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CONTROL IN THE SPACES OF ENSEMBLES OF POINTS*

ANDREI AGRACHEV!T AND ANDREY SARYCHEV#

Abstract. We study the controlled dynamics of the ensembles of points of a Riemannian
manifold M. Parameterized ensemble of points of M is the image of a continuous map v: © — M,
where © is a compact set of parameters. The dynamics of ensembles is defined by the action
v(0) — Pi(v(0)) of the semigroup of diffeomorphisms P; : M — M, t € R, generated by the
controlled equation & = f(z,u(t)) on M. Therefore any control system on M defines a control
system on (generally infinite-dimensional) space g (M) of the ensembles of points. We wish to
establish criteria of controllability for such control systems. As in our previous work ([1]) we seek to
adapt the Lie-algebraic approach of geometric control theory to the infinite-dimensional setting. We
study the case of finite ensembles and prove genericity of exact controllability property for them. We
also find sufficient approximate controllability criterion for continual ensembles and prove a result on
motion planning in the space of flows on M. We discuss the relation of the obtained controllability
criteria to various versions of Rashevsky-Chow theorem for finite- and infinite-dimensional manifolds.

Key words. infinite-dimensional control systems, nonlinear control, controllability, Lie-alge-
braic methods

AMS subject classifications. 93B27

1. Introduction and problem setting. Let M be C°°-smooth n-dimensional
(n > 2) connected Riemannian manifold, with d(-, ), being the Riemannian distance.
Let Eo(M) be the space of continuous maps v : © — M, where © is a compact
Lebesgue measure set. We call the elements of Eg(M) ensembles of points or, for
brevity, ensembles. The space Eg (M) is infinite-dimensional, whenever © is an infinite
set (see Section 2).

In the control-theoretic setting one looks at the action on £g(M) of the group
of diffeomorphisms of M, which are generated by the vector fields from the family
{f*lu e U} C Vect M. Alternatively we can consider the action of the flows, defined
by the controlled equations

(1.1) z = f(z,u(t)), u(t) €U,

where u(t) are admissible, for example, piecewise-constant, or piecewise-continuous,
or boundary measurable controls, with their values in a set U, which is a subset of a
Euclidean space.

The flow P;" 0 (Py = Id), generated by control system (1.1) and a given admissible
control u(t) = (u1(t),...,u,(t)), acts on y(0) € Eo(M) according to the formula

B y(0) = PV (1(6)).6 € ©.

Thus control system (1.1) gives rise to a control system in the space of ensembles
Eo(M). We set the controllability problem for the action of control system (1.1) on

Eo(M).
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2 A.AGRACHEV, AND A.SARYCHEV

DEFINITION 1.1. Ensemble a(-) € Eg(M) can be steered in time-T to ensemble
w(+) € Eo(M) by control system (1.1), if there exists a control u € Lo ([0,T],U) such

that for the flow Ptﬁ(‘), generated by the equation & = f(x(t),u(t)), there holds
P (a(0)) = w(0).

DEFINITION 1.2. The time-T attainable set from a(-) € Eg(M) for control system
(1.1) in the space of ensembles Eo(M) is

Ar(a() = {PrY (a(8)) | u() € Loo([0,T),U)} C Eo(M).

DEFINITION 1.3. Control system (1.1) is globally exactly controllable in time T in
the space Eg(M) from a(0) € Eo(M), if Ar(a(8)) = Eo(M). Control system (1.1) is
time-T globally exactly controllable if it is globally exactly controllable in time-T from
each a(f) € Eo(M) .

Remark 1.4. If © = {6} is a singleton, then the time-T attainable sets Az (ap)
coincide with the standard attainable sets of system (1.1) from the point ag € M. The
notions of global and global approximate controllability coincide with the standard
notions for control system (1.1) on M.

If © is an infinite set, it is hard to achieve ezact ensemble controllability for system
(1.1). Instead we will study C°- or L,-approximate controllability property.

DEFINITION 1.5. Ensemble a(-) € Eg(M) is C°-approzimately steerable in time-
T to ensemble w(-) € Eo(M) by control system (1.1), if for each € > 0 there exists
u(-) such that

(1.2) sup d (w(@), PO (a(o))) <e.
[USC)

Ensemble a(-) € Eo(M) is Ly-approzimately steerable in time-T to ensemble
w(:) € Eo(M) by control system (1.1), if for each € > 0 there exists u(-) such that

[ (@ (w0270 (a(0)) a0 < .

DEFINITION 1.6. Control system (1.1) is time-T globally approzimately control-
lable from a(-) € Eo(M) if Ar(a) is dense in Eo(M) in the respective metric. The
system is time-T globally approzximately controllable if it is time-T globally approxi-
mately controllable from each a(-) € Eg(M).

It is known that the attainable sets and the controllability properties of control
system (1.1) on M can be characterized via properties of the Lie brackets of the vector
fields f*(z), u € U. In particular case for a symmetric control-linear system

(1.3) #=> fila)u(t)
j=1

global controllability property for singletons is guaranteed by the bracket generating
condition: for each point x € M the evaluations at = of the iterated Lie brackets
[firsl-- - [fin_ss fin]- -] span the tangent space T, M.

We are going to establish controllability criteria for control system (1.3) acting
in the space of ensembles Eg(M). The criteria for finite and continual ensembles

This manuscript is for review purposes only.
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CONTROL OF ENSEMBLES OF POINTS 3

are provided in Sections 3 and 4. As far as controlled dynamics in the space of
ensembles is defined by action of the flows, generated by controlled system (1.3),
it is important to analyze whether and how the controllability criterion could be
”lifted” to the group of diffeomorphisms or the semigroup of flows. This is done in
Section 5, where Theorem 5.1 provides a result on a Lie extension of the action of
system (1.3) in the group of diffeomorphisms. In Section 6 we discuss the relation of
the established controllability criterion for continual ensembles of points to various
versions of Rashevsky-Chow theorem in finite and infinite dimensions. It turns out
that the latter typically are not applicable to ensemble controllability.

The proofs of the main results are provided in Sections 7-9.

By now there are numerous publications on simultaneous control of ensembles of
control systems

(1.4) z = f(z,u,0), xeM, ue U0 €O

by a unique control. This direction of study has been initiated by S. Li and N. Khaneja
([13, 14]) for the case of quantum ensembles. Few other publication which took on
the subject are [6, 7, 9], where readers can find more bibliographic references. In our
previous publication [1] we considered the ensembles of systems (1.4), and formulated
Lie algebraic controllability criteria for ensembles of systems.

In the present publication we consider ensembles of points controlled by virtue of
a single system and single open loop control. This choice distinguishes the problem set-
ting not only from the previous one, but also from the control problems, in which both
the state space and the set of control parameters are infinite-dimensional. Examples of
the latter kind appear in [2] and are common in the literature on mass transportation.
Another range of publications operates with ensembles, named shapes, and with the
group of the diffeomorphisms acting on them. An exposition of the topic and further
references can be found for example in [5, 17, 18].

2. Banach manifold of ensembles. As we said ensembles of points in M are
the images of continuous maps v : © — M; the set of parameters © is assumed to be
compact. At some moments we assume additionally the maps v to be injective. The
set of ensembles is denoted by g (M).

Whenever the set of parameters O is finite, then the ensemble is called finite and
the set of ensembles Eg (M) is a finite-dimensional manifold.

Define for any ensemble v(6) € Eo(M) a tangent space T,Eg(M), consisting of
the continuous maps T : © — T'M, for which the diagram

S Pk — Y Y

N

is commutative. Representing an element of the tangent bundle TM as a pair
(z,€), v € M, € T, M, we note that

T(6) = (1(6).£(0)). £(6) € T, )M, 6 € ©.

If M = R", then T, Eg (M) can be identified with the set of continuous maps C°(6,R™).Jj
One can define a vector field on Eg (M) as a section of the tangent bundle TEg (M).

This manuscript is for review purposes only.
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4 A.AGRACHEV, AND A.SARYCHEV

The flow e/, generated by a time-independent vector field f € Vect(M), and
acting onto an ensemble v(#), defines a lift of f to the vector field

d

F € Vect (Eo(M)): F(v())) = dt|,_,

e (V) = F(r())
The same holds for time-dependent vector fields f;.

The Lie brackets of the lifted vector fields are the lifts of the Lie brackets of the
vector fields: [Fl, FQH,Y() = [fl, fg](’}/())

One can provide T\ Ee (M) with different metrics. Of interest for us are those
obtained by the restrictions of the metrics C°(©, T M), and L,(©,TM) onto TEe(M).

3. Genericity of the controllability property for finite ensembles of
points. Let © = {1,...,N}. A finite ensemble v : © — M is an N-ple of points
v=(V1,...,yn) € MY In this Section we assume v to be injective, so that the points
v; are pairwise distinct. Let AN C MY be the set of N-ples (z1,...,zx) € MY with
(at least) two coinciding components: z; = x;, for some ¢ # j. Then the space of
enseI?bles En(M) is identified with the complement of AN : Ex(M) = MN \ AN =
MW,

For each v € M) the tangent space T,YM(N) is isomorphic to

N
Q) T, M =T, M x -+ x T, M.
j=1

For a vector field X € VectM consider its N-fold, defined on M) as
XN(zy,...,zen) = (X(z1),..., X(2N)).

For X,Y € Vect M, and N > 1 we define the Lie bracket of the N-folds XV, Y™V
on M) ”componentwise”: [XV,YN] = [X,Y]V, where [X,Y] is the Lie bracket of
X,Y on M. The same holds for the iterated Lie brackets.

Given the vector fields fi,...fs on M their N-folds f{¥,..., fN form a bracket
generating system on M) if the evaluations of their iterated Lie brackets at each
v € M) span the tangent space TWM(N) = ®§V:1 T, M. Evidently for N > 1 the
property is strictly stronger, than the bracket generating property for fi,..., fs on
M. We provide some comments below in Section 6.

The following result is a corollary of classical Rashevsky-Chow theorem (see
Proposition 6.1).

PROPOSITION 3.1 (global controllability criterion for system (1.3) in the space
of finite point ensembles). If the N-folds fi¥,..., fN are bracket generating at each
point of M) | then VT > 0 the system (1.3) is time-T globally exactly controllable in
the space of finite ensembles (y1,...,vn) € MW,

Proposition 3.1 relates global controllability of system (1.3) for N-point ensem-
bles to the bracket generating property on M) for the N-folds of the vector fields
f1,---, fs. The following result states that the bracket generating property for N-folds
is generic.

THEOREM 3.2. For any N > 1 and sufficiently large £, there is a set of s-ples of
vector fields (f1, ..., fs), which is residual in Vect M®* in Whitney C*-topology, such
that for any (fi,. .., fs) from this set the N-folds (fI,..., fN) are bracket generating
at each point of M(N) = MN \ AN,

This manuscript is for review purposes only.
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CONTROL OF ENSEMBLES OF POINTS 5

Note that the notion of genericity in the theorem allows for (small) perturbations
of the f;, but not of f¥ = (fi,..., fi) directly. Therefore the theorem extends the
classical result by C.Lobry’s ([15]) on genericity of the property of controllability
for singletons (see also Theorem 3.1 of our previous work [1] on the genericity of
controllability property for ensembles of control systems).

Proof of theorem 3.2 (for s = 2) is provided in Section 7.

4. Criterion of approximate steering for continual ensembles of points.
To formulate criterion for approximate steering of continual ensembles of points we
impose the following assumption for control system (1.3).

AssuMPTION 4.1 (boundedness in z).  The C*-smooth vector fields f;j(z) €
Vect M, j = 1,...,s, which define system (1.3), are bounded on M together with
their covariant derivatives of each order.

The boundedness of f; and of their covariant derivatives on M implies complete-
ness of the vector fields f; and of their Lie brackets of any order. Completeness of
a vector field means that the trajectory of the vector field with arbitrary initial data
can be extended to each compact subinterval of the time axis.

This assumption is rather natural. It holds for compact manifolds M. For a
non-compact M it obviously holds for vector fields with compact supports. Other
examples are vector fields on R", whose components are trigonometric polynomials
in z, or polynomial (in ) vector fields, multiplied by functions rapidly decaying at
infinity (e.g. by e=*").

Consider a couple of initial and target ensembles of points a(6),w(d) € Eo(M),
which we assume to be diffeotopic,’ i.e. satisfying the relation Ry (a(-)) = w(-), where
t — Ry, t €[0,T], Rp =1d, is a flow on M, defined by a time-dependent vector field
Yi(x), with Y;(z), D, Y:(x) continuous.

Note that the (reference) flow R, is a priori unrelated to control system (1.3).
Denote by () the image of «(#) under the diffeotopy

1:(0) = Ri(a(0)), 10(0) = (), vr(0) = w(0).

We introduce standard notation for the seminorms in the space of vector fields
on M: for a compact K C M

Xl =sup [ > |DX(x)]
€K\ o<ipl<r

and

X[l = sup | > [DX(x)|

rEM \o<|Bl<r

Let Lie{f} be the Lie algebra, generated by the vector fields fi,..., fs. Put for
A >0 and a compact K C M:

Lie} i {f} = {X(2) € Lie{f}| | X|1.e <A},

and
Lie}{f} = {X(z) € Lie{f}| [ X]l1 < A}.

I'We can assume instead an existence, for each € > 0, of an ensemble we(-), which is e-close to
w(+) in C?(O)-metric and diffeotopic to a(-).

This manuscript is for review purposes only.
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6 A.AGRACHEV, AND A.SARYCHEV

The following bracket approximating condition along a diffeotopy is the key part
of the criterion for steering continual ensembles of points. In Section 6 we discuss the
reason for the choice of this particular form of condition.

DEFINITION 4.2 (Lie bracket C%-approximating condition along a diffeotopy).
Let the diffeotopy v = Ri(a(+)), t € [0,T], generated by the vector field Yi(x), join
a() and w(-). System (1.3) satisfies Lie bracket C°-approximating condition along
Ve, iof there exist A > 0 and a compact neighborhood Or of the set T = {v(0)| 6 €
O, t€[0,T]} such that

@) el it {supVi6u(0) - X0 | X € Licko, (7] -

THEOREM 4.3 (approximate steering criterion for ensembles of points).  Let
a(f),w(0) be two ensembles of points, joined by a diffeotopy v(0), t € [0,T]. If
control system (1.3) satisfies the Lie bracket C°-approximating condition along the
diffeotopy, then a(-) can be steered C°-approzimately to w(-) by system (1.3) in time
T.

4.1. Approximate controllability for continual ensembles: basic exam-
ple. We provide an example of application of Theorem 4.3. Consider the system in
R? with two controls:

(4.2) T =u, ¥o = @(z1)v, (u,v) € R
It is a particular case of the control-linear system (1.3):
(4.3) &= filz)u+ fa(z)v, fr =0/0x1, fo= p(x1)0/0xs.

We assume ¢(x1) to be C*°-smooth. In our example p(z1) = e,
Choose the initial ensemble

(4.4) a(f) = (0,0), 6 € © =[0,1].
If one takes for example v = 0 in (4.2), then z; remains fixed, and by (4.2),(4.4)
22(T';0) = my(.)e(0),

where m,,.) = fo t)dt € R. Therefore for vanishing u(-) the set of ”attainable
profiles” for zo(T} 9) is very limited.

To illustrate Theorem 4.3 we fix target ensemble w(f) = (6,0) and choose a
diffeotopy

(4.5) Y(0) = (0,t0), t € [07 1},

which joins a(f) and w(f). The diffeotopy is generated by the (time-independent)
vector field Y(a:) Y (x1,22) = £10/0x2. Evaluation of the vector field Y along the
diffeotopy (4.5), equals

Vt e [0,1]: Y(7(0) = Y(0,t0) = 00/0zs.

The Lie algebra, generated by f1, f2, is spanned in the treated case by the vector
fields f1 and the vector fields

(4.6) ad® f1f = o) (21)0/0x2, k=0,1,2,...

This manuscript is for review purposes only.
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CONTROL OF ENSEMBLES OF POINTS 7

and is infinite-dimensional for our choice of ¢(+).
The evaluations f1(7:(0)) and ad® f1 f2(7(0)) equal

fi(w(0)) = 0/0x1, (adkflfz) (v(0)) = o*)(0)0/822, k=0,1,2....

. . . — 2
The successive derivatives of p(x) = e™*" are

(4.7) oM (2) = (=1)"Hyp(z)e ™, m=0,1,...,
where H,,(z) are Hermite polynomials. Recall that H,,(z) form an orthogonal com-
plete system for Ly(—00,+00) with the weight e=*".

Let A be (infinite-dimensional) linear space generated by functions (4.7). Generic
element of Lie{f1, fo} can be represented as

CLi + h(xl)i, a€R, heH,

8%1 8.’52
and its evaluation at v;(0) equals
0 0
— 4+ h(0)=— R, h .
a6x1+ ()am,ae ,heH

The C° bracket approximating condition along 7;(f) amounts to the approx-
imability in C9[0,1] of the function Y3(f) = @ by the functions from a bounded
equi-Lipschitzian subset of H.

To establish approximability for chosen example we use the following technical
lemmae.

LEMMA 4.4. There exists X\ > 0 such that

inf { sup |0 — h(0)]
0€l0,1]

h(-) e H, sup (Jh(0)] + W (0)]) < )\} =0.
9€lo,

Proof. The lemma is a corollary of the following standard facts, which concern
the expansions with respect to the Hermite system.

LEMMA 4.5. Let g(x) be a smooth function with compact support in (—oo,+00)
and

(4.8) 9(x) = Y gmHn(2)
m>0

be its expansion with respect to Hermite system. Then:

(i) expansion (4.8) converges to g(x) uniformly on any compact interval;

(i) the expansion ), -, gmH,,(x) converges to ¢'(x) uniformly on any compact

interval. a

Proof. For (i) see e.g. [16, §8]. Statement (ii) follows easily from (i), given the

relation H, (x) = 2mH,,_1(x) for the Hermite polynomials. Indeed

Z gmHy, () = Z 2mgp Hm—1(x) = Z 2(m + 1)gmi1 Hm(2),

m>1 m>1 m>0
and it rests to verify that the coefficients of the expansion of ¢'(x) with respect
to Hermite system are precisely 2(m + 1)g;na1. This in its turn follows by direct
computation by the formulae

400 5
H (2) = 20Hy (z) — Hypo(2), / (Hop(2)) 26" dz = 2™ ml /7.

— 00

This manuscript is for review purposes only.
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8 A.AGRACHEV, AND A.SARYCHEV

Now in order to prove Lemma 4.4 we take a C'° smooth function g(f) with
compact support on (—o0,+00), whose restriction to [0, 1] coincides with the func-
tion y(#) = fe”. By Lemma 4.5 (i) the expansion g(6) ~ Y i 9mHm (0) converges
uniformly on [0,1] to 6e?”, and hence the series Yom gmHm(H)e’az
uniformly on [0, 1].

converges to 6

Differentiating >, emHm (0)e™? termwise in 6 we get
Z e H., (0)e™? — Z o Hom (0)20%

By Lemma 4.5 (i) and (ii) the series }_, -, ¢ Hy, and 32, - ¢mHim(0) converge uni-
formly on [0, 1] to bounded functions; the partial sums of these series are equibounded
and therefore partial sums of the series ) gmHm(H)e_‘g2 are equi-Lipschitzian, what

concludes the proof of Lemma 4.4. O

5. Lie extensions and approximate controllability for flows. The proof
of Theorem 4.3, provided in Section 9, is based on an infinite-dimensional version of
the method of Lie extensions ([11, 1, 4]).

According to this method one starts with establishing the property of C°-appro-
ximate steering by means of an extended control fed into an extended (in comparison
with (1.3)) control system

(5.1 WO _ S X0y (0),

BEB

where X?(z) are the iterated Lie brackets

(52) Xﬁ(x):[fﬂw[fﬁw["‘vfﬁz\r]"']](x)

of the vector fields fi,...,fs (we assume by default, that the vector fields f;(z)
are included into the family {X?(z), 8 € B}.) In (5.1)-(5.2) the multiindices 8 =
(Bi,...,Bn) belong to a finite subset B C Uys,{1,---,s}, and (vs(t))sep is a
(high-dimensional) extended control. -

After the first step one has to prove that the action of the flow, generated by
extended system (5.1) on Eg(M) , can be approximated by the action of the flow of
system (1.3), driven by a low-dimensional control u(-) = (u1(-),...,us(+)). The latter
step is the core of the method of Lie extensions.

To prove the approximation result we formulate an approximate controllability
criterion for flows on M, or, the same an approximate path controllability criterion in
the (infinite-dimensional) group of diffeomorphisms. The result has implications for
the action of the control system on ensemble of points with arbitrary © (see Corollary
5.2); in particular the implication for singletons gives classical Rashevsky-Chow type
controllability result.

The respective formulation is given by

THEOREM 5.1. Let Ptv(') be a flow on M, generated by extended control system
(5.1) and an extended control v(t) = (vs(t))sep, t € [0,T]. For eache >0, 7 >0

and compact K C M there exists an appropriate control u(t) = (u1(t),...,us(t)) such
that the flow Ptu('), generated by control system (1.3) and the control u(-), satisfies:

|1PPY — PO,k < e, V€ [0,T).

This manuscript is for review purposes only.



283
284
285
286
287
288
289

290

291

CONTROL OF ENSEMBLES OF POINTS 9

An obvious application of this theorem to the case of ensembles provides the
following

COROLLARY 5.2. If the ensemble a(0) can be steered approzimately to the ensem-
ble w(0) in time T by an extended system (5.1), then the same can be accomplished
by the original control system (1.3).

Indeed let v(-) be an extended control for extended system (5.1), such that for
the corresponding flow Ptv(') we get Supgecg d (w(@), P;i(')(a(@))) < ¢/2. By theorem

5.1 there exists a control u(-) for system (1.3) such that

sup d (P;(')(a(H)), P;(')(oz(e))) <e/2
€O

and hence

sup d (w(@), P;(')(a(H))) <e.

0co

6. Theorem 4.3 and Rashevsky-Chow theorem(s): discussion of the

formulations. The formulations of the results, provided in the two previous sections,
show similarity to the formulations of Rashevsky-Chow theorem on finite-dimensional
and infinite-dimensional manifolds. In this Section we survey these formulations and
establish their relation to Theorem 4.3.

6.1. Lie rank/bracket generating controllability criteria. Classical Ra-
shevsky-Chow theorem provides a sufficient (and necessary in the real analytic case)
criterion for global exact controllability of system (1.3) for singletons (= single-point
ensembles) on a connected finite-dimensional manifold M in terms of bracket generat-
ing property. This property holds for control system (1.3) at 2 € M if the evaluations
of the iterated Lie brackets (5.2) of the vector fields fi,. .., f, at x span the respective
tangent space T, M.

PROPOSITION 6.1 (Rashevsky-Chow theorem in finite dimension, [4],[11]). Let
for control system (1.3) the bracket generating property hold at each point of M.
Then Vxo,z, € M, YT > 0 the point x, can be connected with x,, by an admissible
trajectory x(t), t € [0,T] of system (1.3), i.e. system (1.3) is globally controllable in
any time T. If the manifold M and the vector fields f1,..., fs are real analytic then
the bracket generating property is necessary and sufficient for global controllability of
system (1.3).

The bracket generating property for fi,..., fs is by no means sufficient for con-
trollability of ensembles, even finite ones. For example if this property holds but
the Lie algebra Lie{f}, correspondent to the system (1.3) is finite-dimensional, then
the N-fold of system (1.3) can not possess bracket generating property on M) (see
Section 3), if Ndim M > dim Lie{f}. Hence if dimLie{f} < +oo, then exact
controllability in the space of N-point ensembles, with N sufficiently large, is not
achievable.

Regarding continual ensembles, they form, as we said, an infinite-dimensional
Banach manifold Eg (M) (see Sections 2 and 4) and control system (1.3) admits a lift
to a control system on Eg(M).

One can think of application of infinite-dimensional Rashevsky-Chow theorem
([8],[12]) to the lifted system.

PROPOSITION 6.2 (infinite-dimensional analogue of Rashevsky-Chow theorem).
Consider a control system y = Z§=1 F;(y)u;(t), defined on Banach manifold €. If

This manuscript is for review purposes only.
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10 A.AGRACHEV, AND A.SARYCHEV

the condition

(6.1) Lie{F1, Fy, .. Fn}(y) = T,E, Wy € €

holds, then this system is globally approximately controllable, i.e. for each starting
point § the set of points, attainable from § (by virtue of the system) is dense in £.

Seeking to apply this result to the case of ensembles £ = Eg(M) one meets two
difficulties.

First, verification of the (approximate) bracket generating property (6.1) has to
be done for each v(-) € Eo(M) and this results in a vast set of conditions, ”indexed”
by the elements of the functional space Eg(M).

This difficulty can be overcome by passing to a pathwise version of Rashevsky-
Chow theorem, which in the case of singletons is close to its classical formulation.

PROPOSITION 6.3. Let M be a finite-dimensional manifold, xo,x, € M. If
bracket generating property holds at each point of a continuous path ~(-), joining
Zo and x,,, then x, and x,, can be joined by an admissible trajectory of (1.3).

This result can be deduced directly from Proposition 6.1. Indeed if the bracket
generating property holds along the path ~(-), then it also holds at each point of a
connected open neighborhood O of the path () in M. Applying Rashevsky-Chow
theorem to the restriction of the control system (1.3) to O we get the needed steering
result.

In the case of continual ensembles it turns out though - and this is the second
difficulty - that for the vector fields F', which are lifts to Eg(M) of the vector fields
f € Vect M , the (approximate) bracket generating property (6.1) can not hold at
each v € £o(M) and may cease to hold even C%locally. Thus the argument just
provided fails: condition (6.1) may hold along the path p(-) and cease to hold in a
neighborhood of the path.

For example the space & = Eg(R™) of ensembles of points in R™, parameterized
by a compact ©, is isomorphic to the Banach space C°(©,R"™). Its tangent spaces are
all isomorphic to C°(©,R™). If © is not finite ($© = 0o) then in any C°-neighborhood
of an ensemble 4(-) € C°(©,R™) one can find an ensemble v(-) € C°(©,R™), which
is constant on an open subset of ©. Then {Y(v(0))]Y € VectM} is not dense in
T,& = T,C°(©,R") and hence condition (6.1) can not hold at ~(:). There may
certainly occur other types of singularities.

The same remains true if the topology, in which the target is approximated (and
hence the topology of &) is weakened.

We end up with two remarks concerning the formulation of Theorem 4.3.

The criterion for approximate steering, provided by the Theorem has meaningful
analogue also in the case of singletons.

PROPOSITION 6.4 (bracket approximating property and approximate steering for
singletons). Let x4, x, € M and v(t), t € [0,T] be a continuously differentiable path,
which joins xo and x,,. If the Lie bracket approzimating property holds at each point
~(t), t € [0,T], then x,, can be approximately steered to x,, by an admissible trajectory
of (1.3).

Recall that the Lie bracket approximating condition includes the assumption of
Lipschitz equicontinuity of the approximating vector fields from Lie{ f}. The following
example illustrates importance of this assumption.

Consider a control system (1.3) in R? = {(z1,22)}, such that the orbits of (1.3)
are the lower and the upper open half-planes of R? together with the straight-line
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22 = 0. An example of such system is
. . 2
&y = w1, &2 = Toug, (ur,u) € R

The points z, = (—1,—1) and z,, = (1, 1) belonging to different orbits, can not be
steered approximately one to another. On the other side if we join these points by the
curve y(t) = (,t%), t € [-1,1], then it is immediate to check, that +(¢) € Lie{ f}(v(¢))
for each ¢, but the condition of Lipshitz equicontinuity is not fulfilled. There are curves
79(-) arbitrarily close to y(-) in C° metric, which intersect the line 3 = 0 transversally
and hence do not satisfy the condition 4°(¢) € Lie{f}(v°(?)).

7. Proof of Theorem 3.2.

Proof. We provide a proof for couples of vector fields (s = 2); general case is
treated similarly. It suffices to establish for fixed N existence of a residual subset
G C VectM x VectM such that for each couple (X,Y) € G the couple of N-folds of
the vector fields (X, Y ™) is bracket generating on M (M), Let dim M = n.

The proof is based on application of J.Mather’s multi-jet transversality theorem
([10]).

Consider the couples of vector fields (X,Y) on M as C*-smooth sections of the
fibre bundle 7 : TM Xy TM — M. Consider the set Jp(TM X TM) of k-jets of
the couples of vector fields and the projection my of Ji(T'M X TM) to M. One can
define in obvious way for N > 1 the projection 7 : Jp(TM xpy TM)N — MY and
introduce the set JIEN)(TM xy TM)N = (7))~Y(MM), which is N-fold k-jet (or
multi-jet) bundle for the couples of vector fields.

In other words N-fold of a vector field X € VectM is a vector field (X,...,X) €

—_————
N

Vect M), For a couple (X,Y) € VectM x VectM of vector fields the multi-jet
J,gN)(X, Y): MWN) — J,EN) (VectM x VectM) can be represented as

Y(x1,...,zN) € M) .
JNXY ) (@, an) = (J(X,Y) (@), Je(X,Y) (2) -

PROPOSITION 7.1 (multi-jet transversality theorem for the couples of vector
fields). Let S be a submanifold of the space of k-multijets (N fold k-jets)

JIEN)(TM xp TM)N. Then for sufficiently large £ the set of the couples of the vector
fields

Ts = {(X,Y) € VectM x VectM| JN(X,Y) M S}

is a residual subset of Vect M x VectM in Whitney C*-topology (i stands for transver-
sality of a map to a manifold).

Coming back to the proof of Theorem 3.2, note that the set R of the couples
(X,Y) of vector fields, such that at each z € M either X (z) # 0, or Y(z) # 0, is
open and dense in VectM x VectM. We will seek G as a subset of R.

For each couple (X,Y) € R, and each point Z = (x1,...,2x5) € M) we intro-
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12 A.AGRACHEV, AND A.SARYCHEV

duce the two nIN x 2nN-matrices:

Y(z1) adXY(zy) --- ad™¥ 71XV (1))
V(z) = : : : : ;
Y(zy) adXY(zy) --- ad®™™ 7 'XY(zy)
X(x1) ad’vX(z) - ad® VY X(z)
W (z) = : : : :
X(zy) ad®’YX(zy) --- ad®™VYX(xy)

(Note that W (Z) lacks the column constituted by adY X (x;) which coincides, up to
a sign, with the second column in V(Z)).

For (X,Y) € R, Z = (x1,...,zn5) € MW) and each z;, i = 1,...N, at
least one of the vectors X (z;), Y (z;) is non null. We can choose local coordinates
&j,i=1,...N; j=1,...nin aneighborhood U = U; x --- x Uy of T = (x1,...,2N)
in M) in such a way that in each U;, i = 1,..., N either X or Y becomes the non
null constant vector field: X = 9/9¢;; or Y = 0/9¢;1. Then for each i = 1,..., N,

. k k
either ad*XY|,. or ad*Y X oY o 2X|
¢ & 4 o0& zi

We call significant those elements of the (Nn x 2Nn)-matrices V(z), W(z) and
of the corresponding (Nn x 4Nn)-matrix (V(z)|W(Z)), which are the components
of 2%Y "X

0 o,
W (Z) consists of significant elements. The elements of these matrices are polynomials
in the components of the multi-jets J?"V X (z), J?"VY (z). Significant elements are
polynomials of degree 1, distinct significant elements correspond to different polyno-
mials, nonsignificant elements correspond to polynomials of degrees > 1. Elements of
different rows of the matrices differ.

If (X,Y) € R and (XV,Y¥) lacks the bracket generating property at some
z = (z1,...,2N), then the rank r of the (Nn x 4Nn)-matrix (V|W)(Z) is incomplete:
r<nN.

The (stratified) manifold of (Nn x 4Nn)-matrices of rank r < nN is (locally) de-
fined by rational relations, which  express elements of  some
(Nn —r) x (4Nn — r) minor via other elements of the matrix.

As long as 4Nn —r > 3Nn + 1, then each row of the minor contains o >
3Nn +1—2Nn > Nn significant elements. The corresponding relations express o
distinct components of 2N-th multi-jet of (X,Y") via other components of the multi-
jet. Hence 2N-multi-jets of the couples (X,Y), for which (X¥,Y¥) lack bracket
generating property, must belong to an algebraic manifold S of codimension ¢ > Nn
in JN(TM xp TM).

Consider the set T of the couples (X,Y) € R C VectM x VectM, for which
JN (X, Y) e M) — JN - (Vect M x VectM) is transversal to S. According to the
multijet transversality theorem (Proposition 7.1) Ty is residual in VectM x VectM in
Whitney C*topology for sufficiently large £. As far as

z; equal respectively to

and of For each j = 1,..., Nn either j-th row of V(Z) or j-th row of

dim M) = Nn < o = codim S

the transversality can take place only if, for each z € M) JN (X, Y)|z ¢ S. Hence
for each couple (X,Y) from the residual subset T, the couples of N-folds (X, Y1)
are bracket generating at each point of M V). ]

8. Proof of Theorem 5.1.
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CONTROL OF ENSEMBLES OF POINTS 13

8.1. Variational formula. We start with nonlinear version of ’variation of con-
stants’ formula, which will be employed in the next subsection.

Let fi(x) be a time-dependent and g(z) a time-independent vector fields on M.
We assume both vector fields to be C*°-smooth and Lipschitz on M. Let e?f) fg frdr
denote the flow generated by the time-dependent vector field f; (see [3, 4] for the
notation), and 9 stays for the flow, generated by the time-independent vector field
g.

LeMMA 8.1 ([4]). Let fr(x),g(x) be C*-smooth in x, f. integrable in 7. Let
U(t) be a Lipschitzian function on [0,T], U(0) =0. The flow

t

P=exb | (fo(@) + g(@)0(r)) dr

0

generated by the differential equation

(8.1) i = fi(x) + g(x)U(t),

can be represented as a composition of flows

(8.2) exp /Ot (fT(as) + g(x)U(T)) dr =exp /Ot (e T)g> frdroeV®M9,

At the right-hand side of (8.2) (e‘U(T)g)* is the differential of the diffeomorphism

e~ Uty — (eU(t)g)i1 , where eV()9 is the evaluation at time-instant U(t) of the flow,
generated by the time-independent vector field g(x).

We omit at this point the questions of completeness of the vector fields involved
into (8.1),(8.2), assuming that the formula (8.2) is valid, whenever the flows, involved
in it, exist on the specified intervals.

For each vector field Z € Vect M the operator ady, acts on the space of vector

fields: adzZ; = [Z, Z1] - the Lie bracket of Z and Z;. The operator exponential eUadZ

is defined formally: eVadz = 5 Y@dz)  go ceo_smooth vector fields Z, 7 the

J=0 J!
expansion is known (see [3],[4]) to provide asymptotic representation for (e=Y(79

for each s > 0 and a compact K C M there exists a compact neighborhood K’ of K
and ¢ > 0 such that

J .
H cony ) Al
j.

i=1 s, K

C(U(T N)
< Moo (M)

(see [3] for the details). We employ the asymptotic formulae for N = 1,2 and small
magnitude of U:

(83 |((e7722), ~ 1) 2| = 0w EDIZi s
B4 |((U), ~1-Umad) 4 = olUEDIZi sz

as |U| — 0.
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14 A.AGRACHEV, AND A.SARYCHEV

We introduce at this point fast-oscillating controls by choosing 1-periodic Lip-
schitz function V' (¢) with V(0) = 0, the scaling parameters f > a > 0 and defining
for e > 0: V(t;a, 8,e) =V (t/£”). We introduce controls

Ug(t) _ dV(tde;ﬁﬂg) — ga—ﬁv (t/EB) ,

which are high-gain and fast-oscillating for small € > 0.
For a more general control

(8.5) us(t) = w(t)e* PV (t/6°)

where w(+) is a Lipschitz function, the primitive of u.(¢) equals
¢

(8.6) Ud(t) = (w(t)V (t/") —/ V (r/e”) w(T)dT) =eU.(t),
0

and U.(t) = O(1) as € — 40 uniformly for ¢ in a compact interval.
Substituting U(t) = U.(t), defined by (8.6), into (8.2) we get

t
(8.7) exp (fT(ac) + g(x)e*Puw(r)V (glﬁ)) dr =
0
t A A
e;f) (e*E‘MU5 (T)g) deT o esaUg (t)g.
O *

Expanding the exponentials at the right-hand side of the equality according to

formula (8.3) we get for the control u.(t), defined by (8.5):

wpé(ﬁﬂw+g@WAﬂﬁh:

(8.8) 6$A(ﬁ@%HXﬁDMOU+O@%%

By classic theorems on continuous dependence of trajectories on the right-hand
side we conclude that the flow exp fot (fr(2) + g(z)uc (7)) dr with u(t), defined by

(8.5), tends to e?p fot fr(x)dr, as € — 0, uniformly in ¢ on compact intervals. There-
fore the effect of the fast-oscillating control (8.5) tends to zero as € — 0 with respect
to any of the seminorms || - ||, x:

=0
r K

exp/O (fr(z) + g(z)uc (1)) dT— exp/0 fr(z)dr

for all » > 0, compact K and uniformly for ¢ € [0, T].

8.2. Lie extension for flows. Coming back to the proof of Theorem 5.1 we first
note that its conclusion can be arrived at by induction, with the step of induction,
represented by the following

LEMMA 8.2. Theorem 5.1 is valid for the controlled system

k
2 = D X7 (@)u(t) + X (z)ult) + Y (2)o(t),

j=1

This manuscript is for review purposes only.
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and its Lie extension
—a(t) =Y X7 (@)uf(t) + X (2)us () + YV (2)o° (t) + [X, Y] (@)w® (¢).

The proof, provided below, shows that one can leave out, without loss of general-
ity, the summed addends Zle XF(x)ug(t), Z?Zl XFk(x)ug(t) at the right-hand side
of the systems. It suffices to prove the result for the 2-input system

(8.9) %Jj(t) = X (z)u(t) + Y (z)v(t),

and its 3-input Lie extension

(8.10) %x(t) = X(z)u®(t) + Y (2)v°(t) + [X, Y](z)w(t).

One can assume, without loss of generality, w®(t) to be smooth, as far as smooth
functions are dense in Li-metric in the space of bounded measurable functions. Hence
by classical results on continuous dependence with respect to right-hand sides, the
flows, generated by measurable controls, can be approximated by flows, generated by
smooth controls.

To construct the controls wu(t), v(t) from u(t), v¢(t), we(t) we take
(8.11) w(t) = ue(t) = ub(t) + eU(t), v(t) = vo(t) = vo(t) + e 1o (1),

where ¢ is the parameter of approximation and the functions U.(t) and 0.(¢) will be
specified in a moment.
Feeding controls (8.11) into system (8.9) we get

(8.12) %x(t) = X(2)u(t) + Y(z) (v°(t) + e '0.(2)) +i(\(/:_c_)/5U5(t).
ft g9

Applying formula (8.2) to the flow, generated by (8.12), we represent it as a compo-
sition
ot
exp / X(x)u(t) + (e_eUf(t)X) Y(z) (v(t) + e "0 (t)) dt o
0 *
(8.13) esU=(0X (@),

We wish the latter flow to approximate (for sufficiently small e > 0) the flow,
generated by (8.10). To achieve this we choose the functions

(8.14) U.(t) = 2sin(t/e*)we(t), b-(t) = sin(t/e?).

Approximating the operator exponential esU=(hadx by formula (8.4) we transform
(8.13) into
t
(8.15) exp [ (X (@)us(6)+Y () (t) + [X, Y](2)U.(t)o (1) +
0
Y (2)e 0. (£)+0(e))dt o (I 4 O(e)),
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16 A.AGRACHEV, AND A.SARYCHEV

where all O(e) are uniform in ¢ € [0, T7.
From (8.14)
U (£)5 () = w' (£) — we(£) cos(2t/2),
and (8.15) takes form

(8.16) exp /0 (X (z)u(t) + Y (2)v°(t) + [X, Y])(z)we(t) + Y (z)e™ " sin(t/e*)—
(X, Y](z)w(t) cos(2t /%) 4+ O(e)) dt o (I + O(e)).
Processing fast oscillating terms Y (z)e =t sin(t/e?), [X, Y]w®(t) cos(2t/e?) accord-

ing to formula (8.7) we bring the flow (8.16) to the form

exp | (X(x)us(r) + Y (2)0° () + [X,Y](@)w’(r) + O(e)) dr o

0
(I +0(e)),

wherefrom one concludes for u.(t), v.(t), defined by formulae (8.11)-(8.14), the con-
vergence of the flows: for each r > 0 and compact K

—

b / (X (2 () + Y (2)0° (7) + [X, Y](2)wt (7)) dr—
0

exp | (X(@ue(r) +Y (@)ve(r) dr

=0(e)

rK
as € — 0.
9. Proof of Theorem 4.3.

PRrROPOSITION 9.1. Under the assumptions of Theorem /.3, for each ¢ > 0 there
exists a finite set B (depending on €) of the multiindices 8 = (B1,...,8n) and an
extended differential equation (5.1) together with an extended control (vg(t))sep, t €
[0,T] such that the flow, generated by (5.1) and the control steers, in time T, the
initial ensemble a(6) to the ensemble x(T;0), for which supycg d (z(T;0),w(h)) < e.

Consider the diffeotopy v:(0) = P:(a(f)), along which Lie bracket C°-approxi-
mating condition holds. Let I' be its image and Y;(z) be the time-dependent vector
field, which generates the diffeotopy. We start with the following technical Lemma.

LEMMA 9.2. Let assumptions of Theorem /4.3 hold. Then there exists A > 0
and compact neighborhood Wr O T, such that for each € > 0 there exists a finite
set of multi-indices B together with continuous functions (vg(t)), S € B such that

Xe(x) = pen vg(t) X P () satisfies:
(9.1) IX @) e < A 1%0(0)) — X300l oo < &

Proof of Lemma 9.2. According to the Lie bracket C°-approximating assumption
along the diffeotopy there exists A > 0 and for each ¢t € [0,7] and each € > 0 a finite
set By of multi-indices and the coefficients c(t), 8 € By, such that

> es®)XP(a) <A

BeB: 1,Wp

(9-2) Yi(ne(0) = Y es(t) X7 ((6)) <e.

peB: co(©)
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CONTROL OF ENSEMBLES OF POINTS 17
As far as Y;(7:(6)) and X?(v,(#)) vary continuously with ¢, the estimate

Yo (3(0)) = Y es(t) X7 (3:(6)) <e
peb: co(e)

is valid for 7 € O, - a neighborhood of t. The family O, (¢ € [0,T]) defines an open

covering of [0,T], from which we choose finite subcovering O; = Oy,, i = 1,...,N.
Putting B; = By,, i = 1,..., N we define ¢;3 = ca(t;), Vi =1,...,N, V3 € B;; put
B=UYN,B.

Choose a smooth partition of unity {p;(t)} subject to the covering {O;}. Put for
each 8 € B, vg(t) = Zf\il wi(t)cip; it is immediate to see that vg(t) are continuous.
For

(9.3) Xi(w) =Y vs()XP ()
BEB

we conclude

VO €O : |[Yi(1(0)) — Xe(:(0))ll =

Zui(t)Yt(%(G)) - Z Z pi()eis X P (1 (9))|| <

i=1 BEB;

S ilt) Ve 8) = 3 eos X (n(6))|| <3 pt) =<

BEB;

The first of the estimates (9.1) is proved similarly.

Coming back to the proof of Proposition 9.1 we consider the evolution of the
ensemble «(f) under the action of the flow generated by the vector field Xy, defined
by (9.3). We estimate
<

2(t:6) - 1(0)] = H [ Ctatri0),060) = Vim0 e

| 1Xeta(r0) = X onO) dr + [ 1% (0) = Yoo )
0 0

By virtue of (9.2) we obtain (whenever x(t;0) € Wr):

l(:6) — 7 (0)] < A / |2(7:6) — 72(8)]| dr + <t

and by Gronwall lemma
(e —1)
T

We should take e sufficiently small, so that (9.4) guarantees that z(t;0) does not
leave the neighborhood Wr, defined by Lemma 9.2. Then

Ga)
A

(9-4) lz(t;0) — ()] < e

[2(T';0) —w(0)|| < e

and the claim of Proposition 9.1 follows.
Theorem 4.3 follows readily from Propositions 9.1 and Corollary 5.2.
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10. Conclusions. Lie algebraic/geometric approach is well adapted to studying
ensemble controllability and the controllability criteria obtained are formulated in
Lie rank, or Lie span, form. Up to our judgement the study is not reducible to an
application of abstract versions of Rashevsky-Chow theorem on a Banach manifold.
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and matching.
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