSH, LH,
estradiol, AMH, and duration of infertility. In addition, at partial correlation analyses, fertilization
rate (%) significantly correlated with plasma TBARS (r = −0.685, p < 0.001), ORAC (r = 0.469, p = 0.005),
monocyte ROS (r = −0.367, p = 0.033), FF TBARS (r = −0.476, p = 0.004), and with both plasma RI
(r = 0.520, p = 0.002) and FF RI (r = 0.413, p = 0.015) values, but not with lymphocyte ROS (r = −0.312,
p = 0.072), granulocyte ROS (r = −0.333, p = 0.054), granulosa cell ROS (r = −0.268, p = 0.126), or FF
antioxidant capacity (r = 0.316, p = 0.069), also after controlling for endometriosis, age, smoking habits,
BMI, IVF-ET/ICSI, FSH, LH, estradiol, AMH, and duration of infertility.

Finally, at partial correlation analyses, ongoing pregnancies significantly correlated with plasma
TBARS (r = −0.471; p = 0.005) and ORAC (r = 0.504; p = 0.002), lymphocyte ROS (r = −0.384; p = 0.025),
monocyte ROS (r = −0.433; p = 0.010), granulocyte ROS (r = −0.465; p = 0.006), granulosa cell ROS
(r = −0.357; p = 0.038), FF TBARS (r = −0.351; p = 0.042), FF antioxidant capacity (r = 0.404; p = 0.018),
and both with plasma RI (r = 0.549; p = 0.001) and FF RI (r = 0.518; p = 0.002), also after controlling
for endometriosis, age, smoking habits, BMI, IVF-ET/ICSI, FSH, LH, estradiol, AMH, and duration
of infertility.

Table 2. Partial correlation coefficients between the investigated redox parameters and in vitro
fertilization (IVF) outcome after controlling for endometriosis, age, smoking habits, BMI, IVF-ET/ICSI,
FSH, LH, estradiol, AMH, and duration of infertility. FF: follicular fluid.

Redox Parameters Metaphase II (%) (n = 45) Fertilization Rate (%) (n = 45) Ongoing Pregnancies (n = 12)

Plasma TBARS r = −0.540; p = 0.001 r = −0.685; p < 0.001 r = −0.471; p = 0.005
Plasma ORAC r = 0.524; p = 0.001 r = 0.469; p = 0.005 r = 0.504; p = 0.002
Plasma Redox Index (RI) r = 0.463; p = 0.006 r = 0.520; p = 0.002 r = 0.549; p = 0.001
Lymphocyte ROS r = −0.542; p = 0.001 r = −0.312; p = 0.072 r = −0.384; p = 0.025
Monocyte ROS r = −0.494; p = 0.003 r = −0.367; p = 0.033 r = −0.433; p = 0.010
Granulocyte ROS r = −0.572; p < 0.001 r = −0.333; p = 0.054 r = −0.465; p = 0.006
FF TBARS r = −0.451; p = 0.007 r = −0.476; p = 0.004 r = −0.351; p = 0.042
FF ORAC r = −0.212; p = 0.229 r = 0.316; p = 0.069 r = 0.404; p = 0.018
FF Redox Index (RI) r = 0.459; p = 0.006 r = 0.413; p = 0.015 r = 0.518; p = 0.002
Granulosa cell ROS r = −0.654; p < 0.001 r = −0.268; p = 0.126 r = −0.357; p = 0.038
Metaphase II (%) - r = 0.378; p = 0.027 r = 0.452; p = 0.007
Fertilization Rate (%) r = 0.378; p = 0.027 - r = 0.368; p = 0.032
Ongoing pregnancies r = 0.452; p = 0.007 r = 0.368; p = 0.032 -

3. Discussion

Our data clearly demonstrate that in infertile women undergoing IVF, the blood redox status
is significantly altered and reflects the FF redox status, thus giving valuable information on ovarian
physiology and the oocyte environment/follicular microenvironment. Interestingly, both the plasma
and FF RI values show significant correlations with the considered indicators of IVF outcomes,
even after adjustment for several confounders.

Although a certain amount of ROS is required under physiological conditions, an altered balance
between pro-oxidant and antioxidant molecules may have deleterious effects on folliculogenesis and
adequate embryo development [14–16]. Indeed, ROS deriving from several sources (i.e., the electron
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leakage of the inner mitochondrial membrane during oxidative phosphorylation) can damage cellular
macromolecules during follicle growth. Consequently, antioxidants represent important defense
mechanisms that allow cells to function within an oxidative environment, including the transient rise
in ROS activity that accompanies ovulation [17,18].

Oxidative stress, which displays a fundamental role in follicle development and oocyte maturation,
has been studied by several strategies. In our study, markers of oxidative stress both in blood and in FF,
and ROS production in leukocyte subpopulations from infertile patients were significantly increased
compared to controls. Indeed, as we previously reported [19], peripheral leukocytes represent a
reliable model for studying the pathophysiology of oxidative stress-mediated homeostasis variations,
which can be responsible for cell dysfunction and cell injury. Leukocytes reflect the condition of
the whole organism, and thus represent a valuable model to study systemic oxidative stress-related
disorders [20]. Indeed, one of the main results of our study is the significant correlation among
leukocyte ROS production both with plasma RI and FF RI, and granulosa cell ROS.

Interestingly, the results of the statistical analyses indicate that this correlation remained significant
even after adjustment for endometriosis, age, smoking habits, BMI, IVF-ET/ICSI, FSH, LH, estradiol,
AMH, and duration of infertility.

In reproductive functions, the follicular microenvironment plays a critical role in oocyte
maturation by providing an adequate environment for oocyte growth. FF provides a good amount of
information about the biochemical status of the follicles, because it contains several metabolites that are
useful for oocyte development. Changes in FF composition might influence oocyte quality, and thus
affect fertilization, early embryonic development, and subsequent pregnancy [21]. In particular,
FF contains molecules whose cysteine residues may be involved in sensing and buffering the local
redox conditions, which represents a critical issue in reproduction. In fact, in FF, several important
proteins regulating follicle growth and oocyte quality exhibit cysteine residues at specific points,
whose oxidation would result in functional loss. Therefore, the preservation of controlled redox
conditions in the FF is essential for the fine-tuned oocyte maturation process [13,22]. In contrast,
its disturbance enhances the susceptibility to the establishment of reproductive disorders that would
require the intervention of reproductive medicine technology. In FF, ROS and antioxidants produced
by granulosa cells, endothelial cells, and leukocytes are also present [23]. Although ROS are essential
in some female reproductive functions, including the ovulatory response [24], in excess they might
have a negative impact, especially on estradiol levels, which are an important predictor of ovarian
response [25]. ROS might also damage steroidogenesis, and consequently oocyte maturation and
ovulation [8,26]. Our results indicate that signs of oxidative stress (increased lipid peroxidation markers
and reduced antioxidant capacity) are present in the FF of infertile patients, which is in line with
other reports showing FF oxidative stress and its correlation with poor-oocyte/embryo quality and
low fertilization rates [27–29]. Interestingly, the FF redox index was not only significantly correlated
with plasma TBARS, ORAC, and plasma RI, it was also correlated with leukocyte and granulosa cell
ROS production, even after adjustment for several confounders. High 8OHdG levels in the granulosa
cells of infertile women undergoing IVF have been negatively correlated with fertilization rates and
embryo quality [30]. Supporting these data, other authors [31] demonstrated that increased 8OHdG
concentrations in the FF of women undergoing IVF are associated with oocyte degeneration, suggesting
that oxidative stress in the follicular compartment has deleterious effects on the oocyte.

Our data are in agreement with a report showing lower vitamin E concentrations in the FF of
women with infertility related to endometriosis [32], but are in contrast with another study reporting
both increased 8OHdG and a higher vitamin E concentration in the FF of women with endometriosis.
These data probably indicate an up-regulation of the follicular antioxidant system in an unsuccessful
attempt to neutralize reactive species and prevent oxidative damage to oocytes [33].

Another important result emerging from our study is the increased ROS production in granulosa
cells from infertile patients. Granulosa cells ensure the successful maturation and developmental
competency of oocytes by providing nutrients and maturation-enabling factors. Moreover, they protect
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oocytes from oxidative stress injury through their own antioxidant system during the maturation
of oocytes [34,35]. Granulosa cells are particularly sensitive to ROS, which play a key role in their
apoptosis-induction [4,5,36,37], in particular to endogenous H2O2, which is an important signaling
molecule. At the same time, when present at high levels, ROS may cause cell dysfunction and cell
death. Accordingly, it has been shown that reduced glutathione depletion sensitizes granulosa cells
to toxicant-induced apoptosis [38], but the mechanism underlying cell toxicity induced by ROS is
less known. Among our main results, we found that granulosa cell ROS production was significantly
correlated with leukocyte ROS production and FF RI.

The redox index (RI) that we established in our study populations, both in plasma and
in FF samples, was obtained from the ratio between antioxidants and oxidative stress markers
(ORAC/TBARS). In our opinion, together with cellular (leukocytes and granulosa cells) ROS
production estimation, the RI can give valuable information about global oxidative stress occurrences.
In fact, the performed statistical analyses indicate a strict relationship between plasma RI and FF RI,
and their significant correlation with the estimated blood/FF redox parameters. These correlations
remained significant even after adjustment for endometriosis, age, smoking habits, BMI, IVF-ET/ICSI,
FSH, LH, estradiol, AMH, and the duration of infertility, confirming that systemic oxidative stress
reflects FF oxidative stress. In this regard, other authors [39] reported a lower antioxidant capacity in
the peritoneal fluid of women with infertility (due to endometriosis) compared to controls, indicating
that the serum compartment reflects the redox status of the peritoneal microenvironment.

Increased plasma and FF oxidative stress markers and decreased levels of antioxidants have been
already related to poor in vitro fertilization (IVF) outcomes [40–42]. Indeed, several authors studied
follicular development, oocyte quality, fertilization, embryonic development, and female infertility in
relation to oxidative stress, both at systemic and local levels [43–46]. However, due to the different
strategies (analysis of various biological samples) and methodologies (analysis of systemic levels of
antioxidants versus gene expression) used in the different studies about the redox state in the ovary,
results are often difficult to compare, and are occasionally contradictory. In addition, our findings
reveal that the selected technique (IVF-ET or ICSI) is not associated with different ROS levels or
outcome parameters. Data from our clinic also confirm that the fertilization rate is not significantly
different when using IVF-ET or ICSI, and therefore, the use of the two different techniques does not
represent a bias for the present study.

This study is not without limitations. First, the study population is small. However, strict
eligibility criteria are necessary to increase the internal validity, eliminating other factors that are
potentially related to oxidative stress and compromised oocyte quality. Second, whether the analysis of
a single follicle is representative of the set of follicles that responded to ovarian stimulation cannot be
explained. However, since a longer time of anesthesia and repeated ovarian punctures might promote
follicular and/or systemic oxidative stress, in order to increase the internal validity of the present
study, we chose to aspirate only the entire content of the first follicle of the first ovary punctured. Third,
although our findings suggest plasma RI values and leukocyte ROS production as potential predictors
of positive IVF outcomes, larger studies are needed for validation. Finally, we want to underline that
peripheral blood collection is easier, more practical, less invasive, and less susceptible to sampling
inadequacy than FF collection.

In conclusion, several studies performed so far indicate that oxidative stress negatively affects
reproductive potential, and is associated with poor gamete quality and abnormally early embryo
development. However, a clinically reliable, biologically accurate indicator of oxidative stress condition
does not yet exist, and is still difficult to identify.

We think that the use of the parameters suggested here could help define the critical role of
oxidative stress markers and their optimum levels in the female reproductive system, and improve the
success rate of assisted reproductive techniques and infertility management.
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4. Materials and Methods

4.1. Patients

The study was performed in accordance with the Declaration of Helsinki and approved by the
Ethical Review Board of the Careggi University Hospital (reference n. 10709 approved on 27 April 2017).
The study included a total of 45 infertile women (age 35.0± 3.3 years) with a body mass index (BMI) of
22.7 ± 4.0 kg/m2 and a duration of infertility of >2 years (3.2 ± 1.9 years) undergoing IVF, who were
recruited from April 2017 to September 2017. Out of these, 19 women with endometriosis (stages
III and IV) were included as the study group. The control group included 45 women (infertility due
to tubal factor or male factor). The basic characteristics of the study population are summarized in
Table 3.

Table 3. Clinical characteristics of 45 infertile patients and 45 age-matched controls.

Parameters PATIENTS (n = 45) CONTROLS (n = 45)

Mean ± SD Mean ± SD p-value
Age (years) 35.0 ± 3.3 34.5 ± 4.5 not significant
BMI (Kg/m2) 22.8 ± 4.1 21.0 ± 1.5 0.0069
Duration of infertility (years) 3.2 ± 2.0 1.8 ± 0.8 <0.0001
FSH (mIU/mL) 8.3 ± 3.8 6.0 ± 2.2 0.0007
LH (mIU/mL) 5.9 ± 3.1 4.4 ± 2.1 0.0086
Estradiol (pg/mL) 57.1 ± 24.8 48.5 ± 3.1 0.0233
AMH (ng/mL) 2.4 ± 2.0 4.2 ± 3.6 0.0043
Smoking habits (%) 26.7 28.0 not significant
GnRH Antagonist (%) 100 100 not significant

From each patient, peripheral blood samples were obtained at the time of egg retrieval, FF from
the mature follicles of each ovary was centrifuged, and aliquots were frozen at −80 ◦C until analysis.
After centrifugation (1500× g for 15 min at 4 ◦C), aliquots of plasma were used for experiments or
stored at −80 ◦C for further analyses. Granulosa cells were isolated from all of the aspirated FF
using gradient centrifugation at oocyte retrieval, and immediately analyzed. Patients were enrolled
according to the following inclusion criteria:

(i) Absence of any metabolic or endocrine system-associated diseases (such as hyperprolactinemia
and thyroid dysfunction), and no history of cancer;

(ii) Serological markers for hepatitis B virus (HBV), hepatitis C virus (HCV), and human
immunodeficiency virus (HIV) all negative;

Patients gave their written informed consent, and did not receive any monetary compensation
for participating in the study. Basal follicle stimulating hormone (FSH), luteinizing hormone (LH),
and estradiol (E2) levels were tested on cycle day 3 of a spontaneous menstrual cycle prior to
ovarian stimulation.

All of the recruited patients received the antagonist protocol for ovarian stimulation.
The ovarian stimulation began with 125–225 IU of recombinant FSH (Gonal-F®; Merck Serono;
Darmstadt, Germany) from day 2 of the menstrual cycle, and the GnRH antagonist (Cetrotide;
Merck Serono, Darmstadt, Germany) was introduced according to a multiple-dose protocol
(0.25 mg/day) when a leading follicle of 14 mm and/ or estradiol concentrations of 400 pg/mL
were reached. Triggering was performed when at least three follicles >17 mm were present with
0.2 mg of triptorelin SC (Decapeptyl, Ipsen Pharma, Paris, France) or recombinant human chorionic
gonadotrophin (HCG) (Ovitrelle®, Merck Serono) and oocyte retrieval was performed under sedation
at the 36th hour following GnRHa.
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4.2. FF Collection and Processing

FF aspiration was performed transvaginally using a transvaginal ultrasound probe as a guide,
and a specific oocyte aspiration needle connected to a closed vacuum system was used to empty the
follicles. Once separated, oocytes were placed into culture media, while FF was collected in flasks [11].

Flushing was not used in our study protocol. Follicular selection was performed according
to follicular size, assuming that the representative size reflecting oocyte maturity and fecundation
capacity is >18 mm, thus disregarding smaller follicles in the process. Then, only the pure follicular
fluid of mature oocytes (MII stage) was analyzed. We did not use any medium, and we did not perform
any washing step. The follicular fluid of immature oocytes (germinal vesicle or metaphase I) were not
considered for the study. Blood contamination was evaluated by visual inspection, and samples that
looked cloudy or bloodstained were discarded [47]. Only uncontaminated FF minimally stained with
blood was used for analysis. Samples without oocytes or that were contaminated were discarded.

4.3. Total Antioxidant Capacity (TAC) Assay

The ORAC method (oxygen radical absorbance capacity), based on the inhibition of the
peroxyl radical-induced oxidation initiated by thermal decomposition of azo compounds such as
2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH), was performed as previously described on
plasma and FF samples [48]. Briefly, a fluorescein solution (6 nM) prepared daily from a 4-µM stock in
75-mM sodium phosphate buffer (pH 7.4), was used. Trolox (250 µM final concentration) was used as
a standard. 70 µL of each sample with 100 µL of fluorescein was pre-incubated for 30 min at 37 ◦C
in each well, before rapidly adding AAPH solution (19 mM final concentration). Fluorescence was
measured with excitation at 485 nm and emission was measured at 537 nm in a Fluoroskan Ascent
Microplate Fluorometer (Thermo Fisher Scientific Inc. MA, USA). Results were expressed as Trolox
Equivalents (µM), and then normalized for protein concentration.

4.4. TBARS (Thiobarbituric Acid Reactive Substances) Estimation

Plasma and FF TBARS levels were measured using a TBARS assay kit (OXI-TEK, ENZO Life
Sciences, NY 11735, USA) in accordance with previous report by our group [49]. Briefly, the adduct
generated by reacting malondialdehyde with thiobarbituric acid after 1 h at 95 ◦C was measured
spectrofluorimetrically, with excitation at 530 nm and emission at 550 nm. TBARS were expressed in
terms of malondialdehyde equivalent (nmol/mL).

4.5. ROS Assessment by Flow Cytometry Analysis

After collection, 100 µL of EDTA-anticoagulated blood samples or FF samples was resuspended
in 2 mL of BD FACS Lysing Solution (Becton Dickinson Biosciences, San Jose, CA, USA), gently
mixed, and incubated at room temperature in the dark for 10 min, as previously reported [50].
Next, cells were centrifuged, the supernatant was discarded, and cells were washed twice in PBS.
To determine the level of intracellular ROS generation, cells were incubated with H2DCF-DA (2.5 µM)
(Invitrogen, Carlsbad, CA, USA) in RPMI medium without serum and phenol red for 15 min at
37 ◦C. H2DCFDA is a chemically reduced form of fluorescein that is used as a ROS indicator in cells.
The 2′,7′-di-chlorofluorescein (DCF) fluorescent probe is particularly sensitive to hydrogen peroxide,
peroxynitrite, and hydroxyl radicals. Superoxide anions also can contribute to H2DCFDA oxidation,
albeit to a lesser degree. Although other more specialized ROS probes have been—and continue to
be—developed, H2DCFDA remains the most versatile indicator of cellular oxidative stress, and
represents the gold standard for ROS measurement [51]. After labeling, cells were washed and
resuspended in PBS and analyzed immediately using a FACSCanto flow cytometer (Becton-Dickinson,
San Jose, CA, USA). The sample flow rate was adjusted to about 1000 cells/s. For a single analysis,
the fluorescence properties of 20,000 cells were collected. The respective gates were defined using the
distinctive forward-scatter and side-scatter properties of the individual cell populations. Moreover,
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the viability of the cells was controlled by flow cytometry with propidium iodide staining, and was
found to exceed 95%. Data was analyzed using BD FACSDiva software (Becton-Dickinson, San Jose,
CA, USA) [52].

4.6. ORAC/TBARS Ratio as an Index of Oxidative Stress

The ORAC/TBARS ratio was calculated in the plasma and FF of infertile and healthy subjects in
order to obtain a measure of oxidative stress.

4.7. Measurements of Outcomes: Metaphase II

In the intracytoplasmic sperm injection (ICSI) procedure, in order to determine the rate of
metaphase II oocytes, oocytes retrieved at 35 h post-HCG administration were exposed briefly to
80 IU/mL hyaluronidase (Origio), followed by the denudation of the surrounding cumulus cells
by stepwise mechanical stripping. Oocytes were then examined under an inverted microscope at a
magnification of 200× to assess the maturity stage (germinal vesicle, metaphase I, or metaphase II),
and only those that have extruded the first polar body were selected for ICSI. During in vitro
fertilization and embryo transfer (IVF-ET), the oocytes are surrounded by cumulus and corona cells
at the time of insemination so that their maturity cannot easily be evaluated. The maturity stage
assessment is performed 16–20 h after insemination, once the corona radiata has been removed using
denuding pipettes.

4.8. Measurements of Outcomes: Fertilization Rate (FR)

The fertilization rate (FR) is the percentage of correctly fertilized oocytes (zygotes with two
pronuclei) per number of inseminated oocytes; fertilization was evaluated under an inverted
microscope 16–20 h after ICSI or IVF.

4.9. Measurements of Outcomes: Ongoing Pregnancies (at 20 Weeks of Gestation)

The establishment of a pregnancy was defined by HCG levels above 50 mU/L, and a gestational
sac with a heart beat.

4.10. Statistical Analysis

All of the experiments were performed in triplicate. For descriptive aspects, owing to the
symmetry of the distribution, data were summarized as mean± SD. Statistical analysis was performed
using the SPSS (Statistical Package for Social Sciences; Chicago, IL, USA) software for Windows
(version 20.0). The nonparametric Mann–Whitney test for unpaired data was used for comparisons
between single groups. Correlation analyses were measured using the Spearman correlation test.
Partial correlation analyses adjusted for endometriosis, age, smoking habits, BMI, IVF-ET/ICSI,
FSH, LH, estradiol, AMH and duration of infertility were also performed. p < 0.05 was accepted as
statistically significant.
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