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Abstract: Novel concepts, perspectives and challenges in measuring and controlling an open
quantum system via sequential schemes are shown. We discuss how similar protocols, relying
both on repeated quantum measurements and dynamical decoupling control pulses, can allow to:
(i) Confine and protect quantum dynamics from decoherence in accordance with the Zeno physics.
(ii) Analytically predict the probability that a quantum system is transferred into a target quantum
state by means of stochastic sequential measurements. (iii) Optimally reconstruct the spectral density
of environmental noise sources by orthogonalizing in the frequency domain the filter functions
driving the designed quantum-sensor. The achievement of these tasks will enhance our capability
to observe and manipulate open quantum systems, thus bringing advances to quantum science
and technologies.

Keywords: open quantum systems, quantum measurements and control, quantum Zeno physics,
noise sensing.

1. Introduction

Let us consider a non-isolated quantum mechanical system S, defined within the finite-
dimensional Hilbert spaceHS. Its dynamics is governed by a time-dependent Hamiltonian of the form
H(t) = H0 + Hcontrol(t), where H0 is the Hamiltonian of the system but without taking into account
any interaction with the external environment E. Instead, Hcontrol(t) = λ(t)σS denotes a coherent
control term where σS is an arbitrary operator acting on S. Hcontrol(t) depends on the function λ(t) that
is properly modulated so as to fulfill the control tasks required by the user. In case S is a closed system,
the Hamiltonian H0 is time-independent, and the only ways to interact with the system are given
by performing control actions and measurements, usually on a portion of the system wave-function
modeling the system quantum state. Conversely, in case S is in contact with other external systems [1],
it has to be considered as an open quantum system. The effects of such interactions affect only S and
they can be easily modeled by adding in the Hamiltonian H0 a non-deterministic term proportional to
a stochastic field E(t), which can be effectively seen as an environmental noise contribution. Under this
hypothesis, the evolution of the system is described by a stochastic quantum dynamics; in this regard,
results stemming from the statistical field theory [2] have been recently derived [3–5]. However, the
noise can involve not only S but also the control pulse and measurement apparata. Though the effects
of such noise sources lead to systematic errors that can be selectively identified and attenuated, they
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need to be properly modeled so as to avoid a substantial loss of efficiency and accuracy. Otherwise,
one can adopt the standard description of open quantum systems, whereby the system is physically
coupled to a structured non-equilibrium environment modeling its surroundings. In this case, the
global dynamics is governed by an Hamiltonian H(t) including also the term Hint that describes the
interaction between S and E. In case Hint is fully known and described by deterministic coupling
terms, the dynamics of S is deterministic as well; conversely, by including in Hint also the action of
stochastic fields, one can recover the stochastic dynamics like that in [5,6].

Repeated quantum measurements. Let us assume to monitor the dynamics of S within the
time interval [0, tfin], which is defined by m distinct instants tfin = tm > tm−1 > . . . t1 > t0 = 0,
not necessarily equidistributed in time. Protocols allowing for this purpose are given by a sequence
of quantum measurements, locally performed on S and in correspondence of tk, k = 1, . . . , m,
according to the observables Ok ≡ OS,k ⊗ IE, where OS,k ≡ Fθk and I denotes the identity operator.
Specifically, {θk} is the set of the possible measurement outcomes, while {Fθ} denotes the set of
positive Hermitian semi-definite operators onHS satisfying the relation ∑θ Fθ = IS. Given the system
density matrix ρS,k at time tk, the probability that the outcome θ associated with the measurement
operator Fθ occurs is returned by the trace Tr[ρS,kFθ ], while the post-measurement state of S equals to
ρ̃S,k = (MθρS,k M†

θ )/Tr[MθρS,k M†
θ ], where Mθ fulfills the identity Fθ = M†

θ Mθ (notice that for the same
value of θ two different operators Fθ are not allowed).

Coherent pulsed control couplings. Coherent (open-loop) control pulses are an essential tool to
efficiently perform quantum sensing [7,8]. Here, we briefly introduce the control strategy also called
Dynamical Decoupling (DD) [9], which is given by applying a sequence of π−pulses, i.e., short and
strong control pulses that invert the phase of the quantum system S - usually a qubit - used as a sensor.
In the noise sensing context, the qubit-sensor is placed in interaction with an external stochastic field
E(t) with the aim to infer its fluctuation profile. For this purpose, the qubit is prepared in the ground
state |0〉 and a π/2−pulse is firstly performed so as to transfer the system in the superposition state
(|0〉+ |1〉)/

√
2, where |1〉 is the corresponding excited state. Only at this point the sequence of π−pulse

is applied to S, which thus acquires a phase φ(t), providing us (if measured) information about the
fluctuating field. In fact, at the end of the DD sequence at time tfin, the state of the qubit-sensor is
[eiφ(tfin)|0〉+ e−iφ(tfin)|1〉]/

√
2, where φ(tfin) ≡

∫ tfin
0 y(t′)E(t′)dt′ and y(t) ∈ {−1, 1} is the control pulse

modulation function that switches sign whenever a π−pulse occurs. Finally, a second π/2-pulse
brings the qubit-sensor into the final state [(eiφ(tfin) + e−iφ(tfin))|0〉+ (eiφ(tfin) − e−iφ(tfin))|1〉]/2 and the
probability p|0〉(tfin) that the qubit-sensor is in the state |0〉 at time tfin is measured.

2. Stochastic Quantum Zeno physics

The main purpose to apply sequences of quantum measurements based on the quantum Zeno
physics [10–15] is to force the dynamics of S to be confined within the Hilbert subspace defined by the
measurement observable. Since their introduction, standard observation protocols, given by sequences
of repeated projective measurements, have been applied to closed quantum systems by assuming
that between each measurement the system freely evolves with unitary dynamics for a constant small
time interval τ. More formally, all the measurement observables OS,k are set equal for any k to the
projector (Hermitian, idempotent operator, in general with dimension greater than 1) Π that defines the
confinement Hilbert subspaceHΠ

S ≡ ΠHS. InHΠ
S the dynamics of the system is described exclusively

by the projected (or Zeno) Hamiltonian ΠHΠ, as it has been observed in Refs. [16,17].
Recently, the Probability Density Functions (PDF) p(τ) and p(E(t)) respectively of the time

intervals τ between measurements or of the stochastic field E(t) have been taken into account and the
acronym Stochastic Quantum Zeno Dynamics (SQZD) has been introduced [5,6]. Here, the peculiarity
is that the interaction model with E is given by fluctuation profiles of one or more parameters
entering in the dynamics of S. Such a noise involves a no longer effective confinement of the
system dynamics, but on the other side it increases the capability of the system to explore a larger
number of configurations within HΠ

S . In a controlled setup this viewpoint makes emerge the noise,
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i.e., the presence of an external environment, as a resource [18,19]. In this regard, a first result is given
by the analytical expression of the probability distribution that S belongs to the confinement subspace
HΠ

S after a large enough number of sequential measurements. In particular, let us define the survival
probability Ptfin ≡ Prob(ρS,tfin

∈ HΠ
S ) to find the system in the confinement subspace. In case the time

intervals τj between measurements are independent and identically distributed random variables,
Ptfin is equal to

Ptfin =
m

∏
j=1

Tr
[
ΠUj−1:jΠρS,tj ΠU†

j−1:j

]
, (1)

where Uj−1:j ≡ T̂ exp
(
−(i/h̄)

∫ tj
tj−1

H(t)dt
)

, T̂ is the time ordering operator, while m denotes the
total number of projective measurements applied to S. Being able to take values from an ensemble
of configurations, the density matrix of S at time tfin and the survival probability Ptfin are random
quantities. Thus, the prediction power of the method is constrained by our ability to compute
the most probable value P∗ of the survival probability after a single realization of the sequence of
measurements. In this regard, by using the Large Deviation (LD) theory, it has been derived also the
analytical expression of P∗ for a large enough value of m [5], i.e.,

P∗ = exp
(

m
∫

τ,η(t)
p(τ) p(η(t)) ln(q(τ, η(t))) dτ dη(t)

)
, (2)

where q(τ, η(t)) is a functional identifying the probability that S belongs to HΠ
S at time t after the

application of a couple of projective measurements interspersed by the time interval τ. In the limit
of small τ’s, q(τ, η(t)) admits the second-order expansion q(τ, η(t)) ≈ 1− η(t)2τ2. In particular,
η(t) ≡ ∆ρΠ

S,t
HΠ(t) is the standard deviation of HΠ(t) ≡ H(t) − ΠH(t)Π with respect to the

system density matrix within the confinement subspace, i.e., ρΠ
S,t ≡ UΠ

t−τ:tρ
Π
S,t−τ(U

Π
t−τ:t)

† with

UΠ
t−τ:t ≡ T̂ exp

(
−(i/h̄)

∫ t
t−τ ΠH(t′)Πdt′

)
. Moreover, in Eq. (2) p(η(t)) denotes an artificial PDF

obeying the relation
∫

p(η(t))η(t)2dη(t) = 1
tfin

∫ tfin
0 ∆2

ρΠ
S,t

HΠ(t)dt, that fixes on average the leakage

dynamics of S outside the confinement subspaceHΠ
S .

SQZD is a special class of dynamics induced by protocols based on sequential measurements.
In the more general case, the measurement observables within the sequence are no longer equal to
a single projector, and also the presence of coherent control terms in the Hamiltonian H(t) can be
taken into account. Such protocols are expected to provide the proper tool to explore the whole Hilbert
space of a quantum system by engineering the occurrence of the measurement operators in specific
time instants, so as to move the system population from one portion of the Hilbert space to another.
This question is still challenging, because it requires to properly modulate a control pulse λ(t) so that
the probability distribution of Ptfin is peaked in correspondence of a target value chosen by the user.
As further remark, let us also observe that coherent dynamical couplings with an auxiliary system
have been studied as tools playing the role of a measurement. In other words the back-action induced
by a quantum measurement has been reproduced by using a coherent pulse, and an equivalence
between sequences of repeated measurements and pulsed control couplings have been established.
However, although such an approximation revealed to experimentally work quite well in peculiar
dynamical conditions, as shown for example in [16], one has always to keep in mind that, even
when the measurement outcomes are not recorded, sequential measurements can lead to dissipative
dynamics, thus implying loss of quantum coherence. On the other side, pulsed control couplings are
not always able to reproduce the measurement back-action; e.g., the ideal confinement of quantum
dynamics in ensured only by sequence of projective measurements [3,5].
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3. Noise-Robust Quantum Sensing

The prediction power of the results shown in the previous section is ensured by knowing
(also partially) the fluctuation profiles of the parameters entering in the dynamics of S. In this
regard, noise sensing (or spectroscopy) aims to determine the spectral density of the noise originated
by the interaction between the quantum system S used as a probe and its external environment E [8].

Let us simply take a qubit as sensing device to detect the presence of stochastic (time-varying)
magnetic fields E(t). Thus, assuming that the qubit-sensor is coherently manipulated, the application
of different and optimized sequences of control pulses allows to enhance the sensor sensitivity in
probing the target field [20–23]. In this regard, the DD control strategy has been successfully applied
to noise sensing [24]. Its main peculiarity is that the decay rate (or decoherence function) χ(t) of
the qubit-sensor due to the presence of E is related to the probability p|0〉(tfin) via the equation
χ(t) = − ln(1− 2p|0〉(tfin)) (see e.g., [20]), and is simply given by the overlap in the frequency domain
between the environmental spectral density function S(ω) and the filter function F(ω) of the DD
sequence driving the qubit. More specifically

χ(t) =
1
2

∫ t

0

∫ t

0
y(t′)y(t′′)g(t′ − t′′)dt′dt′′, (3)

where y(t) is the control modulation function and

g(t′ − t′′) ≡
∫ ∞

−∞

∫ ∞

−∞
p(E(0), E(t′ − t′′))E(0)E(t′ − t′′)dE(0)dE(t′ − t′′) (4)

is the autocorrelation function
〈

E(0)E(t′ − t′′)
〉

of the fluctuating field E(t), with p(E(0), E(t′ − t′′))
denoting the joint PDF of E(t) in the two time instants t = 0 and t = t′ − t′′. The previous equation is
valid if we assume that the mean value of E(t) is equal to zero, i.e.,

〈
E(t)

〉
= 0, and E(t) is a stationary

process so that g(t′, t′′) = g(t′ − t′′). Then, being S(ω) and Y(ω) defined respectively as the Fourier
transform of the autocorrelation function g(t) and the pulse modulation function y(t), one has that

χ(t) =
∫ ∞

−∞
S(ω)F(ω)dω, (5)

where F(ω) ≡ 4
π |Y(ω)|2 (F(ω) is usually called filter function). As a result, from the measurement of

p|0〉 at the end of the protocol, one can obtain the corresponding value of the decoherence function at
time tfin, i.e., χ(tfin).

As second step, different filter functions F(ω) can be designed by engineering the pulse
modulation function y(t), with the aim to reconstruct S(ω) in a range ω ∈ [0, ωc] for a given cut-off
frequency ωc. To this end, let us consider a set of N filter functions Fn(ω), n = 1, . . . , N, generated by
equidistant π−pulse sequences with a different number of pulses placed in correspondence of the
zeros of cos[ωmax

n−1
N t′]. As given by the Filter Orthogonalization (FO) protocol, introduced in [20] for

noise-robust quantum sensing, we quantify the overlap between the N filter functions Fn(ω) in the
frequency domain, by computing the following N × N symmetric matrix A with matrix elements

Anl ≡
∫ ωc

0
Fn(ω)Fl(ω) dω. (6)

An accurate estimate of S(ω) is then obtained in case of no overlaps between the Fn(ω)’s, i.e., if the
filter functions are orthogonal and they span a N−dimensional space. Otherwise, we orthogonalize
the matrix A by using the transformation VAV† = diag(λ1, . . . , λN), where V is an orthogonal matrix
and λn are the eigenvalues of A. In this way, we will determine a transformed version of the filter
functions Fn(ω), i.e.,

F̃n(ω) =
1√
λn

N

∑
l=1

Vnl Fl(ω), n = 1, . . . , N, (7)
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that are all orthogonal functions for any (integer) value of n. The procedure is concluded by expanding
S(ω) in the transformed orthogonal basis, so that also the χ(tfin)’s are accordingly modified in the
transformed coefficients

χ̃n ≡
∫ ∞

0
S(ω)F̃n(ω) =

1√
λn

N

∑
l=1

χl(tfin)Vnl , (8)

and the estimate of S(ω), i.e., S̃(ω), is simply given by the following expansion:

S̃(ω) =
N

∑
n=1

χ̃n F̃n . (9)

To sum-up, the FO protocol is a reconstruction algorithm for the spectrum of a signal that is based
on the orthogonalization of the applied filter functions, each of them corresponding to a properly
engineered pulse modulation function – usually π−pulses. The filter functions select specific frequency
ranges of the power spectral density S(ω), and, in order to correctly estimate the functional behaviour
of S(ω), a set of K orthogonal filter functions Fk(ω) has to be employed. However, due to physical
and/or experimental constraints, a sufficiently large number of orthogonal filter functions cannot be
realized, and, mainly for this reason, the FO protocol aims to solve this issue and thus speed-up the
sensing procedure of different forms of noise.

4. Conclusions and Outlook

In conclusion, we have shown two novel approaches of measurement and control theory,
respectively based on the physics of Zeno phenomena [3–5] and noise-sensing spectroscopy [20].
The first relies on applying repeated quantum measurements, while the second on performing DD
sequences and using models with fluctuating parameters entering in the dynamics of S. Such methods
are believed to be a concrete step towards the realization of novel quantum technologies, especially
quantum-based sensing devices for future biomedicine applications.

As main outlook, it is worth analyzing with the same formalism the non-Markovianity (NM) [25,26]
of the open quantum system S in reference to the multi-time statistics obtained by locally measuring
S [27,28]. Indeed, in case our knowledge of the system-environment interaction is a-priori unknown
(or partially known), our capability to evaluate the NM of the system dynamics is simply given by
the outcomes from a sequence of measurements, i.e., by monitoring the change of the state of the
system due to the presence of E. In the quantum mechanical context, this is still a challenging issue,
since it requires to understand which is the role and the effects on the dynamics of the measurement
back-action in probing the NM of S.

Acknowledgments: The author thank Susana Huelga for useful discussions and for the reading of the manuscript.
This work was financially supported from the Fondazione CR Firenze through the project Q-BIOSCAN.

References

1. Breuer, H.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2003.
2. Parisi, G. Statistical Field Theory; Addison-Wesley Publishing: Boston, MA, USA, 1988.
3. Gherardini, S.; Gupta, S.; Cataliotti, F.S.; Smerzi, A.; Caruso, F.; Ruffo, S. Stochastic quantum Zeno by large

deviation theory. New J. Phys. 2016, 18, 013048.
4. Gherardini, S; Lovecchio, C; Müller, M.M.; Lombardi, P.; Caruso, F.; Cataliotti, F.S. Ergodicity in randomly

perturbed quantum systems. Quantum Sci. Technol. 2017, 2, 015007.
5. Müller, M.M.; Gherardini, S.; Caruso, F. Quantum Zeno dynamics through stochastic protocols. Annalen der

Physik 2017, 529, 1600206.
6. Müller, M.M.; Gherardini, S.; Caruso, F. Stochastic quantum Zeno-based detection of noise correlations.

Sci. Rep. 2016, 6, 38650.



Proceedings 2019, 12, 11 6 of 6

7. Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in Quantum Metrology. Nat. Photon. 2011, 5, 222.
8. Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002.
9. Viola, L.; Knill, E.; Lloyd, S. Dynamical Decoupling of Open Quantum Systems. Phys. Rev. Lett. 1999,

82, 2417.
10. Misra, B.; Sudarshan, E.C.G. The Zeno’s paradox in quantum theory. J. Math. Phys. 1977, 18, 756.
11. Itano, W.M.; Heinzen, D.J.; Bollinger, J.J.; Wineland, D.J. Quantum Zeno effect. Phys. Rev. A 1990, 41, 2295.
12. Fischer, M.C.; Gutiérrez-Medina, B.; Raizen, M.G. Observation of the Quantum Zeno and Anti-Zeno Effects

in an Unstable System. Phys. Rev. Lett. 2001, 87, 040402.
13. Facchi, P.; Pascazio, S. Quantum Zeno Subspaces. Phys. Rev. Lett. 2002, 89, 080401.
14. Facchi, P.; Pascazio, S. Quantum Zeno dynamics: Mathematical and physical aspects. J. Phys. A 2008, 41,

493001.
15. Smerzi, A. Zeno Dynamics, Indistinguishability of State, and Entanglement. Phys. Rev. Lett. 2012, 109,

150410.
16. Schäfer, F.; Herrera, I.; Cherukattil, S.; Lovecchio, C.; Cataliotti, F.S.; Caruso, F.; Smerzi, A. Experimental

realization of quantum zeno dynamics. Nat. Commun. 2014, 5, 3194.
17. Signoles, A.; Facon, A.; Grosso, D.; Dotsenko, I.; Haroche, S.; Raimond, J.; Brune, M.; Gleyzes, S. Confined

quantum Zeno dynamics of a watched atomic arrow. Nat. Phys. 2014, 10, 715–719.
18. Gherardini, S. Noise as a Resource. Ph.D. Thesis, University of Florence, Florence, Italy, 2018.
19. Gherardini, S.; Buffoni, L.; Müller, M.M.; Caruso, F.; Campisi, M.; Trombettoni, A.; Ruffo, S. Nonequilibrium

quantum-heat statistics under stochastic projective measurements. Phys. Rev. E 2018, 98, 032108.
20. Mueller, M.M.; Gherardini, S.; Caruso, F. Noise-robust quantum sensing via optimal multi-probe

spectroscopy. Sci. Rep. 2018, 8, 14278.
21. Kofman, A.G.; Kurizki, G. Universal Dynamical Control of Quantum Mechanical Decay: Modulation of the

Coupling to the Continuum. Phys. Rev. Lett. 2001, 87, 270405.
22. Paz-Silva, G.A.; Viola, L. General transfer-function approach to noise filtering in open-loop quantum control.

Phys. Rev. Lett. 2014, 113, 250501.
23. Poggiali, F.; Cappellaro, P.; Fabbri, N. Optimal Control for One-Qubit Quantum Sensing. Phys. Rev. X 2018,

8, 021059.
24. Alvarez, G.A.; Suter, D. Measuring the Spectrum of Colored Noise by Dynamical Decoupling. Phys. Rev. Lett.

2011, 107, 230501.
25. Rivas, Á.; Huelga, S.F.; Plenio, M.B. Quantum non-Markovianity: Characterization, quantification and

detection. Rep. Prog. Phys. 2014, 77, 094001.
26. Breuer, H.; Laine, E.; Piilo, J.; Vacchini, B. Colloquium: Non-Markovian dynamics in open quantum systems.

Rev. Mod. Phys. 2016, 88, 021002.
27. Gherardini, S.; Smirne, A.; et al. in preparation.
28. Smirne, A.; Egloff, D.; García Díaz, M.; Plenio, M.B.; Huelga, S.F. Coherence and non-classicality of quantum

Markov processes. Quant. Sci. Technol. 2019, 4, 01LT01.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Stochastic Quantum Zeno physics
	Noise-Robust Quantum Sensing
	Conclusions and Outlook
	References

