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Coordinatore Prof. Graziano Gentili

Valuations on

Lipschitz functions

Settore Scientifico Disciplinare MAT/05

Dottorando

Daniele Pagnini
Tutore

Prof. Andrea Colesanti

Coordinatore

Prof. Graziano Gentili

Anni 2016/2019





Contents

1 Introduction and main results 5
1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Lipschitz functions and differentiability . . . . . . . . . . . . . . . . . . . 11
2.1.3 Topology on Lip(Sn−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Valuations on Lip(Sn−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.5 The space Kn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.6 Support functions and piecewise linear maps . . . . . . . . . . . . . . . . 14

2.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 McMullen’s decomposition and Hadwiger’s characterization theorem . . . 15
2.2.2 Alesker’s characterization theorem . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 The Radon-Nikodym theorem and other results from classical analysis . . 17
2.2.4 Extensions of functions and their gradients . . . . . . . . . . . . . . . . . 19
2.2.5 Valuations on H (Sn−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Approximation 25
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Chapter 1

Introduction and main results

A valuation on a family F of sets is a function ϕ : F −→ R satisfying

ϕ(A ∪B) + ϕ(A ∩B) = ϕ(A) + ϕ(B), (1.0.1)

for every A,B ∈ F such that A ∪ B,A ∩ B ∈ F . This generalizes the concept of measure:
every measure is a valuation, but the converse is far from being true. While measures must be
non-negative and countably additive, valuations are allowed to change sign and are only finitely
additive in general. Moreover, measures are to be defined on σ-algebras, whereas valuations can
have any family of sets as their domain. For example, the perimeter function defined on the
family Kn of convex bodies of Rn (i.e., compact and convex subsets of Rn which are non-empty)
is a valuation, but not a measure.

The theory of valuations on Kn is particularly important: it is connected with the solution
of Hilbert’s third problem and it contains several elegant results, such as the ones by Alesker,
Hadwiger and McMullen recalled in Section 2.2. The state-of-the-art book [34] by Schneider
gives a comprehensive report on the present state of this theory (see in particular Chapter 6).

The notion of valuation can also be extended to function spaces: for a given set X of real-
valued functions, a valuation on X is a functional V : X −→ R such that

V (f ∨ g) + V (f ∧ g) = V (f) + V (g), (1.0.2)

for every f, g ∈ X with f ∨ g, f ∧ g ∈ X. The operators ∨ and ∧ are the pointwise maximum
and minimum, respectively. This is the natural counterpart of (1.0.1): one way to see it is by
noting that, if χA denotes the characteristic function of the set A, we have

χA1∪A2 = χA1 ∨ χA2 ,

χA1∩A2
= χA1

∧ χA2
,

for all sets A1, A2. Definition (1.0.2) can also be motivated by the fact that, for every couple of
functions f1, f2 : D ⊆ Rn −→ R,

epi(f1 ∨ f2) = epi(f1) ∩ epi(f2),

epi(f1 ∧ f2) = epi(f1) ∪ epi(f2),

where epi(f) denotes the epigraph of f , that is, the set of points lying on or above the graph
of f .
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When studying valuations on a function space X, often times mathematicians look for charac-
terization results, i.e., they seek necessary and sufficient conditions for a functional V : X −→ R
to be a valuation satisfying certain properties. Drawing inspiration from the renowned Hadwiger
theorem (Theorem 2.2.2 in the thesis), these properties usually include continuity and some kind
of invariance.

The theory of valuations on function spaces is quite recent. A branch of it focusses on spaces
of functions related to convexity, such as convex functions (see [3, 7, 10, 11, 12]), log-concave
functions (see [28, 29]) and quasi-concave functions (see [8, 9]), providing, among other results,
several characterization theorems. In the papers [17, 18], Klain studied valuations defined on
the family S n of star-shaped sets having radial functions of class Ln(Sn−1), and he gave a
characterization of all the continuous and rotation invariant ones. Recall that a star-shaped set
(with respect to the origin) is a set S containing the origin such that, for every x ∈ S, the
segment joining x and the origin lies in S. The radial function associated to S is the map
ρS : Sn−1 −→ [0,∞) defined by

ρS(x) = sup {λ ≥ 0 : λx ∈ S} .

Note that for every star-shaped sets S1, S2 we have

ρS1∪S2
= ρS1

∨ ρS2
,

ρS1∩S2 = ρS1 ∧ ρS2 .
(1.0.3)

The family S n can be identified with Ln+(Sn−1) (non-negative functions in Ln(Sn−1)), and thanks
to (1.0.3), to every valuation on S n there corresponds a valuation on Ln+(Sn−1). Therefore,
Klain’s characterization can also be seen as a characterization of continuous and rotation invariant
valuations on Ln+(Sn−1). This result was extended to Lp spaces, for 1 ≤ p < ∞, in [38], and to
Orlicz spaces in [19] (see also [6] for the case p = ∞). These results were further generalized
in [37], where a characterization for valuations on Banach lattices is provided. Valuations on
other function spaces have been considered, and more characterization results can be found in
the literature (see for instance [21, 24] for Sobolev spaces).

The papers [35, 36, 39] concern valuations defined on the family of star-shaped sets whose
radial function is continuous, and they provide a characterization for continuous and rotation
invariant valuations defined on such a family. By means of (1.0.3), this yields the following result
for valuations defined on the space C(Sn−1) of continuous functions on the unit sphere.

Theorem 1.0.1 (Tradacete, Villanueva). A functional V : C(Sn−1) −→ R is a continuous (with
respect to uniform convergence) and rotation invariant valuation if and only if there exists a
continuous function K : R −→ R such that

V (f) =

∫
Sn−1

K(f(x))dHn−1(x),

for every f ∈ C(Sn−1), where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure.

This is the typical form of a characterization theorem in the context of the theory of valuations
on function spaces, in the sense that valuations are usually represented by an integral of a certain
kernel K applied to the function f at which we are evaluating V .

A natural continuation of the previous results, and of Theorem 1.0.1 in particular, would
be a characterization for valuations defined on C1(Sn−1) or on the space Lip(Sn−1) of Lipschitz
continuous functions on the sphere. We chose to focus on Lip(Sn−1), which, being closed with
respect to the operations of pointwise maximum and minimum, makes things easier. The original
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results presented in the thesis were obtained in collaboration with my supervisor Prof. Andrea
Colesanti from the Università degli Studi di Firenze, Prof. Pedro Tradacete from the Instituto
de Ciencias Matemáticas - CSIC de Madrid and Prof. Ignacio Villanueva from the Universidad
Complutense de Madrid. In this next section, we are going to state our main results and briefly
discuss them.

1.1 Main results

The primary novelty of the space Lip(Sn−1) is that, by Rademacher’s theorem, its elements
are a.e. differentiable with respect to the Hausdorff measure Hn−1, hence we would expect for
the gradient to appear in our representation formula. This leads us to the following conjecture.

Conjecture 1.1.1. Let V : Lip(Sn−1) −→ R. Then V is a continuous (with respect to an
appropriate topology) and rotation invariant valuation if and only if there exists a kernel K :
R× R+ −→ R with a suitable property (P ) to be determined such that

V (f) =

∫
Sn−1

K(f(x), ‖∇sf(x)‖)dHn−1(x),

for f ∈ Lip(Sn−1).

Here, ∇sf denotes the spherical gradient of f , properly defined in Subsection 2.1.2. We were
not able to prove this conjecture. However, we will provide a few characterization results for
valuations on Lipschitz functions. The first theorem we present concerns continuous, rotation
invariant and dot product invariant valuations on Lip(Sn−1) (for the topology we are using, see
Subsection 2.1.3, and for the definition of the invariance properties of a valuation see Subsection
2.1.4).

Theorem 1.1.2. A functional V : Lip(Sn−1) −→ R is a continuous, rotation invariant and dot
product invariant valuation if and only if there exist constants c0, c1, c2 ∈ R such that

V (f) = c0 + c1

∫
Sn−1

f(x)dHn−1(x) + c2

∫
Sn−1

[
(n− 1)f(x)2 − ‖∇sf(x)‖2

]
dHn−1(x), (1.1.1)

for every f ∈ Lip(Sn−1).

The hypothesis of dot product invariance is quite strong, and it allows to give the very explicit
representation formula (1.1.1).

The following result only holds in the bidimensional case, but it involves the more general
polynomial valuations instead of the dot product invariant ones (see again Subsection 2.1.4 for
the definition of polynomiality).

Theorem 1.1.3. A functional V : Lip(S1) −→ R is a continuous, rotation invariant and poly-
nomial valuation if and only if there exists a polynomial p in two variables such that

V (f) =

∫
S1
p(f(x), ‖∇sf(x)‖2)dH1(x), (1.1.2)

for every f ∈ Lip(S1).

Theorems 1.1.2 and 1.1.3 will be proved by means of Hadwiger’s and Alesker’s characterization
results respectively (whose statements can be found in subsections 2.2.1 and 2.2.2): the idea is
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that of using the valuation V to define a new valuation ϕ on the space of convex bodies, and then
apply to ϕ one of the aforementioned characterization results to obtain a representation formula
on the space of support functions for V . Thanks to the approximation tools developed in Chapter
3, we will be able to extend such a formula to all Lipschitz functions. As an intermediate step
in the proof of Theorem 1.1.2, we will also get a homogeneous decomposition for continuous and
dot product invariant valuations (see Theorem 4.1.1 and its improved version Theorem 4.5.1).

When removing the hypotheses of dot product invariance and polynomiality, things become
much more complicated, because we do not have a previous characterization result to use in this
case. We were not able to achieve a proper characterization theorem for valuations which are
only continuous and rotation invariant, but the following result gives nonetheless a representation
formula for such valuations in the bidimensional case.

Theorem 1.1.4. Let V : Lip(S1) −→ R be a continuous and rotation invariant valuation. Then
there exists K : R× R+ −→ R such that K(·, γ) is a Borel function for every γ ∈ R+ and

V (g) =

∫ 2π

0

K(g(t), |g′(t)|)dH1(t), (1.1.3)

for all g ∈ L (S1).
In particular, for every f ∈ Lip(S1) we have

V (f) = lim
i→∞

∫ 2π

0

K(fi(t), |f ′i(t)|)dH1(t), (1.1.4)

where {fi} ⊆ L (S1) is a sequence such that fi −→
τ
f as i→∞.

Note that in this statement, as in the next one, we have identified functions in Lip(S1) with
2π-periodic functions on R. The symbol L (S1) denotes the set of piecewise linear functions on
S1.

To prove Theorem 1.1.4, we will use the valuation V to build measures νg, for g ∈ L (S1),
which are absolutely continuous with respect to H1. The Radon-Nikodym theorem will then give
us Radon-Nikodym derivatives Dg = Dg(t) depending only on g(t) and |g′(t)|. This will even-
tually lead to (1.1.3). The representation formula on the whole space Lip(S1) will immediately
follow, since every f ∈ Lip(Sn−1) can be τ -approximated by a sequence in L (Sn−1), as will be
proved in Chapter 3 (see Proposition 3.0.2).

As a corollary of Theorem 1.1.4, we can actually obtain a characterization result on Lip(S1)
under the additional assumption of uniform continuity (with respect to τ).

Theorem 1.1.5. Let V : Lip(S1) −→ R. Then V is a uniformly continuous and rotation
invariant valuation if and only if there exists a uniformly continuous function K : R×R+ −→ R
such that

V (f) =

∫ 2π

0

K(f(t), |f ′(t)|)dH1(t), (1.1.5)

for every f ∈ Lip(S1).

At the end of the last chapter we will show that Conjecture 1.1.1 is actually false for continuous
or a.e. continuous kernels.



Chapter 2

Preliminaries

In this chapter we will introduce some basic concepts and notations, recall some known results
which will be used throughout the thesis and make a few preliminary observations.

2.1 Notations and definitions

For n ∈ N, n ≥ 2, we denote by Sn−1 the unit (n− 1)-sphere (considered with the Euclidean
topology inherited by Rn), that is,

Sn−1 = {x ∈ Rn : ‖x‖ = 1} ,

where ‖·‖ represents the Euclidean norm. We will use the (n−1)-dimensional Hausdorff measure
Hn−1 on the sphere, normalized so thatHn−1(Sn−1) = 1. For the definition of Hausdorff measure,
see for instance [13, Section 2.1].

Even though we will mainly be interested in what happens on Sn−1, it will often be useful
to reason on the whole space Rn, where we will use the standard basis {e1, . . . , en} and the
n-dimensional Lebesgue measure Ln. The n-dimensional Hausdorff measure Hn on Rn is just
a multiple of Ln (see [13, Section 2.2]). In particular, Hn(A) = 0 if and only if Ln(A) = 0,
for every A. If something happens up to a set of zero measure (whether Hausdorff or Lebesgue
measure), we will say that it happens a.e. or for a.e. point (short for “almost everywhere” and
“almost every”, respectively).

For x ∈ Rn and r > 0, the symbol Br(x) stands for the n-ball of radius r centered at x. The
Hausdorff measure Hn(B1(0)) of the unit n-ball will be denoted by ωn.

For a real-valued function f : D −→ R, we define

f+(x) = max{f(x), 0},

f−(x) = min{f(x), 0}.

Note that f+,−f− : D −→ R+, where R+ : = [0,∞), and we can always write f = f+ + f−.
The support supp(f) of a function f is the closure of the set of points x at which f(x) 6= 0.

If supp(f) ⊆ A, we will write f ≺ A for short.

2.1.1 Measures

An algebra Σ over a set X is a collection of subsets of X such that

9
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• X ∈ Σ;

• Ac ∈ Σ for every A ∈ Σ, where Ac denotes the complementary of A, i.e., Ac = X \A;

• A ∪B ∈ Σ for every A,B ∈ Σ.

If the third property is replaced by

•
⋃
i∈N

Ai ∈ Σ for every sequence {Ai} ⊆ Σ,

then Σ is called a σ-algebra.
An important σ-algebra which we are going to consider in the thesis is the Borel σ-algebra of

Sn−1: the Borel σ-algebra over a set X is the smallest σ-algebra containing the open subsets of
X. Its elements are called Borel sets. If the spaces X and Y are equipped with Borel σ-algebras
Σ1 and Σ2 respectively, a function f : X −→ Y is said to be a Borel function if for every A ∈ Σ2

its pre-image f−1(A) is in Σ1.
We recall that a measure µ on a σ-algebra Σ is a non-negative set function µ : Σ −→ [0,∞]

such that µ(∅) = 0 and which is countably additive, i.e.,

µ

(⋃
i∈N

Ai

)
=
∑
i∈N

µ(Ai) (2.1.1)

for every family {Ai} ⊆ Σ of pairwise disjoint sets. If we do not ask for non-negativity, then µ
is said to be a signed measure.

The concept of measure can be generalized to include set functions defined on algebras: if A is
just an algebra, a pre-measure on A is a function ν : A −→ [0,∞] such that ν(∅) = 0 and (2.1.1)
holds for every sequence {Ai} ⊆ Σ of pairwise disjoint sets with

⋃
i∈NAi ∈ Σ. Charathéodory’s

extension theorem states that a pre-measure can always be extended to a measure (it actually
says something more general, but for our purposes the following version will be sufficient).

Theorem 2.1.1 (Charathéodory, [5, Theorem 3.5.2]). Let ν be a bounded pre-measure on the
algebra A. Then ν can be extended to a measure on σ(A), the smallest σ-algebra containing A.

Measures can also be obtained from outer measures. Let X be a set and let P(X) be the
power set of X, i.e., the collection of all subsets of X. An outer measure on X is a non-negative
set function µ∗ : P(X) −→ [0,∞] such that

• µ∗(∅) = 0;

• µ∗ is monotone increasing, that is, µ∗(A) ≤ µ∗(B) for every A,B ∈ X such that A ⊆ B;

• µ∗ is countably subadditive, i.e.,

µ∗

(⋃
i∈N

Ai

)
≤
∑
i∈N

µ∗(Ai),

for every sequence {Ai} ⊆ P(X).

Let µ∗ be an outer measure on X. A set A ⊆ X is called µ∗-measurable if

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac),

for every B ⊆ X, where Ac denotes the complementary of A in X.
An outer measure can be used to construct a measure, as stated in the following well-known

result.

Theorem 2.1.2 (Charathéodory). Let µ∗ be an outer measure on X. The set of all µ∗-
measurable sets is a σ-algebra, and the restriction of µ∗ to this σ-algebra is a measure.
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2.1.2 Lipschitz functions and differentiability

Let Lip(Sn−1) be the space of Lipschitz continuous maps defined on Sn−1, i.e., the set of
functions f : Sn−1 −→ R for which there exists a constant L ≥ 0 such that

|f(x)− f(y)| ≤ L‖x− y‖,

for every x, y ∈ Sn−1. The smallest constant for which this inequality holds is called the Lipschitz
constant associated with f and is denoted by L(f):

L(f) = sup

{
|f(x)− f(y)|
‖x− y‖

: x, y ∈ Sn−1, x 6= y

}
.

Note that Lipschitz functions are uniformly continuous, as it immediately follows from their
definition.

For a function f : Sn−1 −→ R, we can define its spherical gradient ∇sf . In order to do so,
we first introduce the concept of differentiability on Sn−1.

The sphere can be locally parametrized, in the sense that for every x ∈ Sn−1 there are a
neighbourhood U of x in Sn−1, an open set Ω ⊆ Rn−1 and a diffeomorphism φ : Ω −→ U , namely
a differentiable and invertible function with inverse function still differentiable. We call φ a local
parametrization.

We will say that a function f : Sn−1 −→ R is differentiable at a point x ∈ Sn−1 if for
every local parametrization φ : Ω −→ U of a neighbourhood U of x we have that the function
f ◦ φ : Ω −→ R is differentiable at the point φ−1(x).

Now, if x ∈ Sn−1 is a differentiability point for f : Sn−1 −→ R, we can consider the differential
of f at x, which is a linear map dfx : Tx(Sn−1) −→ R, where Tx(Sn−1) is the tangent space to
Sn−1 at x. By linearity, dfx can be represented by a vector ∇sf(x) ∈ Tx(Sn−1), that is, for every
v ∈ Tx(Sn−1)

〈∇sf(x), v〉 = dfx(v) =
d

dt

∣∣∣∣∣
t=0

f(γx(t)),

where γx : [−1, 1] −→ Sn−1 is an arbitrary C∞ curve such that γx(0) = x, γ′x(0) = v, and 〈·, ·〉
denotes the Euclidean dot product. We call ∇sf(x) the spherical gradient of f at x.

Rademacher’s theorem (see [13, Subsection 3.1.2]) states that every locally Lipschitz function
on Rn is a.e. differentiable. As a corollary (see [31, Corollary 2.4.2]), we have that every
f ∈ Lip(Sn−1) is a.e. differentiable on Sn−1, i.e.,

Hn−1
({
x ∈ Sn−1 : ∇sf(x) exists

})
= 1.

The spherical gradient of a function f ∈ Lip(Sn−1), where it is defined, is bounded by the
Lipschitz constant, that is,

‖∇sf(x)‖ ≤ L(f) (2.1.2)

for a.e. x ∈ Sn−1. Indeed, fix a point of differentiability x ∈ Sn−1, and for every direction
v ∈ Tx(Sn−1) consider a C∞ curve γx : [−1, 1] −→ Sn−1 such that γx(0) = x, γ′x(0) = v. We can
always use an arc-length parametrization of γx, that is, a parametrization with respect to which
the equality ‖γ′x(t)‖ = 1 holds for every t ∈ [−1, 1]. For every t1, t2 ∈ [−1, 1], we have∣∣∣∣f(γx(t1))− f(γx(t2))

t1 − t2

∣∣∣∣ =
|f(γx(t1))− f(γx(t2))|
‖γx(t1)− γx(t2)‖

· ‖γx(t1)− γx(t2)‖
|t1 − t2|

≤ L(f), (2.1.3)
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by Lipschitz cointinuity and the fact that (if for instance t1 ≤ t2)

‖γx(t1)− γx(t2)‖ =

∥∥∥∥∫ t2

t1

γ′x(t)dt

∥∥∥∥ ≤ ∫ t2

t1

‖γ′x(t)‖dt = t2 − t1 ≤ |t1 − t2|.

Now, if γx : [−1, 1] −→ Sn−1 is a C∞ curve such that γx(0) = x, γ′x(0) =
∇sf(x)

‖∇sf(x)‖
, from (2.1.3)

we get

‖∇sf(x)‖ =

〈
∇sf(x),

∇sf(x)

‖∇sf(x)‖

〉
=

d

dt

∣∣∣∣∣
t=0

f(γx(t)) = lim
h→0

f(γx(h))− f(γx(0))

h
≤ L(f).

2.1.3 Topology on Lip(Sn−1)

The space Lip(Sn−1) has a natural topology induced by the so-called Lipschitz norm, defined
by

‖f‖Lip = max{‖f‖∞, L(f)}, f ∈ Lip(Sn−1), (2.1.4)

where, ‖f‖∞ : = max
x∈Sn−1

|f(x)|. Such a topology, however, would not work in our case: indeed,

our approach is based upon a density result, namely Proposition 3.0.2, which is not true in
the topology induced by the aforementioned norm, since the space L (Sn−1) of piecewise linear
functions is separable with respect to ‖·‖Lip and Lip(Sn−1) is not.

Therefore, we are going to consider another topology on Lip(Sn−1). We need a few definitions
first. A subset A of a topological space X is sequentially open if for every sequence {xi} ⊆ X
converging to x ∈ A there exists I ∈ N such that xi ∈ A, for all i > I. Open sets are sequentially
open, but the converse is not true in general. A sequential space is a topological space whose
open sets are exactly the sequentially open ones, i.e., a sequential space is the most general
topological space in which convergent sequences are enough to determine the topology.

Let us consider Lip(Sn−1) as a sequential space with the topology τ induced by the following
convergence: we say that a sequence {fi} ⊆ Lip(Sn−1) converges to f ∈ Lip(Sn−1) with respect
to τ , in symbols fi −→

τ
f , as i→∞, if

• fi → f uniformly on Sn−1, that is, ‖fi − f‖∞ → 0;

• ∇sfi(x)→ ∇sf(x) for a.e. x ∈ Sn−1;

• there exists a suitable constant C ≥ 0 such that ‖∇sfi(x)‖ ≤ C, for every i ∈ N and a.e.
x ∈ Sn−1.

With this topology, we will be able to build continuous and rotation invariant valuations on
Lip(Sn−1) via a quite simple formula (see Lemma 4.3.1). Note that this topology is weaker than
the one induced by ‖ · ‖Lip, in the sense that if ‖fi − f‖Lip → 0, then fi −→

τ
f .

2.1.4 Valuations on Lip(Sn−1)

Let X be a family of real-valued functions. A functional V : X −→ R is said to be a valuation
if

V (f ∨ g) + V (f ∧ g) = V (f) + V (g), (2.1.5)

for every f, g ∈ X such that f ∨ g, f ∧ g ∈ X, where ∨ and ∧ are the pointwise maximum
and pointwise minimum respectively. Since the space Lip(Sn−1) is closed with respect to these
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operations, a valuation on Lip(Sn−1) is a functional V : Lip(Sn−1) −→ R such that (2.1.5) holds
for every f, g ∈ Lip(Sn−1).

Every valuation on a lattice of real-valued functions, and in particular every valuation on
Lip(Sn−1), satisfies the inclusion-exclusion principle, which can be proved by induction.

Proposition 2.1.3 (Inclusion-exclusion principle). Let V : Lip(Sn−1) −→ R be a valuation.
Then

V

 N∨
j=1

fj

 =
∑

1≤j≤N

V (fj)−
∑

1≤j1<j2≤N

V (fj1 ∧ fj2) +

+
∑

1≤j1<j2<j3≤N

V (fj1 ∧ fj2 ∧ fj3)− . . .+ (−1)N−1V

 N∧
j=1

fj

 ,

for every f1, . . . , fN ∈ Lip(Sn−1). The same holds exchanging the roles of ∨ and ∧.

We will say that a valuation V : Lip(Sn−1) −→ R is continuous if it is continuous with respect
to the topology τ defined earlier, unless otherwise stated. Also, V : Lip(Sn−1) −→ R will be
called uniformly continuous if for every ε > 0 there exists a neighbourhood U ⊆ Lip(Sn−1) of
the null function O (with respect to τ) such that

f1 − f2 ∈ U ⇒ |V (f1)− V (f2)| < ε.

Besides continuity, we will be interested in other properties, namely the rotational invariance,
dot product invariance, polynomiality and homogeneity. These concepts are all defined below.

A valuation V : Lip(Sn−1) −→ R is rotation invariant if for every f ∈ Lip(Sn−1) and σ ∈ O(n)
we have

V (f ◦ σ) = V (f),

where O(n) is the orthogonal group of Rn, i.e., the set of isometries of Rn fixing the origin.
Moreover, V is called dot product invariant if, for every f ∈ Lip(Sn−1) and x ∈ Rn,

V (f + 〈·, x〉) = V (f),

where 〈·, ·〉, again, denotes the standard scalar product in Rn. This is to say that if g(y) =
f(y) + 〈y, x〉, y ∈ Sn−1, then V (g) = V (f). In other words, V is dot product invariant if it is
invariant under the addition of linear functions restricted to Sn−1.

A valuation V : Lip(Sn−1) −→ R is called polynomial if for every f ∈ Lip(Sn−1) we have that

V (f + 〈·, x〉) = pf (x)

is a polynomial in x ∈ Rn (depending on f). Recall that a polynomial on Rn is a function
p : Rn −→ R such that

p(x) =
∑̀
i=0

∑
j1,...,jn∈{0,...,`}:
j1+...+jn=i

aj1...jnx
j1
1 . . . xjnn ,

for suitable coefficients aj1...jn ∈ R. Note that every dot product invariant valuation is polynomial
with pf ≡ V (f).

Finally, for a natural number 0 ≤ i ≤ n, we say that V is i-homogeneous if

V (λf) = λiV (f),

for every λ > 0 and f ∈ Lip(Sn−1).
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2.1.5 The space Kn

We will also work with valuations defined on the space Kn of convex bodies of Rn, namely
compact and convex subsets of Rn which are non-empty. We recall some definitions in this
context. Our reference book for this area is [34].

The topology on Kn is induced by the Hausdorff metric, defined by

dH(K,L) = max

{
sup
x∈K

inf
y∈L
‖x− y‖, sup

y∈L
inf
x∈K
‖x− y‖

}
,

for every K,L ∈ Kn. The set

C2
+ =

{
K ∈ Kn : ∂K ∈ C2 and has strictly positive Gaussian curvature at every point

}
is dense in Kn with respect to this topology, as is the set of strictly convex bodies, i.e., convex
bodies whose boundary does not contain any segment (see [34, Theorem 2.7.1]).

A valuation on Kn is a function ϕ : Kn −→ R such that

ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ(K) + ϕ(L),

for every K,L ∈ Kn satisfying K ∪ L ∈ Kn. Such a ϕ is rotation invariant if

ϕ(σ(K)) = ϕ(K),

for every K ∈ Kn and σ ∈ O(n). It is called translation invariant if

ϕ(K + x) = ϕ(K),

for every K ∈ Kn and x ∈ Rn. The valuation ϕ is said to be polynomial if for every K ∈ Kn we
have that

ϕ(K + x) = pK(x)

is a polynomial in x ∈ Rn (depending on K). For a natural number 0 ≤ i ≤ n, ϕ is i-homogeneous
if

ϕ(λK) = λiϕ(K),

for every λ > 0 and K ∈ Kn.

2.1.6 Support functions and piecewise linear maps

Recall the definition of support function: for every K ∈ Kn, its support function is hK :
Rn −→ R defined by

hK(x) = max
y∈K
〈x, y〉, x ∈ Rn.

Support functions are convex and 1-homogeneous, that is, hK(λx) = λhK(x) for every λ > 0
and x ∈ Rn. Vice versa, any 1-homogeneous convex function on Rn is the support function of
some K ∈ Kn. Moreover, for every α, β ≥ 0 and K,L ∈ Kn we have

hαK+βL = αhK + βhL (2.1.6)

and
‖hK − hL‖∞ = dH(K,L). (2.1.7)

All these results can be found in [34, sections 1.7, 1.8].



15

The notion of piecewise linear function will also be useful. A continuous function f : Rn −→ R
is said to be piecewise linear if there exist closed convex cones C1, . . . , Cm with vertex at the
origin and pairwise disjoint interiors satisfying

m⋃
i=1

Ci = Rn,

and linear functions Li : Rn −→ R, i = 1, . . . ,m, such that f = Li on Ci, for i = 1, . . . ,m.

We denote by H (Sn−1) and L (Sn−1) the sets of the restrictions to Sn−1 of support functions
and piecewise linear functions respectively. When considering these same functions defined on
the whole space Rn we will use the symbols H (Rn) and L (Rn) instead. Note that, since
support functions are convex, they are locally Lipschitz continuous (see [34, Theorem 1.5.3]),
hence H (Sn−1) ⊆ Lip(Sn−1). We also have the inclusion L (Sn−1) ⊆ Lip(Sn−1).

We introduce one last notation, which will come in handy in the future, denoting by

Ĥ (Sn−1) =

{
m∧
i=1

hKi : m ∈ N, hKi ∈H (Sn−1) for i = 1, . . . ,m

}

the space of the minima of finitely many support functions.

2.2 Preliminary results

As we have already anticipated, to prove theorems 1.1.2 and 1.1.3 we are going to switch
from the valuation V : Lip(Sn−1) −→ R to a new valuation ϕ : Kn −→ R, to which some known
results for valuations on convex bodies can be applied. We are now going to recall such results.

2.2.1 McMullen’s decomposition and Hadwiger’s characterization the-

orem

In Section 4.1 we will prove a McMullen-type decomposition result for continuous and dot
product invariant valuations on Lip(Sn−1) (see Proposition 4.1.1); we hereby recall the original
McMullen decomposition theorem for valuations defined on Kn, which will be used in the proof
of our result in Section 4.1.

Theorem 2.2.1 (McMullen, [34, Theorem 6.3.5]). Let ϕ : Kn −→ R be a translation invariant
valuation which is continuous with respect to the Hausdorff metric. Then there exist continuous
and translation invariant valuations ϕ0, . . . , ϕn : Kn → R such that ϕi is i-homogeneous, for
i = 0, . . . , n, and

ϕ(λK) =

n∑
i=0

λiϕi(K), (2.2.1)

for every K ∈ Kn and λ > 0.

The famous Hadwiger characterization theorem for continuous and rigid motion invariant
valuations on convex bodies, recalled below, will be of crucial importance in the proof of Theorem
1.1.2.
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Theorem 2.2.2 (Hadwiger, [34, Theorem 6.4.14]). A map ϕ : Kn −→ R is a rotation and
translation invariant valuation which is continuous with respect to the Hausdorff metric if and
only if there exist constants c0, . . . , cn ∈ R such that

ϕ(K) =

n∑
i=0

ciVi(K),

for every K ∈ Kn, where Vi denotes the ith intrinsic volume.

For the definition of the intrinsic volumes, see [34, Chapter 4]. We recall here that for every
i = 0, . . . , n, the intrinsic volume Vi : Kn −→ R+ is a continuous, increasing, i-homogeneous,
rotation and translation invariant valuation. Whatever the dimension n is, we have that, for
every K ∈ Kn,

V0(K) = 1 (2.2.2)

and Vn = CnHn, for some constant Cn > 0 (see [33, page 210]). There are also integral
representations for V1 and V2: formulas (4.2.26) and (5.3.12) from [33] imply that

V1(K) =
1

ωn−1

∫
Sn−1

hKdHn−1, (2.2.3)

for every K ∈ Kn, and, if K ∈ C2
+, formulas (4.2.26), (5.3.11) and (2.5.23) from [33] give

V2(K) =
1

2ωn−2

∫
Sn−1

hK
[
(n− 1)hK + ∆shK

]
dHn−1, (2.2.4)

∆shK being the spherical Laplacian of hK , that is, the trace of the (n− 1)× (n− 1) matrix of
the second covariant derivatives of hK with respect to a local orthonormal frame on the sphere.
Such formulas will be extremely useful in the proof of Theorem 1.1.2.

Hadwiger’s volume theorem on n-homogeneous valuations will also make an appearance in
the proof of Theorem 4.5.1.

Theorem 2.2.3 (Hadwiger, [34, Theorem 6.4.8]). Let ϕ : Kn −→ R be a continuous and
translation invariant valuation which is homogeneous of degree n. Then there exists c ∈ R such
that ϕ = cVn.

2.2.2 Alesker’s characterization theorem

Theorem 1.1.3 follows from a characterization of polynomial valuations on Kn presented by
Alesker. We are going to state Alesker’s result separately for n = 2 and n ≥ 3.

Theorem 2.2.4 (Alesker, [1]). Let ϕ : K2 −→ R. Then ϕ is a polynomial and rotation invariant
valuation which is continuous with respect to the Hausdorff metric if and only if there exist
polynomials p0, p1 in two variables such that

ϕ(K) =

1∑
i=0

∫
R2×S1

pi(‖s‖2, 〈s, x〉)dΘi(K; s, x), (2.2.5)

for every K ∈ K2, where Θi(K; ·) is the ith support measure of K.

For the definition of support measures, see [34, Chapter 4]. The situation in dimension n ≥ 3
is a bit different; even though we will only apply Theorem 2.2.4 in the thesis, we state Alesker’s
result in higher dimension for completeness.
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Theorem 2.2.5 (Alesker, [1]). Let n ≥ 3 and let ϕ : Kn −→ R be a polynomial and SO(n)-
invariant valuation which is continuous with respect to the Hausdorff metric. Then there exist
polynomials p0, . . . , pn−1 in two variables such that

ϕ(K) =

n−1∑
i=0

∫
Rn×Sn−1

pi(‖s‖2, 〈s, x〉)dΘi(K; s, x), (2.2.6)

for every K ∈ Kn. Moreover, every function ϕ of the form (2.2.6) is a polynomial and O(n)-
invariant valuation which is continuous with respect to the Hausdorff metric.

Here Θi(K; ·) still denotes the ith support measure of K and SO(n) is the subgroup of O(n)
consisting of proper rotations.

The next lemma, which is a variant of Lemma 4.2.2 from [34], is a very useful tool to deal
with the integrals appearing in (2.2.5).

Lemma 2.2.6. Let K ∈ Kn be a strictly convex body and ψ : Rn × Sn−1 −→ R be a continuous
and Lebesgue measurable function. Then∫

Rn×Sn−1

ψ(s, x)dΘi(K; s, x) =

∫
Sn−1

ψ(sK(x), x)dSi(K;x),

for every i = 0, . . . , n, where sK(x) is the unique boundary point of K at which x is attained as
outer normal vector and Si is the ith area measure.

For the definition of area measures, see [34, Chapter 4]. As in the case of intrinsic volumes,
there are representation formulas for some of these area measures. We will be interested in the
following two: there exists a constant C > 0 such that, for every Borel set A ⊆ Sn−1,

S0(K;A) = CHn−1(A), (2.2.7)

and

S1(K;A) =
C

n− 1

∫
A

∆hK(x)dHn−1(x), (2.2.8)

where ∆ denotes the Euclidean Laplacian. Formula (2.2.7) is (4.2.22) from [33] and formula
(2.2.8) follows from (4.2.20), (2.5.23) and the formula right above the latter from the same book.
The presence of the constant C is due to our normalization Hn−1(Sn−1) = 1.

2.2.3 The Radon-Nikodym theorem and other results from classical

analysis

As we have said before, to prove Theorem 1.1.4 (and consequently Theorem 1.1.5), we are
going to need the (signed version of the) Radon-Nikodym theorem, hereby recalled.

Theorem 2.2.7 (Radon-Nikodym, [4, Theorem 2.2.1]). Let (X,Σ, µ) be a measure space (i.e.,
X is a set, Σ a σ-algebra on X and µ a measure on Σ) with µ(X) < ∞. Let ν be a signed
measure on Σ such that ν � µ. Then there exists a function dν

dµ , called the Radon-Nikodym
derivative of ν with respect to µ, which is integrable with respect to µ on X and such that

ν(A) =

∫
A

dν

dµ
(x)dµ(x),

for every A ∈ Σ. Moreover, the Radon-Nikodym derivative is unique up to sets of null measure.
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Here, “ν � µ” means that ν is absolutely continuous with respect to µ, that is, ν(A) = 0
for every A ∈ Σ such that µ(A) = 0. If X = Rn, Σ is the Borel σ-algebra and µ = Hn, this is
equivalent to saying that for every ε > 0 there exists δ > 0 such that if A ∈ Σ satisfiesHn(A) < δ,
then ν(A) < ε.

Lebesgue-Besicovitch’s differentiation theorem will also be of crucial importance in proving
Theorem 1.1.4.

Theorem 2.2.8 (Lebesgue-Besicovitch, [13, Subsection 1.7.1]). Let f ∈ L1
loc(Rn). For a.e.

x ∈ Rn,

f(x) = lim
ε→0+

1

Ln(Bε(x))

∫
Bε(x)

f(y)dLn(y) = lim
ε→0+

1

Hn(Bε(x))

∫
Bε(x)

f(y)dHn(y).

We are also going to need some more well-known results from classical analysis. For instance,
the dominated convergence theorem will be of tremendous importance in many of our proofs.

Theorem 2.2.9 (Dominated convergence). Let (X,Σ, µ) be a measure space. Consider a se-
quence {fi} ⊆ L1(X) such that

• f(x) = lim
i→∞

fi(x) exists for µ-a.e. x ∈ X;

• |fi(x)| ≤ g(x) for every i ∈ N and µ-a.e. x ∈ X, for a suitable function g ∈ L1(X).

Then

lim
i→∞

∫
X

|fi(x)− f(x)|dµ(x) = 0.

In particular,

lim
i→∞

∫
X

fi(x)dµ(x) =

∫
X

f(x)dµ(x).

Another important result that we are going to need is the Ascoli-Arzelà theorem, which
requires a couple of definitions to be introduced. Let X ⊆ Rn and consider a sequence {fi} ⊆
C(X) of continuous functions on X. We say that {fi} is uniformly bounded if there exists a
constant C > 0 such that |fi(x)| ≤ C, for every x ∈ X and i ∈ N. The sequence {fi} is called
equicontinuous if for every ε > 0 there is a δ > 0 such that |fi(x) − fi(y)| < ε for every i ∈ N
and x, y ∈ X with ‖x − y‖ < δ. We can now state the result (we will state it in a less general
context than the one in which it actually holds).

Theorem 2.2.10 (Ascoli-Arzelà). Let X be a closed subspace of Rn and let {fi} ⊆ C(X) be a
uniformly bounded and equicontinuous sequence. Then there exists a subsequence {fij} ⊆ {fi}
which converges uniformly on the compact sets K ⊆ X.

At some point, we are also going to use the mean value theorem for functions of n variables.
We recall it here.

Theorem 2.2.11 (Mean value). Let Ω ⊆ Rn be a convex and open set, and let f : Ω −→ R be
a differentiable function. Then, for every x, y ∈ Ω, there exists λ ∈ (0, 1) such that

f(x)− f(y) = 〈∇f((1− λ)x+ λy), x− y〉 ,

where ∇f denotes the Euclidean gradient of f .

To prove Lemma 3.3.1 we will use mollifiers. We recall that a mollifier is a family {ψε}ε>0 ⊆
L1(Rn) such that
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•
∫
Rn ψε(x)dx = 1;

• supε>0

∫
Rn |ψε(x)|dx <∞;

• limε→0+

∫
Rn\Bδ(0)

|ψε(x)|dx = 0 for every δ > 0,

where the integrals are done with respect to the Lebesgue measure Ln. Mollifiers can be used to
approximate functions in the following sense.

Theorem 2.2.12. Let {ψε}ε>0 be a mollifier. For p ≥ 1 and f ∈ Lp(Rn), consider the convo-
lution

ψε ∗ f(x) =

∫
Rn
ψ(x− y)f(y)dy =

∫
Rn
ψ(y)f(x− y)dy, x ∈ Rn.

Then ψε ∗ f → f in Lp(Rn).

This actually holds on any Ln-measurable subset X ⊆ Rn, but we are just going to need the
version stated above.

2.2.4 Extensions of functions and their gradients

The spherical gradient of a function f ∈ Lip(Sn−1) is hard to deal with. This is why it will
often be convenient to extend f : Sn−1 −→ R to f̄ : Rn −→ R, so that we will be able to work
with the standard Euclidean gradient ∇f̄ instead of the spherical one.

Every extension f̄ : Rn −→ R of f ∈ Lip(Sn−1) satisfies

〈∇sf(x), v〉 =
〈
∇f̄(x), v

〉
, (2.2.9)

for a.e. x ∈ Sn−1 and all v ∈ Tx(Sn−1).

In fact, let x ∈ Sn−1 be a point of differentiability for f , v ∈ Tx(Sn−1) and consider a C∞

curve γx : [−1, 1] −→ Sn−1 such that γx(0) = x, γ′x(0) = v. By definition,

〈∇sf(x), v〉 =
d

dt

∣∣∣∣∣
t=0

f(γx(t)) =
d

dt

∣∣∣∣∣
t=0

f̄(γx(t)) =
〈
∇f̄(γx(0)), γ′x(0)

〉
=
〈
∇f̄(x), v

〉
.

One way of extending a function f : Sn−1 −→ R to the whole space Rn is to do it 1-
homogeneously. Let us denote by f̃ this extension:

f̃(x) =

‖x‖ f
(

x

‖x‖

)
if x 6= 0,

0 if x = 0.

(2.2.10)

Euler’s formula helps us to handle these 1-homogeneous extensions.

Proposition 2.2.13 (Euler). Let f : Rn −→ R be an a.e. differentiable function. If f is
k-homogeneous for some 1 ≤ k ≤ n, then

〈x,∇f(x)〉 = kf(x), (2.2.11)

for a.e. x ∈ Rn.
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This can be proved by differentiating the equation

f(λx) = λkf(x), λ > 0, x ∈ Rn,

with respect to λ and then choosing λ = 1.
Let x ∈ Sn−1 be a point at which f is differentiable; then its 1-homogeneous extension f̃

is differentiable at x as well. We can link the norms of the spherical and Euclidean gradient
through the following equality: ∥∥∇f̃(x)

∥∥2
= ‖∇sf(x)‖2 + f(x)2. (2.2.12)

To prove this, fix x ∈ Sn−1, v ∈ Tx(Sn−1) and consider an orthonormal basis {ν1, . . . , νn−1}
of Tx(Sn−1). Then {ν1, . . . , νn−1, x} is an orthonormal basis of Rn, and we can write

∇f̃(x) =

n−1∑
i=1

〈
∇f̃(x), νi

〉
νi +

〈
∇f̃(x), x

〉
x,

hence

∥∥∇f̃(x)
∥∥2

=

n−1∑
i=1

〈
∇f̃(x), νi

〉2
+
〈
∇f̃(x), x

〉2
=

n−1∑
i=1

〈
∇sf(x), νi

〉2
+ f̃(x)2 = ‖∇sf(x)‖2 + f(x)2,

where we have used (2.2.9), (2.2.11) and the fact that f̃ extends f . This proves (2.2.12).
The support functions introduced in Subsection 2.1.6, for instance, can be seen as 1-homogeneous

extensions of functions defined on the sphere. Other than (2.2.12), the Euclidean gradient of a
support function possesses the following property.

Proposition 2.2.14 ([34, Corollary 1.7.3]). Let K ∈ Kn. If hK is differentiable at x ∈ Sn−1,
then ∇hK(x) ∈ ∂K, and ∇hK(x) is the only point of ∂K with outer normal vector x.

There is another way of extending Lipschitz functions from Sn−1 to Rn which we will be in-
terested in; it is stated in the following theorem, which was proved independently by Kirszbraun,
McShane and Whitney during the same year.

Theorem 2.2.15 (Kirszbraun-McShane-Whitney, [16, 27, 42]). Let S ⊆ Rn and f : S −→ R be

a Lipschitz function with Lipschitz constant L. Then the map f̂ : Rn −→ R defined by

f̂(x) = sup
z∈S

[
f(z)− L‖x− z‖

]
,

for x ∈ Rn, is still Lipschitz continuous with the same Lipschitz constant L, and its restriction
to S coincides with f .

This can be used to prove the following version of Corollary 1 from [13, Section 3.1]; we are
going to need it in Chapter 5.

Lemma 2.2.16. Let f ∈ Lip(Sn−1), c ∈ R and Zc = {x ∈ Sn−1 : f(x) = c}. Then ∇sf(x) = 0
for a.e. x ∈ Zc.

Proof. For a given f ∈ Lip(Sn−1), extend it to Rn via Theorem 2.2.15. The function f − c :
Rn −→ R is still Lipschitz continuous, hence Corollary 1 from [13, Subsection 3.1.2] implies that
∇f(x) = 0 for a.e. x ∈ {y ∈ Rn : f(y) = c}, and in particular for a.e. x ∈ Zc. From (2.2.9) we
get that ∇sf(x) = 0 for a.e. x ∈ Zc too.
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We will also need an adaptation of the Kirszbraun-McShane-Whitney extension theorem.

Lemma 2.2.17. Let A,A0, B ⊆ Rn be such that A,A0 ⊆ B. Let f : A ∪A0 −→ R, g : B −→ R
be Lipschitz functions with Lipschitz constants L(f), L(g) ≤ L such that f |A = g, f |A0

= 0.
Then f can be extended to a Lipschitz function f̄ : B −→ R with Lipschitz constant L(f̄) ≤ L
such that g− ≤ f̄ ≤ g+ on B and

∥∥f̄∥∥∞ ≤ ‖g‖∞.

Proof. Consider the Kirszbraun-McShane-Whitney extension of f to B, defined by

f̂(x) = sup
y∈A∪A0

[
f(y)− L‖x− y‖

]
,

for x ∈ B (see Theorem 2.2.15). This function is Lipschitz continuous with Lipschitz constant

L(f̂) ≤ L, and f̂ |A∪A0
= f .

Let f̄ =
(
f̂ ∨ g−

)
∧ g+; then f̄ is still Lipschitz continuous with Lipschitz constant L(f̄) ≤ L

and f̄ |A∪A0
= f . Moreover, f̄ ≤ g+ and f̄ =

(
f̂ ∧ g+

)
∨ g− ≥ g−.

It remains to be seen that
∥∥f̄∥∥∞ ≤ M , where M = ‖g‖∞. To prove this, fix an arbitrary

x ∈ B and reason as follows: if g(x) ≥ 0,

f̄(x) =
(
f̂(x) ∨ 0

)
∧ g(x) =

(
f̂(x) ∧ g(x)

)
∨ 0,

so that on the one hand we have
f̄(x) ≤ g(x) ≤M,

and on the other hand
f̄(x) ≥ 0 ≥ −M,

hence
∣∣f̄(x)

∣∣ ≤M . We proceed similarly if g(x) ≤ 0.

2.2.5 Valuations on H (Sn−1)

In this section we collect some technical remarks concerning support functions and valuations
on H (Sn−1). It is convenient to study the behaviour of support functions with respect to the
operators ∨ and ∧. The result hereby presented is well-known, but we include the proof for
completeness.

Lemma 2.2.18. Let K,L ∈ Kn. Then hK ∨ hL = hconv(K∪L), where conv(K ∪ L) denotes the
convex hull of K ∪ L. Moreover, if K ∪ L ∈ Kn we have

hK ∨ hL = hK∪L, (2.2.13)

hK ∧ hL = hK∩L. (2.2.14)

Proof. Recall that

conv(K ∪ L) =

{
x ∈ Rn : x =

m∑
i=1

λixi, m ∈ N, λi ≥ 0,

m∑
i=1

λi = 1, xi ∈ K ∪ L

}
.

Clearly conv(K∪L) contains K and L, thus hconv(K∪L) ≥ hK and hconv(K∪L) ≥ hL. This implies
the inequality

hconv(K∪L)(x) ≥ hK ∨ hL(x),
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for every x ∈ Rn. Vice versa, if x ∈ Rn, then

hconv(K∪L)(x) = max
z∈conv(K∪L)

〈x, z〉,

where the maximum will be attained in correspondence of a certain element z =
∑m
i=1 λixi,

with m ∈ N, λi ≥ 0,
∑m
i=1 λi = 1, xi ∈ K ∪ L. Up to a reordering, we may assume that

{x1, . . . , x`} ⊆ K and {x`+1, . . . , xm} ⊆ L. Therefore, we have

hconv(K∪L)(x) =

〈
x,

m∑
i=1

λixi

〉
=
∑̀
i=1

λi〈x, xi〉+

m∑
i=`+1

λi〈x, xi〉

≤
∑̀
i=1

λihK(x) +

m∑
i=`+1

λihL(x)

≤

(∑̀
i=1

λi +

m∑
i=`+1

λi

)
hK ∨ hL(x) = hK ∨ hL(x).

We now work under the hypothesis K ∪ L ∈ Kn. The first part of the proof immediately
gives (2.2.13). As for (2.2.14), we start by proving that

(K ∪ L) + (K ∩ L) = K + L. (2.2.15)

Note that
(K ∪ L) + (K ∩ L) ⊆ K + L.

Vice versa, let x+ y ∈ K +L. If either x ∈ K ∩L or y ∈ K ∩L, then we are done; suppose now
x ∈ K \ L and y ∈ L \K. Because of this assumption, there exists t ∈ (0, 1) such that

z : = tx+ (1− t)y ∈ K ∩ L,

since K ∪ L ∈ Kn. Therefore,

x+ y = (1− t)x+ ty + z ∈ (K ∪ L) + (K ∩ L),

using the convexity of K ∪ L again. Equality (2.2.15) follows. Thus, from (2.1.6) we obtain

hK∪L + hK∩L = h(K∪L)+(K∩L) = hK+L = hK + hL = hK ∨ hL + hK ∧ hL = hK∪L + hK ∧ hL,

where the last equality follows from (2.2.13). This proves (2.2.14).

We are now going to state a topological result concerning the continuity of a functional
V : H (Sn−1) −→ R. By definition of τ , we have that if such a functional is continuous with
respect to ‖ · ‖∞, then it is also continuous with respect to τ . The converse is also true.

Lemma 2.2.19. Let V : H (Sn−1) −→ R. Then V is continuous with respect to τ if and only if
it is continuous with respect to ‖ · ‖∞.

Proof. Consider a τ -continuous functional V : H (Sn−1) −→ R and a sequence {hKi} ⊆H (Sn−1)
of support functions such that ‖hKi − hK‖∞ → 0, as i → ∞, where K ∈ Kn. It is enough to
prove that hKi −→

τ
hK .

Define
Di = {x ∈ Sn−1 : hKi is differentiable at x},
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for i ∈ N, and
D0 = {x ∈ Sn−1 : hK is differentiable at x}.

We also set

D =

∞⋂
i=0

Di.

Note that Hn−1(Sn−1 \D) = 0, because of Rademacher’s theorem.
For every x ∈ D we have

∇shKi(x)→ ∇shK(x). (2.2.16)

Indeed, consider a subsequence {hKij } ⊆ {hKi}. For every j ∈ N, the differentiability of hKij at

x gives (see [34, Theorem 1.5.12])

hKij (y) ≥ hKij (x) +
〈
∇hKij (x), y − x

〉
, (2.2.17)

for every y ∈ Rn. The condition ‖hKi − hK‖∞ → 0 implies that Ki → K with respect to the
Hausdorff metric (thanks to (2.1.7)), hence there is a convex body K0 such that Ki ⊆ K0, for
every i ∈ N. From Proposition 2.2.14 we have that

∇hKij (x) ∈ ∂Kij ⊆ Kij ⊆ K0,

thus there is a subsequence {hKij` } ⊆ {hKij } such that liml→∞∇hKij` (x) exists, by the Bolzano-

Weierstrass theorem. Writing (2.2.17) for this subsequence and letting `→∞ we obtain

hK(y) ≥ hK(x) +
〈

lim
`→∞

∇hKij` (x), y − x
〉
,

for every y ∈ Rn. Recalling the uniqueness of the subgradient at differentiability points for
convex functions (see [34, Theorem 1.5.15]), the last inequality implies

lim
`→∞

∇hKij` (x) = ∇hK(x).

This, together with relation (2.2.12) and the arbitrariness of {hKij } ⊆ {hKi}, proves (2.2.16).

Moreover, for every x ∈ D and i ∈ N we have, applying (2.2.12) and Proposition 2.2.14 again,

‖∇shKi(x)‖ ≤ ‖∇hKi(x)‖ ≤ max{‖y‖ : y ∈ ∂Ki} ≤ max{‖y‖ : y ∈ K0}.

Thus we have a uniform bound on ‖∇shKi‖ in D. Then hKi −→
τ
hK , as desired.

The theorems recalled in subsections 2.2.1, 2.2.2 concern valuations on convex bodies, and
since we will be interested in studying valuations on support functions using these results, it
would be nice to know that we can “move” valuations from H (Sn−1) to Kn without losing any
property. This is stated precisely in the next result.

Lemma 2.2.20. Let V : H (Sn−1) −→ R. Define ϕ : Kn −→ R by setting

ϕ(K) = V (hK),

for every K ∈ Kn. Then

i) if V is a valuation, then so is ϕ;

ii) if V is τ -continuous, then ϕ is continuous with respect to the Hausdorff metric;
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iii) if V is rotation invariant, then so is ϕ;

iv) if V is dot product invariant, then ϕ is translation invariant;

v) if V is polynomial, then so is ϕ;

vi) if V is i-homogeneous for some i ∈ {0, . . . , n}, then so is ϕ.

Proof.

i) Let V be a valuation. To prove the valuation property for ϕ, consider K,L ∈ Kn such that
K ∪ L ∈ Kn. From Lemma 2.2.18 and the fact that V is a valuation we get

ϕ(K ∪ L) + ϕ(K ∩ L) = V (hK∪L) + V (hK∩L) = V (hK ∨ hL) + V (hK ∧ hL)

= V (hK) + V (hL) = ϕ(K) + ϕ(L).

ii) For what concerns continuity, let V be τ -continuous and consider {Ki} ⊆ Kn, K ∈ Kn such
that Ki → K in the Hausdorff metric. Then ‖hKi − hK‖∞ → 0, by (2.1.7), and recalling
that a τ -continuous functional such as V is also continuous with respect to ‖ · ‖∞ on the
space of support functions (see Lemma 2.2.19), we have

V (hK) = lim
i→∞

V (hKi),

which means
ϕ(K) = lim

i→∞
ϕ(Ki).

iii) Let V be rotation invariant. Since the dot product is rotation invariant too, for every
K ∈ Kn, σ ∈ O(n) and x ∈ Sn−1 we have

hσK(x) = max
y∈K
〈x, σ(y)〉 = max

y∈K
〈σ−1(x), y〉 = hK ◦ σ−1(x),

hence hσK = hK ◦ σ−1. This yields

ϕ(σK) = V (hσK) = V (hK ◦ σ−1) = V (hK) = ϕ(K),

because of the rotational invariance of V .

iv) If V is dot product invariant, take K ∈ Kn and x ∈ Rn. We have

ϕ(K + x) = V (hK+x) = V (hK + h{x}) = V (hK + 〈·, x〉) = V (hK) = ϕ(K).

v) If V is polynomial, we have that for every K ∈ Kn

ϕ(K + x) = V (hK+x) = V (hK + 〈·, x〉) = pK(x)

is a polynomial in x.

vi) Fix i ∈ {0, . . . , n} and assume V to be i-homogeneous. For every λ > 0 and K ∈ Kn we
get

ϕ(λK) = V (hλK) = V (λhK) = λiV (hK) = λiϕ(K).



Chapter 3

Approximation

To prove theorems 1.1.2 and 1.1.3 we will first need to narrow down the study of our valuations
from the space Lip(Sn−1) (respectively, Lip(S1)) to its subset H (Sn−1) (H (S1)), which is in
bijection with Kn (K2), where Hadwiger’s (Alesker’s) theorem can be applied. More precisely,
our goal is to prove that continuous valuations on Lip(Sn−1) are uniquely determined by the
values they attain at support functions, as stated in the following proposition.

Proposition 3.0.1. Let V,W : Lip(Sn−1) −→ R be continuous valuations. If V = W on
H (Sn−1), then V = W on Lip(Sn−1).

The proof is split into four main steps, which will be detailed in the next sections. In
particular, Proposition 3.0.1 will be derived from the following density result (proved in Section
3.4), which will also be used in the proofs of theorems 1.1.4 and 1.1.5.

Proposition 3.0.2. The space L (Sn−1) is τ -dense in Lip(Sn−1).

3.1 L (Sn−1) ⊆ Ĥ (Sn−1)

First of all, we are going to show that piecewise linear functions can be written as minima of
finitely many support functions.

Lemma 3.1.1. Let f ∈ L (Rn). Then there exist m ∈ N and hK1
, . . . , hKm ∈H (Rn) such that

f =

m∧
i=1

hKi .

In particular, L (Sn−1) ⊆ Ĥ (Sn−1).

Proof. For f ∈ L (Rn), there are closed convex cones C1, . . . , Cm with vertex at the origin and
pairwise disjoint interiors such that

m⋃
i=1

Ci = Rn,

and f = Li is linear on Ci, for i = 1, . . . ,m.
We will now focus on the cone C1. Consider f̃ = f − L1. Let PC1

: Rn −→ Rn denote the
metric projection onto C1: for every x ∈ Rn, PC1

(x) is the unique point in C1 such that

‖x− PC1
(x)‖ = min

z∈C1

‖x− z‖.

25
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As C1 is closed and convex, this function is well-defined. We also define the function g : Rn −→ R
by

g(x) = ‖x− PC1
(x)‖ = min

z∈C1

‖x− z‖,

for every x ∈ Rn; this is the distance function from the cone C1.
Note that g is a 1-homogeneous and convex function. To prove the 1-homogeneity, we take

λ > 0, x ∈ Rn and we evaluate
g(λx) = min

z∈C1

‖λx− z‖.

Since C1 is a cone, we can write

g(λx) = min
z∈C1

‖λx− λz‖ = min
z∈C1

λ‖x− z‖ = λ min
z∈C1

‖x− z‖ = λg(x),

using the fact that λ > 0. Regarding the convexity of g, we observe that

PC1
(x) + PC1

(y) =
1

2
· 2PC1

(x) +
1

2
· 2PC1

(y) ∈ C1,

for every x, y ∈ Rn, since C1 is a convex cone. Therefore,

g(x+ y) = min
z∈C1

‖x+ y − z‖ ≤
∥∥x+ y − (PC1

(x) + PC1
(y))

∥∥
≤ ‖x− PC1(x)‖+ ‖y − PC1(y)‖ = g(x) + g(y).

This proves that g is subadditive, which, together with the 1-homogeneity, yields the convexity
of g. These properties imply the existence of a convex body K ∈ Kn such that g = hK , as
recalled in Subsection 2.1.6.

We prove that there exists a suitable constant c > 0 such that

cg(x) ≥ f̃(x), (3.1.1)

for every x ∈ Rn. Suppose this to be false; then for every c > 0 there exists a point xc ∈ Rn
such that cg(xc) < f̃(xc). Choosing c = i, i ∈ N, we build a sequence {xi} ⊆ Rn satisfying

g(xi) <
1

i
f̃(xi), (3.1.2)

for every i ∈ N. Because g = f̃ = 0 on C1 and the inequality is strict, we have that xi 6= 0 for
every i ∈ N. From the 1-homogeneity we get

g

(
xi
‖xi‖

)
<

1

i
f̃

(
xi
‖xi‖

)
.

This means that in (3.1.2) we may assume that {xi} ⊆ Sn−1 and, up to passing to a subsequence,
xi → x as i→∞, for some x ∈ Sn−1.

We observe that x ∈ C1. In fact, if x ∈ Rn \C1, then letting i→∞ in (3.1.2) we would have
0 < g(x) ≤ 0, a contradiction.

Let x̃i = PC1
(xi). Now, the projection onto closed convex sets is contracting (see [34, Theorem

1.2.1]), hence continuous, which implies that x̃i → PC1(x) = x as i → ∞. From (3.1.2), using

the fact that f̃(x̃i) = 0 (since x̃i ∈ C1) and setting
∼
L=L(f̃), we get

‖xi − x̃i‖ = g(xi) <
1

i

[
f̃(xi)− f̃(x̃i)

]
≤
∼
L

i
‖xi − x̃i‖,
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for every i ∈ N. Since xi 6∈ C1 (because of the strict inequality in (3.1.2)), whereas x̃i ∈ C1, we

have xi 6= x̃i, and so the last inequality yields i <
∼
L, for every i ∈ N; letting i→∞ we obtain a

contradiction. Then there must be a constant c > 0 such that (3.1.1) holds for every x ∈ Rn.

Therefore,

f1 : = cg + L1 ≥ f̃ + L1 = f

on Rn, with f1 = L1 = f on the cone C1. Furthermore, if L1(x) = 〈x, a1〉, we have that

f1 = cg + L1 = chK + h{a1} = hcK+a1 = : hK1

is a support function.

We repeat the process for each cone Ci, i = 2, . . . ,m, building support functions hKi : Rn −→
R such that hKi ≥ f on Rn and hKi = f on Ci. Thus we can write

f =

m∧
i=1

hKi .

3.2 Approximation of C1 functions by piecewise linear func-

tions

Piecewise linear functions can be used to approximate C1 functions with respect to the
topology τ , as stated in the following lemma.

Lemma 3.2.1. Let u ∈ C1(Sn−1). Then there exists a sequence {fi} ⊆ L (Sn−1) such that
fi −→

τ
u.

To prove this we will need a preliminary observation, which in turn requires some definitions:
a k-simplex ∆ is a k-dimensional polytope given by the convex hull of k+ 1 affinely independent
points v0, . . . , vk, that is,

∆ =

{
k∑
i=0

λivi :

k∑
i=0

λi = 1 and λi ≥ 0 for every i = 0, . . . , k

}
,

where v1 − v0, . . . , vk − v0 are linearly independent. The points v0, . . . , vk are called the vertices
of ∆.

A partition P of a k-dimensional set Q ⊆ Rn is called a simplicial partition if it is made up
of k-simplices such that for every two of them, their intersection is either empty or a face (of
any dimension between 0 and k − 1) of both simplices. If Q is a polytope, such a partition is
symmetric if it is symmetric with respect to all the k axes of a coordinate system which has the
center o of Q as the origin and axes given by the lines passing through o and the center of two
opposite facets. We also recall that a facet of a k-dimensional polytope is a (k − 1)-dimensional
face. We can now point out the following fact.

Remark 3.2.2. Let Q ⊆ Rn be a n-cube. Then there exists a symmetric simplicial partition P
into n-simplices of Q.
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Proof. We proceed by induction on the dimension n. If n = 2, then Q is a square, and we can
choose P to be the partition made up of the four simplices obtained by connecting the center of
the square to each of the four vertices.

Let n ≥ 3. Let {F1, . . . , F2n} be the facets of Q. Since the facets of a n-cube are (n − 1)-
cubes, we can apply the inductive hypothesis to F1 to obtain a symmetric simplicial partition P1

into (n − 1)-simplices of F1. We replicate this same partition on each other facet of Q, and we
denote by Pi the partition on the facet Fi. Because P1, hence Pi for every i, is symmetric, the
partitions of F1, . . . , F2n “glue together” well, in the sense that they give a simplicial partition
P ′ into (n − 1)-simplices of ∂Q. Connecting the center of Q to the vertices of all the simplices
in P ′ we obtain a symmetric simplicial partition P into n-simplices of Q.

This allows us to prove the lemma stated above.

Proof of Lemma 3.2.1. Let f ∈ C1(Sn−1) and consider its 1-homogeneous extension f̃ to Rn:

f̃(x) =

‖x‖ f
(

x

‖x‖

)
if x 6= 0,

0 if x = 0.

Then f̃ ∈ C1(Rn \ {0}). In particular, f̃ ∈ C1(D), where

D =
{
x ∈ Rn : 1 ≤ ‖x‖ ≤

√
n
}
.

Fix ε > 0. Since f̃ and its Euclidean gradient ∇f̃ are uniformly continuous on D, there exists
δ > 0 such that for every x, y ∈ D with ‖x− y‖ ≤ δ we have∣∣f̃(x)− f̃(y)

∣∣ < ε (3.2.1)

and ∥∥∇f̃(x)−∇f̃(y)
∥∥ < ε. (3.2.2)

Let Q = [−1, 1]n be the n-cube centered at the origin with edge of length 2. For each
coordinate axis, we draw hyperplanes orthogonal to such axis so that Q is cut into n-cubes with

edges of length 1
N , where N =

⌈√
n
δ

⌉
(d·e denotes the ceiling function). Note that these n-cubes

all have the same diameter

d =

∥∥∥∥( 1

N
, . . . ,

1

N

)
− (0, . . . , 0)

∥∥∥∥ =

√
n

N
≤ δ.

Consider now the facets of such n-cubes (which are (n− 1)-cubes) that are contained in the
boundary ∂Q of Q. We apply Remark 3.2.2 to these facets: this determines a simplicial partition
{∆1, . . . ,∆m} into (n− 1)-simplices of ∂Q. For every i = 1, . . . ,m, let

Ci = {tx : t ≥ 0, x ∈ ∆i}.

Then C1, . . . , Cm are closed convex cones with pairwise disjoint interiors, and they form a par-
tition of the whole space Rn. Note that since the annulus D contains all the simplices ∆i and
d ≤ δ, formulas (3.2.1) and (3.2.2) are satisfied for every x and y belonging to the same simplex.

We consider linear maps Li : Ci −→ R, i = 1, . . . ,m, such that Li coincides with f̃ on each
of the n vertices of ∆i; these maps are uniquely determined. Let g ∈ L (Rn) be the continuous
function such that g = Li on Ci, for i = 1, . . . ,m, and define h = f̃ − g.
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For a fixed x ∈ D, we have that x ∈ Ck for some k ∈ {1, . . . ,m}, and we can write x = λx′,
with λ > 0 and x′ ∈ ∆k. Choose an arbitrary vertex v of ∆k. Since ∆k is compact, there is a
w ∈ ∆k such that

|Lk(v)− Lk(w)| = max
z∈∆k

|Lk(v)− Lk(z)|.

Note that the function defined by F (z) = |Lk(v) − Lk(z)|, z ∈ ∆k, is convex. Since convex
functions on convex polytopes attain their maximum at the vertices, w must be a vertex of ∆k.

Given that both f̃ and g are 1-homogeneous, using (3.2.1) and the fact that Lk = f̃ on the
vertices of ∆k, we get

|h(x)| = λ
∣∣f̃(x′)− g(x′)

∣∣ = λ
∣∣f̃(x′)− Lk(x′)

∣∣ < λε+ λ|Lk(v)− Lk(x′)|

≤ λε+ λ|Lk(v)− Lk(w)| = λε+ λ
∣∣f̃(v)− f̃(w)

∣∣ < 2λε = 2
‖x‖
‖x′‖

ε

≤ 2
√
nε.

Therefore,
max
x∈D

|h(x)| < 2
√
nε. (3.2.3)

We now turn to the gradient ∇h. Fix arbitrarily k ∈ {1, . . . ,m} and x ∈ relint (∆k), the
relative interior of ∆k (i.e., the interior of ∆k as a subset of a (n − 1)-dimensional affine hy-
perplane of Rn). Then ∇h(x) exists. We choose a vertex of ∆k and consider the n − 1 edges
`1, . . . , `n−1 incident to it; since ∆k is a simplex, these edges lie on linearly independent directions
ν1, . . . , νn−1. Note that the restriction of h to each `i can be seen as a function of one variable
which is continuous on `i, differentiable in its relative interior and satisfies h = 0 at the ends of
`i. By Rolle’s theorem, there exist points zi ∈ `i such that

∂h

∂νi
(zi) = 0,

for every i = 1, . . . , n− 1. Using the fact that g|Ck is linear and the Cauchy-Schwarz inequality,
for every i = 1, . . . , n− 1 we get∣∣∣∣ ∂h∂νi (x)

∣∣∣∣ =

∣∣∣∣ ∂h∂νi (x)− ∂h

∂νi
(zi)

∣∣∣∣ =

∣∣∣∣∣ ∂f̃∂νi (x)− g(νi)−
∂f̃

∂νi
(zi) + g(νi)

∣∣∣∣∣
=

∣∣∣〈∇f̃(x)−∇f̃(zi), νi
〉∣∣∣ ≤ ∥∥∇f̃(x)−∇f̃(zi)

∥∥ < ε, (3.2.4)

where the last inequality follows from (3.2.2).
Let H be the hyperplane passing through the n vertices of ∆k. Since ∆k ⊆ ∂Q, the exterior

unit normal vector N to H is of the form N = ±eik , for some ik ∈ {1, . . . , n}; for the sake of
simplicity, let us assume N = en, since the general case can be dealt with analogously. We now
observe that both {ν1, . . . , νn−1} and {e1, . . . , en−1} are bases of H; in particular, there exist
numbers αij ∈ R, i, j = 1, . . . , n− 1, such that

ei =

n−1∑
j=1

αijνj ,

for every i = 1, . . . , n− 1. Therefore, for i = 1, . . . , n− 1 we have∣∣∣∣ ∂h∂xi (x)

∣∣∣∣ = |〈∇h(x), ei〉| ≤
n−1∑
j=1

|αij | ·
∣∣∣∣ ∂h∂νj (x)

∣∣∣∣ < Mε, (3.2.5)
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where we have used (3.2.4) and we have set

M = max


n−1∑
j=1

|αij | : i ∈ {1, . . . , n− 1}

 .

Note that the αij ’s, and thus M , do not depend on ε, since they are determined by the νi’s, which
are in turn determined by the simplicial partitions of the (n − 1)-cubes contained in ∂Q; the
length 1

N of the edge of such cubes depends on ε, but the angles appearing in the aformentioned
partitions, hence the νi’s, do not.

We now write

∇h(x) = 〈∇h(x), e1〉e1 + . . .+ 〈∇h(x), en−1〉en−1 + 〈∇h(x), en〉en,

=
∂h

∂x1
(x)e1 + . . .+

∂h

∂xn−1
(x)en−1 +

∂h

∂xn
(x)en,

which, together with (3.2.5), implies

‖∇h(x)‖ < M(n− 1)ε+

∣∣∣∣ ∂h∂xn (x)

∣∣∣∣ . (3.2.6)

Let us consider the radial direction rx = x
‖x‖ . We have

∂h

∂rx
(x) = 〈∇h(x), rx〉 =

h(x)

‖x‖
,

thanks to Euler’s formula (2.2.11). This yields∣∣∣∣ ∂h∂rx (x)

∣∣∣∣ =
|h(x)|
‖x‖

≤ |h(x)| < 2
√
nε, (3.2.7)

because of (3.2.3). On the other hand, rx = 〈rx, e1〉e1 + . . .+ 〈rx, en〉en, hence

∂h

∂rx
(x) = 〈∇h(x), rx〉 =

n−1∑
i=1

[
〈rx, ei〉 ·

∂h

∂xi
(x)

]
+ 〈rx, en〉 ·

∂h

∂xn
(x),

so that

|〈rx, en〉| ·
∣∣∣∣ ∂h∂xn (x)

∣∣∣∣ ≤ ∣∣∣∣ ∂h∂rx (x)

∣∣∣∣+

n−1∑
i=1

|〈rx, ei〉| ·
∣∣∣∣ ∂h∂xi (x)

∣∣∣∣
< 2

√
nε+

n−1∑
i=1

Mε = [2
√
n+M(n− 1)]ε,

where we have used (3.2.7), (3.2.5) and the Cauchy-Schwarz inequality. But since

|〈rx, en〉| = |〈rx, N〉| =
1

‖x‖
≥ 1√

n
,

we obtain ∣∣∣∣ ∂h∂xn (x)

∣∣∣∣ < [2n+M
√
n(n− 1)

]
ε.
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From (3.2.6) we conclude that
‖∇h(x)‖ < Cε, (3.2.8)

where
C = 2n+M(

√
n+ 1)(n− 1).

Formula (3.2.8) holds for every x ∈ relint (∆k). By 0-homogeneity of ∇h, this extends to every
x in the interior of Ck. Since k ∈ {1, . . . ,m} was arbitrary, using (2.2.12) we have that

‖∇sh(x)‖ < Cε,

for a.e. x ∈ Sn−1.
In particular, we have proved that for every i ∈ N we can find a piecewise linear function

fi ∈ L (Sn−1) such that

‖f − fi‖∞ <
2
√
n

i

and

‖∇sf(x)−∇sfi(x)‖ < C

i
,

for a.e. x ∈ Sn−1. Therefore, fi → f uniformly on Sn−1 and ∇sfi → ∇sf a.e. in Sn−1. Besides,
for every i ∈ N and a.e. x ∈ Sn−1 we have

‖∇sfi(x)‖ < C

i
+ ‖∇sf(x)‖ ≤ C + max

y∈Sn−1
‖∇sf(y)‖,

so that fi −→
τ
f .

3.3 Approximation of Lipschitz functions by C1 functions

Functions in C1(Sn−1) can in turn be used to τ -approximate Lipschitz functions defined on
the sphere.

Lemma 3.3.1. Let f ∈ Lip(Sn−1). Then there exists a sequence {fi} ⊆ C1(Sn−1) such that
fi −→

τ
f .

There exists a similar result in the literature, namely Theorem 1 from Section 6.6 in [13],
which is a corollary of Whitney’s extension theorem, but it is not exactly what we are going to
need in the thesis.

Proof of Lemma 3.3.1. Let f ∈ Lip(Sn−1) be a Lipschitz function with Lipschitz constant L. As

stated in Theorem 2.2.15, such a function can be extended to a map f̂ : Rn −→ R defined by

f̂(x) = max
z∈Sn−1

[
f(z)− L‖x− z‖

]
,

for x ∈ Rn, which is still Lipschitz continuous with the same Lipschitz constant L. To simplify
the notations, the extension will still be denoted by the same symbol f .

Consider the annuli

C0 =

{
x ∈ Rn :

1

3
≤ ‖x‖ ≤ 5

3

}
,

C1 =

{
x ∈ Rn :

2

3
≤ ‖x‖ ≤ 4

3

}
,
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and let η : Rn −→ [0, 1] be a C∞ function with η ≺ C0 such that η ≡ 1 on C1. For example, we
can define η in the following way: take a C∞ function ϕ : R −→ [0, 1] with ϕ ≺

[
1
3 ,

5
3

]
and ϕ ≡ 1

in
[

2
3 ,

4
3

]
, then set η(x) = ϕ(‖x‖).

The function f̃ : = f · η is Lipschitz continuous: in fact η is, since, from Theorem 2.2.11, for
every x, y ∈ Rn there exists λ ∈ (0, 1) such that

η(x)− η(y) = 〈∇η((1− λ)x+ λy), x− y〉 ,

thus

|η(x)− η(y)| ≤ L(η) · ‖x− y‖,

with L(η) = max
z∈supp(η)

‖∇η(z)‖. The product of bounded Lipschitz functions is Lipschitz contin-

uous, hence f̃ is indeed a Lipschitz function; let
∼
L be its Lipschitz constant.

We will use a mollifier to build our approximating sequence. Consider ψ : Rn −→ R+ defined,
for z ∈ Rn, by

ψ(z) =

{
c · e

1
‖z‖2−1 if ‖z‖ < 1,

0 if ‖z‖ ≥ 1,

where c > 0 is a constant such that ∫
Rn
ψ(z)dz = 1,

and the integral is done with respect to the Lebesgue measure Ln. The function ψ is C∞, and
its support is the closure B1(0) of the unit ball centered at the origin.

For ε > 0, we set

ψε(z) =
1

εn
ψ
(z
ε

)
, z ∈ Rn.

The family {ψε}ε>0 is a mollifier, and for every ε > 0 we have that ψε ∈ C∞(Rn) and its support
is the set Bε(0). We now consider the C∞ functions

f̃ε(x) = ψε ∗ f̃(x) =

∫
Rn
f̃(x− y)ψε(y)dy, x ∈ Rn.

For x, y ∈ Rn, we have

∣∣f̃ε(x)− f̃ε(y)
∣∣ =

∣∣∣∣∫
Rn
ψε(z)

[
f̃(x− z)− f̃(y − z)

]
dz

∣∣∣∣ ≤ ∼L‖x− y‖.
This yields ∥∥∇sf̃ε(x)

∥∥ ≤ ∼L, (3.3.1)

for every x ∈ Sn−1 and ε > 0, thanks to (2.1.2).

We also have that f̃ε → f uniformly on Sn−1, as ε → 0+. Indeed, since f̃ is uniformly
continuous, for a fixed ε′ > 0 there is a δ > 0 such that

∣∣f̃(z1)− f̃(z2)
∣∣ < ε′

2
,
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for every z1, z2 ∈ Rn satisfying ‖z1 − z2‖ ≤ δ. Therefore, for ε > 0 and x ∈ Sn−1 we get

∣∣f̃ε(x)− f(x)
∣∣ =

∣∣∣∣∫
Rn
f̃(x− y)ψε(y)dy −

∫
Rn
f̃(x)ψε(y)dy

∣∣∣∣
≤

∫
Rn
ψε(y)

∣∣f̃(x− y)− f̃(x)
∣∣dy

<
ε′

2
+

∫
Rn\Bδ(0)

ψε(y)
∣∣f̃(x− y)− f̃(x)

∣∣dy
=

ε′

2
+

∫
B1(0)\Bδ(0)

ψε(y)
∣∣f̃(x− y)− f̃(x)

∣∣dy.
Since

lim
ε→0+

∫
B1(0)\Bδ(0)

ψε(y)dy = lim
ε→0+

∫
Rn\Bδ(0)

ψε(y)dy = 0,

there exists 0 < ε0 < 1 such that for every 0 < ε < ε0 and x ∈ Sn−1,

∣∣f̃ε(x)− f(x)
∣∣ < ε′

2
+ 2M

∫
B1(0)\Bδ(0)

ψε(y)dy < ε′,

where

M = max
z∈B2(0)

∣∣f̃(z)
∣∣.

This proves that f̃ε → f uniformly on Sn−1.
To show the a.e. convergence of the gradients, for an arbitrary k ∈ {1, . . . , n} we compute,

for x ∈ Rn,

∂f̃ε
∂xk

(x) = lim
h→0

f̃ε(x+ hek)− f̃ε(x)

h

= lim
h→0

∫
Rn
ψε(y)

f̃(x− y + hek)− f̃(x− y)

h
dy

=

∫
Rn
ψε(y)

∂f̃

∂xk
(x− y)dy = ψε ∗

∂f̃

∂xk
(x),

where we have used the dominated convergence theorem, which can be applied because of the
Lipschitz continuity of f̃ and the Lebesgue integrability of ψε. The Lipschitz continuity of f̃ ,

together with the fact that η is compactly supported, also implies ∂f̃
∂xk
∈ L1 (Rn). Theorem

2.2.12 then guarantees that

∂f̃ε
∂xk

= ψε ∗
∂f̃

∂xk
→ ∂f̃

∂xk
in L1 (Rn) , as ε→ 0+,

for k = 1, . . . , n.
We now turn the family

{
f̃ε
}
ε>0

into a sequence
{
f̃i
}
i∈N by choosing ε = 1/i, i ∈ N, and

renaming f̃i : = f̃1/i for the sake of simplicity. Every sequence of functions which converges in
L1 possesses a subsequence which converges a.e. to the same limit, hence there is a subsequence{

f̃
i
(1)
j

}
j∈N
⊆
{
f̃i
}
i∈N
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such that
∂f̃

i
(1)
j

∂x1
(x)→ ∂f̃

∂x1
(x) as j →∞,

for a.e. x ∈ Rn, and
∂f̃

i
(1)
j

∂xk
→ ∂f̃

∂xk
in L1 (Rn) as j →∞,

for k = 2, . . . , n. We repeat the process for every 2 ≤ j ≤ n, finding sequences{
f̃
i
(n)
j

}
j∈N
⊆
{
f̃
i
(n−1)
j

}
j∈N
⊆ . . . ⊆

{
f̃
i
(1)
j

}
j∈N
⊆
{
f̃i
}
i∈N.

If we set fj : = f̃
i
(n)
j

, j ∈ N, we have that

∂fj
∂xk

(x)→ ∂f̃

∂xk
(x) as j →∞,

for a.e. x ∈ Rn and for all k = 1, . . . , n. This implies

∇fj(x)→ ∇f(x),

for a.e. x ∈ Rn. In particular, using (2.2.9) we get that

∇sfj(x)→ ∇sf(x), (3.3.2)

for a.e. x ∈ Sn−1.
Recalling that {fj}j∈N ⊆

{
f̃ε
}
ε>0

, from the fact that f̃ε → f uniformly on Sn−1 and the

properties (3.3.1), (3.3.2) we conclude that fj −→
τ
f .

We have actually proved that C∞(Sn−1) is τ -dense in Lip(Sn−1). However, for our purposes
Lemma 3.3.1 will be sufficient.

3.4 Density of L (Sn−1) in Lip(Sn−1)

We are now able to prove our density result.

Proof of Proposition 3.0.2. We have already noted that L (Sn−1) ⊆ Lip(Sn−1).
Let f ∈ Lip(Sn−1) and let U ⊆ Lip(Sn−1) be an open neighbourhood of f (with respect to

τ). Because of Lemma 3.3.1, U contains a function g ∈ C1(Sn−1). Moreover, since U is also an
open neighbourhood of g, from Lemma 3.2.1 we have that there is a function h ∈ L (Sn−1) such
that h ∈ U .

The tools developed throughout this chapter allow us now to prove Proposition 3.0.1, which
is one of the key ingredients for the proof of theorems 1.1.2 and 1.1.3.

Proof of Proposition 3.0.1. Let V,W : Lip(Sn−1) −→ R be continuous valuations such that V =
W on H (Sn−1). Consider the continuous valuation Z : Lip(Sn−1) −→ R given by Z = V −W .
We prove that

Z

(
m∧
i=1

hKi

)
= 0
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for every hK1 , . . . , hKm ∈H (Sn−1), proceeding by induction on m. If m = 2, using the fact that
Z is a valuation and Lemma 2.2.18 we obtain

Z(hK1 ∧ hK2) = Z(hK1) + Z(hK2)− Z
(
hconv(K1∪K2)

)
= 0,

since Z = 0 on H (Sn−1) by hypothesis. Suppose now that Z = 0 on the minima of m − 1
support functions. Using the fact that Z is a valuation and Z = 0 on H (Sn−1), from the
inductive hypothesis and Lemma 2.2.18 we get

Z

(
m∧
i=1

hKi

)
= Z(hKm) + Z

(
m−1∧
i=1

hKi

)
− Z

(
hKm ∨

m−1∧
i=1

hKi

)

= −Z

(
m−1∧
i=1

(hKm ∨ hKi)

)
= −Z

(
m−1∧
i=1

hconv(Km∪Ki)

)
= 0,

where the last equality follows again from the inductive hypothesis. Then Z = 0 on Ĥ (Sn−1).
From Lemma 3.1.1 we obtain that Z = 0 on L (Sn−1) too.

Let now f ∈ Lip(Sn−1). From Proposition 3.0.2, there exists a sequence {fi} ⊆ L (Sn−1)
such that fi −→

τ
f . Since Z is continuous,

Z(f) = lim
i→∞

Z(fi) = 0,

hence the conclusion.

3.5 Topology on Val
(
Lip(Sn−1)

)
As a side note, we show that what we have proved so far can also be used to equip the space

Val
(
Lip(Sn−1)

)
of continuous and rotation invariant valuations on Lip(Sn−1) with a distance d,

making it a metric space.
Let Q = [−1, 1]n. For N ∈ N, consider the partition QN of Q made up of n-cubes whose

edges are parallel to the coordinate axes and have length 1
N , as done in the proof of Lemma

3.2.1. Starting from QN , the same procedure used in the aforementioned lemma allows us to
build a partition PN = {Ci}i∈I of Rn into closed convex cones with pairwise disjoint interiors.

Define now, for N ∈ N,

LN ={f ∈ L (Sn−1) : f |Ci is linear for every cone Ci ∈ PN ,

‖f‖∞ ≤ N and ‖∇sf‖ ≤ N a.e. in Sn−1} ⊆ Lip(Sn−1),

and let
JV KN = sup {|V (f)| : f ∈ LN} . (3.5.1)

We will prove that (3.5.1) is a well-posed definition, that is, JV KN <∞ for every V ∈ Val
(
Lip(Sn−1)

)
.

We are going to need a topological result first.

Lemma 3.5.1. For every N ∈ N, LN is sequentially compact with respect to the topology τ .

Proof. Fix N ∈ N. Let {fi} ⊆ LN . We look for a subsequence {fij} ⊆ {fi} and a function
f ∈ LN such that fij −→

τ
f as j →∞.
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Consider the set X = {v1, . . . , vm} of all the vertices of the (n− 1)-simplices contained in ∂Q
used to build PN , that is, the vi’s are the vertices of the ∆j ’s given by ∆j = ∂Q∩Cj . Note that

X ⊆ ∂Q ⊆ B√n(0) = : B.

We extend 1-homogeneously the functions fi from Sn−1 to Rn, as in (2.2.10), and we still use
the symbol fi to denote these extensions. For every x ∈ B we have

|fi(x)| = ‖x‖ ·
∣∣∣∣fi( x

‖x‖

)∣∣∣∣ ≤ √nN,
being {fi} ⊆ LN . This means that

{fi(x)}i∈N ⊆
[
−
√
nN,
√
nN
]
, (3.5.2)

for every fixed x ∈ B.
Choose x = v1; since the interval [−

√
nN,
√
nN ] is compact, there is a subsequence

{fi1j (v1)}j∈N ⊆ {fi(v1)}i∈N

such that fi1j (v1)→ `1 ∈ R, as j →∞. It follows from (3.5.2) that

{fi1j (x)}j∈N ⊆
[
−
√
nN,
√
nN
]
,

for every x ∈ B. Take now x = v2. Again, there exists

{fi2j (v2)}j∈N ⊆ {fi1j (v2)}j∈N

such that fi2j (v2) → `2 ∈ R, as j → ∞. The sequence {fi2j}j∈N also satisfies fi2j (v1) → `1, as

j →∞. Iterating this process, we build a sequence

{fij}j∈N : = {fimj }j∈N ⊆ {fi}i∈N

such that
fij (vk)→ `k

as j →∞, for every k = 1, . . . ,m.
Let x ∈ Rn. Then x belongs to a cone Ck ∈ PN , hence we can write

x = λ1w1 + . . .+ λnwn,

for suitable λ1, . . . , λn ≥ 0, where {w1, . . . , wn} ⊆ {v1, . . . , vm} are the vertices of the (n − 1)-
simplex ∆k used to build Ck. Since fij ’s restriction to Ck is a linear function, we have

fij (x) = fij (λ1w1 + . . .+ λnwn) = λ1fij (w1) + . . .+ λnfij (wn),

which converges as j →∞. Therefore, f : Rn −→ R given by

f(x) = lim
j→∞

fij (x), x ∈ Rn,

is well-defined.
Fix a cone Ck in the partition PN . Since the fij ’s are linear on Ck, for every x ∈ Ck we can

write
fij (x) =

〈
x, zkij

〉
,
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for suitable zkij ’s. Note that zkij = ∇fij (x), for any x in the interior of Ck. Now, since the

gradient of a 1-homogeneous function is 0-homogeneous, from formula (2.2.12) and the fact that
{fij} ⊆ LN we get

‖zkij‖ = ‖∇fij (x)‖ =

∥∥∥∥∇fij ( x

‖x‖

)∥∥∥∥ =

√∥∥∥∥∇sfij ( x

‖x‖

)∥∥∥∥2

+ fij

(
x

‖x‖

)2

≤
√

2N. (3.5.3)

From the Bolzano-Weierstrass theorem, every subsequence
{
zkijh

}
h∈N ⊆

{
zkij
}
j∈N possesses a

further subsequence converging to some zk ∈ Rn. Therefore, the whole sequence {zkij} converges

to zk as j →∞, and∣∣〈x, zkij〉− 〈x, zk〉∣∣ =
∣∣〈x, zkij − zk〉∣∣ ≤ ‖x‖ · ∥∥zkij − zk∥∥ ≤ √n · ∥∥zkij − zk∥∥→ 0,

as j →∞, for every x ∈ B; this yields

f(x) = lim
j→∞

〈
x, zkij

〉
=
〈
x, zk

〉
,

for every x ∈ Ck ∩B. By 1-homogeneity of f , this actually holds for every x ∈ Ck. Because Ck
was arbitrary, we have proved that, in particular, f ∈ L (Sn−1) with corresponding partition PN .

Since {fij} ⊆ LN , the sequence {fij} is uniformly bounded. It is also equicontinuous, as we
are about to prove: for every x, y ∈ Rn, consider the segment [x, y] = {(1− t)x+ ty : t ∈ [0, 1]}
connecting x and y and call x = x0, x1, . . . , xs−1, xs = y the points in [x, y] such that the segment
[xk−1, xk] is wholly contained in some cone Chk , for every k = 1, . . . , s. Note that s = s(x, y)
depends on x and y, but it is bounded from above by the number |I| of cones in the partition
PN . We estimate

|fij (x)− fij (y)| =

∣∣∣∣∣
s∑

k=1

[
fij (xk)− fij (xk−1)

]∣∣∣∣∣ ≤
s∑

k=1

|fij (xk)− fij (xk−1)|

=

s∑
k=1

∣∣〈xk − xk−1, z
hk
ij

〉∣∣ ≤ s∑
k=1

‖xk − xk−1‖ ·
∥∥zhkij ∥∥

≤
√

2N ·
s∑

k=1

‖xk − xk−1‖ ≤
√

2N · s(x, y) · ‖x− y‖

≤
√

2N |I| · ‖x− y‖,

where we have used (3.5.3). This gives the equicontinuity.
From Theorem 2.2.10, there exists a subsequence of {fij}, which we still denote {fij}, con-

verging uniformly on the compact B. Since we already know that fij → f pointwise, this yields
‖fij − f‖∞ → 0.

We also know that, for every k ∈ I,

∇fij (x) = zkij → zk = ∇f(x)

as j → ∞, for a.e. x ∈ Ck. From the arbitrariness of Ck, we conclude that ∇fij → ∇f a.e. in
Rn, which in turn implies ∇sfij → ∇sf a.e. in Sn−1, thanks to formula (2.2.12). We also have
‖∇sfij‖ ≤ N a.e. in Sn−1, since {fij} ⊆ LN , thus fij −→

τ
f .

We have shown above that f ∈ L (Sn−1) with corresponding partition PN . Actually, f ∈ LN .
Indeed, from the fact that fij −→

τ
f we get

‖f‖∞ = lim
j→∞

‖fij‖∞ ≤ N,
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and moreover
‖∇sf‖ = lim

j→∞
‖∇sfij‖ ≤ N

a.e. in Sn−1.

To prove that J·KN is well-defined, we fix N ∈ N and for V ∈ Val
(
Lip(Sn−1)

)
we consider a

maximizing sequence for JV KN , i.e., a sequence {fi} ⊆ LN such that

JV KN = lim
i→∞

|V (fi)|.

Using Lemma 3.5.1, we can find a subsequence {fij} ⊆ {fi} and f ∈ LN such that fij −→
τ
f ,

hence V (fij )→ V (f), since V is continuous. This yields

JV KN = lim
j→∞

|V (fij )| = |V (f)| <∞,

thus J·KN is well-defined.
Note that J·KN is a seminorm for every N ∈ N, that is, it satisfies the following properties:

1. JV KN ≥ 0 for every V ∈ Val
(
Lip(Sn−1)

)
;

2. JλV KN = |λ| · JV KN , for every λ ∈ R and V ∈ Val
(
Lip(Sn−1)

)
;

3. JV −W KN ≤ JV − ZKN + JZ −W KN , for every V,W,Z ∈ Val
(
Lip(Sn−1)

)
.

Using a standard procedure, we can now define a metric

d : Val
(
Lip(Sn−1)

)
×Val

(
Lip(Sn−1)

)
−→ R

by setting

d(V,W ) =

∞∑
N=1

1

2N
JV −W KN

1 + JV −W KN
, (3.5.4)

for every V,W ∈ Val
(
Lip(Sn−1)

)
. We now prove that (3.5.4) actually defines a distance.

Clearly, if V = W , then d(V,W ) = 0. Vice versa, suppose d(V,W ) = 0. This yields
JV −W KN = 0, for every N ∈ N, which in turn implies

V (f) = W (f), ∀f ∈
⋃
N∈N

LN . (3.5.5)

By rearranging a bit the proof of Lemma 3.2.1, we can show that every function in C1(Sn−1)
can be τ -approximated by a sequence in

⋃
N∈N LN . Lemma 3.3.1 then implies the τ -density of⋃

N∈N LN in Lip(Sn−1), by the same argument used in the proof of Proposition 3.0.2. Since V
and W are continuous, it follows from (3.5.5) that V = W on the whole space Lip(Sn−1).

The symmetry of d is an immediate consequence of the definition (3.5.4), and the triangular
inequality follows from the triangular inequality of J·KN and from the fact that the function
ψ : R+ −→ R defined by ψ(x) = x

1+x is increasing and subadditive: in fact, for every V,W,Z ∈
Val

(
Lip(Sn−1)

)
we have

d(V,Z) + d(Z,W ) =

∞∑
N=1

1

2N

[
JV − ZKN

1 + JV − ZKN
+

JZ −W KN
1 + JZ −W KN

]

≥
∞∑
N=1

1

2N
JV − ZKN + JZ −W KN

1 + JV − ZKN + JZ −W KN

≥
∞∑
N=1

1

2N
JV −W KN

1 + JV −W KN
= d(V,W ).



Chapter 4

Dot product invariant and

polynomial valuations

In this chapter we will prove a McMullen-type decomposition result for continuous and dot
product invariant valuations on Lip(Sn−1). We will also show that there are no non-trivial k-
homogeneous, continuous, rotation invariant and dot product invariant valuations on Lip(Sn−1),
for any 3 ≤ k ≤ n. Thanks to these results, we will be able to prove theorems 1.1.2 and 1.1.3 in
sections 4.3 and 4.4 respectively.

4.1 The homogeneous decomposition

This section is devoted to proving the following homogeneous decomposition formula for
continuous and dot product invariant valuations on Lip(Sn−1).

Theorem 4.1.1. Let V : Lip(Sn−1) −→ R be a continuous and dot product invariant valuation.
Then there exist continuous and dot product invariant valuations Z0, . . . , Zn : Lip(Sn−1) −→ R
such that Zi is i-homogeneous, for i = 0, . . . , n, and

V (λf) =

n∑
i=0

λiZi(f),

for every f ∈ Lip(Sn−1) and λ > 0.
Moreover, if V is rotation invariant, the Zi’s are rotation invariant too.

Proof. Let V : Lip(Sn−1) −→ R be a continuous and dot product invariant valuation. Consider
the map ϕ : Kn −→ R defined by ϕ(K) = V (hK), for K ∈ Kn; because of Lemma 2.2.20,
this is a valuation on Kn which is translation invariant and continuous with respect to the
Hausdorff metric. From Theorem 2.2.1 we obtain continuous and translation invariant valuations
ϕ0, . . . , ϕn : Kn −→ R such that each ϕi is i-homogeneous and (2.2.1) holds.

Define now Zi : H (Sn−1) −→ R, i = 0, . . . , n, by setting Zi(hK) = ϕi(K), for hK ∈
H (Sn−1). Reading McMullen’s formula (2.2.1) in the support functions’ setting, we have that
for every hK ∈H (Sn−1) and λ > 0

V (λhK) = V (hλK) = ϕ(λK) =

n∑
i=0

λiϕi(K) =

n∑
i=0

λiZi(hK). (4.1.1)

39
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This is the desired decomposition formula stated for support functions; we would now like to
extend it to all Lipschitz functions f ∈ Lip(Sn−1). To do that, we must first extend each Zi to
Lip(Sn−1).

We write (4.1.1) for an arbitrary hK ∈H (Sn−1) and for λ = k = 1, . . . , n+ 1:

V (khK) =

n∑
i=0

kiZi(hK). (4.1.2)

We see it as a system of n + 1 equations in the n + 1 unknowns Z0(hK), Z1(hK), . . . , Zn(hK).
The matrix associated with this system is

M =


1 1 1 · · · 1

1 2 22 · · · 2n

...
...

...
...

1 n n2 · · · nn

1 n+ 1 (n+ 1)2 · · · (n+ 1)n

 ,

which is a Vandermonde matrix, hence

detM =
∏

1≤i<j≤n+1

(j − i) 6= 0,

and then M is nonsingular. Therefore, the system (4.1.2) is invertible and we can find coefficients
aij , i = 0, . . . , n, j = 1, . . . , n+ 1, such that

Zi(hK) =

n+1∑
j=1

aijV (jhK);

note that the coefficients are independent of hK . This allows us to extend the Zi’s to Lip(Sn−1):
for i = 0, . . . , n we set

Zi(f) : =

n+1∑
j=1

aijV (jf), (4.1.3)

for every f ∈ Lip(Sn−1).
We observe that, for every j ∈ {1, . . . , n+1}, the function defined on Lip(Sn−1) by f 7→ V (jf)

inherits all the properties of V , i.e., it is a continuous and dot product invariant valuation on
Lip(Sn−1) as well, hence the Zi’s defined by (4.1.3) are continuous and dot product invariant
valuations too. As for the i-homogeneity of Zi, fix i ∈ {0, . . . , n} and λ > 0. The continuous
valuations Z1

i , Z
2
i : Lip(Sn−1) −→ R defined by

Z1
i (f) = Zi(λf), Z2

i (f) = λiZi(f), f ∈ Lip(Sn−1),

coincide on H (Sn−1), hence they coincide on Lip(Sn−1), by Proposition 3.0.1. This proves that
every Zi is i-homogeneous.

Consider now the continuous valuation

∼
V =

n∑
i=0

Zi.

By (4.1.1), V and
∼
V coincide on H (Sn−1); hence, by Proposition 3.0.1, V =

∼
V on Lip(Sn−1).

Finally, if we go back to (4.1.3), we deduce that the Zi’s are rotation invariant if V is.
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4.2 Homogeneity and valuations on Lip(Sn−1)

The proof of Theorem 1.1.2 requires a preliminary study of continuous, rotation invariant
and dot product invariant valuations on Lip(Sn−1) which are k-homogeneous, for 3 ≤ k ≤ n.
The following result states that these are all trivial.

Proposition 4.2.1. Let n ≥ 3 and 3 ≤ k ≤ n. Let V : Lip(Sn−1) −→ R be a continuous, rotation
invariant, dot product invariant and k-homogeneous valuation. Then V ≡ 0 on Lip(Sn−1).

Remark 4.2.2. This proposition also shows that a significant number of valuations defined
on the space of support functions H (Sn−1), namely the intrinsic volumes hK 7→ Vk(K) with
homogeneity degree greater or equal than three, cannot be extended from H (Sn−1) to the wider set
Lip(Sn−1). In particular, the volume functional cannot be extended to Lip(Sn−1), in dimension
three or higher.

To ease the reading, we have stated some of the steps of the proof of Proposition 4.2.1 as
lemmas. Their proofs are provided along the way.

Proof. Let n, k and V be as in the hypothesis. Define ϕ : Kn −→ R by setting

ϕ(K) = V (hK),

for K ∈ Kn. The functional ϕ is a k-homogeneous, translation and rotation invariant valua-
tion which is continuous with respect to the Hausdorff metric, thanks to Lemma 2.2.20. From
Theorem 2.2.2, we have that there exists a constant c ∈ R such that

V (hK) = ϕ(K) = cVk(K),

for every K ∈ Kn.
If c = 0, then V = 0 on H (Sn−1), and from Proposition 3.0.1 we have the assertion.
Suppose now c 6= 0. We will show that this leads to a contradiction. Since the functional 1

cV
retains all of V ’s properties, up to dividing by c we can assume that

V (hK) = Vk(K), (4.2.1)

for every K ∈ Kn.
For x ∈ Rn we write x = (ξ, η), with ξ ∈ Rk and η ∈ Rn−k. Fix ξ ∈ Sk−1 and define

fξ : Rn −→ R by setting

fξ(x) = fξ(ξ, η) =
∥∥ξ − 〈ξ, ξ〉ξ∥∥ ,

for x ∈ Rn. To simplify the notation, we will be using the same symbol ‖ · ‖ for all the Euclidean
norms throughout the proof, independently of the number of components of the vectors we are
applying them to (and the same goes for the standard dot product 〈·, ·〉). Consider the (k − 1)-
dimensional disk in Rn defined by

Dξ =
{

(ξ, 0) ∈ Rk × Rn−k : 〈ξ, ξ〉 = 0, ‖ξ‖ ≤ 1
}
.

The map fξ is the support function of Dξ. In fact, up to a change of coordinate system, we may

assume ξ = (1, 0, . . . , 0); from the definition of support function, for every (ξ, η) ∈ Rn we have

hDξ(ξ, η) = max
(ξ′,0)∈Dξ

〈ξ, ξ′〉 = max
(ξ′,0)∈Dξ

〈(ξ2, . . . , ξk), (ξ′2, . . . , ξ
′
k)〉 = ‖(ξ2, . . . , ξk)‖ = fξ(ξ, η).
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Define now gξ : Rn −→ R by setting

gξ(x) = gξ(ξ, η) = 〈ξ, ξ〉,

for x ∈ Rn; gξ is the support function of the singleton {(ξ, 0)}.
For λ ≥ 1, consider ψλ, ξ : Sn−1 −→ R defined by

ψλ, ξ = (λfξ − gξ) ∧O,

where O denotes the function which is identically zero on Sn−1. Note that ψλ, ξ = hλDξ−(ξ,0)∧O ∈
Lip(Sn−1), being a minimum of Lipschitz functions. Therefore, V can be evaluated at ψλ, ξ, and
we do that in the following lemma.

Lemma 4.2.3. We have

V (ψλ, ξ) = − ω̃k−1

k
λk−1,

where ω̃k−1 denotes the Lebesgue measure of the unit ball of Rk−1.

Proof. From the valuation property we get

V (ψλ, ξ) = V ((λfξ − gξ) ∧O) = V (λfξ − gξ)− V ((λfξ − gξ) ∨O) (4.2.2)

since V (O) = 0, because of the homogeneity.
As we have already pointed out, λfξ − gξ = hλDξ−(ξ,0), and remembering (4.2.1) and the

properties of the intrinsic volumes we obtain

V (λfξ − gξ) = Vk(λDξ − (ξ, 0)) = Vk(λDξ) = λkVk(Dξ) = 0, (4.2.3)

where the last equality follows from the fact that Dξ has dimension k − 1.

Now, (λfξ−gξ)∨O is the support function of conv
(

(λDξ − (ξ, 0)) ∪ {0}
)

(see Lemma 2.2.18),

which is a cone with vertex at the origin, base λDξ − (ξ, 0) and height 1, since
∥∥ξ∥∥ = 1. From

(4.2.2), (4.2.3) and (4.2.1) we get

V (ψλ, ξ) = −V ((λfξ − gξ) ∨O) = −Vk
(

conv
(

(λDξ − (ξ, 0)) ∪ {0}
))

= − ω̃k−1

k
λk−1.

The next lemma concerns the support set supp(ψλ, ξ) of the function ψλ, ξ.

Lemma 4.2.4. For every (ξ, 0) ∈ supp(ψλ, ξ) we have

∥∥ξ − ξ∥∥ < √2

λ
.

Proof. Like before, we assume ξ = (1, 0, . . . , 0). Thus, for every (ξ, η) ∈ Sn−1,

ψλ, ξ(ξ, η) =

(
λ
√
ξ2
2 + . . .+ ξ2

k − ξ1
)
∧ 0.

If (ξ, 0) ∈ supp(ψλ, ξ), we have ‖ξ‖ = 1 and λ
√
ξ2
2 + . . .+ ξ2

k − ξ1 ≤ 0, hence√
ξ2
2 + . . .+ ξ2

k ≤
ξ1
λ
. (4.2.4)
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In particular, this implies ξ1 ≥ 0.
We write ξ = (ξ1, ξ

′), with ξ′ ∈ Rk−1. Since ‖ξ‖ = 1 and ξ1 ≥ 0, we have ξ1 =
√

1− ‖ξ′‖2.
Using this last equality in (4.2.4) we obtain

‖ξ′‖ ≤
√

1− ‖ξ′‖2
λ

,

which in turn gives

‖ξ′‖2 ≤ 1

1 + λ2
<

1

λ2
.

We can also estimate

|ξ1 − 1| = 1− ξ1 = 1−
√

1− ‖ξ′‖2 =
‖ξ′‖2

1 +
√

1− ‖ξ′‖2
≤ ‖ξ′‖2 < 1

λ2
.

From these inequalities we get∥∥ξ − ξ∥∥2
= ‖ξ − (1, 0, . . . , 0)‖2 = |ξ1 − 1|2 + ‖ξ′‖2 < 1

λ4
+

1

λ2
≤ 2

λ2
,

since λ ≥ 1. The assertion follows.

This result yields the following one.

Lemma 4.2.5. For every x1, x2 ∈ Sk−1 such that ‖x1 − x2‖ ≥ 4
λ we have

ψλ, x1 · ψλ, x2 = O.

Proof. Take x1, x2 as in the hypothesis. Suppose the result to be false. Then there is a point

(
∼
ξ ,
∼
η) ∈ Sn−1 such that

ψλ, x1
(
∼
ξ ,
∼
η) · ψλ, x2

(
∼
ξ ,
∼
η) 6= 0.

Note that ψλ, x1
(0,
∼
η) = ψλ, x2

(0,
∼
η) = 0, hence

∼
ξ 6= 0.

For i = 1, 2, the function

ψλ, xi(ξ, η) = [λ‖ξ − 〈ξ, xi〉xi‖ − 〈ξ, xi〉] ∧ 0

is 1-homogeneous with respect to ξ, and since ψλ, xi(
∼
ξ ,
∼
η) 6= 0, we also have ψλ, xi(ξ̂,

∼
η) 6= 0,

where ξ̂ =
∼
ξ /
∥∥∼ξ ∥∥. This means that (ξ̂,

∼
η) ∈ supp(ψλ, xi), hence (ξ̂, 0) ∈ supp(ψλ, xi) too (since

ψλ, xi does not depend on η), and from the previous lemma we have

∥∥ξ̂ − xi∥∥ < √2

λ
,

for i = 1, 2. Therefore,

‖x1 − x2‖ ≤
∥∥x1 − ξ̂

∥∥+
∥∥ξ̂ − x2

∥∥ < 2
√

2

λ
,

which contradicts the hypothesis.

Iterating, the previous result can be extended to any finite number of points.
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Corollary 4.2.6. Let N ∈ N and x1, . . . , xN ∈ Sk−1 be such that ‖xi−xj‖ ≥ 4
λ , for every i 6= j.

Then
ψλ, xi · ψλ, xj = O,

for every i 6= j.

We will need a couple more results. The first one concerns the behaviour of a general valuation
on non-positive orthogonal functions.

Lemma 4.2.7. Let N ∈ N and f1, . . . , fN ∈ Lip(Sn−1). If fi ≤ 0 for every i = 1, . . . , N and
fi · fj = O for i 6= j, then

V

(
N∧
i=1

fi

)
=

N∑
i=1

V (fi).

Proof. The hypotheses imply that fj1∨. . .∨fjm = O, for everym ∈ {1, . . . , N} and {j1, . . . , jm} ⊆
{1, . . . , N}. The conclusion follows from Proposition 2.1.3.

The next well-known lemma allows us to find sufficiently many points on the unit sphere
which are not too close to each other.

Lemma 4.2.8. Let N ∈ N, N ≥ 2. For every m ∈ N there are Nm = mN−1 points x1, . . . , xNm ∈
SN−1 such that

‖xi − xj‖ ≥
1√
Nm

,

for i 6= j.

Proof. Fix N ∈ N, N ≥ 2, and take m ∈ N. For a = (a1, . . . , aN−1), with a1, . . . , aN−1 ∈
{0, 1, . . . ,m− 1}, we define

x′a =
1√
N

(a1

m
, . . . ,

aN−1

m

)
∈ RN−1.

These are mN−1 points, and they satisfy

‖x′a − x′b‖ ≥
1√
Nm

,

for every a 6= b. Moreover, ‖x′a‖ < 1 for every a.
Consider now

xa = (x′a,
√

1− ‖x′a‖2) ∈ SN−1,

for a = (a1, . . . , aN−1) with a1, . . . , aN−1 ∈ {0, 1, . . . ,m − 1}. These are mN−1 points on the
sphere, and we have

‖xa − xb‖ ≥ ‖x′a − x′b‖ ≥
1√
Nm

,

for every a 6= b.

We will now use these results to build a sequence of Lipschitz functions which will yield the
contradiction we are looking for. Choose N = k in the last lemma and take m ∈ N. Then we
have km = mk−1 points x1, . . . , xkm ∈ Sk−1 such that

‖xi − xj‖ ≥
1√
km

,
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for every i 6= j. Let
λm = 4

√
km;

note that λm ≥ 1. Since 2k−2
k ≥ 4

3 > 1, we can pick a number

1 < p <
2k − 2

k

and define the function Ψm : Sn−1 −→ R,

Ψm =
1

mp

km∧
i=1

ψλm, xi .

From the k-homogeneity of V , Lemma 4.2.7 (which can be applied because the fact that
‖xi − xj‖ ≥ 1√

km
= 4

λm
allows us to use Corollary 4.2.6) and Lemma 4.2.3, we get

V (Ψm) =
1

mkp
V

(
km∧
i=1

ψλm, xi

)
=

1

mkp

km∑
i=1

V (ψλm, xi) = − 1

mkp

ω̃k−1

k
λk−1
m km = −ckm2k−2−kp,

where
ck = 4k−1ω̃k−1k

k−3
2 > 0.

Given how p was chosen, 2k − 2− kp > 0, hence

V (Ψm)→ −∞ (4.2.5)

as m→∞.
We would now like to prove that Ψm −→

τ
O, as m → ∞. For every i = 1, . . . , km and

(ξ, η) ∈ Sn−1, from the triangular and Cauchy-Schwarz inequalities we have

|ψλm, xi(ξ, η)| =
∣∣[λmfxi(ξ, η)− gxi(ξ, η)] ∧ 0

∣∣ ≤ ∣∣λmfxi(ξ, η)− gxi(ξ, η)
∣∣

=
∣∣λm‖ξ − 〈ξ, xi〉xi‖ − 〈ξ, xi〉∣∣ ≤ λm (‖ξ‖+ ‖ξ‖ · ‖xi‖2

)
+

+ ‖ξ‖ · ‖xi‖ = (2λm + 1)‖ξ‖ ≤ 2λm + 1,

since xi ∈ Sk−1. This yields ‖ψλm, xi‖∞ ≤ 2λm + 1, for every i = 1, . . . , km, and consequently

‖Ψm‖∞ ≤
2λm + 1

mp
=

8
√
k

mp−1
+

1

mp
.

Since p > 1, this implies that Ψm → O uniformly on Sn−1 as m→∞.
We now look for a uniform bound on L(Ψm), the Lipschitz constant of Ψm. For i ∈

{1, . . . , km}, consider
∼
ψλm, xi = λmfxi − gxi . For (ξ, η), (ξ′, η′) ∈ Sn−1,∣∣∣∼ψλm, xi (ξ, η)− ∼ψλm, xi (ξ′, η′)

∣∣∣ ≤ λm|fxi(ξ, η)− fxi(ξ′, η′)|+ |gxi(ξ, η)− gxi(ξ′, η′)|

= λm
∣∣‖ξ − 〈ξ, xi〉xi‖ − ‖ξ′ − 〈ξ′, xi〉xi‖∣∣+ |〈ξ − ξ′, xi〉|

≤ λm‖ξ − ξ′ − 〈ξ − ξ′, xi〉xi‖+ |〈ξ − ξ′, xi〉|
≤ λm(‖ξ − ξ′‖+ ‖ξ − ξ′‖ · ‖xi‖2) + ‖ξ − ξ′‖ · ‖xi‖
= (2λm + 1)‖ξ − ξ′‖
≤ (2λm + 1)‖(ξ, η)− (ξ′, η′)‖.
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Therefore, recalling that the Lipschitz constant of a minimum of finitely many functions is at
most the maximum of the Lipschitz constants, we get

L(ψλm, xi) ≤ L(
∼
ψλm, xi) ≤ 2λm + 1

and

L(Ψm) = L

(
1

mp

km∧
i=1

ψλm,xi

)
≤ 1

mp
max{L(ψλm,xi) : i = 1, . . . , km} ≤

8
√
km+ 1

mp
≤ 8
√
k + 1

mp−1
.

This, together with (2.1.2), implies that

‖∇sΨm(x)‖ ≤ 8
√
k + 1

mp−1
,

for every m ∈ N and a.e. x ∈ Sn−1. The last inequality both tells us that ∇sΨm → 0 a.e. in
Sn−1, as m→∞, and that ‖∇sΨm‖ is uniformly bounded by

C = 8
√
k + 1.

Therefore, Ψm −→
τ

O as m → ∞. Since V is continuous, this gives V (Ψm) → V (O) = 0,

which is in contradiction with (4.2.5). This concludes the proof of Proposition 4.2.1.

4.3 Dot product invariant valuations on Lip(Sn−1)

We are finally ready to prove Theorem 1.1.2. In doing so, we will provide a general recipe to
build continuous and rotation invariant valuations on Lip(Sn−1); we present this as a stand-alone
result.

Lemma 4.3.1. Let K : R × R+ −→ R be a continuous function. Then the functional V :
Lip(Sn−1) −→ R defined by

V (f) =

∫
Sn−1

K(f(x), ‖∇sf(x)‖)dHn−1(x),

for f ∈ Lip(Sn−1), is a continuous and rotation invariant valuation.

Proof. First note that V is well-defined. Indeed, by Weierstrass’ theorem and (2.1.2) we have
that, for every f ∈ Lip(Sn−1), the function Sn−1 3 x 7→ (f(x), ‖∇sf(x)‖) takes values in a
compact set, hence

Sn−1 3 x 7→ K(f(x), ‖∇sf(x)‖)

is bounded in absolute value by a constant Cf > 0 depending on f , using Weierstrass’ theorem
again. Therefore,∫

Sn−1

∣∣K(f(x), ‖∇sf(x)‖)
∣∣dHn−1(x) ≤

∫
Sn−1

CfdHn−1(x) = Cf <∞,

and V is well-defined.
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To prove that V is a valuation, we take f, g ∈ Lip(Sn−1) and compute

V (f ∨ g) + V (f ∧ g) =

∫
Sn−1

[
K(f ∨ g, ‖∇s(f ∨ g)‖) +K(f ∧ g, ‖∇s(f ∧ g)‖)

]
dHn−1

=

∫
F

[
K(f, ‖∇s(f ∨ g)‖) +K(g, ‖∇s(f ∧ g)‖)

]
dHn−1+

+

∫
G

[
K(g, ‖∇s(f ∨ g)‖) +K(f, ‖∇s(f ∧ g)‖)

]
dHn−1+

+

∫
E

[
K(f ∨ g, ‖∇s(f ∨ g)‖) +K(f ∧ g, ‖∇s(f ∧ g)‖)

]
dHn−1,

(4.3.1)

where

F =
{
x ∈ Sn−1 : f(x) > g(x)

}
, G =

{
x ∈ Sn−1 : f(x) < g(x)

}
, E =

{
x ∈ Sn−1 : f(x) = g(x)

}
.

Let x ∈ Sn−1 be such that f , g, f ∨ g and f ∧ g are differentiable at x. Then

∇s(f ∨ g)(x) =

{
∇sf(x) if x ∈ F,
∇sg(x) if x ∈ G,

and

∇s(f ∧ g)(x) =

{
∇sg(x) if x ∈ F,
∇sf(x) if x ∈ G.

On the other hand, if f(x) = g(x) it is not too hard to prove (see also [31]) that

∇sf(x) = ∇sg(x) = ∇s(f ∨ g)(x) = ∇s(f ∧ g)(x).

Hence we can split and reassemble the integrals in (4.3.1) so that

V (f ∨ g) + V (f ∧ g) =

∫
Sn−1

K(f, ‖∇sf‖)dHn−1 +

∫
Sn−1

K(g, ‖∇sg‖)dHn−1 = V (f) + V (g).

We now prove that V is continuous. Let {fi} ⊆ Lip(Sn−1) be such that fi −→
τ
f ∈ Lip(Sn−1).

Then ‖fi − f‖∞ → 0, hence there exists I ∈ N such that ‖fi‖∞ < ‖f‖∞ + 1 for every i > I. Set

M = max{‖f1‖∞, . . . , ‖fI‖∞, ‖f‖∞ + 1}.

Because of the τ -convergence, there is also a C > 0 such that

(fi(x), ‖∇sfi(x)‖) ∈ B : = [−M,M ]× [0, C],

for every i ∈ N and a.e. x ∈ Sn−1. Let D = maxB |K|, thus K (fi, ‖∇sfi‖) = K|B (fi, ‖∇sfi‖)
is dominated by the constant function D, which is integrable on Sn−1 since the sphere has finite
measure. From the dominated convergence theorem we get

V (f) =

∫
Sn−1

K(f, ‖∇sf‖)dHn−1 = lim
i→∞

∫
Sn−1

K(fi, ‖∇sfi‖)dHn−1 = lim
i→∞

V (fi).

For what concerns rotational invariance, we have that for every f ∈ Lip(Sn−1) and σ ∈ O(n),
if f is extended 1-homogeneously to Rn,

‖∇s(f ◦ σ)(x)‖ =
√
‖∇(f ◦ σ)(x)‖2 − [(f ◦ σ)(x)]2 =

√∥∥ (Dσ(x))
T ∇f(σ(x))

∥∥2 − f(σ(x))2

=
√
‖∇f(σ(x))‖2 − f(σ(x))2 = ‖∇sf(σ(x))‖,
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for a.e. x ∈ Sn−1, where we have used (2.2.12) and the fact that the matrix (Dσ(x))T , being
orthogonal, preserves the norm. Therefore,

V (f ◦ σ) =

∫
Sn−1

K(f(σ(x)), ‖∇s(f ◦ σ)(x)‖)dHn−1(x)

=

∫
Sn−1

K(f(σ(x)), ‖∇sf(σ(x))‖)dHn−1(x) = V (f),

where we have applied the change of variables y = σ(x).

We now turn to the actual proof of our characterization result for dot product invariant
valuations.

Proof of Theorem 1.1.2. Assume the functional V : Lip(Sn−1) −→ R to be defined by (1.1.1) for
some constants c0, c1, c2 ∈ R. The kernel K : R× R+ −→ R given by

K(x, y) = c0 + c1x+ c2[(n− 1)x2 − y2],

for (x, y) ∈ R×R+, is a C∞ function, hence V is a continuous and rotation invariant valuation,
by the previous lemma.

It remains to be seen that V is dot product invariant. This can be proved with a direct
computation, but it is easier to show it via a trick which also gives us the chance to derive a
new integral representation for the intrinsic volume V2, something that will be useful during the
second part of the proof too. From (2.2.4), for every K ∈ C2

+ we get

V2(K) =
1

2ωn−2

∫
Sn−1

[
(n− 1)h2

K + hKdivs (∇shK)
]
dHn−1

=
1

2ωn−2

∫
Sn−1

[
(n− 1)h2

K − ‖∇shK‖2
]
dHn−1, (4.3.2)

where the last equality follows from the divergence theorem (here divs denotes the spherical
divergence). Therefore, (2.2.2) and (2.2.3) imply

V (hK) = c0V0(K) + c1ωn−1V1(K) + 2c2ωn−2V2(K), (4.3.3)

for all K ∈ C2
+.

For x ∈ Rn, consider the functional Vx : Lip(Sn−1) −→ R defined by Vx(f) = V (f + 〈·, x〉),
for f ∈ Lip(Sn−1). This is still a continuous valuation on Lip(Sn−1) and, because of (4.3.3), it
satisfies

Vx(hK) = V (hK + 〈·, x〉) = V (hK+x) = c0V0(K + x) + c1ωn−1V1(K + x) +

+2c2ωn−2V2(K + x) = c0V0(K) + c1ωn−1V1(K) + 2c2ωn−2V2(K) = V (hK),

for every K ∈ C2
+, since the intrinsic volumes are translation invariant.

Now, the integral in (2.2.4) just makes sense for support functions of C2
+ bodies (since support

functions of C2
+ bodies are of class C2), but its rewritten form (4.3.2) is well-defined for every

support function hK ∈H (Sn−1). Since C2
+ bodies are dense in Kn with respect to the Hausdorff

metric, for an arbitrary hK ∈H (Sn−1) we can find a sequence {hKi} ⊆H (Sn−1) with {Ki} ⊆
C2

+ such that ‖hKi − hK‖∞ → 0, thanks to (2.1.7). Then we also have hKi −→
τ
hK (see the proof

of Lemma 2.2.19), and since Vx and V are continuous with respect to τ we get Vx(hK) = V (hK).
From Proposition 3.0.1 it follows that they coincide on the whole space Lip(Sn−1), hence V is
dot product invariant.
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Vice versa, let V : Lip(Sn−1) −→ R be a continuous, rotation invariant and dot product
invariant valuation. As we previously did, let us consider ϕ : Kn −→ R defined by

ϕ(K) = V (hK),

for K ∈ Kn, which is a translation and rotation invariant valuation that is continuous with
respect to the Hausdorff metric, because of Lemma 2.2.20. From Theorem 2.2.2, there are real
constants c0, c1, . . . , cn such that

V (hK) = ϕ(K) =

n∑
i=0

ciVi(K), (4.3.4)

for every K ∈ Kn.

From Theorem 4.1.1, there exist continuous, rotation invariant and dot product invariant
valuations

Z0, Z1, . . . , Zn : Lip(Sn−1) −→ R

such that Zi is i-homogeneous, for i = 0, 1, . . . , n, and

V (λf) =

n∑
i=0

λiZi(f),

for every λ > 0 and f ∈ Lip(Sn−1). Applying Proposition 4.2.1 to Zi, for i = 3, . . . , n, we get

V (λf) = Z0(f) + λZ1(f) + λ2Z2(f), (4.3.5)

for every λ > 0 and f ∈ Lip(Sn−1).

Combining (4.3.4) and (4.3.5) we have that, for every λ > 0 and K ∈ Kn,

Z0(hK) + λZ1(hK) + λ2Z2(hK) = V (λhK) = V (hλK) =

n∑
i=0

ciVi(λK) =

n∑
i=0

ciλ
iVi(K),

where the last equality follows from the i-homogeneity of the ith intrinsic volume. This implies
Z0(hK) = c0V0(K), Z1(hK) = c1V1(K), Z2(hK) = c2V2(K) and c3 = . . . = cn = 0. Therefore,
taking λ = 1, f = hK in (4.3.5) and remembering (2.2.2), (2.2.3), (4.3.2), we find

V (hK) = c0 + c1

∫
Sn−1

hKdHn−1 + c2

∫
Sn−1

[
(n− 1)h2

K − ‖∇shK‖2
]
dHn−1,

for every K ∈ C2
+, where we have renamed c1 : = c1/ωn−1, c2 : = c2/2ωn−2. From the first part

of the proof, the functional
∼
V : Lip(Sn−1) −→ R defined by

∼
V (f) = c0 + c1

∫
Sn−1

fdHn−1 + c2

∫
Sn−1

[
(n− 1)f2 − ‖∇sf‖2

]
dHn−1,

for f ∈ Lip(Sn−1), is a continuous valuation like V , and they coincide on the set of support
functions of C2

+ bodies, hence on H (Sn−1), by density. We conclude from Proposition 3.0.1.
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4.4 Polynomial valuations on Lip(S1)

This section is devoted to the proof of Theorem 1.1.3.

Proof of Theorem 1.1.3. Let V be defined by (1.1.2). The fact that V is a continuous and
rotation invariant valuation follows from Lemma 4.3.1 (with kernel K(x, y) = p(x, y2)). As for
the polynomiality, by (2.2.12) and (2.2.7) we have that

V (hK) =

∫
S1
p
(
hK(x), ‖∇hK(x)‖2 − hK(x)2

)
dH1(x) =

∫
S1
q
(
hK(x), ‖∇hK(x)‖2

)
dS0(K;x),

for a suitable polynomial q and for all K ∈ K2. Now, if K ∈ K2 is strictly convex, from (2.2.11),
Proposition 2.2.14 and Lemma 2.2.6 we get

V (hK) =

∫
S1
q
(
〈x,∇hK(x)〉, ‖∇hK(x)‖2

)
dS0(K;x)

=

∫
S1
q
(
〈x, sK(x)〉, ‖sK(x)‖2

)
dS0(K;x)

=

∫
R2×S1

q
(
〈x, s〉, ‖s‖2

)
dΘ0(K; s, x)

=

∫
R2×S1

p0

(
‖s‖2, 〈s, x〉

)
dΘ0(K; s, x),

for a polynomial p0. By density of strictly convex bodies in K2, continuity of V with respect to
τ and Lemma 2.2.19, this extends to every K ∈ K2. The set function ϕ : K2 −→ R defined by
ϕ(K) = V (hK), for K ∈ K2, is a rotation invariant and polynomial valuation which is continuous
with respect to the Hausdorff metric, by Theorem 2.2.4. Therefore,

V (hK + 〈·, x〉) = V (hK+x) = ϕ(K + x) = pK(x)

is a polynomial in x ∈ R2, for every K ∈ K2. This proves that V is polynomial on H (S1), but
since, for every fixed x ∈ R2, the functional Vx : Lip(S1) −→ R defined by Vx(f) = V (f + 〈·, x〉)
is still a continuous valuation, we conclude from Proposition 3.0.1 that V = Vx on the whole
space Lip(S1), hence proving that V is polynomial.

Vice versa, let V : Lip(S1) −→ R be a continuous, rotation invariant and polynomial valua-
tion. Define ϕ : K2 −→ R by setting

ϕ(K) = V (hK),

for every K ∈ K2. Using Lemma 2.2.20 again, the map ϕ inherits all of V ’s properties, i.e., ϕ is
a rotation invariant and polynomial valuation which is continuous (with respect to the Hausdorff
metric). We can then apply Theorem 2.2.4 to ϕ to get two polynomials p0, p1 in two variables
such that (2.2.5) holds for every K ∈ K2.

Let us consider K ∈ K2 which is C2
+. Then K is also strictly convex, and from Lemma 2.2.6

and Proposition 2.2.14 we obtain

V (hK) = ϕ(K) =

1∑
i=0

∫
S1
pi
(
‖sK(x)‖2, 〈sK(x), x〉

)
dSi(K;x) =

=

1∑
i=0

∫
S1
pi
(
‖∇hK(x)‖2, 〈∇hK(x), x〉

)
dSi(K;x) =

=

1∑
i=0

∫
S1
pi
(
‖∇hK(x)‖2, hK(x)

)
dSi(K;x),

(4.4.1)
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where the last equality follows from the 1-homogeneity of hK and Euler’s formula (2.2.11).
It is now convenient to move the integrals from S1 to the interval (0, 2π]; to do that, consider

the map h : R −→ R defined by
h(t) = hK(cos t, sin t),

for every t ∈ R. Note that h is a 2π-periodic function.
Let us determine the connection between ∇hK and h′. For a.e. t ∈ (0, 2π],

(x(t), y(t)) : = ∇hK(cos t, sin t)

is the only point of ∂K such that the outer normal vector to ∂K at (x(t), y(t)) is (cos t, sin t),
because of Proposition 2.2.14. Applying once again Euler’s formula (2.2.11), we get

h(t) = 〈(x(t), y(t)), (cos t, sin t)〉 = x(t) cos t+ y(t) sin t, (4.4.2)

so that
h′(t) = x′(t) cos t− x(t) sin t+ y′(t) sin t+ y(t) cos t.

Since the tangent vector (x′(t), y′(t)) and the normal vector (cos t, sin t) to K at t are orthogonal,
this implies

h′(t) = −x(t) sin t+ y(t) cos t. (4.4.3)

Relations (4.4.2) and (4.4.3) yield the following equalities:{
h(t) cos t = x(t) cos2 t+ y(t) sin t cos t,

−h′(t) sin t = x(t) sin2 t− y(t) sin t cos t.

Adding the two equations, we get

x(t) = h(t) cos t− h′(t) sin t. (4.4.4)

Similarly, we have
y(t) = h(t) sin t+ h′(t) cos t. (4.4.5)

From (4.4.4) and (4.4.5) we finally obtain

‖∇hK(cos t, sin t)‖2 = x(t)2 + y(t)2 = h(t)2 + h′(t)2. (4.4.6)

Moreover, remembering the bidimensional formula for the Laplacian expressed in polar coor-
dinates and using (4.4.4), (4.4.5) we find

∆hK(cos t, sin t) = h′′(t), (4.4.7)

for a.e. t ∈ (0, 2π].
Using the definition of line integral and formulas (4.4.6), (2.2.7), (2.2.8), (4.4.7) in (4.4.1), we

get

V (hK) =

∫ 2π

0

p0(h(t)2 + h′(t)2, h(t))dH1(t) +

∫ 2π

0

p1(h(t)2 + h′(t)2, h(t))h′′(t)dH1(t),

up to moltiplicative constants which can be incorporated into the polynomials. Then there exists
a polynomial q0 such that

V (hK) =

∫ 2π

0

q0(h(t), h′(t)2)dH1(t) +

∫ 2π

0

p1(h(t)2 + h′(t)2, h(t))h′′(t)dH1(t). (4.4.8)
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If we write
p1(x, y) =

∑
i,j=0,...,m,
i+j≤m

aijx
iyj ,

with aij ∈ R for i, j = 0, . . . ,m, the second integral becomes∫ 2π

0

p1(h(t)2 + h′(t)2, h(t))h′′(t)dH1(t) =
∑

i,j=0,...,m,
i+j≤m

aij

∫ 2π

0

[
h(t)2 + h′(t)2

]i
h(t)jh′′(t)dH1(t)

=
∑

i,j=0,...,m,
i+j≤m

i∑
k=0

(
i

k

)
aijHijk, (4.4.9)

where we have set

Hijk : =

∫ 2π

0

h(t)2i−2k+jh′(t)2kh′′(t)dH1(t).

For fixed i, j ∈ {0, . . . ,m} such that i + j ≤ m and k ∈ {0, . . . , i}, we focus on the integral
Hijk. Since [

1

2k + 1
(h′)2k+1

]′
(t) = h′(t)2kh′′(t),

we can rewrite Hijk as

Hijk =

∫ 2π

0

h(t)2i−2k+j

[
1

2k + 1
h′(t)2k+1

]′
dH1(t).

Note that 2i− 2k + j ≥ 0, being k ≤ i and j ≥ 0.
If 2i− 2k + j = 0, then

Hijk =

∫ 2π

0

[
1

2k + 1
(h′)2k+1

]′
(t)dH1(t) =

(h′(2π))2k+1 − (h′(0))2k+1

2k + 1
= 0,

since h, hence h′, is 2π-periodic.
If 2i− 2k + j > 0, integrating by parts we obtain

Hijk =

[
1

2k + 1
h′(t)2k+1h(t)2i−2k+j

]2π

0

− 2i− 2k + j

2k + 1

∫ 2π

0

h(t)2i−2k+j−1h′(t)2(k+1)dH1(t)

= −2i− 2k + j

2k + 1

∫ 2π

0

h(t)2i−2k+j−1h′(t)2(k+1)dH1(t).

Therefore, from (4.4.9) we have that there exists a polynomial q1 such that∫ 2π

0

p1(h(t)2 + h′(t)2, h(t))h′′(t)dH1(t) =

∫ 2π

0

q1(h(t), h′(t)2)dH1(t),

hence (4.4.8) implies

V (hK) =

∫ 2π

0

p(h(t), h′(t)2)dH1(t),

where p = q0 + q1.
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Recalling (4.4.6) and (2.2.12), for a.e. t ∈ (0, 2π] we have

h(t)2 + h′(t)2 = ‖∇hK(cos t, sin t)‖2 = ‖∇shK(cos t, sin t)‖2 +

+[hK(cos t, sin t)]2 = ‖∇shK(cos t, sin t)‖2 + h(t)2,

so that
h′(t)2 = ‖∇shK(cos t, sin t)‖2.

This gives

V (hK) =

∫
S1
p(hK(x), ‖∇shK(x)‖2)dH1(x), (4.4.10)

which holds for every C2
+ body K.

Recalling that C2
+ bodies are dense in K2, and reasoning as in the proof of Theorem 1.1.2,

we extend representation formula (4.4.10) to the space Lip(S1).

In higher dimension we would have Theorem 2.2.5 to rely upon: the main problem in ex-
tending Theorem 1.1.3 to the case n ≥ 3 is that we are missing a tool, like the combination of
Theorem 4.1.1 and Proposition 4.2.1 was, for polynomial valuations.

4.5 An improved homogeneous decomposition

To conclude this chapter, we show that, using Proposition 4.2.1, we can now refine Theorem
4.1.1 as follows.

Theorem 4.5.1. Let n ≥ 3 and V : Lip(Sn−1) −→ R be a continuous and dot product invari-
ant valuation. Then there exist continuous and dot product invariant valuations Z0, . . . , Zn−1 :
Lip(Sn−1) −→ R such that Zi is i-homogeneous, for i = 0, . . . , n− 1, and

V (λf) =

n−1∑
i=0

λiZi(f),

for every f ∈ Lip(Sn−1) and λ > 0.

Proof. We use the notations introduced in the proof of Theorem 4.1.1; by the latter result, we only
need to prove that Zn ≡ 0. By Theorem 2.2.3, there exists c ∈ R such that ϕn(K) = cVn(K),
for every K ∈ Kn. In particular, ϕn is rotation invariant, hence Zn is rotation invariant on
H (Sn−1).

Let us prove that Zn is rotation invariant on the whole space Lip(Sn−1). For a fixed σ ∈ O(n),
consider Zσn : Lip(Sn−1) −→ R defined by

Zσn(f) = Zn(f ◦ σ)− Zn(f),

for f ∈ Lip(Sn−1). Such functional is a continuous valuation on Lip(Sn−1); because Zn is rotation
invariant on H (Sn−1), Zσn = 0 on H (Sn−1). From Proposition 3.0.1, Zσn = 0 on Lip(Sn−1), so
that Zn(f ◦ σ) = Zn(f), for every f ∈ Lip(Sn−1) and σ ∈ O(n). Therefore, Zn is a continuous,
rotation invariant, dot product invariant and n-homogeneous valuation on Lip(Sn−1), hence
Zn ≡ 0, thanks to Proposition 4.2.1.

We have avoided on purpose to rewrite the last sentence of Theorem 4.1.1 in the statement
of Theorem 4.5.1, since the case in which V is rotation invariant is already described in more
detail by Theorem 1.1.2.
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Remark 4.5.2. It would be interesting to know if also Z3 = . . . = Zn−1 ≡ 0 for an arbitrary
continuous and dot product invariant valuation V . We know from Theorem 1.1.2 that this is the
case under the additional assumption of rotational invariance.



Chapter 5

General continuous and rotation

invariant valuations on Lip(S1)

This chapter is devoted to the proof of theorems 1.1.4 and 1.1.5. The first results we will
obtain work in arbitrary dimension n, hence we will present them in this more general context,
restricting to the case n = 2 when needed. Many of the ideas for this part come from [35].

5.1 Boundedness on ‖·‖Lip-bounded sets

Consider on Lip(Sn−1) the Lipschitz norm, defined by (2.1.4). We will start by proving that
valuations which are continuous (with respect to τ) are bounded on ‖·‖Lip-bounded sets.

Note: the notation ‖·‖Lip will be useful for the statement of the next result, but we will keep
using the topology τ on Lip(Sn−1), and not the topology induced by this norm.

Lemma 5.1.1. Let V : Lip(Sn−1) −→ R be a continuous valuation (with respect to τ) and let
A ⊆ Lip(Sn−1), L > 0 be such that ‖f‖Lip ≤ L for every f ∈ A. Then there exists C > 0 such
that

|V (f)| ≤ C,

for every f ∈ A.

Proof. We reason by contradiction: if this were not true, there would exist L > 0 and a sequence
{fi} ⊆ Lip(Sn−1) with ‖fi‖Lip ≤ L, for every i ∈ N, such that |V (fi)| → ∞ as i→∞.

Consider the function θ : R −→ R defined by

θ(c) = V (c1),

for c ∈ R, where 1 denotes the constant function equal to one; θ is continuous because V is.
Therefore, θ is uniformly continuous on [−L,L] and thus bounded, that is, there exists C > 0
such that, for every c ∈ [−L,L],

|V (c1)| = |θ(c)| ≤ C.

We define inductively two sequences {aj}, {bj} ⊆ R. Set a0 = −L, b0 = L and let c0 = a0+b0
2 .

Note that
V (fi ∨ c01) + V (fi ∧ c01) = V (fi) + V (c01).

55
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Since |V (c01)| ≤ C and |V (fi)| → ∞, there exists an infinite set M1 ⊆ N such that for i ∈ M1

either |V (fi ∨ c01)| → ∞ or |V (fi ∧ c01)| → ∞, as i → ∞. If we are in the first case, we set
a1 = c0, b1 = L and f1

i = fi ∨ c01. If the second case occurs, we define instead a1 = −L, b1 = c0
and f1

i = fi ∧ c01. Note that in either case we have ‖f1
i ‖Lip ≤ L, for every i ∈ M1. We now

define c1 = a1+b1
2 and proceed similarly.

Inductively, we construct two sequences {aj}, {bj} ⊆ R, a decreasing sequence {Mj} of

infinite subsets of N, and sequences {f ji }i∈Mj
⊆ Lip(Sn−1) such that, for every j ∈ N,

|aj − bj | =
L

2j−1
,

lim
i→∞

|V (f ji )| =∞,

and for every i ∈Mj , t ∈ Sn−1,

aj ≤ f ji (t) ≤ bj .

Up to passing to a further subsequence, we may assume that

lim
i→∞

|V (f ii )| =∞.

Let λ = lim
j→∞

aj (the limit exists because {aj} is bounded and monotone) and gi = f ii , for

i ∈ N. The sequence {gi} ⊆ Lip(Sn−1) satisfies ai ≤ gi ≤ bi, ‖gi‖Lip ≤ L, ‖gi − λ1‖∞ → 0, and
lim
i→∞
|V (gi)| =∞.

We now need a second inductive step to obtain the a.e. convergence of the gradients. We
define a new double indexed sequence {mj

i}i,j∈N. For the first step, consider the number m1
i : =

m(gi), for every i ∈ N, where m(gi) is a median of gi, that is, m(gi) is a number in [−L,L] which
satisfies

Hn−1
(
{x ∈ Sn−1 : gi(x) ≥ m(gi)}

)
≥ 1

2
Hn−1(Sn−1) =

1

2
,

Hn−1
(
{x ∈ Sn−1 : gi(x) ≤ m(gi)}

)
≥ 1

2
Hn−1(Sn−1) =

1

2
.

(5.1.1)

A median always exists.
The valuation property implies that

V (gi ∨m1
i1) + V (gi ∧m1

i1) = V (gi) + V (m1
i1).

Since |V (m1
i1)| ≤ C and |V (gi)| → ∞, there has to be an infinite set, which with a little abuse

of notation will still be denoted by M1 ⊆ N, such that for i ∈ M1 either |V (gi ∨m1
i1)| → ∞ or

|V (gi ∧m1
i1)| → ∞, as i → ∞. In the first case, we set g1

i = gi ∨m1
i1, whereas in the second

case we define g1
i = gi ∧m1

i1. Either way we get that ‖g1
i ‖Lip ≤ L, for every i ∈M1.

Since Hn−1((g1
i )−1({m1

i })) ≥ 1
2 and ∇sg1

i (x) = 0 for a.e. x ∈ (g1
i )−1({m1

i }), because of
Lemma 2.2.16, we have that ∇sg1

i = 0 in a set of measure larger than or equal to 1
2 .

For every i ∈M1, consider the set

A1
i = {x ∈ Sn−1 : g1

i (x) 6= m1
i }.

Note that Hn−1(A1
i ) ≤ 1

2 . Indeed, since g1
i = gi ∨m1

i or g1
i = gi ∧m1

i , we have that g1
i = m1

i if
and only if gi ≤ m1

i or gi ≥ m1
i respectively. Then, from (5.1.1) we get

Hn−1(A1
i ) = 1−Hn−1({g1

i = m1
i }) ≤ 1− 1

2
=

1

2
.
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Now, for every i ∈M1 consider the median m2
i in A1

i , i.e., the number verifying

Hn−1
(
{x ∈ A1

i : g1
i (x) ≥ m2

i }
)
≥ 1

2
Hn−1(A1

i ),

Hn−1
(
{x ∈ A1

i : g1
i (x) ≤ m2

i }
)
≥ 1

2
Hn−1(A1

i ).

Again, this median surely exists.

We proceed as before, noting that the valuation property implies

V (g1
i ∨m2

i1) + V (g1
i ∧m2

i1) = V (g1
i ) + V (m2

i1).

Since |V (m2
i1)| ≤ C and |V (g1

i )| → ∞, there is an infinite set M2 ⊆ M1 such that for i ∈ M2

either |V (g1
i ∨m2

i1)| → ∞ or |V (g1
i ∧m2

i1)| → ∞, as i ∈M2 goes to ∞. In the first case, we set
g2
i = g1

i ∨m2
i1, and in the second case we set g2

i = g1
i ∧m2

i1. Either way, ‖g2
i ‖Lip ≤ L for every

i ∈M2. Assume g2
i = g1

i ∨m2
i1 (the other case is analogous).

If m1
i > m2

i ,

Hn−1((g2
i )−1({m1

i ,m
2
i })) = Hn−1({g1

i ∨m2
i1 = m1

i }) +Hn−1({g1
i ≤ m2

i })
= Hn−1

(
(A1

i )
c
)

+Hn−1(A1
i ∩ {g1

i ≤ m2
i })

≥ Hn−1
(
(A1

i )
c
)

+
1

2
Hn−1(A1

i )

= 1− 1

2
Hn−1(A1

i ) ≥
3

4
.

If m1
i < m2

i instead,

Hn−1({g2
i = m1

i }) = Hn−1({g1
i ∨m2

i1 = m1
i }) = Hn−1(∅) = 0,

and then

Hn−1((g2
i )−1({m1

i ,m
2
i })) = Hn−1({g2

i = m2
i }) = Hn−1({g1

i ≤ m2
i })

= Hn−1
(
(A1

i )
c
)

+Hn−1(A1
i ∩ {g1

i ≤ m2
i })

≥ Hn−1
(
(A1

i )
c
)

+
1

2
Hn−1(A1

i )

= 1− 1

2
Hn−1(A1

i ) ≥
3

4
.

Finally, if m1
i = m2

i we have

Hn−1((g2
i )−1({m1

i ,m
2
i })) = Hn−1((g2

i )−1({m2
i })) = Hn−1({g1

i ≤ m2
i }),

and we conclude as in the case m1
i < m2

i . Whatever happens, we get

Hn−1((g2
i )−1({m1

i ,m
2
i })) ≥

3

4
.

It follows again from Lemma 2.2.16 that ∇sg2
i (x) = 0 for a.e. x ∈ (g2

i )−1({m1
i ,m

2
i }). Since

Hn−1((g2
i )−1({m1

i ,m
2
i }) ≥ 3

4 , we have that ∇sg2
i = 0 in a set of measure larger than or equal

to 3
4 .
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By induction, we obtain a decreasing sequence of infinite subsets Mj ⊆ N and sequences

{gji }i∈Mj ⊆ Lip(Sn−1), j ∈ N, such that, for every j ∈ N and i ∈ Mj , ai ≤ gji ≤ bi, ‖∇sgji ‖ ≤ L

a.e., lim
i→∞
|V (gji )| =∞ and

Hn−1
(
{x ∈ Sn−1 : ∇sgji (x) 6= 0}

)
<

1

2j
.

Passing to a further subsequence if needed, we may assume that the sequence {gii} verifies
lim
i→∞
‖gii − λ1‖∞ = 0, ‖∇sgii‖ ≤ L a.e., lim

i→∞
|V (gii)| =∞ and

Hn−1
(
{x ∈ Sn−1 : ∇sgii(x) 6= 0}

)
≤ 1

2i
.

Therefore, gii −→τ λ1, but |V (gii)| → ∞, a contradiction with the continuity of the valuation.

5.2 Rims around sets

We need to introduce a couple more notations. For a given valuation V : Lip(Sn−1) −→ R
and a number λ ∈ R, we consider the functional Vλ : Lip(Sn−1) −→ R defined by

Vλ(f) = V (f + λ)− V (λ),

for f ∈ Lip(Sn−1), which is still a valuation. Moreover, Vλ is continuous and/or rotation invariant
if V is continuous and/or rotation invariant respectively.

For a set A ⊆ Sn−1 and ω > 0, the outer parallel band or rim around A is the set

Aω = {x ∈ Sn−1 : 0 < d(x,A) < ω},

with the convention that ∅ω = ∅.
The next lemma allows us to control continuous valuations on rims.

Lemma 5.2.1. Let V : Lip(Sn−1) −→ R be a continuous valuation. Take two Borel sets A, B ⊆
Sn−1 and let λ ∈ R, γ ∈ R+. Then

lim
ω→0+

sup{|Vλ(f)| : f ≺ Aω ∪Bω, L(f) ≤ γ} = 0. (5.2.1)

In particular,
lim
ω→0+

sup{|Vλ(f)| : f ≺ Aω, L(f) ≤ γ} = 0

for every Borel set A ⊆ Sn−1.

To prove this, we are going to need this technical result first.

Lemma 5.2.2. Let A ⊆ Sn−1 be a Borel set. Then

lim
ω→0+

Hn−1(Aω) = 0. (5.2.2)

Proof. If A = ∅, then Hn−1(Aω) = 0 for every ω > 0, and we are done. Suppose now A 6= ∅.
If (5.2.2) were not true, we would have a number ε > 0 and a sequence ωi ↘ 0 such that

Hn−1(Aωi) > ε for every i ∈ N.



59

If x ∈
⋂
i∈NA

ωi , then

0 < d(x,A) < ωi,

for every i ∈ N; passing to the limit in the second inequality we have a contradiction. Therefore⋂
i∈NA

ωi = ∅, hence

0 = Hn−1

(⋂
i∈N

Aωi

)
= lim
i→∞

Hn−1(Aωi) > ε,

which is false.

Proof of Lemma 5.2.1. If A = B = ∅, there is nothing to prove. Assume now A ∪B 6= ∅.
We reason by contradiction: if the limit in (5.2.1) is strictly positive, there exist ε > 0 and a

strictly decreasing sequence ωi ↘ 0 such that

sup{|Vλ(f)| : f ≺ Aωi ∪Bωi , L(f) ≤ γ} ≥ ε,

for all i ∈ N. By definition of supremum, for every i ∈ N there is a Lipschitz function fi with
fi ≺ Aωi ∪Bωi and L(fi) ≤ γ such that

|Vλ(fi)| > sup{|Vλ(f)| : f ≺ Aωi ∪Bωi , L(f) ≤ γ} − ε

2
≥ ε

2
. (5.2.3)

Since Ki = supp(fi) is compact, for every i ∈ N we can write ‖fi‖∞ = |fi(xi)|, for some
xi ∈ Ki. Note that, for every i ∈ N, Ki ⊆ Aωi ∪Bωi ⊆ Aω1 ∪Bω1 , which is compact; then there
exists {xij} ⊆ {xi} such that xij → x as j →∞, for some x ∈ Aω1 ∪Bω1 .

We actually have x ∈ ∂A ∪ ∂B. Indeed, if

x 6∈ ∂A ∪ ∂B =
⋂
i∈N

Aωi ∪
⋂
i∈N

Bωi =
⋂
i∈N

Aωi ∪Bωi =
⋂
i∈N

Aωi ∪Bωi ,

since x ∈ Aω1 ∪Bω1 there must be a number I ∈ N such that

x ∈ AωI ∪BωI \AωI+1 ∪BωI+1 .

Now, {xi}i≥I+1 ⊆ AωI+1 ∪ BωI+1 , which implies x = lim
i→∞

xi ∈ AωI+1 ∪BωI+1 , a contradiction.

Therefore, x ∈ ∂A ∪ ∂B. Without loss of generality, assume x ∈ ∂A.

Let us prove that there exists J ∈ N such that fij (x) = 0 for every j > J . If this was not
the case, there would be a sequence {fij`} ⊆ {fij} such that fij` (x) 6= 0, for every ` ∈ N. This

would imply x ∈ supp(fij` ) ⊆ A
ωij` ∪Bωij` , but since x ∈ ∂A we would actually have x ∈ Bωij` ,

for every ` ∈ N. If B = ∅, this is already a contradiction. If B 6= ∅, we have d = d(x,B) > 0,
and then there would exist h ∈ N such that ωijh < d, hence x 6∈ Bωijh , a contradiction.

By Lipschitz continuity, we get that for sufficiently large j

‖fij‖∞ = |fij (xij )| = |fij (xij )− fij (x)| ≤ γ‖xij − x‖ → 0.

Moreover, ‖∇sfij‖ ≤ γ a.e., from (2.1.2), and since Hn−1(Kij ) ≤ Hn−1(Aωij ∪ Bωij ) → 0
(because of Lemma 5.2.2), Hn−1({fij = 0})→ 1. From Lemma 2.2.16 we conclude that ∇sfij →
0 a.e. in Sn−1. Therefore, fij −→

τ
O, where O again denotes the identically null function. This is

a contradiction with (5.2.3) and the continuity of V .
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5.3 The control measure

We fix a continuous and rotation invariant valuation V : Lip(Sn−1) −→ R. Define Vflat :
Lip(Sn−1) −→ R by setting

Vflat(f) =

∫
Sn−1

V (f(x) · 1)dHn−1(x),

for f ∈ Lip(Sn−1). Since η : R −→ R defined by η(λ) = V (λ1) is continuous, this Vflat is still a
continuous and rotation invariant valuation, from Theorem 1.0.1 or Lemma 4.3.1.

Note that Vslope : = V −Vflat satisfies Vslope(λ ·1) = V (λ ·1)−Vflat(λ ·1) = 0, for every λ ∈ R
(remember that, with our normalization, Hn−1(Sn−1) = 1). Since Vslope is again a continuous
and rotation invariant valuation, up to replacing V by Vslope we can assume V to be null on
constant functions.

For λ ∈ R, γ ∈ R+, we will build a measure µλ,γ which“controls” (in a sense yet to be
defined) the valuation Vλ. We will separately build its positive and negative part. We start by
constructing the positive one. To do so, we first build an outer measure µ∗λ,γ on Sn−1.

5.3.1 Definition of µ∗
λ,γ on open sets

Fix λ ∈ R, γ ∈ R+. We begin with the definition of µ∗λ,γ on open sets: for an open set

G ⊆ Sn−1,
µ∗λ,γ(G) : = lim

`→0+
sup{Vλ(f) : f ≺ G, ‖f‖∞ ≤ `, L(f) ≤ γ}, (5.3.1)

where the functions f over which we are taking the supremum are in Lip(Sn−1). Note that the
mapping

` 7→ sup{Vλ(f) : f ≺ G, ‖f‖∞ ≤ `, L(f) ≤ γ}

decreases as ` ↘ 0 and it is lower bounded by Vλ(O) = 0. Therefore, the limit exists and µ∗λ,γ
is well-defined. Moreover, µ∗λ,γ(G) < ∞ for every open set G ⊆ Sn−1, by Lemma 5.1.1. Let us
prove that µ∗λ,γ is finitely subadditive on open sets.

Lemma 5.3.1. If G1, G2 ⊆ Sn−1 are open sets, then

µ∗λ,γ(G1 ∪G2) ≤ µ∗λ,γ(G1) + µ∗λ,γ(G2).

Proof. Let G1, G2 ⊆ Sn−1 be open sets. In the following reasoning, for every set A ⊆ Sn−1 the
symbol Ac will denote its complementary in G1 ∪G2, i.e., Ac = (G1 ∪G2) \A.

For ω > 0 and A1, A2 ⊆ Sn−1, consider the sets

Aω1 = {x ∈ G1 ∪G2 : 0 < d(x,A1) < ω},

Aω2 = {x ∈ G1 ∪G2 : 0 < d(x,A2) < ω},

G1(ω) = {x ∈ G1 : d(x,Gc1) ≥ ω},

G2(ω) = {x ∈ G2 : d(x,Gc2) ≥ ω}.

With a little abuse of notation, we are using the symbols Aωi , i = 1, 2, to denote Aωi ∩ (G1 ∪G2).
Note that, for every ω > 0,

G1 ∪G2 = G1(ω) ∪G2(ω) ∪
[
G1(ω)2ω ∩G2(ω)2ω

]
.
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Fix now ε > 0. Lemma 5.2.1 implies the existence of an ω > 0 such that

sup
{
|Vλ(f)| : f ≺ (Gci )

3
2ω , L(f) ≤ γ

}
< ε (5.3.2)

for i = 1, 2, and

sup
{
|Vλ(f)| : f ≺ (Gc1)

3
2ω ∪ (Gc2)

3
2ω , L(f) ≤ γ

}
< ε. (5.3.3)

Given this ω, there exists 0 < ` < ω
2 γ such that

µ∗λ,γ(G1 ∪G2) < sup {Vλ(f) : f ≺ G1 ∪G2, ‖f‖∞ ≤ `, L(f) ≤ γ}+
ε

2
, (5.3.4)

sup {Vλ(f) : f ≺ G1, ‖f‖∞ ≤ `, L(f) ≤ γ} < µ∗λ,γ(G1) + ε, (5.3.5)

sup {Vλ(f) : f ≺ G2, ‖f‖∞ ≤ `, L(f) ≤ γ} < µ∗λ,γ(G2) + ε, (5.3.6)

by definition of µ∗λ,γ . From (5.3.4), there also exists a Lipschitz function h ≺ G1 ∪ G2 with
‖h‖∞ ≤ `, L(h) ≤ γ, such that

µ∗λ,γ(G1 ∪G2) < Vλ(h) + ε.

Let h̃i : Gi(ω) ∪Gi
(
ω
2

)c −→ R,

h̃i(x) =

{
h(x) x ∈ Gi(ω),

0 x ∈ Gi
(
ω
2

)c
,

for i = 1, 2. Note that h̃1 and h̃2 are Lipschitz continuous on their respective domains with
Lipschitz constants L(h̃1), L(h̃2) ≤ γ. Indeed, for i = 1, 2, if x, y ∈ Gi

(
ω
2

)c
then

∣∣h̃i(x)− h̃i(y)
∣∣ =

0, if x, y ∈ Gi(ω) then
∣∣h̃i(x)− h̃i(y)

∣∣ ≤ γ‖x− y‖ and if x ∈ Gi(ω), y ∈ Gi
(
ω
2

)c
then∣∣h̃i(x)− h̃i(y)

∣∣
‖x− y‖

≤ `

‖x− y‖
≤ 2`

ω
< γ.

We can now use Lemma 2.2.17 to extend h̃i, i = 1, 2, to a Lipschitz function hi : G1 ∪G2 −→ R
such that h− ≤ hi ≤ h+, L(hi) ≤ γ and ‖hi‖∞ ≤ `.

Define h̃0 :
[
G1(ω)2ω ∩G2(ω)2ω

]
∪G1

(
3
2ω
)
∪G2

(
3
2ω
)
−→ R,

h̃0(x) =

{
h(x) x ∈ G1(ω)2ω ∩G2(ω)2ω,

0 x ∈ G1

(
3
2ω
)
∪G2

(
3
2ω
)
,

and again use Lemma 2.2.17 to extend this to h0 : G1 ∪ G2 −→ R such that h− ≤ h0 ≤ h+,
L(h0) ≤ γ and ‖h0‖∞ ≤ `.

Write h = h+ + h− and note that

h+ = h+
0 ∨ h

+
1 ∨ h

+
2 ,

h− = h−0 ∧ h
−
1 ∧ h

−
2 .

From the valuation property and the inclusion-exclusion principle, we now get

Vλ(h) = Vλ(h) + Vλ(O) = Vλ(h+) + Vλ(h−) = Vλ(h+
0 ∨ h

+
1 ∨ h

+
2 ) + Vλ(h−0 ∧ h

−
1 ∧ h

−
2 )

= Vλ(h+
0 ) + Vλ(h+

1 ) + Vλ(h+
2 )− Vλ(h+

0 ∧ h
+
1 )− Vλ(h+

1 ∧ h
+
2 )− Vλ(h+

0 ∧ h
+
2 ) +

+Vλ(h+
0 ∧ h

+
1 ∧ h

+
2 ) + Vλ(h−0 ) + Vλ(h−1 ) + Vλ(h−2 )− Vλ(h−0 ∨ h

−
1 )−

−Vλ(h−1 ∨ h
−
2 )− Vλ(h−0 ∨ h

−
2 ) + Vλ(h−0 ∨ h

−
1 ∨ h

−
2 ).
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Since h±0 = 0 on G1

(
3
2ω
)
∪G2

(
3
2ω
)
, we have that h±0 ≺ (Gc1)

3
2ω∪(Gc2)

3
2ω; moreover, L(h±0 ) ≤

γ, and from (5.3.3) we get
|Vλ(h±0 )| < ε.

Similarly, since on G1

(
3
2ω
)
∪G2

(
3
2ω
)

we have h+
0 ∧h

+
1 = 0∧h+

1 = 0, and analogously h+
0 ∧h

+
2 =

h−0 ∨ h
−
1 = h−0 ∨ h

−
2 = h+

0 ∧ h
+
1 ∧ h

+
2 = h−0 ∨ h

−
1 ∨ h

−
2 = 0, we obtain

|Vλ(h+
0 ∧ h

+
1 )| < ε,

|Vλ(h+
0 ∧ h

+
2 )| < ε,

|Vλ(h−0 ∨ h
−
1 )| < ε,

|Vλ(h−0 ∨ h
−
2 )| < ε,

|Vλ(h+
0 ∧ h

+
1 ∧ h

+
2 )| < ε,

|Vλ(h−0 ∨ h
−
1 ∨ h

−
2 )| < ε.

Therefore,

Vλ(h) < Vλ(h+
1 ) + Vλ(h+

2 )− Vλ(h+
1 ∧ h

+
2 ) + Vλ(h−1 ) + Vλ(h−2 )− Vλ(h−1 ∨ h

−
2 ) + 8ε

= Vλ(h1) + Vλ(h2)− Vλ(h+
1 ∧ h

+
2 )− Vλ(h−1 ∨ h

−
2 ) + 8ε, (5.3.7)

from the valuation property.
Now, for i = 1, 2, we have that hi ≺ Gi, ‖hi‖∞ ≤ ` and L(hi) ≤ γ, hence (5.3.5) and (5.3.6)

imply Vλ(hi) < µ∗λ,γ(Gi) + ε, so that from (5.3.7) we get

Vλ(h) < µ∗λ,γ(G1) + µ∗λ,γ(G2)− Vλ(h+
1 ∧ h

+
2 )− Vλ(h−1 ∨ h

−
2 ) + 10ε. (5.3.8)

Suppose by contradiction
Vλ(h+

1 ∧ h
+
2 ) ≤ −6ε, (5.3.9)

define

g1(x) =

{
h+

1 (x) if x ∈ G2(ω)c,

0 if x ∈ G2

(
3
2ω
)
,

and extend g1 to G1 ∪G2 using Lemma 2.2.17. We do the same for

g2(x) =

{
h+

2 (x) if x ∈ G1(ω)c,

0 if x ∈ G1

(
3
2ω
)
.

Note that g1, g2 ≥ 0 on G1 ∪G2.
We also have that, for i = 1, 2,

gi ∨ (h+
1 ∧ h

+
2 ) = h+

i . (5.3.10)

Indeed, for x ∈ G2(ω)c we have

g1(x) ∨ [h+
1 (x) ∧ h+

2 (x)] = h+
1 (x) ∨ [h+

1 (x) ∧ h+
2 (x)] = h+

1 (x),

and for x ∈ G2(ω)

g1(x) ∨ [h+
1 (x) ∧ h+

2 (x)] = g1(x) ∨ [h+
1 (x) ∧ h+(x)] = g1 ∨ h+

1 (x) = h+
1 (x).

Analogously for i = 2.
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Let g : G1 ∪G2 −→ R be the Lipschitz function defined by g = g1 ∨ g2; since g1, g2 ≥ 0, we
have that g ≥ 0 on G1 ∪G2. From the valuation property and (5.3.10) we get

Vλ(g) = Vλ(g1) + Vλ(g2)− Vλ(g1 ∧ g2) = Vλ(h+
1 ) + Vλ(g1 ∧ h+

1 ∧ h
+
2 )− Vλ(h+

1 ∧ h
+
2 ) +

+Vλ(h+
2 ) + Vλ(g2 ∧ h+

1 ∧ h
+
2 )− Vλ(h+

1 ∧ h
+
2 )− Vλ(g1 ∧ g2) = Vλ(h+

1 ∨ h
+
2 )−

−Vλ(h+
1 ∧ h

+
2 ) + Vλ(g1 ∧ h+

1 ∧ h
+
2 ) + Vλ(g2 ∧ h+

1 ∧ h
+
2 )− Vλ(g1 ∧ g2).

Now,

g1 ∧ h+
1 ∧ h

+
2 ≺ (Gc2)

3
2ω,

g2 ∧ h+
1 ∧ h

+
2 ≺ (Gc1)

3
2ω,

g1 ∧ g2 ≺ (Gc1)
3
2ω ∪ (Gc2)

3
2ω,

so that (5.3.2) and (5.3.3) imply, for i = 1, 2,

|Vλ(gi ∧ h+
1 ∧ h

+
2 )| < ε,

|Vλ(g1 ∧ g2)| < ε.

Moreover, from the valuation property,

Vλ(h+
1 ∨ h

+
2 ) = Vλ(h+) + Vλ(h+

0 ∧ (h+
1 ∨ h

+
2 ))− Vλ(h+

0 ),

where h+
0 ∧ (h+

1 ∨ h
+
2 ) ≺ (Gc1)

3
2ω ∪ (Gc2)

3
2ω, hence

|Vλ(h+
0 ∧ (h+

1 ∨ h
+
2 ))| < ε.

Putting things together, from assumption (5.3.9) we obtain

Vλ(g) > Vλ(h+) + ε.

The function g̃ = g+h− satisfies g̃ ≺ G1∪G2, ‖g̃‖∞ ≤ ` (being g̃ ≤ g ≤ ` and g̃ ≥ h− ≥ −`),
L(g̃) ≤ γ, and recalling that g ≥ 0 on G1 ∪G2 we find

Vλ(g̃) = Vλ(g̃+) + Vλ(g̃−) = Vλ(g) + Vλ(h−)

> Vλ(h+) + Vλ(h−) + ε = Vλ(h) + ε

> µ∗λ,γ(G1 ∪G2),

a contradiction with the definition of µ∗λ,γ(G1 ∪G2).
This proves that

Vλ(h+
1 ∧ h

+
2 ) > −6ε,

and similarly

Vλ(h−1 ∨ h
−
2 ) > −6ε.

From (5.3.8) we conclude that

µ∗λ,γ(G1 ∪G2) < µ∗λ,γ(G1) + µ∗λ,γ(G2) + 23ε.
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5.3.2 Extension of µ∗
λ,γ

Now, for every A ⊆ Sn−1, we define

µ∗λ,γ(A) = inf{µ∗λ,γ(G) : A ⊆ G, G open}. (5.3.11)

This clearly coincides with definition (5.3.1) on open sets. We have the following.

Lemma 5.3.2. The function µ∗λ,γ defined by (5.3.11) is an outer measure on Sn−1.

Proof. Note that µ∗λ,γ is monotone increasing and satisfies µ∗λ,γ(∅) = 0. To check that this is
indeed an outer measure we have to prove countable subadditivity.

Let {Ai} be a sequence of subsets of Sn−1 and take ε > 0. For every i ∈ N, choose an open
set G′i such that Ai ⊆ G′i and

µ∗λ,γ(Ai) > µ∗λ,γ(G′i)−
ε

2i
.

Also, consider an open set G′ ⊇
⋃
i∈NAi such that

µ∗λ,γ

(⋃
i∈N

Ai

)
> µ∗λ,γ(G′)− ε.

Define now Gi = G′i ∩G′, for every i ∈ N, and G =
⋃
i∈NGi. By monotonicity of µ∗λ,γ , these sets

still verify

µ∗λ,γ(Ai) > µ∗λ,γ(Gi)−
ε

2i

and

µ∗λ,γ

(⋃
i∈N

Ai

)
> µ∗λ,γ(G)− ε.

For the previously chosen ε, Lemma 5.2.1 guarantees the existence of ω > 0 such that, for
every f ≺ (Gc)ω with L(f) ≤ γ, |Vλ(f)| < ε. This implies µ∗λ,γ((Gc)ω) ≤ ε, recalling definition
(5.3.1).

Consider now

G(ω) = {x ∈ G : d(x,Gc) ≥ ω};

the set G(ω) ⊆ G =
⋃
i∈NGi is compact (being bounded and closed), thus there exist N ∈ N

and i1, . . . , iN ∈ N such that G(ω) ⊆ GN : =
⋃N
j=1Gij . Then, G = GN ∪ (Gc)ω.

Finite subadditivity on open sets implies that

µ∗λ,γ(G) ≤ µ∗λ,γ(GN ) + µ∗λ,γ((Gc)ω) ≤
N∑
j=1

µ∗λ,γ(Gij ) + ε ≤
∑
i∈N

µ∗λ,γ(Gi) + ε.

Since
⋃
i∈NAi ⊆ G′ ∩

⋃
i∈NG

′
i = G, it follows that

µ∗λ,γ

(⋃
i∈N

Ai

)
≤ µ∗λ,γ(G) ≤

∑
i∈N

µ∗λ,γ(Gi) + ε ≤
∑
i∈N

µ∗λ,γ(Ai) + 2ε.

We conclude from the arbitrariness of ε.
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5.3.3 The measure µλ,γ

The outer measure µ∗λ,γ gives rise to a measure on the Borel σ-algebra of Sn−1.

Proposition 5.3.3. The Borel σ-algebra Σ of Sn−1 is µ∗λ,γ-measurable, and the set function

µ+
λ,γ defined as the restriction of µ∗λ,γ to Σ is a measure.

Proof. By Theorem 2.1.2, it is enough to show that every open set G ⊆ Sn−1 is µ∗λ,γ-measurable.

Because of Lemma 5.3.1, it suffices to check that, for a fixed open set G ⊆ Sn−1,

µ∗λ,γ(A) ≥ µ∗λ,γ(A ∩G) + µ∗λ,γ(A ∩Gc),

for every A ⊆ Sn−1.
Fix A ⊆ Sn−1 and ε > 0. It follows from the definition (5.3.11) of µ∗λ,γ that there exists an

open set U ⊇ A such that
µ∗λ,γ(U) < µ∗λ,γ(A) + ε.

Recalling (5.3.1), there also exists `0 > 0 such that

sup{Vλ(f) : f ≺ U, ‖f‖∞ ≤ `0, L(f) ≤ γ} < µ∗λ,γ(U) + ε,

Now, U∩G is an open set, hence we can choose 0 < `1 ≤ `0 and f1 ≺ U∩G with ‖f1‖∞ ≤ `1 ≤ `0,
L(f1) ≤ γ, such that

µ∗λ,γ(U ∩G) < Vλ(f1) + ε.

We consider the compact set K = supp(f1) ⊆ U ∩G. Then U ∩Gc ⊆ U ∩Kc, and this last set
is open. Choose now 0 < `2 ≤ `0 and f2 ≺ U ∩Kc with ‖f2‖∞ ≤ `2 ≤ `0, L(f2) ≤ γ, such that

µ∗λ,γ(U ∩Kc) < Vλ(f2) + ε.

Note that f1 and f2 have disjoint supports (since supp(f2) ⊆ Kc = (supp(f1))
c
), both of

them contained in U . Therefore, the function g = f1 + f2 satisfies g ≺ U , ‖g‖∞ ≤ `0 and
L(g) ≤ γ. Moreover,

f+
1 ∧ f

+
2 = f−1 ∨ f

−
2 = O

and
f+

1 ∨ f
+
2 = (f1 + f2)+,

f−1 ∧ f
−
2 = (f1 + f2)−,

hence

Vλ(f1) + Vλ(f2) = Vλ(f+
1 ) + Vλ(f−1 ) + Vλ(f+

2 ) + Vλ(f−2 ) = Vλ(f+
1 ∨ f

+
2 ) + Vλ(f−1 ∧ f

−
2 )

= Vλ((f1 + f2)+) + Vλ((f1 + f2)−) = Vλ(f1 + f2).

This implies

µ∗λ,γ(A) > µ∗λ,γ(U)− ε > sup{Vλ(f) : f ≺ U, ‖f‖∞ ≤ `0, L(f) ≤ γ} − 2ε

≥ Vλ(f1 + f2)− 2ε = Vλ(f1) + Vλ(f2)− 2ε

> µ∗λ,γ(U ∩G) + µ∗λ,γ(U ∩Kc)− 4ε

≥ µ∗λ,γ(U ∩G) + µ∗λ,γ(U ∩Gc)− 4ε

≥ µ∗λ,γ(A ∩G) + µ∗λ,γ(A ∩Gc)− 4ε,

where we have used the fact that µ∗λ,γ is monotone increasing.
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We now have the measure µ+
λ,γ . In a similar fashion, we can define a measure µ−λ,γ on Σ

which on open sets would be given by

µ−λ,γ(G) = lim
`→0+

sup{−Vλ(f) : f ≺ G, ‖f‖∞ ≤ `, L(f) ≤ γ}

= lim
`→0+

− inf{Vλ(f) : f ≺ G, ‖f‖∞ ≤ `, L(f) ≤ γ}.

The following remarks will be crucial in our reasoning.

Remark 5.3.4. The measure µλ,γ : = µ+
λ,γ +µ−λ,γ controls the absolute value of the valuation on

open sets, in the sense that for every open set G ⊆ Sn−1 we have

lim
`→0+

sup{|Vλ(f)| : f ≺ G, ‖f‖∞ ≤ `, L(f) ≤ γ} ≤ µλ,γ(G).

Indeed, if G`,γ denotes the set of Lipschitz functions f such that f ≺ G, ‖f‖∞ ≤ ` and
L(f) ≤ γ,

sup
f∈G`,γ

|Vλ(f)| = sup
f∈G`,γ

{max {Vλ(f),−Vλ(f)}} ≤ max

{
sup

f∈G`,γ
Vλ(f), sup

f∈G`,γ
[−Vλ(f)]

}
≤ sup

f∈G`,γ
Vλ(f) + sup

f∈G`,γ
[−Vλ(f)] ,

where the last inequality follows from the fact that both the suprema are non-negative. Therefore,

lim
`→0+

sup
f∈G`,γ

|Vλ(f)| ≤ µ+
λ,γ(G) + µ−λ,γ(G) = µλ,γ(G).

Remark 5.3.5. For every λ ∈ R, γ ∈ R+, the measure µλ,γ is rotation invariant (since V is)
and finite (from Lemma 5.1.1), hence (see for instance [25]) there exists a number ϑ(λ, γ) ∈ R+

such that
µλ,γ = ϑ(λ, γ)Hn−1.

Gathering these observations, we get the following.

Proposition 5.3.6. Let λ ∈ R, γ ∈ R+. Then there exists a number ϑ(λ, γ) ∈ R+ such that

lim
`→0+

sup{|Vλ(f)| : f ≺ G, ‖f‖∞ ≤ `, L(f) ≤ γ} ≤ ϑ(λ, γ)Hn−1(G),

for every open set G ⊆ Sn−1.

The function ϑ : R× R+ −→ R+ is bounded on bounded sets, in the following sense.

Lemma 5.3.7. Let λ0, γ0 ∈ R+. Then

Θ : = sup{ϑ(λ, γ) : |λ| ≤ λ0, 0 < γ ≤ γ0} <∞.

Proof. If this is not the case, for every M ∈ R there exist λM , γM with |λM | ≤ λ0, 0 < γM ≤ γ0,
such that

ϑ(λM , γM ) > M.

Remembering our normalization Hn−1(Sn−1) = 1 and Remark 5.3.5, this implies

µλM ,γM (Sn−1) ≥M,
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for every M ∈ R.

Fix M ∈ R. By definition of µ+
λM ,γM

, µ−λM ,γM , we have that for every ε > 0 there exists
0 < ` < 1 such that∣∣µ+

λM ,γM
(Sn−1)− sup {VλM (f) : ‖f‖∞ ≤ `, L(f) ≤ γM}

∣∣ < ε

4
,

∣∣µ−λM ,γM (Sn−1) + inf {VλM (f) : ‖f‖∞ ≤ `, L(f) ≤ γM}
∣∣ < ε

4
.

From µλM ,γM ’s definition and the triangular inequality we get∣∣∣µλM ,γM (Sn−1)− sup
f
VλM (f) + inf

f
VλM (f)

∣∣∣ < ε

2
.

In particular,

M ≤ µλM ,γM (Sn−1) < sup
f
VλM (f)− inf

f
VλM (f) +

ε

2
.

There exist fM , gM ∈ Lip(Sn−1) such that ‖fM‖∞, ‖gM‖∞ ≤ `, L(fM ), L(gM ) ≤ γM and

sup
f
VλM (f) < VλM (fM ) +

ε

4
,

inf
f
VλM (f) > VλM (gM )− ε

4
,

which in turn implies

M < VλM (fM )− VλM (gM ) + ε. (5.3.12)

The functions fM + λM , gM + λM ∈ Lip(Sn−1) satisfy

‖fM + λM‖∞, ‖gM + λM‖∞ ≤ `+ |λM | < 1 + λ0,

L(fM + λM ) = L(fM ) ≤ γM ≤ γ0,

L(gM + λM ) = L(gM ) ≤ γM ≤ γ0,

so that

‖fM + λM‖Lip, ‖gM + λM‖Lip ≤ Λ : = max{1 + λ0, γ0}.

From Lemma 5.1.1, there exists C > 0 such that

|VλM (fM )|, |VλM (gM )| ≤ C.

Inequality (5.3.12) then implies

M < 2C + ε;

since M is arbitrary, this is a contradiction.



68

5.4 The representing measure

We are now going to build another measure, which will in some sense “represent” our valua-
tion. In order to do so, we need to stick to the bidimensional case, i.e., for the rest of the chapter
we will focus on the case n = 2.

As we did in the case of polynomial valuations, we can identify functions f ∈ Lip(S1) with 2π-
periodic functions on R. With this convention, we will work with integrals over (0, 2π] instead
of S1 and with derivatives f ′ instead of gradients ∇sf . Having already described how the
identification works in the proof of Theorem 1.1.3, we will not be detailing it again here.

Note that, with this identification, the rotation invariant valuation V becomes translation
invariant, in the sense that

V (f ◦ Tt0) = V (f),

for every f ∈ Lip(S1) and t0 ∈ R, where Tt0 is defined by Tt0(t) = t+t0, for t ∈ (0, 2π]. Moreover,
it follows again from the rotational invariance that if fR denotes the reflection of the function
f ∈ Lip(S1) with respect to the axis x = π, that is, fR(x) = f(2π−x), x ∈ R, then V (f) = V (fR)
for every f ∈ Lip(S1).

Consider the algebra A1 defined by

A1 =


m⋃
j=1

Ij : m ∈ N, Ij = (aj , bj ] ⊆ (0, π], Ij ∩ Ik = ∅ for j 6= k

 .

We say that g ∈ L (S1) is symmetric if, on the interval (0, 2π], it is symmetric with respect to
the axis x = π. For every symmetric g ∈ L (S1), we define a set function

νg : A1 −→ R

which on intervals (a, b] ⊆ (0, π] is given by

νg((a, b]) =
1

2
V (gab),

where

gab(x) =


g(a) in (0, a] ∪ (2π − a, 2π],

g(x) in (a, b] ∪ (2π − b, 2π − a],

g(b) in (b, 2π − b],

for x ∈ (0, 2π], and gab is extended 2π-periodically to R. To justify this definition, recall that we
are assuming V to be null on constant functions and g to be symmetric.

gab

g(a)

g(b)

a b π 2π − b 2π − a 2π
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Let us prove that for consecutive intervals I = (a, b], J = (b, c] ⊆ (0, π] we have

νg(I) + νg(J) = νg(I ∪ J),

that is,
V (gab) + V (gbc) = V (gac).

If λ = g(b), the functions gλab = gab−λ and gλbc = gbc−λ have disjoint supports, and then satisfy

(gλab)
+ ∨ (gλbc)

+ = (gλab + gλbc)
+,

(gλab)
− ∧ (gλbc)

− = (gλab + gλbc)
−,

(gλab)
+ ∧ (gλbc)

+ = O,

(gλab)
− ∨ (gλbc)

− = O.

Therefore,

V (gab) + V (gbc) = Vλ(gλab) + Vλ(gλbc) = Vλ((gλab)
+) + Vλ((gλab)

−) + Vλ((gλbc)
+) + Vλ((gλbc)

−)

= Vλ((gλab)
+ ∨ (gλbc)

+) + Vλ((gλab)
− ∧ (gλbc)

−) = Vλ((gλab + gλbc)
+) +

+Vλ((gλab + gλbc)
−) = Vλ(gλab + gλbc) = V (gab + gλbc) = V (gac),

as desired.
This implies the finite additivity of νg on intersecting intervals: indeed, if I = (a, b] and

J = (c, d] with 0 ≤ a < c < b < d ≤ π, from what we have just proved we get that

νg(I) + νg(J) = νg((a, b]) + νg((c, d]) = νg((a, b]) + νg((c, b]) + νg((b, d])

= νg((a, d]) + νg((c, b]) = νg(I ∪ J) + νg(I ∩ J).

If we set

νg

 m⋃
j=1

Ij

 : =

m∑
j=1

νg(Ij),

for every pairwise disjoint and semi-open intervals I1, . . . , Im ⊆ (0, π], the finite additivity on
intersecting intervals ensures that this is a well-posed definition and that νg is finitely additive.

The following technical lemma will soon be useful.

Lemma 5.4.1. Let λ ∈ R, γ ∈ R+. Take ε > 0 and G ⊆ (0, 2π] an open interval. Let ` > 0 be
such that

|Vλ(f)| ≤ (ϑ(λ, γ) + ε)H1(G) (5.4.1)

for every f ∈ Lip(S1) with f ≺ G, ‖f‖∞ ≤ ` and L(f) ≤ γ.
Then, for every open interval G′ ⊆ G such that H1(G) = kH1(G′) for some k ∈ N, we have

|Vλ(f)| ≤ (ϑ(λ, γ) + ε)H1(G′),

for every f ∈ Lip(S1) with f ≺ G′, ‖f‖∞ ≤ ` and L(f) ≤ γ.

Proof. First of all, note that an ` such that (5.4.1) holds always exists, thanks to Proposition
5.3.6.

We choose an open interval G′ ⊆ G = (a, b) with H1(G) = kH1(G′) and reason by contra-
diction: suppose there exists a function f ∈ Lip(S1) with f ≺ G′, ‖f‖∞ ≤ ` and L(f) ≤ γ such
that |Vλ(f)| > (ϑ(λ, γ) + ε)H1(G′). We can write

|Vλ(f)| = (ϑ(λ, γ) + ε)H1(G′) + ρ,
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for a suitable ρ > 0.
Because of rotational invariance, we may assume that the left ends of G and G′ coincide.

Since H1(G) = kH1(G′), we can divide G into intervals Gi = (λi−1, λi), i = 1, . . . , k, where
a = λ0 < λ1 < . . . < λk = b, G1 = G′ and H1(Gi) = H1(G′), for every i = 1, . . . , k. We have

G =

k⋃
i=1

Gi,

where, for every i = 1, . . . , k, Gi = σ−1
i (G′) and σi is the rotation (translation as a function on

R) bringing λi−1 and λi in λ0 and λ1 respectively.
Define the function g ∈ Lip(S1) by setting

g(x) =

k∑
i=1

f(σi(x)), x ∈ R.

Since f ◦ σi ≺ Gi for every i = 1, . . . , k, the supports of the f ◦ σi’s are pairwise disjoint, hence

g ∨O =
k∨
i=1

(f ◦ σi) ∨O,

g ∧O =

k∧
i=1

(f ◦ σi) ∧O.

Now, the f ◦ σi ∨O’s still have pairwise disjoint supports, which implies

Vλ(g ∨O) =

k∑
i=1

Vλ((f ◦ σi) ∨O),

from the inclusion-exclusion principle. Analogously,

Vλ(g ∧O) =

k∑
i=1

Vλ((f ◦ σi) ∧O).

Moreover, g ≺ G, ‖g‖∞ ≤ ` and L(g) ≤ γ.
From the valuation property and the rotational invariance we get

|Vλ(g)| = |Vλ(g ∨O) + Vλ(g ∧O)| =

∣∣∣∣∣
k∑
i=1

Vλ((f ◦ σi) ∨O) +

k∑
i=1

Vλ((f ◦ σi) ∧O)

∣∣∣∣∣
=

∣∣∣∣∣
k∑
i=1

Vλ(f ◦ σi)

∣∣∣∣∣ = k|Vλ(f)| = k(ϑ(λ, γ) + ε)H1(G′) + kρ

= (ϑ(λ, γ) + ε)H1(G) + kρ,

a contradiction with the hypothesis.

We can now prove that νg is absolutely continuous with respect to the Hausdorff measure H1

on the algebra A1.
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Lemma 5.4.2. Let g ∈ L (S1) be symmetric and let λ0 = ‖g‖∞, γ0 = L(g). Then, for every
pairwise disjoint semi-open intervals I1, . . . , Im ⊆ (0, π], we have∣∣∣∣∣∣νg

 m⋃
j=1

Ij

∣∣∣∣∣∣ ≤ (Θ + 1)H1

 m⋃
j=1

Ij

 , (5.4.2)

where Θ is defined as in Lemma 5.3.7. Therefore, νg � H1 on A1, and in particular νg is
bounded on A1.

Proof. We preliminarily prove the result for m = 1, i.e.,

|νg(I)| ≤ (Θ + 1)H1(I), (5.4.3)

for I = (a, b] ⊆ (0, π].
Define

tmax = sup
{
t ∈ [a, b] : |νg((a, t])| ≤ (Θ + 1)H1((a, t])

}
.

This set contains a (since V is null on constant functions), hence it is not empty and the definition
is well-posed.

We claim that

|νg((a, tmax])| = (Θ + 1)H1((a, tmax]). (5.4.4)

If tmax = a, this is clearly true. Suppose tmax > a. To prove (5.4.4), note that gat −→
τ
gatmax

, as

t→ tmax. Indeed, if a ≤ t ≤ tmax we have

sup
s∈(0, 2π]

|gat(s)− gatmax
(s)| = sup

s∈(t, π]

|gat(s)− gatmax
(s)|

≤ sup
s∈(t, tmax]

|g(t)− g(s)|+ sup
s∈(tmax, π]

|g(t)− g(tmax)|

≤ 2γ0‖t− tmax‖,

and if tmax < t ≤ π

sup
s∈(0, 2π]

|gat(s)− gatmax
(s)| = sup

s∈(tmax, π]

|gat(s)− gatmax
(s)|

≤ sup
s∈(tmax, t]

|g(s)− g(tmax)|+ sup
s∈(t, π]

|g(t)− g(tmax)|

≤ 2γ0‖t− tmax‖,

hence gat → gatmax
uniformly on (0, 2π]. Let

Jt =

{
[t, tmax] if t < tmax,

[tmax, t] if t > tmax.

Then g′at(s) = 0 = g′atmax
(s) for a.e. s ∈ (0, 2π] \ Jt, and H1(Jt) → 0 as t → tmax, so that

g′at → g′atmax
a.e. for t → tmax. Finally, |g′at| ≤ γ0 a.e. in (0, 2π]. Therefore, gat −→

τ
gatmax as

t→ tmax.
So, letting t→ t−max in |νg((a, t])| ≤ (Θ + 1)H1((a, t]), by the continuity of V we get

|νg((a, tmax])| ≤ (Θ + 1)H1((a, tmax]).
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For the other inequality, note that for every t > tmax we have

|νg((a, t])| > (Θ + 1)H1((a, tmax]),

and use continuity again. This proves (5.4.4).
We would like to show that tmax = b. Suppose this is not the case, i.e., tmax < b. Consider

the open interval G = (tmax, 2π−tmax) and let λmax = g(tmax). Fix 0 < ε < 1. From Proposition
5.3.6, there exists `0 > 0 such that for every f ∈ Lip(S1) with f ≺ G, ‖f‖∞ ≤ `0 and L(f) ≤ γ0,
we have

|Vλmax(f)| ≤ (ϑ(λmax, γ0) + ε)H1(G).

Since tmax < b and g is piecewise linear, we can choose t0 ∈ (0, π), α > 0 such that tmax <
t0 < t0 +α < b, g|[tmax, t0] is monotone and satisfies |g(t)−λmax| ≤ `0 for every t ∈ [tmax, t0], and

H1(G) = kH1(G′),

for some k ∈ N, where G′ = (tmax, 2t0 + α− tmax) (note that t0 is independent of α). Suppose g
to be increasing in [tmax, t0]; if g|[tmax, t0] is decreasing we can argue similarly.

Note: the fact that g is piecewise linear allows us to choose t0 such that g|[tmax, t0] is monotone.
This cannot be done for an arbitrary Lipschitz function f , and this is the only thing that prevents
us from defining νf for a symmetric f ∈ Lip(S1).

From Lemma 5.4.1 we get that

|Vλmax
(f)| ≤ (ϑ(λmax, γ0) + ε)H1(G′), (5.4.5)

for every f ∈ Lip(S1) such that f ≺ G′, ‖f‖∞ ≤ `0 and L(f) ≤ γ0.
Consider the function h = gtmax t0 − λmax and let σ be the rotation defined by

σ(t) = t− 2(π − t0),

for t ∈ (0, 2π]. Note that σ(2π − t0) = t0. From the rotational invariance and the valuation
property, we have that

2Vλmax(h) = Vλmax(h) + Vλmax(h ◦ σ) = Vλmax(h ∨ (h ◦ σ)) + Vλmax(h ∧ (h ◦ σ)). (5.4.6)

For f ∈ Lip(S1), define

ρ(f) = L1 ({t ∈ (0, 2π] : f(t) = g(t0)− λmax}) ,

ρ0(f) = L1 ({t ∈ (0, 2π] : f(t) = 0}) .

Note that ρ(h) = 2(π − t0), ρ0(h) = 2tmax. If, for instance, ρ(h) > ρ0(h), the graphs of our
functions are of the following forms:

h

tmax

t0

π 2π−t0

2π−tmax

2π
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h ◦ σ

tmax

t0

π 2π−t0

2π−tmax

2π

so that h ∨ (h ◦ σ) is a constant function and h ∧ (h ◦ σ) is of the form

h ∧ (h ◦ σ)

tmax

t0

π 2π−t0

2π−tmax

2π

Since Vλmax
is null on constant functions, from (5.4.6), using the valuation property and the

rotational invariance, we get

2Vλmax
(h) = Vλmax

(h ∧ (h ◦ σ)) = Vλmax
(p) + Vλmax

(g0), (5.4.7)

where

p

π 2π

π+tmax−t0 π+t0−tmax

g0

π 2π

The function g0 has the same form as h; we call these pudding functions. Also, note that
ρ(g0) < ρ(h), ρ0(g0) > ρ0(h).

If ρ(h) < ρ0(h), we reason similarly, obtaining (5.4.7) again, with a different g0 such that
ρ(g0) > ρ(h), ρ0(g0) < ρ0(h).

Finally, if ρ(h) = ρ0(h) we have
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h

tmax

t0

π 2π−t0

2π−tmax

2π

and we get

2Vλmax(h) = Vλmax(h ∨ (h ◦ σ)) + Vλmax(h ∧ (h ◦ σ)),

where, up to translations, h ∧ (h ◦ σ) = p and

h ∨ (h ◦ σ)

π 2π

Setting g0 = h ∨ (h ◦ σ), which is still a pudding function, we find again

2Vλmax
(h) = Vλmax

(p) + Vλmax
(g0).

Since g0 has, apart from its lengths ρ, ρ0, the same exact structure as h, we can repeat the
argument with g0 replacing h. We obtain

2Vλmax
(g0) = Vλmax

(p) + Vλmax
(g1),

where g1 is a pudding function. Then

2Vλmax(h) = Vλmax(p) + Vλmax(g0) =
3

2
Vλmax(p) +

1

2
Vλmax(g1).

By induction, we have that for every m ∈ N

2Vλmax
(h) =

m∑
j=0

1

2j
Vλmax

(p) +
1

2m
Vλmax

(gm),

that is,

Vλmax
(h) =

m+1∑
j=1

1

2j
Vλmax

(p) +
1

2m+1
Vλmax

(gm), (5.4.8)

where gm is a pudding function.
Since, by Lemma 5.1.1, Vλmax

is bounded on ‖·‖Lip-bounded sets, and

‖gm‖Lip ≤ max{λ0, γ0}
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for every m ∈ N, we have that the second term in the right-hand side of (5.4.8) goes to zero as
m→∞. Therefore, passing to the limit in (5.4.8) we find

Vλmax
(h) = Vλmax

(p),

where p ∈ Lip(S1) satisfies ‖p‖∞ ≤ `0 and L(p) ≤ γ0. Moreover, the support of p has measure
smaller than H1(G′), so that p ≺ G′, up to a rotation. From (5.4.5) we obtain

|νg((tmax, t0])| =
1

2
|V (gtmax t0)| = 1

2
|Vλmax(h)| = 1

2
|Vλmax(p)|

≤ (ϑ(λmax, γ0) + ε) · 1

2
H1((tmax, 2t0 + α− tmax))

< (Θ + 1)H1
((
tmax, t0 +

α

2

])
. (5.4.9)

From the finite additivity of νg on consecutive intervals, (5.4.4), (5.4.9) and the finite addi-
tivity of H1 we have

|νg((a, t0])| ≤ (Θ + 1)H1((a, tmax]) + |νg((tmax, t0])|

< (Θ + 1)H1((a, tmax]) + (Θ + 1)H1
((
tmax, t0 +

α

2

])
= (Θ + 1)H1

((
a, t0 +

α

2

])
.

Letting α → 0+ we get a contradiction with the definition of tmax. Thus tmax = b, and from
(5.4.4) we get (5.4.3) (with equality).

For the general case, note that for every pairwise disjoint semi-open intervals I1, . . . , Im we
have, because of (5.4.3),∣∣∣∣∣∣νg

 m⋃
j=1

Ij

∣∣∣∣∣∣ =

∣∣∣∣∣∣
m∑
j=1

νg(Ij)

∣∣∣∣∣∣ ≤ (Θ + 1)

m∑
j=1

H1(Ij) = (Θ + 1)H1

 m⋃
j=1

Ij

 .

If we now consider the algebra

A2 =


m⋃
j=1

Ij : m ∈ N, Ij = (aj , bj ] ⊆ (π, 2π], Ij ∩ Ik = ∅ for j 6= k

 ,

for a symmetric g ∈ L (S1) we can analogously build a finitely additive function νg on A2 such
that (5.4.2) holds for every pairwise disjoint semi-open intervals I1, . . . , Im ⊆ (π, 2π].

For an arbitrary g ∈ L (S1), we can now define a function νg on the algebra

A =


m⋃
j=1

Ij : m ∈ N, Ij = (aj , bj ] ⊆ (0, 2π], Ij ∩ Ik = ∅ for j 6= k

 ,

which coincides with the algebra generated by the semi-open intervals in (0, 2π], by setting

νg

 m⋃
j=1

Ij

 : = νg1

 m⋃
j=1

(Ij ∩ (0, π])

+ νg2

 m⋃
j=1

(Ij ∩ (π, 2π])

 ,
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for every pairwise disjoint and semi-open intervals I1, . . . , Im ⊆ (0, 2π], where g1, g2 are the
symmetric extensions to (0, 2π] of g|(0,π] and g|(π,2π] respectively. We have that νg is finitely
additive and satisfies

|νg| ≤ (Θ + 1)H1 (5.4.10)

on A. This allows us to extend νg to a signed measure.

Lemma 5.4.3. For every g ∈ L (S1), νg can be extended to a signed measure on the σ-algebra

Σ = σ ({(a, b] : 0 ≤ a ≤ b ≤ 2π})

generated by the semi-open intervals of (0, 2π], which coincides with the Borel σ-algebra of (0, 2π],
and νg � H1 on Σ.

Proof. Fix g ∈ L (S1). Inequality (5.4.10) implies the boundedness of νg on A. From [5, Theorem
2.5.3, (1)-(9)], if we define

ν+
g (A) = sup{νg(B) : B ⊆ A, B ∈ A},

ν−g (A) = sup{−νg(B) : B ⊆ A, B ∈ A},

for A ∈ A, then ν+
g , ν−g are non-negative and bounded charges (i.e., set functions which are

null on the empty set and finitely additive on disjoint sets) such that νg = ν+
g − ν−g . Note that

ν±g (A) ≤ (Θ + 1)H1(A) for every A ∈ A, hence ν±g � H1 on A.
Let us prove that ν+

g and ν−g are (bounded) pre-measures on the algebra A: for pairwise
disjoint sets {Ai} ⊆ A such that A =

⋃
i∈NAi ∈ A, we have to show that

ν±g

(⋃
i∈N

Ai

)
=
∑
i∈N

ν±g (Ai).

Let ε > 0. Then there exists δ > 0 such that H1(B) < δ implies ν±g (B) < ε, for every B ∈ A.
Since ∑

i∈N
H1(Ai) = H1(A) <∞,

there is a number M ∈ N such that

H1

( ∞⋃
i=m

Ai

)
=

∞∑
i=m

H1(Ai) < δ

for every m ≥M . Now,
∞⋃
i=m

Ai =

(⋃
i∈N

Ai

)
∩

(
m−1⋃
i=1

Ai

)c
∈ A,

hence

ν±g

( ∞⋃
i=m

Ai

)
< ε,

for m ≥M , that is,

lim
m→∞

ν±g

( ∞⋃
i=m

Ai

)
= 0.
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From the finite additivity of ν±g on the algebra, we have

ν±g

(⋃
i∈N

Ai

)
=

m−1∑
i=1

ν±g (Ai) + ν±g

( ∞⋃
i=m

Ai

)
.

Letting m→∞ we conclude.
Thus ν+

g , ν−g are pre-measures on the algebra A. Theorem 2.1.1 then implies that they can
be extended to measures on σ(A), hence on Σ; this allows us to extend νg to a signed measure
on Σ.

Let us now prove that νg � H1 on Σ. It is enough to show that ν±g � H1. Fix ε > 0. From
the absolute continuity of ν±g on the algebra, we have that there exists a δ > 0 such that, for
every B ∈ A, if H1(B) < δ then ν±g (B) < ε/2.

Pick now A ∈ Σ such that H1(A) < δ0 : = δ/2. By regularity of the Hausdorff measure, there
exists an open set U ⊇ A such that H1(U \A) < δ/2. Then

H1(U) = H1(A) +H1(U \A) < δ.

We can write U =
⋃
j∈N

Ij , where the Ij ’s are pairwise disjoint open intervals. Note that

∑
j∈N

ν±g (Ij) = ν±g (U) <∞,

hence there exists m ∈ N such that
∞∑
j=m

ν±g (Ij) <
ε

2
.

Now, if Ij = (aj , bj) for every j ∈ N, we have

H1

m−1⋃
j=1

(aj , bj ]

 = H1

m−1⋃
j=1

Ij

 ≤ H1(U) < δ,

with

m−1⋃
j=1

(aj , bj ] ∈ A. By monotonicity and additivity of ν±g , and using the fact that ν±g is null

at singletons, we get

ν±g (A) ≤ ν±g (U) = ν±g

m−1⋃
j=1

Ij

+

∞∑
j=m

ν±g (Ij) = ν±g

m−1⋃
j=1

(aj , bj ]

+

∞∑
j=m

ν±g (Ij) < ε.

This last lemma allows us to use Theorem 2.2.7, which yields the following.

Proposition 5.4.4. For every g ∈ L (S1), there exists a function Dg =
dνg
dH1 ∈ L1(S1) such that

νg(A) =

∫
A

Dg(t)dH1(t),

for every A ∈ Σ.

We will call this νg the representing measure, since it is the one which will give us the
representation formula for the valuation on piecewise linear functions, as shown in the next
section.



78

5.5 Representation formula on L (S1)

For every λ ∈ R, γ ∈ R+, we define the function

ψλ,γ(t) =

{
λ+ γ(t− π

2 ) if t ∈ [0, π],

λ+ γ( 3π
2 − t) if t ∈ [π, 2π].

ψλ,γ

π 2π

λ− γπ
2

λ

For fixed λ ∈ R, γ ∈ R+ and m ∈ N, let us consider the saw function Sλ,γ,m obtained by
joining m shrinked and translated copies of ψλm,γ as follows:

Sλ,γ,m(t) =
1

m

m∑
j=1

ψλm,γ(mt− 2(j − 1)π)χ( 2(j−1)π
m , 2jπm ](t),

for t ∈ (0, 2π], and extend Sλ,γ,m 2π-periodically to R.

Sλ,γ,m

π
m

2π
m

2π

λ− γπ
2m

λ

Note that, for every m ∈ N, |S′λ,γ,m(t)| = γ for a.e. t ∈ (0, 2π], and

‖Sλ,γ,m‖∞ =
1

m
max

t∈(0, 2πm ]
|ψλm,γ(mt)| = 1

m
max

{
|ψλm,γ(0)|,

∣∣∣ψλm,γ ( π
m

)∣∣∣} ≤ |λ|+ γπ

2
,

so that
‖Sλ,γ,m‖Lip ≤ |λ|+

γπ

2
.

Thus, it follows from Lemma 5.1.1 that sup
m∈N
|V (Sλ,γ,m)| <∞. We can then define

K(λ, γ) : = C0 lim sup
m→∞

V (Sλ,γ,m), (5.5.1)

where C0 > 0 is the constant such that

H1 =
1

8πC0
L1.

This kernel is very closely related to our Radon-Nikodym derivative, in the sense stated in the
following lemma.
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Lemma 5.5.1. Let γ ∈ R+ and 0 ≤ a < b ≤ 2π. If g ∈ L (S1) is such that |g′(t)| = γ for a.e.
t ∈ (a, b], then

K(g(t), γ) = Dg(t) (5.5.2)

for a.e. t ∈ (a, b].

Proof. Let g ∈ L (S1) be as in the hypothesis. Consider (c, d) ⊆ (a, b] such that g′(t) = γ for
a.e. t ∈ (c, d). By Theorem 2.2.8, we have that for a.e. t ∈ (c, d)

Dg(t) = lim
ε→0

1

H1(t− ε, t+ ε)

∫ t+ε

t−ε
Dg(s)dH1(s).

Take t ∈ (c, d), t 6= π, such that this holds, and set λ = g(t). By the inclusion-exclusion
principle, remembering that V is null on constant functions and using the rotational invariance,
for every m ∈ N we get

V (Sλ,γ,m) = V

 1

m

m∑
j=1

ψλm,γ(m · −2(j − 1)π)χ( 2(j−1)π
m , 2jπm ]


= V

 m∨
j=1

(
1

m
ψλm,γ(m · −2(j − 1)π)χ( 2(j−1)π

m , 2jπm ] +
(
λ− γπ

2m

)
χ

(0,
2(j−1)π

m ]∪( 2jπ
m ,2π]

)
=

m∑
j=1

V

(
1

m
ψλm,γ(m · −2(j − 1)π)χ( 2(j−1)π

m , 2jπm ] +
(
λ− γπ

2m

)
χ

(0,
2(j−1)π

m ]∪( 2jπ
m ,2π]

)

= mV

(
1

m
ψλm,γ(m·)χ(0, 2πm ] +

(
λ− γπ

2m

)
χ

( 2π
m ,2π]

)
. (5.5.3)

Now, let

Ψλ,γ,m(s) =
1

m
ψλm,γ(ms)χ(0, 2πm ](s) +

(
λ− γπ

2m

)
χ

( 2π
m ,2π](s), s ∈ (0, 2π],

with Ψλ,γ,m extended 2π-periodically as always.

Ψλ,γ,m

2π
m

π 2π

λ

λ− γπ
2m

If t < π, using rotational invariance and arguing as in the proof of Lemma 5.4.2, we have that
the number V (Ψλ,γ,m) coincides with the value attained by the valuation at the function

Φλ,γ,m(s) =


λ− γπ

2m in (0, t− π
2m ] ∪ (2π − t+ π

2m , 2π],

g(s) in (t− π
2m , t+ π

2m ],

g(2π − s) in (2π − t− π
2m , 2π − t+ π

2m ],

λ+ γπ
2m in (t+ π

2m , 2π − t+ π
2m ],

whose graph is given by
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Φλ,γ,m

t π 2π

λ

λ− γπ
2m

if m is big enough so that t+ π
2m < π. We proceed similarly in the case t > π.

From (5.5.3), using the definition of the representing measure and Proposition 5.4.4 we find

V (Sλ,γ,m) = mV (Ψλ,γ,m) = mV (Φλ,γ,m) = 2mνg

((
t− π

2m
, t+

π

2m

])
=

1

C0H1
((
t− 2π

m , t+ 2π
m

]) ∫ t+ 2π
m

t− 2π
m

Dg(s)dH1(s),

since

H1

((
t− 2π

m
, t+

2π

m

])
=

1

8πC0
L1

((
t− 2π

m
, t+

2π

m

])
=

1

8πC0
· 4π

m
=

1

2mC0
.

Thus, taking the limit superior for m → ∞ we obtain (5.5.2) for a.e. t ∈ (c, d). The case
g′(t) = − γ for a.e. t ∈ (c, d) is analogous.

This allows us to prove the Borel measurability of K(·, γ), for every γ ∈ R+.

Remark 5.5.2. Fix γ ∈ R+. For every m ∈ Z, ψγπm,γ(0) = γπ(2m−1)
2 and ψγπm,γ(π) =

γπ(2m+1)
2 . By the intermediate value theorem, if λ ∈

(
γπ(2m−1)

2 , γπ(2m+1)
2

]
then there exists

t ∈ [0, π] such that ψγπm,γ(t) = λ. From Lemma 5.5.1,

K(λ, γ) =
∑
m∈Z

Dψγπm,γ

(
ψ−1
γπm,γ(λ)

)
χ

( γπ(2m−1)
2 ,

γπ(2m+1)
2 ](λ),

for every λ ∈ R. As a consequence, we have that for every γ ∈ R+, K(·, γ) is a Borel function
on R (and it is in fact integrable on every bounded interval).

We can finally prove Theorem 1.1.4.

Proof of Theorem 1.1.4. Let V be as in the hypothesis and let K be defined by (5.5.1). We
preliminarily prove the representation formula for symmetric functions g ∈ L (S1). Fix such a
g. Then |g′| is piecewise constant, that is, there exists a partition

(0, 2π] =
⋃̀
i=1

(ti−1, ti],

with t0 = 0, t` = 2π, such that |g′| = γi ∈ R+ a.e. in (ti−1, ti], for i = 1, . . . , `. Consider the
quantity νg((0, 2π]). On the one hand, from Proposition 5.4.4 and Lemma 5.5.1 we have

νg((0, 2π]) =

∫ 2π

0

Dg(t)dH1(t) =
∑̀
i=1

∫ ti

ti−1

Dg(t)dH1(t) =
∑̀
i=1

∫ ti

ti−1

K(g(t), |g′(t)|)dH1(t)

=

∫ 2π

0

K(g(t), |g′(t)|)dH1(t),
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and on the other hand, since g is symmetric with respect to x = π,

νg((0, 2π]) = νg((0, π]) + νg((π, 2π]) =
1

2
V (g) +

1

2
V (g) = V (g).

This proves (1.1.3) for piecewise linear and symmetric functions.

Take now an arbitrary g ∈ L (S1). Recalling what we said at the beginning of Section 5.4,
and denoting by gR the reflection of g with respect to x = π, from the valuation property we get
that

V (g) =
1

2

[
V (g) + V (gR)

]
=

1

2

[
V (g ∨ gR) + V (g ∧ gR)

]
.

Now, g ∨ gR and g ∧ gR are piecewise linear and symmetric. What we have seen in the first part
of the proof then implies

V (g) =
1

2

∫ 2π

0

[
K(g ∨ gR(t), |(g ∨ gR)′(t)|) +K(g ∧ gR(t), |(g ∧ gR)′(t)|)

]
dH1(t)

=
1

2

∫ 2π

0

[
K(g(t), |g′(t)|) +K(gR(t), |g′R(t)|)

]
dH1(t)

=
1

2

∫ 2π

0

[
K(g(t), |g′(t)|) +K(g(2π − t), |g′(2π − t)|)

]
dH1(t)

=
1

2

∫ 2π

0

[
K(g(t), |g′(t)|) +K(g(−t), |g′(−t)|)

]
dH1(t), (5.5.4)

where the last equality follows from the fact that g and g′ are 2π-periodic. With the change of
variable t = 2π − s we get∫ 2π

0

K(g(−t), |g′(−t)|)dH1(t) = −
∫ 0

2π

K(g(s− 2π), |g′(s− 2π)|)dH1(s)

=

∫ 2π

0

K(g(s), |g′(s)|)dH1(s),

hence (5.5.4) gives

V (g) =

∫ 2π

0

K(g(t), |g′(t)|)dH1(t),

as desired.

Formula (1.1.4) follows immediately from Proposition 3.0.2.

5.6 Uniformly continuous valuations on Lip(S1)

If we now ask for uniform continuity (with respect to τ), we are able to prove a characterization
result, namely Theorem 1.1.5. In order to do so, we start off by proving the following inequality.

Lemma 5.6.1. Let {a`}, {b`} ⊆ R be such that sup
`
a`, sup

`
b` <∞, where ` ranges in a countable

set. Then ∣∣∣ sup
`
a` − sup

`
b`

∣∣∣ ≤ sup
`
|a` − b`|.
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Proof. For every i, we have

ai = ai − bi + bi ≤ |ai − bi|+ bi ≤ sup
`
|a` − b`|+ sup

`
b`,

and taking the supremum in i we get

sup
`
a` − sup

`
b` ≤ sup

`
|a` − b`|.

Swapping the roles of ai, bi and repeating the same reasoning we also find

sup
`
b` − sup

`
a` ≤ sup

`
|a` − b`|,

and then we are done.

We can now prove the uniform continuity of our kernel K, under the assumption of uniform
continuity on the valuation.

Lemma 5.6.2. If V : Lip(S1) −→ R is a uniformly continuous and rotation invariant valuation,
then the kernel K : R× R+ −→ R defined by (5.5.1) is uniformly continuous.

Proof. By contradiction, suppose that there exists a number ε > 0 such that for every δ > 0

there are (λ, γ), (
∼
λ,
∼
γ ) ∈ R× R+ satisfying√(

λ− ∼λ
)2

+
(
γ− ∼γ

)2
< δ

and ∣∣∣K(λ, γ)−K(
∼
λ,
∼
γ)
∣∣∣ > ε.

We can then build two sequences {(λi, γi)}, {(
∼
λi,
∼
γi)} ⊆ R×R+ such that λi−

∼
λi→ 0, γi− ∼γi→ 0

as i→∞, and ∣∣∣K(λi, γi)−K(
∼
λi,
∼
γi)
∣∣∣ > ε

for every i ∈ N. By definition of K and Lemma 5.6.1, we get

ε

C0
< lim
m→∞

∣∣∣∣∣ sup
`≥m

V (Sλi,γi,`)− sup
`≥m

V
(
S∼
λi,
∼
γ i,`

) ∣∣∣∣∣ ≤ lim sup
m→∞

∣∣∣V (Sλi,γi,m)− V
(
S∼
λi,
∼
γ i,m

)∣∣∣ .
(5.6.1)

We claim that, for a fixed m ∈ N,

Sλi,γi,m − S∼λi,∼γ i,m −→τ O, (5.6.2)

as i→∞. To prove this we estimate, for i ∈ N and t ∈ (0, 2π],∣∣∣Sλi,γi,m(t)− S∼
λi,
∼
γ i,m

(t)
∣∣∣ ≤ 1

m
max
s∈[0,2π]

∣∣∣ψλim,γi(s)− ψ∼λim,∼γ i(s)∣∣∣ · m∑
j=1

χ
( 2(j−1)π

m , 2jπm ](t)

=
1

m
max
s∈[0,π]

∣∣∣ψλim,γi(s)− ψ∼λim,∼γ i(s)∣∣∣
=

1

m

∣∣∣ψλim,γi(si,m)− ψ∼
λim,

∼
γ i

(si,m)
∣∣∣ ,
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for suitable si,m’s in [0, π], where∣∣∣ψλim,γi(si,m)− ψ∼
λim,

∼
γ i

(si,m)
∣∣∣ =

∣∣∣λim+ γi

(
si,m −

π

2

)
− ∼λi m− ∼γi

(
si,m −

π

2

)∣∣∣
≤ m

∣∣λi− ∼λi ∣∣+
π

2

∣∣γi− ∼γi∣∣ .
This implies ∣∣∣Sλi,γi,m(t)− S∼

λi,
∼
γ i,m

(t)
∣∣∣ ≤ ∣∣λi− ∼λi ∣∣+

π

2

∣∣γi− ∼γi∣∣ ,
so that

Sλi,γi,m − S∼λi,∼γ i,m → O

uniformly on (0, 2π], as i→∞.
As for the a.e. convergence of the derivatives, note that the set

B =
{
t ∈ (0, 2π] : S′λi,γi,m(t), S′∼

λi,
∼
γ i,m

(t) exist for every i, m ∈ N
}

has full measure, since the functions Sλi,γi,m, S∼
λi,
∼
γ i,m

are differentiable on the set (0, 2π] \{
jπ
m : j = 1, . . . , 2m

}
, for every i,m ∈ N. For t ∈ B,∣∣∣S′λi,γi,m(t)− S′∼

λi,
∼
γ i,m

(t)
∣∣∣ = |γi− ∼γi | → 0

as i→∞, and ∣∣∣S′λi,γi,m(t)− S′∼
λi,
∼
γ i,m

(t)
∣∣∣ ≤ max{γ1− ∼γ1, . . . , γJ − ∼γJ , 1},

where J is such that |γi− ∼γi | ≤ 1 for every i > J . This proves (5.6.2).
Since V is uniformly continuous, there exists a neighbourhood U ⊆ Lip(S1) of O such that

f1 − f2 ∈ U ⇒ |V (f1)− V (f2)| < ε

C0
.

From what we have just proved, we have that there exists I ∈ N independent of m such that
Sλi,γi,m − S∼λi,∼γ i,m ∈ U for i > I and every m ∈ N, hence∣∣∣V (Sλi,γi,m)− V

(
S∼
λi,
∼
γ i,m

)∣∣∣ < ε

C0

for every i > I and m ∈ N. Inequality (5.6.1) yields a contradiction.

The kernel is also bounded on compact sets.

Lemma 5.6.3. For every Λ ∈ R, C > 0, there exists M > 0 such that |K(λ, γ)| ≤M , for every
(λ, γ) ∈ [−Λ,Λ]× [0, C].

Proof. For (λ, γ) ∈ [−Λ,Λ]× [0, C] we have

|K(λ, γ)| = C0 lim
m→∞

∣∣∣∣sup
`≥m

V (Sλ,γ,`)

∣∣∣∣ ≤ C0 lim
m→∞

sup
`≥m
|V (Sλ,γ,`)|,

where, for every ` ≥ m,

‖Sλ,γ,`‖Lip ≤ Λ +
πC

2
.
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By Lemma 5.1.1, there exists a constant M > 0 (depending on Λ and C) such that

|V (Sλ,γ,`)| ≤
M

C0
,

for every ` ≥ m, hence

|K(λ, γ)| ≤M.

We can now prove our last characterization result.

Proof of Theorem 1.1.5. A kernel which is uniformly continuous always gives rise to a uniformly
continuous and rotation invariant valuation. To see this, thanks to Lemma 4.3.1, we just have
to prove that if K is uniformly continuous and V : Lip(S1)→ R is defined by

V (f) =

∫ 2π

0

K(f(t), |f ′(t)|)dH1(t),

for f ∈ Lip(S1), then V is uniformly continuous.

Because K is uniformly continuous, for a fixed ε > 0 there exists δ > 0 such that∣∣K(λ1, γ1)−K(λ2, γ2)
∣∣ < ε

H1((0, 2π])
,

for every λ1, λ2 ∈ R and γ1, γ2 ∈ R+ such that√
(λ1 − λ2)2 + (γ1 − γ2)2 < δ.

Let

U =
{
f ∈ Lip(S1) :

√
f(t)2 + |f ′(t)|2 < δ for a.e. t ∈ (0, 2π]

}
.

This set is a neighbourhood of O with respect to τ . Take f1, f2 ∈ Lip(S1) such that f1− f2 ∈ U .
Then

|V (f1)− V (f2)| ≤
∫ 2π

0

∣∣K(f1(t), |f ′1(t)|)−K(f2(t), |f ′2(t)|)
∣∣dH1(t) < ε,

and we are done.

On the other hand, let V : Lip(S1) −→ R be a uniformly continuous and rotation invariant
valuation. By Theorem 1.1.4, for every f ∈ Lip(S1) we can write

V (f) = lim
i→∞

∫ 2π

0

K(fi(t), |f ′i(t)|)dH1(t), (5.6.3)

where {fi} ⊆ L (S1) is such that fi −→
τ
f as i→∞.

Noting that the pair (fi(t), |f ′i(t)|) belongs to a compact set [−Λ,Λ] × [0, C] for every i ∈ N
and a.e. t ∈ (0, 2π] (because of τ -convergence), we can use Lemma 5.6.3 to find that the integrand
in (5.6.3) is dominated by an integrable function (in fact, a constant one). Thanks to Lemma
5.6.2, we can apply the dominated convergence theorem in (5.6.3) to obtain (1.1.5).
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5.7 Counterexamples to Conjecture 1.1.1

Theorem 1.1.5 shows that if the kernel is uniformly continuous, then the valuation defined by
it is uniformly continuous, and vice versa. We also know (see Lemma 4.3.1) that a continuous
kernel gives rise to a continuous valuation. However, the continuity of the valuation is not enough
to guarantee the continuity of the kernel, as the following example shows.

Example 5.7.1. Consider the kernel K : R× R+ −→ R defined by

K(λ, γ) = |γ| · χ[1,∞)(λ),

for λ ∈ R, γ ∈ R+. Let V : Lip(S1) −→ R be the valuation associated with this kernel, that is,

V (f) =

∫ 2π

0

|f ′(t)|χ[1,∞)(f(t))dH1(t), (5.7.1)

for f ∈ Lip(S1).
Take {fi} ⊆ Lip(S1) such that fi −→

τ
f ∈ Lip(S1). We have

lim
i→∞

V (fi) = lim
i→∞

[∫
{f 6=1}

|f ′i(t)|χ[1,∞)(fi(t))dH1(t) +

∫
{f=1}

|f ′i(t)|χ[1,∞)(fi(t))dH1(t)

]
.

If t ∈ (0, 2π] is such that f(t) < 1, assume by contradiction that χ[1,∞)(fi(t)) 6→ χ[1,∞)(f(t)) =
0 as i→∞. Then, for every j ∈ N, there exists fij ∈ Lip(S1) such that∣∣χ[1,∞)(fij (t))

∣∣ > 1

j
.

This implies χ[1,∞)(fij (t)) = 1, for every j ∈ N, i.e., fij (t) ≥ 1. Letting j → ∞ we get a
contradiction. We can similarly prove that χ[1,∞)(fi(t)) → χ[1,∞)(f(t)) if f(t) > 1. From the
τ -convergence and the dominated convergence theorem we obtain

lim
i→∞

V (fi) =

∫
{f 6=1}

|f ′(t)|χ[1,∞)(f(t))dH1(t) + lim
i→∞

∫
{f=1}

|f ′i(t)|χ[1,∞)(fi(t))dH1(t)

= V (f) + lim
i→∞

∫
{f=1}

|f ′i(t)|χ[1,∞)(fi(t))dH1(t),

where the last equality is due to Corollary 1 from [13, Section 3.1]. Now,

|f ′i(t)|χ[1,∞)(fi(t)) ≤ |f ′i(t)|,

where, as i→∞, |f ′i(t)| → |f ′(t)| = 0, for a.e. t such that f(t) = 1, again by the aforementioned
Corollary. So, |f ′i(t)|χ[1,∞)(fi(t)) → 0 for a.e. t such that f(t) = 1, and from the dominated
convergence theorem we have that the last limit in the previous chain of equalities is null, hence
V is continuous.

The kernel defined in the example above is such that K(λ, ·) is continuous for every λ ∈ R
and K(·, γ) is only a.e. continuous for every γ ∈ R+. Nonetheless, the valuation defined by
(5.7.1) is continuous: this might lead us to think that Lemma 4.3.1 is improvable, and that it
would still hold for a kernel K : R×R+ −→ R which is continuous in one variable and only a.e.
continuous in the other one. Unfortunately, this is not the case, as shown in the next example.
We will actually prove something more, and discuss it afterwards.
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Example 5.7.2. Consider K : R× R+ −→ R defined by

K(λ, γ) = χ(0,∞)(λ),

for λ ∈ R, γ ∈ R+. This kernel is clearly continuous in γ (for fixed λ) and a.e. continuous in λ
(for fixed γ). The valuation V defined by

V (f) =

∫ 2π

0

K(f(t), |f ′(t)|)dH1(t) =

∫ 2π

0

χ(0,∞)(f(t))dH1(t),

for f ∈ Lip(S1), is not continuous, since the sequence fi ≡ 1
i converges to O with respect to τ

and

lim
i→∞

V (fi) = lim
i→∞

∫ 2π

0

χ(0,∞)

(
1

i

)
dH1(t) = H1((0, 2π]) 6= 0 = V (O).

Take now K : R× R+ −→ R defined by

K(λ, γ) =


1

γ
· χ(0,∞)(γ) if γ > 0,

0 if γ = 0.

The function K(·, γ) is obviously continuous, for every fixed γ ∈ R+. Note that, for every fixed
λ ∈ R, K(λ, ·) is a.e. continuous. Indeed, K(λ, ·) is continuous on (0,∞) but it is not continuous
at γ = 0, since

K

(
λ,

1

i

)
= i→∞ 6= 0 = K(λ, 0),

as i→∞. Let V : Lip(S1) −→ R be the valuation given by

V (f) =

∫ 2π

0

K(f(t), |f ′(t)|)dH1(t),

for f ∈ Lip(S1). The sequence fi = ψ1,1/i, where ψλ,γ is defined as in Section 5.5, satisfies
fi −→

τ
1, but

lim
i→∞

V (fi) = lim
i→∞

∫ 2π

0

K

(
fi,

1

i

)
dH1(t) = lim

i→∞

∫ 2π

0

i · χ(0,∞)

(
1

i

)
dH1(t)

= lim
i→∞

i · H1((0, 2π]) =∞ 6= 0 =

∫ 2π

0

K(1, 0)dH1(t) = V (1).

This proves that V is not continuous.

Example 5.7.1 showed that Conjecture 1.1.1 does not hold for K continuous (i.e., if (P ) =
continuity). The kernels defined in Example 5.7.2 are a.e. continuous in one of the two variables
and even constant in the other one, but this is not enough to guarantee the continuity of the
valuation V : Lip(S1) −→ R defined by

V (f) =

∫ 2π

0

K(f(t), |f ′(t)|)dH1(t), f ∈ Lip(S1).

This makes it harder to find a suitable property (P ) for the conjecture to hold.
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