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Abstract We study the physics of soft-core bosons at zero temperature in two dimen-
sions for a class of potentials that could be realised in experiments with Rydberg
dressed Bose-Einstein condensates. We analyze the ground state properties of the
system in detail and provide a complete description of the excitation spectra in both
superfluid, supersolid and crystalline phase for a wide range of interaction strengths
and densities. In addition we describe a method to extract the transverse gapless exci-
tation modes in the phases with broken translational symmetry within the framework
of path integral Monte Carlo methods.
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1 Introduction

A considerable number of theoretical studies have been lately devoted to investigate
ultra-cold gases characterised by non-local interactions [1], such as dipolar bosons
and fermions [2], Rydberg atoms [3], and polar molecules [4]. From the experimental
perspective this field of research is increasingly turning into a perfect playground for
realizing exotic phases with non-trivial broken symmetries [5–7], which are hardly
observable in typical condensed matter systems. A primary example is the so called
supersolid phase. Over the past few decades the existence of supersolidity was sub-
jected to an extensive experimental and theoretical work, mostly dominated by studies
on solid 4He [8–15]. From a theoretical viewpoint supersolidity can be understood as a
phase which simultaneously breaks both translational symmetry (crystalline order) and
global gauge symmetry that enables long-range phase coherence and thereby super-
fluidity of the system [8]. Some recent theoretical investigations [16,17] proposed that
a supersolid phase may emerge from a Bose-Einstein condensate where particles are
off-resonantly excited to a Rydberg state. Under such conditions one can engineer
effective two-body soft-core potentials which at large distances decay with the usual
dipolar or Van der Waals power law, while at shorter ones approach a constant finite
value—in contrast to the usual pure long range interactions– as a consequence of the
dipole blockade effect [18]. Recently, quantum Monte Carlo (QMC) calculations in
continuum space provided a complete description of the ground state phase diagram
for soft-core bosons, confirming the presence of a cluster supersolid phase in two [19]
and three dimensions [20]. Such superfluid clusters of a sufficient amount of particles
per single site (high density regime) display physical properties which are also effi-
ciently described by mean field approaches based on the solution of an effective non
local Gross–Pitaevskii equation [20–22].

Lately, Cinti et al. [23] investigated the ground state features of soft-core bosons
at lower densities where correlations can still give rise to supersolidity with a lower
cluster occupancy. Interestingly, contrarily to the predictions of the mean field theory,
at low densities superfluidity increases linearly with the number of zero-point defects
in the ground state. This picture is indeed fully consistent with the mechanism proposed
long ago by Andreev, Lifshitz [9] and Chester [10] (ALC), where superfluidity may,
in fact, emerge through the formation of delocalized defects in the crystalline ground
state.

The presence of two different microscopic mechanisms underlying the same macro-
scopic effect in different regimes of the parameter space, opens up other intriguing
questions regarding static and dynamical properties of a supersolid. Recently it was
shown for instance that the excitation spectrum of the supersolid displays well defined
Goldstone modes [22,24], which emerge as a result of global gauge and translational
symmetry breaking, respectively. It is not clear however how those modes show up
and possibly deviate from the mean field approximation in the low density limit where
correlations in the ALC regime are expected to be significant.
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In the present paper we shall compare mean field results in the high and low density
regime for a wide range of interaction strengths with exact QMC calculations for
interaction potentials which can be simulated with Rydberg dressed atoms. Moreover
we extend previous results concerning the spectrum of the elementary excitations
extracting the transverse modes in the supersolid and crystalline phase with a method
that exploits the crystalline arrangement of the ground state wavefunction. These
calculations turn out to be essential to capture the range of validity of mean field
calculations not only in the low density regime, but also at larger filling of the crystalline
lattice where optical modes systematically shifts upwards the energy of the longitudinal
mode in a way that is not controllable with advanced techniques of inversion of the
intermediate scattering function [25].

The paper is organized as follow: In the next Section, after having introduced
the system Hamiltonian, we discuss (Sect. 2.1) the mean-field approach based the
Gross-Pitaevskii equation with a non-local Rydberg-dressed potential and define the
Bogoliubov-de Gennes equations to study the excitation spectrum. QMC techniques
are exposed in Sect. 2.2, focusing the attention on the method we employed to calcu-
late the transverse excitations in the solid-like phase. In Sect. 3 we show the results
regarding the ground state properties across the liquid–solid transition (Sect. 3.1),
including a detailed analysis of the effects due to fluctuations in the uniform phase
at high densities. In Sect. 3.2 we show the excitation spectra in the limit of high and
low densities. In Sect. 4 we draw the conclusions and examine future extensions of
the present work.

2 Physical System and Methodologies

We consider a system of bosons in two dimensions at zero temperature with mass m
and positions qi , described by the Hamiltonian

Ĥ =
∑

i

− h̄2

2m
∇2

i +
∑

i< j

V (qi − q j ). (1)

The interaction is of soft-core nature and reads explicitly as V (r) = U
r6+R6

c
, being

U and Rc strength and range of the interaction potential, respectively . For large
inter-particle distances this potential shows a Van Der Waals-like power law decay,
whereas for vanishing separation particles acquire a finite interaction energy U/R6

c .
Upon scaling lengths by Rc and energies by h̄2/m R2

c , the zero temperature physics,
determined by Eq. (1), depends only on two dimensionless parameters: an effective
interaction strength α′ = Um/

(
h̄2 R4

c

)
and the dimensionless density n R2

c .

2.1 Mean-Field Approach

Here we first review the mean field description [16,26] and the phases emerging from
Eq. (1) at zero temperature [23]. In mean field theory the system dynamics is described
by a non-local Gross-Pitaevskii equation (GPE), which reads in reduced units:

123



62 J Low Temp Phys (2014) 177:59–71

i∂tψ(r, t) =
(

−∇2

2
+ α

∫
dr′U (r − r′)|ψ(r′, t)|2

)
ψ(r, t) , (2)

where r = q/Rc, U (r) = 1
1+r6 , and α = α′n R2

c = m n U/
(
h̄2 R2

c

)
is a dimensionless

interaction strength that determines the ground state properties and the excitation
dynamics. The energy associated to the state described by the wave functionψ(r, t) =
e−iμtψ0(r) in Eq. (2) can be derived from the GP energy functional:

H =
∫

dr
1

2
|∇ψ0(r)|2 + α

2

∫
dr dr′ |ψ0(r)|2U (r − r′)|ψ0(r′)|2 . (3)

In order to numerically determine the location of the transition from a uniform to
a modulated ground state, we first expand the wavefunction ψ0(r) in Fourier series:

ψ0(r) =
∑

Q

C Q ei Q·r, (4)

where Q = n b1 +m b2 with n,m integers and b1 = 2π
a

(
1,− 1√

3

)
, b2 = 2π

a

(
0, 2√

3

)

are the reciprocal lattice basis vectors of a triangular lattice. We then substitute Eq. (4)
into Eq. (2) and iteratively solve the non-linear equations for C Q until convergence
is reached [27]. This procedure allows to determine the optimal lattice spacing, the
chemical potential and the coefficients C Q.

The validity of the above mean field theory is limited to the regime of high densities,
that is, where the depletion of the condensate remains small for a wide range of
interaction strengths. Similar considerations were recently done on analogous soft-core
step-like potentials leading to results in very good agreement with QMC simulations
[22]. A through analysis of the ground state phase diagram for soft-core interactions
as in Eq. (1) was provided in Ref. [23] both for the high and low density limit using
QMC techniques and a schematic of the phase diagram is reported in Fig. 1, which
are reviewed in Sect. 2.2.

In the high-density limit (when n R2
c � 1.8) for low interaction strengths (α < 28)

the ground state of the system is in a uniform superfluid phase. Upon increasing the
interaction at α ≈ 28 one crosses a first-order phase transition to a cluster supersolid
phase characterized by a finite superfluid fraction and broken translational invariance
where particles arrange in clusters (each cluster contains an average number of particles
according to the density) in a triangular geometry. For even larger interactions α > 38
the ground state preserves triangular symmetry but superfluidity vanishes resulting
into an uncorrelated cluster crystal.

In the intermediate density regime (0.5 � n R2
c � 1.8) one observes a direct

superfuid to crystal transition at commensurate lattice occupations where superfluidity
vanishes abruptly. Simultaneously for incommensurate occupations of the crystalline
lattice and mean field interactions in the range 28 < α < 38, superfluidity increases
linearly with the fraction of vacancies or defects [23] in nice agreement with the ALC
scenario of defect delocalization.
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Fig. 1 Schematic phase diagram for the dimensionless parameters α′ and the rescaled density n R2
c . On the

right axis we also show the average filling of the clusters in terms of the density An where A =
√

3
2 a2 is

the area of the unit cell. The hyperbolas mark the superfluid–supersolid transition (α′n R2
c = 28, blue line)

and supersolid–crystal transition (α′n R2
c = 38, red line) (Color figure online)

In the very low density limit (n R2
c � 0.5) the physics of the system becomes largely

irrelevant of the detailed form of the soft core at small distances since the interparticle
distance is much higher than the range of the potential. Indeed, upon increasing the
interaction at fixed density the system displays a first order phase transition from a
superfluid to a crystalline phase as expected for a standard Van der Waals interaction.

The elementary excitations in the mean field approximation are found by expand-
ing the GP energy functional around the solution ψ0(r), obtaining the so called
Bogoliubov de Gennes equations. Denoting the change in ψ(r, t) by δψ(r, t) =
e−iμt

[
u(r)e−iωt − v∗(r)eiωt

]
and substituting this expression into the GPE Eq. (2)

we find a set of two coupled linear differential equations:
⎧
⎪⎪⎨

⎪⎪⎩

(
− ∇2

2 −μ−ω
)

u(r)+α ∫
dr′U (r−r′)

[
ψ0(r′)2u(r)+ψ0(r)ψ0(r′)

(
u(r′)−v(r′)

)] = 0

(
− ∇2

2 −μ+ω
)
v(r)+α ∫

dr′U (r − r′)
[
ψ0(r′)2v(r)−ψ0(r)ψ0(r′)

(
u(r′)−v(r′)

)] = 0

(5)
for the Bogoliubov amplitudes u(r) and v(r). The solution of Bogoliubov Eqs.(5) in
the uniform superfluid phase is analytical:

εq =
√

q2

2

(
q2

2
+ 2α Ũq

)
, (6)

and depends only on the modulus of the excitation vector q. Here Ũq is the Fourier
transform of the potential (see Eq. (13) for an expression in terms of special functions).
The spectrum is linear for small momenta and the slope defines the sound velocity of
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the system; for α ≥ 5.4 one recovers the usual roton-maxon spectrum that is common
to other physical systems with non-local interactions as ultracold dipolar systems or
superfluid 4He. In nonuniform phases one has to rely on a numerical solution of Eq. (5).
Ref.[27] uses for example a Fourier expansion of the Bogoliubov amplitudes followed
by a diagonalization of the corresponding equations. The results that we present in
Sec.(3.2) are instead obtained using a grid based solution in real space of the Eqs.(5)
for the lowest excitation bands and for q vectors lying in the first Brillouin zone (FBZ)
[22] .

2.2 Monte Carlo Approach

In order to assess the validity of mean field theory and extend these results to the regime
of lower densities we performed QMC calculations [28] at finite temperature based
on the worm algorithm [29,30] in the canonical ensemble, carefully extrapolating
the zero temperature limit. We do not enter here into a detailed description of the
algorithm to measure thermodynamic observables (the reader can refer to Ref. [30]
for an extensive summary of such techniques). Here we focus on the application of
QMC to recover information about the spectrum of the elementary excitations of the
system under study. In particular, it is possible to sample directly the imaginary-time
intermediate scattering function

F(k, τ ) = 〈ρ̂k(τ )ρ̂
†
k(0)〉/N , (7)

where the brackets denote a thermal average and

ρ̂k =
∑

j

eik·q j (8)

is the density fluctuation operator at wavevector k. The dynamic structure factor
S(k, ω), which contains the information on the spectrum of the elementary excitations
of the density fluctuations, is related to F(k, τ ) via an inverse Laplace transform:

F(k, τ ) =
∫

dω e−τωS(k, ω). (9)

Here we face the well known ill-defined problem of inverting the Laplace trans-
form from noisy data. There exists no general scheme to recover the exact inversion,
however some techniques manage to identify weight and frequency of the dominant
contributions of a spectrum composed of well-defined peaks [25,31]. However, pre-
vious investigations on bosonic systems with soft-core bosons with a step interaction
potential [24] showed that fitting the F(k, τ ) data directly via an n-pole approximation,
i.e. assuming that the spectrum S(k, ω) is formed by a sum of n delta functions of ω
gives equally reliable results in good quantitative agreement with more involved tech-
niques based on the genetic inversion via falsification of the theories (GIFT) approach
[25]. For such reasons in this work we focus on the n-pole approximation results to
extract the excitation spectrum.
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The estimator defined in Eq. (7) within the FBZ only contains information about
longitudinal density fluctuations. A study of the longitudinal modes was done for a
class of soft-core potentials in [24]. The extension to the transverse excitations is not
straightforward as it requires a careful analysis of the contributions to the intermediate
scattering function outside the FBZ. However, the spectral weight outside the FBZ is
generically distributed on a greater number of modes, making difficult to perform the
analytic continuation of the Laplace transform, as excitations near in energy tend to
merge in the reconstructed spectra.

In order to obtain the dispersion relation for transverse modes, one may measure
imaginary-time current correlations [32] and then perform the inverse Laplace trans-
form. However, these current correlations estimators generically display much larger
statistical errors than simple density correlations, making the analytical continuation
unfeasible in most cases.

Although it is possible to derive such current estimators with a reduced statistical
error within a method described in [33], we use here a different and numerically
less demanding strategy to couple transverse excitations in a lattice system to density
fluctuations inside the FBZ. The idea behind our method is to alter the imaginary time
particle positions while applying the density fluctuation operator so that transverse
lattice displacements mimic longitudinal displacements, and vice-versa. For each slice
in imaginary time we first identify the positions of the lattice sites of a triangular
lattice to which particles belong (the nearest one). We then apply a weak potential
to avoid the slow translations and rotations of the lattice as a whole that may occur
in the simulations, so that their positions remain fixed. This potential is two orders
of magnitude weaker than the average one between two lattice sites, so it does not
alter the dispersion relations significantly. For each time slice and particle position,
we identify the nearest lattice site and rotate the particle position by π/2 with respect
to it. With this modified configuration we compute the density fluctuation operator
defined in Eq. (8) and from then on we follow the same procedure as in the standard
case for obtaining excitation energies via Eq. (7) and the n-pole approximation.

The above operation transforms transverse lattice displacements so that they resem-
ble longitudinal excitations. To show this, we first write the j particle position as
q j = R j + δq j , where R j is the position of the closest lattice site to the particle
labeled by index j and δq j is the relative displacement vector to the lattice site R j .

Then we perform a local rotation of the relative displacement δq j by π/2 with
respect to the corresponding lattice site R j applying a rotation matrix:

Mπ/2 =
(

0 −1
1 0

)
, (10)

and then calculate again the density operator:

ρ̂′
k =

∑

j

eik·(R j +(Mπ/2 δq j )) =
∑

j

ei(MT
π/2 k)·((MT

π/2 R j )+δq j ), (11)

where the last term follows from the properties of the scalar product. Because of the
presence of a rotation matrix, the term MT

π/2 k · δq j is proportional to the component
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of δq j orthogonal to k, while of course in the absence of any rotation it would be pro-
portional the the component of δq j parallel to k. Transverse excitations are therefore
recorded in the transformed density fluctuation operator ρ̂′

k even if k lies within the
FBZ.

As expected, the present reasoning is based on the assumption that the crystalline
structure exists and that we can unambiguously identify for each particle the lattice site
to which it is pertaining. It is worth stressing that the configuration produced by the
transformation defined above is merely a trick used to couple a term like the one in Eq.
(8) to transverse excitations and leaves unaffected the internal Monte Carlo dynamics.

3 Results

3.1 Ground States Properties

In the upper panel of Fig. 2 we report the mean field energy per particle of the uniform
phase euni = 2π2/3

√
3 otained with full numerical minimization of Eq. (3). For

α < αc,M F = 26.6 the density is homogeneous and the system is then superfluid;
upon increasing the interaction one crosses a first order phase transition to a phase
with a modulated density. In the lower panel (again Fig. 2) we show the kinetic energy
per particle comparing QMC results extrapolated to the T → 0 limit, and the values
from mean field. QMC data clearly display an abrupt jump of the kinetic energy for

20 22 24 26 28 30 32 34 36
α

0

2

4

6

e k

-1.5

-1.0

-0.5

0

e to
t -

 e
un

i

α
c,MF

Fig. 2 Upper panel Energy difference between the uniform state and the modulated state in the mean field
approach obtained by minimizing the Gross–Pitaevskii energy functional in Eq. (3). The SF-SS transition
is located at α = 26.6 for the value of lattice spacing equal to a/Rc = 1.6. Lower panel kinetic energy per
particle from QMC calculations for 400 particles at density n R2

c = 4.5. The red line is the kinetic term of
Eq. (3). In this approximation in the uniform phase kinetic energy vanishes. The blue line is a beyond mean
field calculation of the kinetic energy based on Eq. (12) for density n R2

c = 4.5 that well agrees with QMC
data. Error bars on QMC data are smaller than the dimension of the points (Color figure online)
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27 < α < 28 signaling the transition to the supersolid phase in good agreement with
the mean field results within few percents.

We also included Bogoliubov fluctuations energy on top of the uniform solution
that is displayed as the solid line from α = 20 to α ≈ 27 in Fig. 2 (lower panel). This
calculation is based on the evaluation of the following integral [34]:

ekin = 1

8πn

∞∫

0

dq q3

⎛

⎜⎜⎝
q2

2 + α Ũq√
q2

2

(
q2

2 + 2α Ũq

) − 1

⎞

⎟⎟⎠ , (12)

where Ũq is the Fourier transform of the interaction potential:

Ũq = π

3
G4,0

0,6

(
q6

46656 0 1
3

2
3

2
3 0 1

3

)
(13)

and Gm,n
p,q

(
z
∣∣∣ a1, . . . , ap

b1, . . . , bq

)
is the Meijer’s G-function [35].

We see that Eq. (12) matches very well the QMC calculations performed in the
superfluid phase. These results can be understood noting that the condensate fraction
is relatively high for this class of soft-core potentials when the density is sufficiently
high [22,36,37]. In order to verify this assertion, we calculated the depletion nexc/n
in the superfluid phase within the Bogoliubov approximation and obtained the largest
value nexc/n ≈ 38 % close to the transition.

3.2 Excitations

In Fig. 3 we show the dispersion relations, ωq versus q Rc, obtained applying the
one-pole approximation (points, within QMC simulations, see Sect. 2.2), and the

0 1 2 3 4 5 6 7

qR
c

0

5

10

15

20

25

ω
q

0 1 2 3 4 5 6 7

qR
c

(a) (b)

Fig. 3 Spectra in the superfluid phase at α = 20 with the typical roton–maxon feature. Dots correspond to
the one-pole approximations and are compared with the solution of Bogoliubov–de Gennes Eqs. (6) (full
line). Excitation energy is in units of h̄2/m R2

c . a Density n R2
c = 1.12. b n R2

c = 3.8. Error bars on the
frequencies are recovered from the one-pole approximation and are smaller than the point size (Color figure
online)
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Fig. 4 Excitation spectra in the supersolid phase with an interaction strength α = 34. Dots correspond
to the n-pole approximations, red circle Bogoliubov band, blue diamond longitudinal modes, and green
triangle transverse modes. They are compared with the numerical solution of Bogoliubov–de Gennes Eqs.
(5) (full lines). Excitation energy is in units of h̄2/m R2

c . a Density n R2
c = 1.12. b Density n R2

c = 3.8
(Color figure online)

analytical mean-field solution of Bogoliubov (see Eqs. (6), continuous lines) at low
(Fig. 3a, n R2

c = 1.12) and high density (Fig. 3b, n R2
c = 3.8), respectively. Both

panels present results at the same mean field interaction strength, α = 20. Such an
interaction turns out to be high enough for exhibiting an unambiguous roton instability.
In Fig. 3a the simulations have been performed using 250 particles while at the higher
density (Fig. 3b) we have used 850 particles. Mean-field calculations quantitatively
agree with QMC simulations with a small deviation (about 5%) between the two
approaches for the lowest density at higher momenta. We interpret this disagreement
as an effect of the stronger correlations in the low density limit [23].

In Fig. 4, we plot the excitation spectra in the supersolid phase at mean field inter-
action α = 34 with the same densities as in Fig. 3. Mean-field theory predicts three
Goldstone modes that reflect the three spontaneously broken symmetries in a super-
solid phase. The lowest band corresponds to the Bogoliubov mode that appears due to
the off-diagonal long range order of the one body density matrix. The other two gap-
less bands are a consequence of the broken translational symmetry of the crystalline
structure. Specifically, the highest gapless mode is a longitudinal band, whereas the
intermediate mode is a transverse excitation [22].

At high filling (Fig. 4b) one can notice a satisfactory agreement between mean-
field results and QMC spectra, in particular for the transverse band. Nevertheless,
due to its limited resolution at higher energies, QMC does not allow to distinguish
among longitudinal mode contributions and optical bands, since they are very close
in energy for intermediate interactions. It is worth mentioning that, for both densities,
mean-field theory predicts a larger Bogoliubov branch compared to QMC points. We
mention that we have observed a similar behaviour in the entire supersolid regime.
Finally, at lower densities the mean field theory still qualitatively agrees with QMC,
even though the transverse band deviates systematically to larger energies if confronted
to higher densities.
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Fig. 5 Excitation spectra in the crystal phase with an interaction strength α = 60. Dots correspond to the
n-pole approximations, blue diamond longitudinal modes, and green triangle transverse modes. They are
compared with the numerical solution of Bogoliubov–de Gennes Eqs. (5) (full lines). Excitation energy is
in units of h̄2/m R2

c . a Density n R2
c = 1.12. b Density n R2

c = 3.8 (Color figure online)

Now we discuss the excitation spectrum in the crystalline phase. QMC shows
that for interactions α � 38 superfluidity vanishes as well as the contribution of
the Bogoliubov band to the structure factor. Figure 5a, b report the energy of the
elementary excitations at α = 60, again for the same densities as in Fig. 3. We
observe that the Bogoliubov mode is still present from mean field calculations due
to the global coherency assumed in the derivation of Eqs. (5) even for very large
interactions. Simultaneously at large densities gapless modes are far in energy from
the optical branches. We indeed see that Fig. 5b provides a good matching between
the prediction of longitudinal and transverse modes by QMC and the approach of
Sect. 2.1. Finally, we observe that in Fig. 5a correlations limit the predictive power of
the Bogoliubov equations that show deviations up to ≈ 30 % for large momenta.

4 Conclusion

In the present paper we analyzed in detail some significant properties of soft-core
bosons interacting through a soft-core potential that can be realized with Rydberg-
dressed atoms. In particular, we considered a two dimensional system at zero tem-
perature, with an interaction range such that the ground state displays a supersolid
phase. In particular, we extended some previous studies [22,24] by calculating the
transverse gapless mode within a QMC approach. This technique allows to evaluate
accurately the transverse excitations in a translationally broken phase, with statistical
errors comparable to the ones obtained by the standard procedure used for longitudinal
excitations [24].

In the regime of density-modulated superfluid, we have compared mean-field results
with exact QMC calculations, verifying that the ground state and the elementary exci-
tations are quantitatively described by a non-local Gross–Pitaevskii equation supple-
mented by the fluctuations encoded in the Bogoliubov formalism. Within this frame-
work, we have included the Bogoliubov fluctuations and checked that the average
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kinetic energy is fully consistent with the QMC calculations in the high density limit.
Yet, a comparison between the numerical simulation based on the calculation of the
intermediate scattering function and the solutions of the Bogoliubov–de Gennes equa-
tions in the supersolid phase reveals a convincing agreement, as previously observed
for the longitudinal phonon and Bogoliubov modes in the case of a step-like inter-
action potential [22]. On the other hand the global phase coherence assumed in the
mean field approach overestimates the energy of the Bogoliubov excitation band with
respect to QMC calculations, both in the supersolid and in the crystalline phase and it
can be as large as 30 % for large momenta.

Concerning the low density regime, i.e. where quantum fluctuations are expected to
play a major role, we conclude that mean field computations still quantitatively predict
the spectra for a uniform superfluid for a wide range of momenta and interactions. At
the same time, for supersolid and crystalline phases the deviations from QMC become
larger upon increasing the interactions, reaching approximately 30 % for an interaction
strength α = 60 and density n R2

c = 1.12.
The predictions made in this work may serve as a guidance for further theoretical and

experimental studies on supersolidity with laser excited Bose–Einstein condensates.
A natural extension of this work, for instance, might regard the behaviour of soft-
core bosons in three dimensions in the low density regime to complement and extend
recent analysis on cluster supersolidity [16,20,38] which would though require more
refined techniques to calculate transverse modes in inhomogeneous phases. Finally
we mention that the analysis of the spectrum could provide a natural way to observe
supersolidity in the laboratory [39–41]. Several experimental techniques have indeed
been recently tested and implemented in ultra-cold atomic systems to detect elementary
excitations, including Bragg [42,43] and Raman spectroscopy [44].
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