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Abstract. We study the controlled dynamics of the ensembles of points of a Riemannian3
manifold M . Parameterized ensemble of points of M is the image of a continuous map γ : Θ→ M ,4
where Θ is a compact set of parameters. The dynamics of ensembles is defined by the action5
γ(θ) 7→ Pt(γ(θ)) of the semigroup of diffeomorphisms Pt : M → M, t ∈ R, generated by the6
controlled equation ẋ = f(x, u(t)) on M . Therefore any control system on M defines a control7
system on (generally infinite-dimensional) space EΘ(M) of the ensembles of points. We wish to8
establish criteria of controllability for such control systems. As in our previous work ([1]) we seek to9
adapt the Lie-algebraic approach of geometric control theory to the infinite-dimensional setting. We10
study the case of finite ensembles and prove genericity of exact controllability property for them. We11
also find sufficient approximate controllability criterion for continual ensembles and prove a result on12
motion planning in the space of flows on M . We discuss the relation of the obtained controllability13
criteria to various versions of Rashevsky-Chow theorem for finite- and infinite-dimensional manifolds.14
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1. Introduction and problem setting. Let M be C∞-smooth n-dimensional18

(n ≥ 2) connected Riemannian manifold, with d(·, ·), being the Riemannian distance.19

Let EΘ(M) be the space of continuous maps γ : Θ → M , where Θ is a compact20

Lebesgue measure set. We call the elements of EΘ(M) ensembles of points or, for21

brevity, ensembles. The space EΘ(M) is infinite-dimensional, whenever Θ is an infinite22

set (see Section 2).23

In the control-theoretic setting one looks at the action on EΘ(M) of the group24

of diffeomorphisms of M , which are generated by the vector fields from the family25

{fu| u ∈ U} ⊂ Vect M . Alternatively we can consider the action of the flows, defined26

by the controlled equations27

(1.1) ẋ = f(x, u(t)), u(t) ∈ U,28

where u(t) are admissible, for example, piecewise-constant, or piecewise-continuous,29

or boundary measurable controls, with their values in a set U , which is a subset of a30

Euclidean space.31

The flow P
u(·)
t (P0 = Id), generated by control system (1.1) and a given admissible32

control u(t) = (u1(t), . . . , ur(t)), acts on γ(θ) ∈ EΘ(M) according to the formula33

P̂
u(·)
t : γ(θ) 7→ P

u(·)
t (γ(θ)), θ ∈ Θ.34

Thus control system (1.1) gives rise to a control system in the space of ensembles35

EΘ(M). We set the controllability problem for the action of control system (1.1) on36

EΘ(M).37
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2 A.AGRACHEV, AND A.SARYCHEV

Definition 1.1. Ensemble α(·) ∈ EΘ(M) can be steered in time-T to ensemble38

ω(·) ∈ EΘ(M) by control system (1.1), if there exists a control ū ∈ L∞([0, T ], U) such39

that for the flow P
ū(·)
t , generated by the equation ẋ = f(x(t), ū(t)), there holds40

P
ū(·)
T (α(θ)) = ω(θ).41

Definition 1.2. The time-T attainable set from α(·) ∈ EΘ(M) for control system42

(1.1) in the space of ensembles EΘ(M) is43

AT (α(·)) = {Pu(·)
T (α(θ)) | u(·) ∈ L∞([0, T ], U)} ⊂ EΘ(M).44

Definition 1.3. Control system (1.1) is globally exactly controllable in time T in45

the space EΘ(M) from α(θ) ∈ EΘ(M), if AT (α(θ)) = EΘ(M). Control system (1.1) is46

time-T globally exactly controllable if it is globally exactly controllable in time-T from47

each α(θ) ∈ EΘ(M) .48

Remark 1.4. If Θ = {θ} is a singleton, then the time-T attainable sets AT (αθ)49

coincide with the standard attainable sets of system (1.1) from the point αθ ∈M . The50

notions of global and global approximate controllability coincide with the standard51

notions for control system (1.1) on M .52

If Θ is an infinite set, it is hard to achieve exact ensemble controllability for system53

(1.1). Instead we will study C0- or Lp-approximate controllability property.54

Definition 1.5. Ensemble α(·) ∈ EΘ(M) is C0-approximately steerable in time-55

T to ensemble ω(·) ∈ EΘ(M) by control system (1.1), if for each ε > 0 there exists56

ū(·) such that57

(1.2) sup
θ∈Θ

d
(
ω(θ), P

ū(·)
T (α(θ))

)
≤ ε.58

Ensemble α(·) ∈ EΘ(M) is Lp-approximately steerable in time-T to ensemble59

ω(·) ∈ EΘ(M) by control system (1.1), if for each ε > 0 there exists ū(·) such that60 ∫
Θ

(
d
(
ω(θ), P

ū(·)
T (α(θ))

))p
dθ ≤ εp. .61

Definition 1.6. Control system (1.1) is time-T globally approximately control-62

lable from α(·) ∈ EΘ(M) if AT (α) is dense in EΘ(M) in the respective metric. The63

system is time-T globally approximately controllable if it is time-T globally approxi-64

mately controllable from each α(·) ∈ EΘ(M).65

It is known that the attainable sets and the controllability properties of control66

system (1.1) on M can be characterized via properties of the Lie brackets of the vector67

fields fu(x), u ∈ U . In particular case for a symmetric control-linear system68

(1.3) ẋ =

s∑
j=1

fj(x)uj(t)69

global controllability property for singletons is guaranteed by the bracket generating70

condition: for each point x ∈ M the evaluations at x of the iterated Lie brackets71

[fj1 , [. . . [fjN−1
, fjN ] . . .] span the tangent space TxM .72

We are going to establish controllability criteria for control system (1.3) acting73

in the space of ensembles EΘ(M). The criteria for finite and continual ensembles74
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CONTROL OF ENSEMBLES OF POINTS 3

are provided in Sections 3 and 4. As far as controlled dynamics in the space of75

ensembles is defined by action of the flows, generated by controlled system (1.3),76

it is important to analyze whether and how the controllability criterion could be77

”lifted” to the group of diffeomorphisms or the semigroup of flows. This is done in78

Section 5, where Theorem 5.1 provides a result on a Lie extension of the action of79

system (1.3) in the group of diffeomorphisms. In Section 6 we discuss the relation of80

the established controllability criterion for continual ensembles of points to various81

versions of Rashevsky-Chow theorem in finite and infinite dimensions. It turns out82

that the latter typically are not applicable to ensemble controllability.83

The proofs of the main results are provided in Sections 7-9.84

By now there are numerous publications on simultaneous control of ensembles of85

control systems86

(1.4) ẋ = f(x, u, θ), x ∈M, u ∈ U, θ ∈ Θ87

by a unique control. This direction of study has been initiated by S. Li and N. Khaneja88

([13, 14]) for the case of quantum ensembles. Few other publication which took on89

the subject are [6, 7, 9], where readers can find more bibliographic references. In our90

previous publication [1] we considered the ensembles of systems (1.4), and formulated91

Lie algebraic controllability criteria for ensembles of systems.92

In the present publication we consider ensembles of points controlled by virtue of93

a single system and single open loop control. This choice distinguishes the problem set-94

ting not only from the previous one, but also from the control problems, in which both95

the state space and the set of control parameters are infinite-dimensional. Examples of96

the latter kind appear in [2] and are common in the literature on mass transportation.97

Another range of publications operates with ensembles, named shapes, and with the98

group of the diffeomorphisms acting on them. An exposition of the topic and further99

references can be found for example in [5, 17, 18].100

2. Banach manifold of ensembles. As we said ensembles of points in M are101

the images of continuous maps γ : Θ→M ; the set of parameters Θ is assumed to be102

compact. At some moments we assume additionally the maps γ to be injective. The103

set of ensembles is denoted by EΘ(M).104

Whenever the set of parameters Θ is finite, then the ensemble is called finite and105

the set of ensembles EΘ(M) is a finite-dimensional manifold.106

Define for any ensemble γ(θ) ∈ EΘ(M) a tangent space TγEΘ(M), consisting of107

the continuous maps Tγ : Θ→ TM , for which the diagram108

Θ
Tγ //

γ
  

TM
π

||
M

109

is commutative. Representing an element of the tangent bundle TM as a pair110

(x, ξ), x ∈M, ξ ∈ TxM , we note that111

Tγ(θ) = (γ(θ), ξ(θ)), ξ(θ) ∈ Tγ(θ)M, θ ∈ Θ.112

IfM = Rn, then TγEΘ(M) can be identified with the set of continuous maps C0(Θ,Rn).113

One can define a vector field on EΘ(M) as a section of the tangent bundle TEΘ(M).114
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4 A.AGRACHEV, AND A.SARYCHEV

The flow etf , generated by a time-independent vector field f ∈ Vect(M), and
acting onto an ensemble γ(θ), defines a lift of f to the vector field

F ∈ Vect (EΘ(M)) : F (γ(·)) =
d

dt

∣∣∣∣
t=0

etf (γ(·)) = f(γ(·)).

The same holds for time-dependent vector fields ft.115

The Lie brackets of the lifted vector fields are the lifts of the Lie brackets of the116

vector fields: [F1, F2]|γ(·) = [f1, f2](γ(·)).117

One can provide Tγ(·)EΘ(M) with different metrics. Of interest for us are those118

obtained by the restrictions of the metrics C0(Θ, TM), and Lp(Θ, TM) onto TEΘ(M).119

3. Genericity of the controllability property for finite ensembles of120

points. Let Θ = {1, . . . , N}. A finite ensemble γ : Θ 7→ M is an N -ple of points121

γ = (γ1, . . . , γN ) ∈MN . In this Section we assume γ to be injective, so that the points122

γj are pairwise distinct. Let ∆N ⊂MN be the set of N -ples (x1, . . . , xN ) ∈MN with123

(at least) two coinciding components: xi = xj , for some i 6= j. Then the space of124

ensembles EN (M) is identified with the complement of ∆N : EN (M) = MN \∆N =125

M (N).126

For each γ ∈M (N) the tangent space TγM
(N) is isomorphic to127

N⊗
j=1

TγjM = Tγ1
M × · · · × TγNM.128

For a vector field X ∈ VectM consider its N -fold, defined on M (N) as129

XN (x1, . . . , xN ) = (X(x1), . . . , X(xN )).130

For X,Y ∈ Vect M , and N ≥ 1 we define the Lie bracket of the N -folds XN , Y N131

on M (N) ”componentwise”: [XN , Y N ] = [X,Y ]N , where [X,Y ] is the Lie bracket of132

X,Y on M . The same holds for the iterated Lie brackets.133

Given the vector fields f1, . . . fs on M their N -folds fN1 , . . . , f
N
s form a bracket134

generating system on M (N), if the evaluations of their iterated Lie brackets at each135

γ ∈ M (N), span the tangent space TγM
(N) =

⊗N
j=1 TγjM . Evidently for N > 1 the136

property is strictly stronger, than the bracket generating property for f1, . . . , fs on137

M . We provide some comments below in Section 6.138

The following result is a corollary of classical Rashevsky-Chow theorem (see139

Proposition 6.1).140

Proposition 3.1 (global controllability criterion for system (1.3) in the space141

of finite point ensembles). If the N -folds fN1 , . . . , f
N
s are bracket generating at each142

point of M (N), then ∀T > 0 the system (1.3) is time-T globally exactly controllable in143

the space of finite ensembles (γ1, . . . , γN ) ∈M (N).144

Proposition 3.1 relates global controllability of system (1.3) for N -point ensem-145

bles to the bracket generating property on M (N) for the N -folds of the vector fields146

f1, . . . , fs. The following result states that the bracket generating property for N -folds147

is generic.148

Theorem 3.2. For any N ≥ 1 and sufficiently large `, there is a set of s-ples of149

vector fields (f1, . . . , fs), which is residual in VectM⊗s in Whitney C`-topology, such150

that for any (f1, . . . , fs) from this set the N -folds (fN1 , . . . , f
N
s ) are bracket generating151

at each point of M (N) = MN \∆N .152
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CONTROL OF ENSEMBLES OF POINTS 5

Note that the notion of genericity in the theorem allows for (small) perturbations153

of the fi, but not of fNi = (fi, . . . , fi) directly. Therefore the theorem extends the154

classical result by C.Lobry’s ([15]) on genericity of the property of controllability155

for singletons (see also Theorem 3.1 of our previous work [1] on the genericity of156

controllability property for ensembles of control systems).157

Proof of theorem 3.2 (for s = 2) is provided in Section 7.158

4. Criterion of approximate steering for continual ensembles of points.159

To formulate criterion for approximate steering of continual ensembles of points we160

impose the following assumption for control system (1.3).161

Assumption 4.1 (boundedness in x). The C∞-smooth vector fields fj(x) ∈162

Vect M, j = 1, . . . , s, which define system (1.3), are bounded on M together with163

their covariant derivatives of each order.164

The boundedness of fj and of their covariant derivatives on M implies complete-165

ness of the vector fields fj and of their Lie brackets of any order. Completeness of166

a vector field means that the trajectory of the vector field with arbitrary initial data167

can be extended to each compact subinterval of the time axis.168

This assumption is rather natural. It holds for compact manifolds M . For a169

non-compact M it obviously holds for vector fields with compact supports. Other170

examples are vector fields on Rn, whose components are trigonometric polynomials171

in x, or polynomial (in x) vector fields, multiplied by functions rapidly decaying at172

infinity (e.g. by e−x
2

).173

Consider a couple of initial and target ensembles of points α(θ), ω(θ) ∈ EΘ(M),174

which we assume to be diffeotopic,1 i.e. satisfying the relation RT (α(·)) = ω(·), where175

t→ Rt, t ∈ [0, T ], R0 = Id, is a flow on M , defined by a time-dependent vector field176

Yt(x), with Yt(x), DxYt(x) continuous.177

Note that the (reference) flow Rt is a priori unrelated to control system (1.3).178

Denote by γt(θ) the image of α(θ) under the diffeotopy179

γt(θ) = Rt(α(θ)), γ0(θ) = α(θ), γT (θ) = ω(θ).180

We introduce standard notation for the seminorms in the space of vector fields181

on M : for a compact K ⊂M182

‖X‖r,K = sup
x∈K

 ∑
0≤|β|≤r

∣∣DβX(x)
∣∣183

and184

‖X‖r = sup
x∈M

 ∑
0≤|β|≤r

∣∣DβX(x)
∣∣ .185

Let Lie{f} be the Lie algebra, generated by the vector fields f1, . . . , fs. Put for186

λ > 0 and a compact K ⊂M :187

Lieλ1,K{f} = {X(x) ∈ Lie{f} | ‖X‖1,K < λ} ,188

and189

Lieλ1{f} = {X(x) ∈ Lie{f} | ‖X‖1 < λ} .190

1We can assume instead an existence, for each ε > 0, of an ensemble ωε(·), which is ε-close to
ω(·) in C0(Θ)-metric and diffeotopic to α(·).
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6 A.AGRACHEV, AND A.SARYCHEV

The following bracket approximating condition along a diffeotopy is the key part191

of the criterion for steering continual ensembles of points. In Section 6 we discuss the192

reason for the choice of this particular form of condition.193

Definition 4.2 (Lie bracket C0-approximating condition along a diffeotopy).194

Let the diffeotopy γt = Rt(α(·)), t ∈ [0, T ], generated by the vector field Yt(x), join195

α(·) and ω(·). System (1.3) satisfies Lie bracket C0-approximating condition along196

γt, if there exist λ > 0 and a compact neighborhood OΓ of the set Γ = {γt(θ)| θ ∈197

Θ, t ∈ [0, T ]} such that198

(4.1) ∀t ∈ [0, T ] : inf

{
sup
θ∈Θ
|Yt(γt(θ))−X(γt(θ))|

∣∣∣∣ X ∈ Lieλ1,OΓ
{f}

}
= 0.199

Theorem 4.3 (approximate steering criterion for ensembles of points). Let200

α(θ), ω(θ) be two ensembles of points, joined by a diffeotopy γt(θ), t ∈ [0, T ]. If201

control system (1.3) satisfies the Lie bracket C0-approximating condition along the202

diffeotopy, then α(·) can be steered C0-approximately to ω(·) by system (1.3) in time203

T.204

4.1. Approximate controllability for continual ensembles: basic exam-205

ple. We provide an example of application of Theorem 4.3. Consider the system in206

R2 with two controls:207

(4.2) ẋ1 = u, ẋ2 = ϕ(x1)v, (u, v) ∈ R2.208

It is a particular case of the control-linear system (1.3):209

(4.3) ẋ = f1(x)u+ f2(x)v, f1 = ∂/∂x1, f2 = ϕ(x1)∂/∂x2.210

We assume ϕ(x1) to be C∞-smooth. In our example ϕ(x1) = e−x
2
1 .211

Choose the initial ensemble212

(4.4) α(θ) = (θ, 0), θ ∈ Θ = [0, 1].213

If one takes for example u = 0 in (4.2), then x1 remains fixed, and by (4.2),(4.4)

x2(T ; θ) = mv(·)ϕ(θ),

where mv(·) =
∫ T

0
v(t)dt ∈ R. Therefore for vanishing u(·) the set of ”attainable214

profiles” for x2(T ; θ) is very limited.215

To illustrate Theorem 4.3 we fix target ensemble ω(θ) = (θ, θ) and choose a216

diffeotopy217

(4.5) γt(θ) = (θ, tθ), t ∈ [0, 1],218

which joins α(θ) and ω(θ). The diffeotopy is generated by the (time-independent)
vector field Y (x) = Y (x1, x2) = x1∂/∂x2. Evaluation of the vector field Y along the
diffeotopy (4.5), equals

∀t ∈ [0, 1] : Y (γt(θ)) = Y (θ, tθ) = θ∂/∂x2.

The Lie algebra, generated by f1, f2, is spanned in the treated case by the vector219

fields f1 and the vector fields220

(4.6) adkf1f2 = ϕ(k)(x1)∂/∂x2, k = 0, 1, 2, . . .221
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CONTROL OF ENSEMBLES OF POINTS 7

and is infinite-dimensional for our choice of ϕ(·).222

The evaluations f1(γt(θ)) and adkf1f2(γt(θ)) equal

f1(γt(θ)) = ∂/∂x1,
(

adkf1f2

)
(γt(θ)) = ϕ(k)(θ)∂/∂x2, k = 0, 1, 2 . . . .

The successive derivatives of ϕ(x) = e−x
2

are223

(4.7) ϕ(m)(x) = (−1)mHm(x)e−x
2

, m = 0, 1, . . . ,224

where Hm(x) are Hermite polynomials. Recall that Hm(x) form an orthogonal com-225

plete system for L2(−∞,+∞) with the weight e−x
2

.226

Let H be (infinite-dimensional) linear space generated by functions (4.7). Generic
element of Lie{f1, f2} can be represented as

a
∂

∂x1
+ h(x1)

∂

∂x2
, a ∈ R, h ∈ H,

and its evaluation at γt(θ) equals

a
∂

∂x1
+ h(θ)

∂

∂x2
, a ∈ R, h ∈ H.

The C0 bracket approximating condition along γt(θ) amounts to the approx-227

imability in C0[0, 1] of the function Y2(θ) = θ by the functions from a bounded228

equi-Lipschitzian subset of H.229

To establish approximability for chosen example we use the following technical230

lemmae.231

Lemma 4.4. There exists λ > 0 such that232

inf

{
sup
θ∈[0,1]

|θ − h(θ)|

∣∣∣∣∣ h(·) ∈ H, sup
θ∈[0,1]

(|h(θ)|+ |h′(θ)|) < λ

}
= 0.233

Proof. The lemma is a corollary of the following standard facts, which concern234

the expansions with respect to the Hermite system.235

Lemma 4.5. Let g(x) be a smooth function with compact support in (−∞,+∞)236

and237

(4.8) g(x) '
∑
m≥0

gmHm(x)238

be its expansion with respect to Hermite system. Then:239

(i) expansion (4.8) converges to g(x) uniformly on any compact interval;240

(ii) the expansion
∑
m≥1 gmH

′
m(x) converges to g′(x) uniformly on any compact241

interval.242

Proof. For (i) see e.g. [16, §8]. Statement (ii) follows easily from (i), given the
relation H ′m(x) = 2mHm−1(x) for the Hermite polynomials. Indeed∑

m≥1

gmH
′
m(x) =

∑
m≥1

2mgmHm−1(x) =
∑
m≥0

2(m+ 1)gm+1Hm(x),

and it rests to verify that the coefficients of the expansion of g′(x) with respect
to Hermite system are precisely 2(m + 1)gm+1. This in its turn follows by direct
computation by the formulae

H ′m(x) = 2xHm(x)−Hm+1(x),

∫ +∞

−∞
(Hm(x))2e−x

2

dx = 2mm!
√
π.
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8 A.AGRACHEV, AND A.SARYCHEV

Now in order to prove Lemma 4.4 we take a C∞ smooth function g(θ) with243

compact support on (−∞,+∞), whose restriction to [0, 1] coincides with the func-244

tion y(θ) = θeθ
2

. By Lemma 4.5 (i) the expansion g(θ) '
∑
m gmHm(θ) converges245

uniformly on [0, 1] to θeθ
2

, and hence the series
∑
m gmHm(θ)e−θ

2

converges to θ246

uniformly on [0, 1].247

Differentiating
∑
m cmHm(θ)e−θ

2

termwise in θ we get248 ∑
m

cmH
′
m(θ)e−θ

2

−
∑
m

cmHm(θ)2θe−θ
2

.249

By Lemma 4.5 (i) and (ii) the series
∑
m≥1 cmH

′
m and

∑
m≥0 cmHm(θ) converge uni-250

formly on [0, 1] to bounded functions; the partial sums of these series are equibounded251

and therefore partial sums of the series
∑
m gmHm(θ)e−θ

2

are equi-Lipschitzian, what252

concludes the proof of Lemma 4.4.253

5. Lie extensions and approximate controllability for flows. The proof254

of Theorem 4.3, provided in Section 9, is based on an infinite-dimensional version of255

the method of Lie extensions ([11, 1, 4]).256

According to this method one starts with establishing the property of C0-appro-257

ximate steering by means of an extended control fed into an extended (in comparison258

with (1.3)) control system259

(5.1)
dx(t)

dt
=
∑
β∈B

Xβ(x)vβ(t),260

where Xβ(x) are the iterated Lie brackets261

(5.2) Xβ(x) = [fβ1 , [fβ2 , [. . . , fβN ] . . .]](x)262

of the vector fields f1, . . . , fs (we assume by default, that the vector fields fj(x)263

are included into the family {Xβ(x), β ∈ B}.) In (5.1)-(5.2) the multiindices β =264

(β1, . . . , βN ) belong to a finite subset B ⊂
⋃
N≥1{1, . . . , s}N , and (vβ(t))β∈B is a265

(high-dimensional) extended control.266

After the first step one has to prove that the action of the flow, generated by267

extended system (5.1) on EΘ(M) , can be approximated by the action of the flow of268

system (1.3), driven by a low-dimensional control u(·) = (u1(·), . . . , us(·)). The latter269

step is the core of the method of Lie extensions.270

To prove the approximation result we formulate an approximate controllability271

criterion for flows on M , or, the same an approximate path controllability criterion in272

the (infinite-dimensional) group of diffeomorphisms. The result has implications for273

the action of the control system on ensemble of points with arbitrary Θ (see Corollary274

5.2); in particular the implication for singletons gives classical Rashevsky-Chow type275

controllability result.276

The respective formulation is given by277

Theorem 5.1. Let P
v(·)
t be a flow on M , generated by extended control system278

(5.1) and an extended control v(t) = (vβ(t))β∈B , t ∈ [0, T ]. For each ε > 0, r ≥ 0279

and compact K ⊂M there exists an appropriate control u(t) = (u1(t), . . . , us(t)) such280

that the flow P
u(·)
t , generated by control system (1.3) and the control u(·), satisfies:281

‖P v(·)
t − Pu(·)

t ‖r,K < ε, ∀t ∈ [0, T ].282
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An obvious application of this theorem to the case of ensembles provides the283

following284

Corollary 5.2. If the ensemble α(θ) can be steered approximately to the ensem-285

ble ω(θ) in time T by an extended system (5.1), then the same can be accomplished286

by the original control system (1.3).287

Indeed let v(·) be an extended control for extended system (5.1), such that for288

the corresponding flow P
v(·)
t we get supθ∈Θ d

(
ω(θ), P

v(·)
T (α(θ))

)
< ε/2. By theorem289

5.1 there exists a control u(·) for system (1.3) such that290

sup
θ∈Θ

d
(
P
v(·)
T (α(θ)), P

u(·)
T (α(θ))

)
< ε/2291

and hence
sup
θ∈Θ

d
(
ω(θ), P

u(·)
T (α(θ))

)
< ε.

6. Theorem 4.3 and Rashevsky-Chow theorem(s): discussion of the292

formulations. The formulations of the results, provided in the two previous sections,293

show similarity to the formulations of Rashevsky-Chow theorem on finite-dimensional294

and infinite-dimensional manifolds. In this Section we survey these formulations and295

establish their relation to Theorem 4.3.296

6.1. Lie rank/bracket generating controllability criteria. Classical Ra-297

shevsky-Chow theorem provides a sufficient (and necessary in the real analytic case)298

criterion for global exact controllability of system (1.3) for singletons (= single-point299

ensembles) on a connected finite-dimensional manifold M in terms of bracket generat-300

ing property. This property holds for control system (1.3) at x ∈M if the evaluations301

of the iterated Lie brackets (5.2) of the vector fields f1, . . . , fr at x span the respective302

tangent space TxM .303

Proposition 6.1 (Rashevsky-Chow theorem in finite dimension, [4],[11]). Let304

for control system (1.3) the bracket generating property hold at each point of M .305

Then ∀xα, xω ∈ M, ∀T > 0 the point xα can be connected with xω by an admissible306

trajectory x(t), t ∈ [0, T ] of system (1.3), i.e. system (1.3) is globally controllable in307

any time T . If the manifold M and the vector fields f1, . . . , fs are real analytic then308

the bracket generating property is necessary and sufficient for global controllability of309

system (1.3).310

The bracket generating property for f1, . . . , fs is by no means sufficient for con-311

trollability of ensembles, even finite ones. For example if this property holds but312

the Lie algebra Lie{f}, correspondent to the system (1.3) is finite-dimensional, then313

the N -fold of system (1.3) can not possess bracket generating property on M (N) (see314

Section 3), if N dim M > dim Lie{f}. Hence if dim Lie{f} < +∞, then exact315

controllability in the space of N -point ensembles, with N sufficiently large, is not316

achievable.317

Regarding continual ensembles, they form, as we said, an infinite-dimensional318

Banach manifold EΘ(M) (see Sections 2 and 4) and control system (1.3) admits a lift319

to a control system on EΘ(M).320

One can think of application of infinite-dimensional Rashevsky-Chow theorem321

([8],[12]) to the lifted system.322

Proposition 6.2 (infinite-dimensional analogue of Rashevsky-Chow theorem).323

Consider a control system ẏ =
∑s
j=1 Fj(y)uj(t), defined on Banach manifold E. If324
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10 A.AGRACHEV, AND A.SARYCHEV

the condition325

(6.1) Lie{F1, F2, . . . , Fm}(y) = TyE ,∀y ∈ E326

holds, then this system is globally approximately controllable, i.e. for each starting327

point ỹ the set of points, attainable from ỹ (by virtue of the system) is dense in E.328

Seeking to apply this result to the case of ensembles E = EΘ(M) one meets two329

difficulties.330

First, verification of the (approximate) bracket generating property (6.1) has to331

be done for each γ(·) ∈ EΘ(M) and this results in a vast set of conditions, ”indexed”332

by the elements of the functional space EΘ(M).333

This difficulty can be overcome by passing to a pathwise version of Rashevsky-334

Chow theorem, which in the case of singletons is close to its classical formulation.335

Proposition 6.3. Let M be a finite-dimensional manifold, xα, xω ∈ M . If336

bracket generating property holds at each point of a continuous path γ(·), joining337

xα and xω, then xα and xω can be joined by an admissible trajectory of (1.3).338

This result can be deduced directly from Proposition 6.1. Indeed if the bracket339

generating property holds along the path γ(·), then it also holds at each point of a340

connected open neighborhood O of the path γ(·) in M . Applying Rashevsky-Chow341

theorem to the restriction of the control system (1.3) to O we get the needed steering342

result.343

In the case of continual ensembles it turns out though - and this is the second344

difficulty - that for the vector fields F , which are lifts to EΘ(M) of the vector fields345

f ∈ Vect M , the (approximate) bracket generating property (6.1) can not hold at346

each γ ∈ EΘ(M) and may cease to hold even C0-locally. Thus the argument just347

provided fails: condition (6.1) may hold along the path p(·) and cease to hold in a348

neighborhood of the path.349

For example the space E = EΘ(Rn) of ensembles of points in Rn, parameterized350

by a compact Θ, is isomorphic to the Banach space C0(Θ,Rn). Its tangent spaces are351

all isomorphic to C0(Θ,Rn). If Θ is not finite (]Θ =∞) then in any C0-neighborhood352

of an ensemble γ̂(·) ∈ C0(Θ,Rn) one can find an ensemble γ(·) ∈ C0(Θ,Rn), which353

is constant on an open subset of Θ. Then {Y (γ(θ))|Y ∈ VectM} is not dense in354

TγE = TγC
0(Θ,Rn) and hence condition (6.1) can not hold at γ(·). There may355

certainly occur other types of singularities.356

The same remains true if the topology, in which the target is approximated (and357

hence the topology of E) is weakened.358

We end up with two remarks concerning the formulation of Theorem 4.3.359

The criterion for approximate steering, provided by the Theorem has meaningful360

analogue also in the case of singletons.361

Proposition 6.4 (bracket approximating property and approximate steering for362

singletons). Let xα, xω ∈M and γ(t), t ∈ [0, T ] be a continuously differentiable path,363

which joins xα and xω. If the Lie bracket approximating property holds at each point364

γ(t), t ∈ [0, T ], then xα can be approximately steered to xω by an admissible trajectory365

of (1.3).366

Recall that the Lie bracket approximating condition includes the assumption of367

Lipschitz equicontinuity of the approximating vector fields from Lie{f}. The following368

example illustrates importance of this assumption.369

Consider a control system (1.3) in R2 = {(x1, x2)}, such that the orbits of (1.3)370

are the lower and the upper open half-planes of R2 together with the straight-line371
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x2 = 0. An example of such system is372

ẋ1 = u1, ẋ2 = x2u2, (u1, u2) ∈ R2.373

The points xα = (−1,−1) and xω = (1, 1) belonging to different orbits, can not be374

steered approximately one to another. On the other side if we join these points by the375

curve γ(t) = (t, t3), t ∈ [−1, 1], then it is immediate to check, that γ̇(t) ∈ Lie{f}(γ(t))376

for each t, but the condition of Lipshitz equicontinuity is not fulfilled. There are curves377

γδ(·) arbitrarily close to γ(·) in C0 metric, which intersect the line x2 = 0 transversally378

and hence do not satisfy the condition γ̇δ(t) ∈ Lie{f}(γδ(t)).379

7. Proof of Theorem 3.2.380

Proof. We provide a proof for couples of vector fields (s = 2); general case is381

treated similarly. It suffices to establish for fixed N existence of a residual subset382

G ⊂ VectM × VectM such that for each couple (X,Y ) ∈ G the couple of N -folds of383

the vector fields (XN , Y N ) is bracket generating on M (N). Let dimM = n.384

The proof is based on application of J.Mather’s multi-jet transversality theorem385

([10]).386

Consider the couples of vector fields (X,Y ) on M as Ck-smooth sections of the387

fibre bundle π : TM ×M TM → M . Consider the set Jk(TM ×M TM) of k-jets of388

the couples of vector fields and the projection πk of Jk(TM ×M TM) to M . One can389

define in obvious way for N ≥ 1 the projection πNk : Jk(TM ×M TM)N → MN and390

introduce the set J
(N)
k (TM ×M TM)N = (πNk )−1(M (N)), which is N -fold k-jet (or391

multi-jet) bundle for the couples of vector fields.392

In other words N -fold of a vector field X ∈ VectM is a vector field (X, . . . ,X)︸ ︷︷ ︸
N

∈393

VectM (N). For a couple (X,Y ) ∈ VectM × VectM of vector fields the multi-jet394

J
(N)
k (X,Y ) : M (N) → J

(N)
k (VectM ×VectM) can be represented as395

∀(x1, . . . , xN ) ∈M (N) :396

J
(N)
k (X,Y )(x1, . . . xN ) = (Jk(X,Y )(x1), . . . , Jk(X,Y )(xN )) .397

Proposition 7.1 (multi-jet transversality theorem for the couples of vector398

fields). Let S be a submanifold of the space of k-multijets (N fold k-jets)399

J
(N)
k (TM ×M TM)N . Then for sufficiently large ` the set of the couples of the vector400

fields401

TS = {(X,Y ) ∈ VectM ×VectM | JNk (X,Y )−t S}402

is a residual subset of VectM×VectM in Whitney C`-topology (−t stands for transver-403

sality of a map to a manifold).404

Coming back to the proof of Theorem 3.2, note that the set R of the couples405

(X,Y ) of vector fields, such that at each x ∈ M either X(x) 6= 0, or Y (x) 6= 0, is406

open and dense in VectM ×VectM . We will seek G as a subset of R.407

For each couple (X,Y ) ∈ R, and each point x̄ = (x1, . . . , xN ) ∈ M (N) we intro-408
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12 A.AGRACHEV, AND A.SARYCHEV

duce the two nN × 2nN -matrices:409

V (x̄) =

 Y (x1) adXY (x1) · · · ad2nN−1XY (x1)
...

...
...

...

Y (xN ) adXY (xN ) · · · ad2nN−1XY (xN )

 ,410

W (x̄) =

 X(x1) ad2Y X(x1) · · · ad2nNY X(x1)
...

...
...

...

X(xN ) ad2Y X(xN ) · · · ad2nNY X(xN )

 .411

(Note that W (x̄) lacks the column constituted by adY X(xj) which coincides, up to412

a sign, with the second column in V (x̄)).413

For (X,Y ) ∈ R, x̄ = (x1, . . . , xN ) ∈ M (N) and each xi, i = 1, . . . N, at414

least one of the vectors X(xi), Y (xi) is non null. We can choose local coordinates415

ξij , i = 1, . . . N ; j = 1, . . . n in a neighborhood U = U1×· · ·×UN of x̄ = (x1, . . . , xN )416

in M (N) in such a way that in each Ui, i = 1, . . . , N either X or Y becomes the non417

null constant vector field: X = ∂/∂ξi1 or Y = ∂/∂ξi1. Then for each i = 1, . . . , N,418

either adkXY |xi or adkY X|xi equal respectively to ∂kY
∂ξki1

∣∣∣
xi

or ∂kX
∂ξki1

∣∣∣
xi

.419

We call significant those elements of the (Nn × 2Nn)-matrices V (x̄), W (x̄) and420

of the corresponding (Nn × 4Nn)-matrix (V (x̄)|W (x̄)), which are the components421

of ∂kY
∂ξki1

and of ∂kX
∂ξki1

. For each j = 1, . . . , Nn either j-th row of V (x̄) or j-th row of422

W (x̄) consists of significant elements. The elements of these matrices are polynomials423

in the components of the multi-jets J2nNX(x̄), J2nNY (x̄). Significant elements are424

polynomials of degree 1, distinct significant elements correspond to different polyno-425

mials, nonsignificant elements correspond to polynomials of degrees > 1. Elements of426

different rows of the matrices differ.427

If (X,Y ) ∈ R and (XN , Y N ) lacks the bracket generating property at some428

x̄ = (x1, . . . , xN ), then the rank r of the (Nn×4Nn)-matrix (V |W )(x̄) is incomplete:429

r < nN .430

The (stratified) manifold of (Nn× 4Nn)-matrices of rank r < nN is (locally) de-431

fined by rational relations, which express elements of some432

(Nn− r)× (4Nn− r) minor via other elements of the matrix.433

As long as 4Nn − r ≥ 3Nn + 1, then each row of the minor contains σ ≥434

3Nn + 1 − 2Nn > Nn significant elements. The corresponding relations express σ435

distinct components of 2N -th multi-jet of (X,Y ) via other components of the multi-436

jet. Hence 2N -multi-jets of the couples (X,Y ), for which (XN , Y N ) lack bracket437

generating property, must belong to an algebraic manifold S of codimension σ > Nn438

in JNk (TM ×M TM).439

Consider the set TS of the couples (X,Y ) ∈ R ⊂ VectM × VectM , for which440

JN2nN (X,Y ) : M (N) → JN2nN (VectM × VectM) is transversal to S. According to the441

multijet transversality theorem (Proposition 7.1) TS is residual in VectM ×VectM in442

Whitney C`-topology for sufficiently large `. As far as443

dimM (N) = Nn < σ = codim S444

the transversality can take place only if, for each x̄ ∈M (N), JN2nN (X,Y )|x̄ 6∈ S. Hence445

for each couple (X,Y ) from the residual subset TS , the couples of N -folds (XN , Y N )446

are bracket generating at each point of M (N).447

8. Proof of Theorem 5.1.448
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8.1. Variational formula. We start with nonlinear version of ’variation of con-449

stants’ formula, which will be employed in the next subsection.450

Let ft(x) be a time-dependent and g(x) a time-independent vector fields on M .451

We assume both vector fields to be C∞-smooth and Lipschitz on M . Let
−→
exp

∫ t
0
fτdτ452

denote the flow generated by the time-dependent vector field ft (see [3, 4] for the453

notation), and etg stays for the flow, generated by the time-independent vector field454

g.455

Lemma 8.1 ([4]). Let fτ (x), g(x) be C∞-smooth in x, fτ integrable in τ . Let456

U(t) be a Lipschitzian function on [0, T ], U(0) = 0. The flow457

Pt =
−→
exp

∫ t

0

(
fτ (x) + g(x)U̇(τ)

)
dτ458

generated by the differential equation459

(8.1) ẋ = ft(x) + g(x)U̇(t),460

can be represented as a composition of flows461

(8.2)
−→
exp

∫ t

0

(
fτ (x) + g(x)U̇(τ)

)
dτ =

−→
exp

∫ t

0

(
e−U(τ)g

)
∗
fτdτ ◦ eU(t)g.462

At the right-hand side of (8.2)
(
e−U(τ)g

)
∗ is the differential of the diffeomorphism463

e−U(t)g =
(
eU(t)g

)−1
, where eU(t)g is the evaluation at time-instant U(t) of the flow,464

generated by the time-independent vector field g(x).465

We omit at this point the questions of completeness of the vector fields involved466

into (8.1),(8.2), assuming that the formula (8.2) is valid, whenever the flows, involved467

in it, exist on the specified intervals.468

For each vector field Z ∈ Vect M the operator adZ , acts on the space of vector469

fields: adZZ1 = [Z,Z1] - the Lie bracket of Z and Z1. The operator exponential eUadZ470

is defined formally: eUadZ =
∑∞
j=0

Uj(adZ)j

j! . For C∞-smooth vector fields Z,Z1 the471

expansion is known (see [3],[4]) to provide asymptotic representation for
(
e−U(τ)g

)
∗:472

for each s ≥ 0 and a compact K ⊂M there exists a compact neighborhood K ′ of K473

and c > 0 such that474 ∥∥∥∥∥∥
(e−U(τ)g

)
∗
− I −

N−1∑
j=1

(U(τ))j

j!
adjg

Z1

∥∥∥∥∥∥
s,K

≤475

≤ cec|U(τ)|‖g‖s+1,K′
(|U(τ)|‖g‖s+N,K′)N

N !
‖Z1‖s+N,K′476

(see [3] for the details). We employ the asymptotic formulae for N = 1, 2 and small477

magnitude of U :478 ∥∥∥((e−U(τ)g
)
∗
− I
)
Z1

∥∥∥
s,K

= O(|U(τ)|)‖Z1‖s+1,K′ ,(8.3)479 ∥∥∥((e−U(τ)g
)
∗
− I − U(τ)adg

)
Z1

∥∥∥
s,K

= o(|U(τ)|)‖Z1‖s+2,K′ ,(8.4)480

as |U | → 0.481
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14 A.AGRACHEV, AND A.SARYCHEV

We introduce at this point fast-oscillating controls by choosing 1-periodic Lip-
schitz function V (t) with V (0) = 0, the scaling parameters β > α > 0 and defining
for ε > 0: V (t;α, β, ε) = εαV

(
t/εβ

)
. We introduce controls

uε(t) =
dV (t;α, β, ε)

dt
= εα−βV̇

(
t/εβ

)
,

which are high-gain and fast-oscillating for small ε > 0.482

For a more general control483

(8.5) uε(t) = w(t)εα−βV̇
(
t/εβ

)
,484

where w(·) is a Lipschitz function, the primitive of uε(t) equals485

(8.6) Uε(t) = εα
(
w(t)V

(
t/εβ

)
−
∫ t

0

V
(
τ/εβ

)
ẇ(τ)dτ

)
= εαÛε(t),486

and Ûε(t) = O(1) as ε→ +0 uniformly for t in a compact interval.487

Substituting U(t) = Uε(t), defined by (8.6), into (8.2) we get488

−→
exp

∫ t

0

(
fτ (x) + g(x)εα−βw(τ)V̇

( τ
εβ

))
dτ =(8.7)489

−→
exp

∫ t

0

(
e−ε

αÛε(τ)g
)
∗
fτdτ ◦ eε

αÛε(t)g.490

Expanding the exponentials at the right-hand side of the equality according to491

formula (8.3) we get for the control uε(t), defined by (8.5):492

−→
exp

∫ t

0

(fτ (x) + g(x)uε(τ)) dτ =493

−→
exp

∫ t

0

(fτ (x) +O(εα)) dτ ◦ (I +O(εα)) .(8.8)494
495

By classic theorems on continuous dependence of trajectories on the right-hand496

side we conclude that the flow
−→
exp

∫ t
0

(fτ (x) + g(x)uε(τ)) dτ with uε(t), defined by497

(8.5), tends to
−→
exp

∫ t
0
fτ (x)dτ , as ε→ 0, uniformly in t on compact intervals. There-498

fore the effect of the fast-oscillating control (8.5) tends to zero as ε→ 0 with respect499

to any of the seminorms ‖ · ‖r,K :500 ∥∥∥∥−→exp

∫ t

0

(fτ (x) + g(x)uε(τ)) dτ− −→exp

∫ t

0

fτ (x)dτ

∥∥∥∥
r,K

⇒ 0501

for all r ≥ 0, compact K and uniformly for t ∈ [0, T ].502

8.2. Lie extension for flows. Coming back to the proof of Theorem 5.1 we first503

note that its conclusion can be arrived at by induction, with the step of induction,504

represented by the following505

Lemma 8.2. Theorem 5.1 is valid for the controlled system506

d

dt
x(t) =

k∑
j=1

Xj(x)uj(t) +X(x)u(t) + Y (x)v(t),507
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and its Lie extension508

d

dt
x(t) =

k∑
j=1

Xj(x)uej(t) +X(x)ue(t) + Y (x)ve(t) + [X,Y ](x)we(t).509

The proof, provided below, shows that one can leave out, without loss of general-510

ity, the summed addends
∑k
j=1X

k(x)uk(t),
∑k
j=1X

k(x)uek(t) at the right-hand side511

of the systems. It suffices to prove the result for the 2-input system512

(8.9)
d

dt
x(t) = X(x)u(t) + Y (x)v(t),513

and its 3-input Lie extension514

(8.10)
d

dt
x(t) = X(x)ue(t) + Y (x)ve(t) + [X,Y ](x)we(t).515

One can assume, without loss of generality, we(t) to be smooth, as far as smooth516

functions are dense in L1-metric in the space of bounded measurable functions. Hence517

by classical results on continuous dependence with respect to right-hand sides, the518

flows, generated by measurable controls, can be approximated by flows, generated by519

smooth controls.520

To construct the controls u(t), v(t) from ue(t), ve(t), we(t) we take521

(8.11) u(t) = uε(t) = ue(t) + εU̇ε(t), v(t) = vε(t) = ve(t) + ε−1v̂ε(t),522

where ε is the parameter of approximation and the functions Uε(t) and v̂ε(t) will be523

specified in a moment.524

Feeding controls (8.11) into system (8.9) we get525

(8.12)
d

dt
x(t) = X(x)ue(t) + Y (x)

(
ve(t) + ε−1v̂ε(t)

)︸ ︷︷ ︸
ft

+X(x)︸ ︷︷ ︸
g

εU̇ε(t).526

Applying formula (8.2) to the flow, generated by (8.12), we represent it as a compo-527

sition528

−→
exp

∫ t

0

X(x)ue(t) +
(
e−εUε(t)X

)
∗
Y (x)

(
ve(t) + ε−1v̂ε(t)

)
dt ◦529

eεUε(t)X(x).(8.13)530531

We wish the latter flow to approximate (for sufficiently small ε > 0) the flow,532

generated by (8.10). To achieve this we choose the functions533

(8.14) Uε(t) = 2 sin(t/ε2)we(t), v̂ε(t) = sin(t/ε2).534

Approximating the operator exponential eεUε(t)adX by formula (8.4) we transform535

(8.13) into536

−→
exp

∫ t

0

(X(x)ue(t)+Y (x)ve(t) + [X,Y ](x)Uε(t)v̂ε(t)+(8.15)537

Y (x)ε−1v̂ε(t)+O(ε))dt ◦ (I +O(ε)),538539
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where all O(ε) are uniform in t ∈ [0, T ].540

From (8.14)541

Uε(t)v̂ε(t) = we(t)− we(t) cos(2t/ε2),542

and (8.15) takes form543

−→
exp

∫ t

0

(
X(x)ue(t) + Y (x)ve(t) + [X,Y ](x)we(t) + Y (x)ε−1 sin(t/ε2)−(8.16)544

[X,Y ](x)we(t) cos(2t/ε2) +O(ε)
)
dt ◦ (I +O(ε)).545546

Processing fast oscillating terms Y (x)ε−1 sin(t/ε2), [X,Y ]we(t) cos(2t/ε2) accord-547

ing to formula (8.7) we bring the flow (8.16) to the form548

−→
exp

∫ t

0

(X(x)ue(τ) + Y (x)ve(τ) + [X,Y ](x)we(τ) +O(ε)) dτ ◦549

(I +O(ε)),550551

wherefrom one concludes for uε(t), vε(t), defined by formulae (8.11)-(8.14), the con-552

vergence of the flows: for each r ≥ 0 and compact K553 ∥∥∥∥−→exp

∫ t

0

(X(x)ue(τ) + Y (x)ve(τ) + [X,Y ](x)we(τ)) dτ−554

−→
exp

∫ t

0

(X(x)uε(τ) + Y (x)vε(τ)) dτ

∥∥∥∥
r,K

= O(ε)555

as ε→ 0.556

9. Proof of Theorem 4.3.557

Proposition 9.1. Under the assumptions of Theorem 4.3, for each ε > 0 there558

exists a finite set B (depending on ε) of the multiindices β = (β1, . . . , βN ) and an559

extended differential equation (5.1) together with an extended control (vβ(t))β∈B , t ∈560

[0, T ] such that the flow, generated by (5.1) and the control steers, in time T , the561

initial ensemble α(θ) to the ensemble x(T ; θ), for which supθ∈Θ d (x(T ; θ), ω(θ)) < ε.562

Consider the diffeotopy γt(θ) = Pt(α(θ)), along which Lie bracket C0-approxi-563

mating condition holds. Let Γ be its image and Yt(x) be the time-dependent vector564

field, which generates the diffeotopy. We start with the following technical Lemma.565

Lemma 9.2. Let assumptions of Theorem 4.3 hold. Then there exists λ > 0566

and compact neighborhood WΓ ⊃ Γ, such that for each ε > 0 there exists a finite567

set of multi-indices B together with continuous functions (vβ(t)) , β ∈ B such that568

Xt(x) =
∑
β∈B vβ(t)Xβ(x) satisfies:569

(9.1) ‖Xt(x)‖1,WΓ
< λ, ‖Yt(γt(θ))−Xt(γt(θ))‖C0(Θ) < ε.570

Proof of Lemma 9.2. According to the Lie bracket C0-approximating assumption571

along the diffeotopy there exists λ > 0 and for each t ∈ [0, T ] and each ε > 0 a finite572

set Bt of multi-indices and the coefficients cβ(t), β ∈ Bt, such that573 ∥∥∥∥∥∥
∑
β∈Bt

cβ(t)Xβ(x)

∥∥∥∥∥∥
1,WΓ

< λ,574

∥∥∥∥∥∥Yt(γt(θ))−
∑
β∈Bt

cβ(t)Xβ(γt(θ))

∥∥∥∥∥∥
C0(Θ)

< ε.(9.2)575
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As far as Yt(γt(θ)) and Xβ(γt(θ)) vary continuously with t, the estimate576 ∥∥∥∥∥∥Yτ (γτ (θ))−
∑
β∈Bt

cβ(t)Xβ(γτ (θ))

∥∥∥∥∥∥
C0(Θ)

< ε577

is valid for τ ∈ Ot - a neighborhood of t. The family Ot (t ∈ [0, T ]) defines an open578

covering of [0, T ], from which we choose finite subcovering Oi = Oti , i = 1, . . . , N .579

Putting Bi = Bti , i = 1, . . . , N we define ciβ = cβ(ti), ∀i = 1, . . . , N, ∀β ∈ Bi; put580

B =
⋃N
i=1Bi.581

Choose a smooth partition of unity {µi(t)} subject to the covering {Oi}. Put for582

each β ∈ B, vβ(t) =
∑N
i=1 µi(t)ciβ ; it is immediate to see that vβ(t) are continuous.583

For584

(9.3) Xt(x) =
∑
β∈B

vβ(t)Xβ(x)585

we conclude586

∀θ ∈ Θ : ‖Yt(γt(θ))−Xt(γt(θ))‖ =587 ∥∥∥∥∥∥
N∑
i=1

µi(t)Yt(γt(θ))−
N∑
i=1

∑
β∈Bi

µi(t)ciβX
β(γt(θ))

∥∥∥∥∥∥ ≤588

N∑
i=1

µi(t)

∥∥∥∥∥∥Yt(γt(θ))−
∑
β∈Bi

ciβX
β(γt(θ))

∥∥∥∥∥∥ ≤ ε
N∑
i=1

µi(t) = ε.589

The first of the estimates (9.1) is proved similarly.590

Coming back to the proof of Proposition 9.1 we consider the evolution of the591

ensemble α(θ) under the action of the flow generated by the vector field Xt, defined592

by (9.3). We estimate593

‖x(t; θ)− γt(θ)‖ =

∥∥∥∥∫ t

0

(Xτ (x(τ ; θ), v(τ))− Yτ (γτ (θ))) dτ

∥∥∥∥ ≤594 ∫ t

0

‖Xτ (x(τ ; θ))−Xτ (γτ (θ))‖ dτ +

∫ t

0

‖Xτ (γτ (θ))− Yτ (γτ (θ))‖ dτ.595

By virtue of (9.2) we obtain (whenever x(t; θ) ∈WΓ):596

‖x(t; θ)− γt(θ)‖ ≤ λ
∫ t

0

‖x(τ ; θ)− γτ (θ)‖ dτ + εt,597

and by Gronwall lemma598

(9.4) ‖x(t; θ)− γt(θ)‖ ≤ ε
(
eλt − 1

)
λ

.599

We should take ε sufficiently small, so that (9.4) guarantees that x(t; θ) does not600

leave the neighborhood WΓ, defined by Lemma 9.2. Then601

‖x(T ; θ)− ω(θ)‖ ≤ ε
(
eλT − 1

)
λ

602

and the claim of Proposition 9.1 follows.603

Theorem 4.3 follows readily from Propositions 9.1 and Corollary 5.2.604
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10. Conclusions. Lie algebraic/geometric approach is well adapted to studying605

ensemble controllability and the controllability criteria obtained are formulated in606

Lie rank, or Lie span, form. Up to our judgement the study is not reducible to an607

application of abstract versions of Rashevsky-Chow theorem on a Banach manifold.608
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