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Structure, Bose-Einstein condensation, and superfluidity of two-dimensional
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Low-temperature properties of harmonically confined two-dimensional assemblies of dipolar bosons are
systematically investigated by Monte Carlo simulations. Calculations carried out for different numbers of particles
and strengths of the confining potential yield evidence of a quantum phase transition from a superfluid to a
crystal-like phase, consistently with what is observed in the homogeneous system. It is found that the crystal
phase nucleates in the center of the trap, as the density increases. Bose-Einstein condensation vanishes at T = 0
upon entering the crystalline phase, concurrently with the disappearance of the superfluid response.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) and superfluidity (SF)
are intimately connected quantum many-body phenomena,1

both underlain by long cycles of exchange of identical
particles.2 In three dimensions BEC and SF appear simul-
taneously, and become almost synonymous when interactions
among particles are weak, a condition normally experimentally
attained in trapped ultracold gases.3,4 In that limit, the fractions
of the system that are superfluid and Bose condensed both
approach 100% at the temperature T → 0. This provides a
major justification for theoretical studies based on mean-field
techniques.5,6

On the other hand, the effect of strong interparticle
interactions on SF and BEC is very different. A chief example
is provided by liquid 4He, which approaches the 100%
superfluid limit as T → 0, while its condensate is greatly
depleted; indeed, theoretical7,8 and experimental9,10 estimates
for the condensate fraction in superfluid 4He yield a value
in the neighborhood of 7%–8%, at T = 0. Furthermore, no
theoretical understanding currently exists of the relationship, if
any, between the local values of the superfluid and condensate
fractions. Broadly speaking, the most quantitative aspects of
the relationship between these two quantities remain to be
further elucidated.

Impressive advances in the trapping and manipulation of
ultracold atoms appear to offer a pathway to a more in-depth
investigation of this relationship, by making it feasible to create
in the laboratory “artificial” many-body systems characterized
by interactions of variable strength and shape. Thus, one may
smoothly interpolate between weakly and strongly interacting
regimes, as well as explore the effect on SF and BEC of
interactions not (easily) realized in ordinary condensed matter
systems.

In recent times, attention has turned to the case of dipolar
bosons, further bolstered by the realization of Bose-Einstein
condensation of chromium.11 The long-range and anisotropic
nature of the dipole-dipole interaction leads to many fascinat-
ing phenomena.12 The conceptually simplest scenario is that
of an assembly of dipolar bosons confined to two dimensions,
with their dipole moments aligned by an external (electric
or magnetic) field directed perpendicular to the confinement
plane. In this case, the interaction between any two particles

is purely repulsive, proportional to the inverse cubic power of
the distance between them.

Recently, it was shown that a mixture of equal-mass dipolar
isotopes, in such a configuration, demixes at finite temperature
due to quantum statistical effects.13 A promising direction for
implementing trapped dipolar assemblies is through the use of
Rydberg-excited atoms. The large induced dipole moments
of such systems may facilitate the realization of solidlike
phases.14,15

The phase diagram of a homogeneous system of purely
repulsive dipolar bosons in two dimensions has been explored
by Monte Carlo simulations.16–18 These works have yielded ev-
idence of a quantum phase transition at T = 0 between a super-
fluid and a crystal phase, but the quantitative characterization
of such a phase transition, e.g., its location and the width of the
coexistence region, has proven surprisingly difficult, due to the
long-range nature of the interaction. Theoretical arguments19

have been put forth to the effect that a conventional first-order
quantum phase transition ought not occur in this system, as the
long-ranged nature of the interactions renders the coexistence
of two phases of different densities, separated by a single
macroscopic interface, energetically unfavorable. Rather, an
“emulsion” should form, consisting of (relatively) large solid
domains embedded in the superfluid. Such a scenario has
not yet been observed in computer simulations, presumably
due to the need to study systems of size not currently
attainable.

The superfluid transition at finite temperature has been
predicted to be compatible with the Berezinskii-Kosterlitz-
Thouless theory.20 And, while no evidence has been seen
of a commensurate supersolid phase,18,19,21 its presence has
not been ruled out yet (it is in fact predicted to occur in a
system of dipolar bosons in the so-called Rydberg-blockaded
regime22).

It is expected that many of the outstanding issues will soon
be elucidated by experiments on spatially confined assemblies
of dipolar particles. Two-dimensional confinement can be
achieved in the laboratory by means of a harmonic trap in the
transverse direction, of frequency ωz. Clearly, the system must
also be confined in the remaining two dimensions, as the inter-
actions are purely repulsive, and this is accomplished by means
of a second, in-plane harmonic trap, of frequency ω � ωz,
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realizing the so-called pancake geometry. The number of
particles that can be currently trapped is typically of the order
of a few thousands, which means that the physics of such a
system is strongly influenced by its finite size. Thus, theoretical
studies of finite two-dimensional dipolar systems in a harmonic
potential seem especially opportune and timely, in order to
guide in the interpretation of experiments aimed at inferring
bulk properties.

However, a finite system of dipolar bosons is of interest
in its own right, chiefly because novel fundamental un-
derstanding of the relationship between BEC and SF can
be gained. Indeed, theoretical work23,24 on clusters of 4He
has shown that superfluid and condensate fractions can be
meaningfully and rigorously defined for systems comprising
as few as N = 70 particles. One should note that, for the
two-dimensional systems considered in this work, because
the system is finite, reduced dimensionality does not imply
absence of BEC at finite temperature.25,26 Moreover, while
the superfluid and condensate are uniform in the bulk sys-
tem, owing to translational invariance, in confinement they
can display nontrivial local variations. Of particular import
seems the comparison of the local superfluid and conden-
sate fractions, which can lead to original insight into their
interplay.

Previously, Lozovik et al.,27 and more recently Pupillo
et al.,15 have studied harmonically confined dipolar sys-
tems of relatively small size (up to N = 40 particles).
In this paper, we investigate by means of Monte Carlo
simulations the low-temperature phase diagram of dipolar
Bose assemblies comprising up to N = 1000 particles, a
number which appears relevant to current (or planned)
experiments.

The purpose of this work is twofold. On the one hand, we
compare the ground-state phase diagram of the trapped system
against the predictions made in Refs. 16–18 for the bulk case.
Our aim is to make contact between the theoretical phase
diagram of the bulk and the quantitative information that can be
provided by experiments on finite-size systems, comprising a
relatively small number of particles. Second, we compute both
global and local densities of the superfluid and Bose-Einstein
condensate, based on numerically unbiased estimators, and
study how the two quantities evolve as the strength of the inter-
actions in the system increases (as measured by the density in
the middle of the trap). To the best of our knowledge, this is the
first system for which both the local superfluid and condensate
densities are computed simultaneously for a strongly inter-
acting many-body system, based on a methodology free from
approximations.

This paper is organized as follows. In Sec. II we introduce
the model Hamiltonian for a two-dimensional system of
dipolar Bose particles harmonically confined, and discuss
the relevant observables pertinent to structure, Bose-Einstein
condensation, and superfluidity. We illustrate our results in
the following three sections, Sec. III focusing on the structure
of the system with respect to system size and in-trap mean
interparticle distance, Sec. IV focusing on the superfluidity
and condensation, notably both global and local properties, and
finally Sec. V discussing the ground-state phase diagram, as
well as the momentum distribution. We outline our conclusions
in Sec. VI.

II. MODEL AND METHODOLOGY

We consider a two-dimensional system comprising N

bosons of mass m, confined by a harmonic potential of
frequency ω. Particles then interact via a purely repulsive,
pairwise dipolar potential, given by v(r) = D/r3, r being
the distance between the particles. The simplest way of
realizing such an interaction is with particles possessing
an electric (magnetic) dipole moment, aligned along the
transverse direction by an applied electric (magnetic) field.16

The quantum-mechanical many-body Hamiltonian is given in
dimensionless form by

Ĥ = −1

2

N∑
i

∇2
i + �

N∑
i

r2
i +

N∑
i<j

1

|ri − rj |3 , (1)

where ri is the position of the ith particle, and where we
have introduced length and energy scales respectively as
r◦ = mD/h̄2 and ε◦ = h̄2/mr2

◦ . The trap strength parameter
is � = (1/2)(r◦/L)4, L = √

h̄/mω being the oscillator length.
It is also useful to introduce a reduced temperature T ∗ =
kBT /(h̄ω), with T expressed in units of ε◦.

We investigate the low-temperature properties of this finite
system by means of Monte Carlo simulations. We consider
systems with particle numbers N ranging from 20 to 1000, and
trap strengths � = 5 × 10−2–5 × 106. We use the worm algo-
rithm, in the continuous-space path integral representation.8,28

The methodology is numerically exact, errors being only statis-
tical in character and reducible to an essentially negligible size
with a relatively modest computer time expenditure. Technical
details of the calculation are the same as in other studies;29–31

the use of the dipolar interaction in (1) entails no particular
difficulty. All of our quoted ground-state results, with their
uncertainties, are obtained by extrapolating our numerical
estimates to the limit of temperature T = 0. In general, we
have observed that the structural and energetic properties of the
assemblies considered here do not change, within the statistical
error of our calculations, if the temperature T � is �0.1, below
which the system may be regarded as essentially in its ground
state. As customary in this type of numerical study, we have
also carried out extrapolation of our estimates to the limit of
vanishing time step.31 As a typical example, Fig. 1 shows the
total (potential plus kinetic) energy per particle as a function
of (imaginary-time) step size �τ . As the step size is made
sufficiently small, the energy converges to a fixed value.

As mentioned above, one of our aims is to make contact
between the ground-state properties of the finite assembly
considered here and those of the same system in the bulk
limit, where the physics is determined solely by the mean
interparticle distance rs = 1/

√
ρ̄ r2◦ , ρ̄ being the particle

density. For the trapped system, the density is not uniform,
but rather is a function ρ(r) of the radial distance from the
center of the trap. Near the center of the trap, the physical
behavior of the finite system ought to resemble most closely
that of the bulk; thus, we associate a value of rs with the trapped
system by extrapolating to r → 0 the behavior of the function

rs(r) = 1

r◦
√

ρ(r)
. (2)

Details of the extrapolation are given below.
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FIG. 1. Energy per particle as a function of (imaginary-time) step
size for worm algorithm simulations with � = 5 × 106, N = 100,
and inverse temperature β = 1/500 (where kB = 1). In this case
numerical convergence is found for �τ = β/M � 2 × 10−5 where
M is the number of time steps. Errors are smaller than the symbol
size.

In addition to the radial density ρ(r), we compute the
local superfluid [ρs(r)] and condensate [ρc(r)] densities. The
average superfluid density ρs is computed using the area
estimator.24 The local superfluid density is computed by means
of an estimator first proposed by Kwon et al.:32

ρs(r)

ρ(r)
= 4m2T 〈AA(r)〉

βh̄2Ic(r)
, (3)

where β = 1/T (we set the Boltzmann constant equal to 1),
〈· · ·〉 stands for thermal average, A is the area swept by the
many-particle world lines in the x-y plane, and where A(r)
and Ic(r) are respectively the contributions to A from paths in
a shell of radius r and Ic(r) its classical moment of inertia.

The estimation of the condensate fraction is carried out
based on the ideas expounded in Refs. 33 and 34. Specifi-
cally, we compute by Monte Carlo simulations the angularly
averaged one-body density matrix

ρ0(r,r ′) = 〈ψ̂†(r ′)ψ̂(r)〉, (4)

where ψ̂ and ψ̂† are the usual Bose field operators. The
matrix ρ0 has positive-definite eigenvalues, the largest of
which is the average number of particles in the maximally
occupied natural orbital (condensate), which is the corre-
sponding eigenfunction.35 The assumption is made here that
the condensate should be cylindrically symmetric. As we
are only interested in its largest eigenvalue N0 here, and its
associated natural orbital φ0, we solve the eigenvalue equation
for ρ0 iteratively (numerically), using the power method. The
condensate fraction is then given by N0/N with corresponding
local condensate density given by ρc(r) = |φ0(r)|2.

III. STRUCTURE

We begin by discussing the structural properties of the
system as a function of the density of particles in the
trap, in the T → 0 (ground-state) limit. Numerical studies
of the ground-state phase diagram of a two-dimensional
homogeneous system of dipolar bosons have yielded evidence

of a superfluid-to-crystal quantum phase transition.16–18 The
precise determination of the location and width of the coex-
istence region has so far proven rather challenging. Büchler
et al.16 place it within the relatively large range 0.045 � rs �
0.065, and other estimates17,18,20 are in general agreement. The
question is what remnants, if any, of such a phase transition
can be observed on a finite system.

A first, general comment is in order: one must exercise
caution when referring to phase transitions in finite-size
(mesoscopic) systems. It is well known that, although such
systems may exhibit “phaselike behavior,” the coexistence of
two phases, which is typical of a first-order phase transition,
is energetically disfavored by the presence of an interface
separating the two phases. Thus, in a finite-size system,
especially of the size treatable in any realistic numerical
simulation, phase transitions are smoothed out.36 To some
extent, therefore, even though we shall make use of this
terminology, any reference to “phase” must be understood
qualitatively. As well, obviously the fact that the system is
confined by a harmonic trap can be expected to influence its
physics qualitatively, especially at the border where particle
localization is enhanced by the steepness of the confining
harmonic potential.

Figure 2 shows instantaneous configurations (i.e., particle
world lines) of a system comprising N = 200 dipolar bosons,
for different values of the trap strength �, increasing from (a)
to (d). These results correspond to temperatures sufficiently
low that the system may be regarded as essentially in its
ground state. These snapshots offers visual, qualitative insight
into the evolution of the system as the density inside the
trap is increased. The presence of a featureless fluid phase
at low density, and the emergence of crystalline order at
high density, with particles arranged on a triangular lattice
near the center of the trap, are clear in Fig. 2. Specifically,
at high density (i.e., greater trap strength) particle world
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FIG. 2. Snapshots of many-particle world lines for a trapped
system comprising N = 200 bosons, in the low-temperature limit
(i.e., T → 0), for values of the trap strength (a) � = 1 × 104;
(b) � = 5 × 104; (c) � = 1 × 105; (d) � = 5 × 106.
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FIG. 3. (Color online) Density profiles for a dipolar system
comprising N = 200 particles, for values of the trap strength � =
1.0 × 104 (squares), � = 5.0 × 104 (circles), and � = 1.0 × 105

(triangles). All values of � are in units of ε◦. (a) Local density ρ(r).
(b) Corresponding local value of the interparticle distance rs(r),
defined in Eq. (2). Statistical errors are smaller than symbol sizes.

lines become localized, and exchanges of (indistinguishable)
particles suppressed, as shown for the largest trap strength in
Fig. 2(d).

More quantitative information is offered by plots such as
those of Fig. 3, which shows radial density profiles for a
trapped system comprising N = 200 particles, for different
values of the confining strength � of the trapping potential.
Figure 3(a) shows the local density of particles ρ(r). At low
density (i.e., low values of �), ρ(r) is essentially constant near
the center, whereas at the edge of the trap, where the confining
potential dominates the energetics, a shell structure forms. On
the other hand, at high density the dipole-dipole interaction
energy dominates in the center of the trap, where ρ(r) displays
oscillations that are consistent with a regular arrangement of
particles.

On the expectation that the physical behavior of the system
should mimic that of the bulk near the center of the trap, we
may compare results for a trapped system with those in the
thermodynamic limit by attributing an effective value of rs to
the confined system. As explained above, we do so by taking
the value of rs(r) at r = 0 (i.e., the center of the trap), or,
in the case of oscillatory behavior [e.g., triangles in Fig. 3(b)],
we take the value of rs(r) averaged over a few periods of
oscillation near the center. Figure 3 shows typical results for
rs(r), as defined as in (2). We estimate the uncertainty in the
values of rs determined in this way, quoted in the remainder
of the paper, to be of the order of 5%.

For a system with N = 200 particles, the results shown in
Fig. 3 suggest that a transition from a uniform liquid phase to
a crystalline one takes place for rs roughly below rs � 0.06.

A more precise assessment of the density region within which
the transition takes place can be obtained by studying super-
fluidity and Bose-Einstein condensation; we come back to this
later on.

In order to establish a more quantitative connection between
the physics of the trapped assembly and that of a bulk system,
we compute the pair correlation function in a circular region
of radius R, centered at r = 0. Such a “local pair correlation
function” inside this region, gR(r), has the normalization

2πρR

∫ R

0
dr rgR(r) = NR − 1, (5)

where NR is the average number of particles in the bounded
region, and the corresponding average density is given by
ρR = NR/πR2.

Figure 4 shows the computed gR(r) for trapped systems
with different numbers of particles, specifically N = 100
(diamonds), 200 (squares), and 1000 (circles), in the T → 0
limit. Results are shown for different trap strengths �, adjusted
to yield a value of rs in the middle of the trap around 0.03
[Fig. 4(a)] and 0.085 [Fig. 4(b)]. Here, we took R = 0.13 and
0.3, respectively, i.e., values smaller than the radius at which
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FIG. 4. (Color online) Local pair correlation function for trapped
dipolar bosons with N = 100 (diamonds), 200 (squares), and
1000 (circles), and in the bulk case (solid lines). The interparticle
distance rs in the middle of the trap is rs = 0.03 (a) and rs = 0.085
(b). Statistical errors are of the order of the symbol size.
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the density goes to zero in the trap. For rs = 0.03, the ground
state of the bulk system is crystalline; a superfluid for rs =
0.085. Both figures also show (solid lines) the corresponding
pair correlation functions for the bulk system with the same
values of rs , also computed in the T → 0 limit (a separate
calculation was performed for this case, using standard bulk
methodology, with periodic boundary conditions).

The first observation is that in both cases, on increasing the
number of particles, gR(r) approaches that of the bulk system,
as expected. Moreover, the finite size of the system, combined
with the fact that the trap is harmonic, enhances particle
localization and therefore strengthens crystalline order. Results
shown in Fig. 4(a) correspond to rs = 0.03 in the middle of the
trap; gR(r) displays marked oscillations for both N = 200 and
1000 particles. However, for the smaller system size the height
of the peaks is lower, and the distance between successive
peaks is also different from that observed in the bulk. This
suggests that, although the physics of the system is solidlike in
both cases, for the smaller system it is substantially influenced
by the trap, whereas with five times more particles it is already
rather close to that of the bulk. Indeed, the pair correlation
function in the center of the trap is virtually indistinguishable
from that of the bulk system beyond the first peak, within our
statistical errors. It displays the pronounced oscillations that
one expects for a crystalline phase.

Figure 4(b) shows results for the case rs = 0.085. Here too,
the local pair correlation function has a noticeable dependence
on the size of the system. However, in this case the distance
between the peaks is roughly the same in all cases, i.e.,
the influence of the edge on the physics of the system at the
center of the trap is less significant than in the case previously
discussed (not surprisingly, as the trap is weaker). As the size
of the system is increased from N = 100 to 1000 particles,
the most significant change is the height of the first peak
of gR(r), which decreases by roughly 30%. Beyond the first
peak, the pair correlation functions for N = 200 and 1000
are essentially indistinguishable from one another, as well as
from that of the bulk system (again within the statistical uncer-
tainties of our calculation), and are consistent with liquidlike
behavior.

Figure 5 shows snapshots as in Fig. 2 for N = 1000 at low
temperature, corresponding to the two values of rs shown in
Fig. 4. For rs = 0.03, an orderly arrangement of atoms in a
triangular lattice occurs in the center of the trap, confirming
the picture given by consideration of the local pair correlation
function. It is important to note, however, that exchanges still
take place, primarily in the peripheral disordered region, where
the system goes from bulk crystal (center of the trap) to the
arrangement on concentric rings characteristic of the surface
region.

As mentioned above, the crystal-to-superfluid transition in
the bulk is expected to take place roughly in the 0.045 � rs �
0.065 interval. The results obtained in this work show that a
harmonically trapped system comprising at least N = 1000
particles ought to allow one to observe experimentally some
of the relevant physics. On the other hand, the behavior of
systems comprising just a few hundred particles is still greatly
influenced by the confining potential, in the same range of rs .
A more quantitative discussion of the physics of the trapped
system, and its connection to the bulk superfluid-to-insulator
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FIG. 5. Snapshots of many-particle world lines for a trapped
system comprising N = 1000 bosons, in the low-temperature limit
(i.e., T → 0), for values of the trap strength � yielding an inter-
particle distance in the middle of the trap equal to (a) rs = 0.03;
(b) rs = 0.085.

quantum phase transition, is offered in Sec. V, based on the
study of the superfluid properties of the system.

IV. SUPERFLUIDITY AND CONDENSATION

Figure 6 shows a typical result for the superfluid and
condensate fractions of a dipolar assembly. In this particular
case, the number of particles N is 100, and the trap strength
yields a value of rs in the middle of the trap approximately
equal to 0.22, as a function of temperature. As the temperature
is lowered below T ∗ � 1, both the superfluid and condensate
fractions become nonzero, saturating to very different values
in the T � → 0 limit. Specifically, the superfluid fraction ρs

approaches unity, whereas the condensate fraction ρc is less
than 20% at T � = 0. On the other hand, in the large-rs limit
(weaker trap strength) superfluid and condensate fractions are
close in magnitude, both close to unity at low temperature, as
expected for a more dilute system. That interparticle interac-
tions have a stronger (depleting) effect on the condensate than
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FIG. 6. (Color online) Superfluid fraction ρs (red open squares)
and condensate fraction ρc (black filled squares) as function of
reduced temperature for system with N = 100 and trap strength
yielding a value of the inter-particle distance rs = 0.22 in the center
of the trap.

the superfluid fraction is of course not a novel feature of this
many-body system. The same trend is predicted theoretically37

and observed experimentally38 in condensed helium.
It is well understood theoretically that SF and BEC are

both underlain by quantum-mechanical exchanges of identical
particles.39 In order to explore this notion in greater detail,
in Fig. 7 we show the relative frequency of occurrence of
exchange cycles involving a variable number 1 � n � N of
particles (here, N = 100). These results are for four different
values of the interparticle distance in the center of the trap,
namely, rs = 0.94,0.36,0.14,0.09 at low temperature. In all
four cases, the superfluid fraction is 100%, (within statistical
uncertainties), whereas the condensate fraction goes from
54% for the the most dilute to just 6% (i.e., a mere six
particles) for the densest assembly. This difference in the
fraction of the system condensed to the same single-particle
quantum-mechanical state is directly related to the much
greater frequency with which permutation cycles (of any
length) occur at lower density, i.e., with weaker interactions.

FIG. 7. Relative frequency of permutation cycles of length L

for simulations with four different trap strengths corresponding to
rs = 0.94,0.36,0.14,0.09 and for N = 100 and temperature
T ∗ = 0.1, at which the system is essentially in the ground state.

At the same time, these results clearly show that there is
no obvious, direct numerical connection between the length
of the longest observed exchange cycle, or the statistics of
occurrence of cycles comprising specific numbers of particles,
and the superfluid fraction. Remarkably, the superfluid signal
in the low-temperature limit is unaffected by the significant
differences in the statistics of exchange cycles at the four
thermodynamic conditions considered.

As explained in Sec. II, we can compute the local superfluid
and condensate densities, gaining greater insight into the
relationship between SF and BEC. Figure 8 shows the total,
superfluid, and condensate radial density profiles, for a system
of N = 100 particles and two different values of interparticle
separation rs in the center of the trap. The system is essentially
in the ground state, i.e., the superfluid fraction ρs ∼ 1 in
both cases. As one can see, the condensate density becomes
suppressed relative to the superfluid one, as the interparticle
separation is decreased. Significantly, however, both local
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FIG. 8. (Color online) Total [ρ(r), line], condensate [ρc(r),
squares], and superfluid [ρs(r), triangles] radial density profiles,
for a system with N = 100 dipolar bosons for two different trap
strengths, yielding values of the interparticle distance rs in the center
equal to 0.94 and 0.14. The system is in the ground state and the
overall superfluid fraction is near unity in both cases. Statistical and
systematic uncertainties are estimated to be of the order of the sizes
of the symbols.
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quantities are almost uniformly distributed throughout the
system. For the superfluid density, this is consistent with recent
findings for parahydrogen clusters.40 The condensate density
displays a markedly different behavior in the vicinity of the
surface, depending on the degree of particle localization. At
the largest average interparticle separation (lowest density),
the system near the surface is highly dilute, and the local
condensate fraction approaches 100%, as observed in helium
droplets as well.23 As the density of the system is increased,
particles near the surface become increasingly localized, and
BEC is locally suppressed, while remaining finite near the
center of the trap, where the physical behavior is that of a
superfluid.

It is worth noting that the behavior of the system of dipolar
bosons studied here deviates significantly from that of hard-
core bosons studied previously by DuBois and Glyde.41 In that
study, it was found that the local condensate density becomes
severely depleted at the center of the trap, as the density is
increased. In particular, the condensate forms a shell at the
edge of the trap for strongly interacting systems. This effect
is absent here, a fact that can presumably be attributed to
the long-range nature of the dipole-dipole interaction, which
in turn renders the use of any local density approximation
questionable.

As mentioned above and as will be quantitatively discussed
in the next section, on decreasing the average interparticle
separation a crystalline phase eventually nucleates in the center
of the trap, at which point both superfluidity and condensation
become suppressed in the system. The absence of a sharp phase
transition in a finite system results in a value of the superfluid
fraction less than 1 in the ground state, as superfluid and
crystalline phases coexist. In the next section, we determine
the ground-state phase diagram of the system by calculating
the superfluid and condensate fractions as a function of system
size and interparticle separation.

V. GROUND-STATE PHASE DIAGRAM

As discussed in Sec. I, a T = 0 (quantum) phase transition
between a crystalline, insulating phase and a superfluid phase
is observed in the bulk system, driven by the chemical potential
(i.e., the density). One of the issues of interest here is whether
any remnant of such a transition can be observed, by either
simulation or possible experiments, in a finite system. In
Fig. 9 (top), we show values of the superfluid fraction ρs

corresponding to different interparticle distances rs in the
middle of the trap. These values are computed for various
system sizes (between N = 20 and 200), at a temperature
sufficiently low for them to be regarded as ground-state
estimates.

Although no sharp phase transition can be observed in a
finite system, the data clearly show a crossover between two
regimes, a superfluid (ρs ∼ 1) and crystal (ρs ∼ 0), taking
place roughly in the same region of rs in which it is observed
in numerical studies of the ground-state bulk phase diagram16

(shaded region of Fig. 9). It is worth mentioning that, in the
range 0.067 � rs � 0.12, during a sufficiently long simula-
tion, the system switches back and forth between two different
regimes, characterized by zero and finite superfluid density.
This behavior, already reported in previous work,42 is not
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FIG. 9. (Color online) Top: Superfluid fraction (extrapolated
to T → 0) vs interparticle distance rs for different system sizes.
Bottom: Condensate fraction ρc as defined in the text (extrapolated
to T → 0) vs interparticle distance rs for different system sizes.
We have offset the condensate value by 1/N , namely, the smallest
possible eigenvalue of the one-body density matrix. The shaded
region represents the estimated range for the critical value of rs

predicted for the homogeneous system from Ref. 16.

unlike what is observed in small clusters of parahydrogen;29,30

it suggests that the two phases are energetically very close,
and in practice renders lengthy simulations necessary, in order
to assign a reliable value to the superfluid fraction. This is
the reason for the (relatively) large statistical uncertainties of
some of the estimates reported in Fig. 9.

The results in Fig. 9 (top) suggest that melting and freezing
values for rs at T = 0 should lie in the range 0.055 � rs �
0.07, which is consistent with bulk studies. (In particular,
in two separate quantum Monte Carlo studies of the bulk
system the transition was predicted to occur either in the region
0.045 � rs � 0.071,16 or in the region 0.056 � rs � 0.062,17

in the latter case by extrapolating the system energy to
the thermodynamic limit.) A precise determination of the
coexistence region is obviously beyond the scope of what can
be achieved in a study of a finite system.

Figure 9 (bottom) shows the condensate fraction ρc for the
same set of simulation parameters for which the superfluid
fraction is given in the top part. Here, we define “condensate
fraction” ρc = N0/N , i.e., the largest eigenvalue N0 of the
cylindrically averaged one-particle density matrix, divided by
the total number N of particles. In order to facilitate the
comparison of results obtained for systems of different size,
we have subtracted 1/N from all estimates of ρc, as 1 is the
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lowest possible value of N0. Such a correction is nontrivial for
the smallest systems.

In the thermodynamic limit, ρc = 0 at any finite tempera-
ture, as thermal fluctuations destroy off-diagonal long-range
order. In a finite system, however, ρc can be finite, and indeed
it is found to be finite for values of rs above ∼0.07, i.e., in the
superfluid region. Remarkably, the data in Fig. 9 (bottom) are
consistent with the vanishing of ρc concurrently with that of
the superfluid fraction ρs , as the system is compressed to the
crystalline phase.

In an infinite system, the single-particle state in which
bosons condense is a plane wave of momentum k = 0,
simply based on considerations of translational invariance.
This results in a (theoretical) δ-like peak at k = 0 in n(k).
Experimental evidence of phase coherence throughout the
system can be detected in the n(k) of a spatially confined
system as well, through the appearance of a peak at k = 0 at
low temperature, even though harmonic confinement has the
effect of broadening it, its width being of order 1/L.

In experiments with trapped cold atoms, the momentum
distribution is routinely measured via time-of-flight absorption
imaging. As a guide for possible experiments, it is therefore
instructive to compute the momentum distribution in the limit
T ∗ → 0, for two systems which have a superfluid and a
crystalline ground state.

For a two-dimensional cylindrically symmetric system, the
momentum distribution is given by

n(k) =
∫ ∞

0
dr rñ(r)J0(kr), (6)

where ñ(r) is the spatially averaged one-body density matrix,
computed by simulation, and J0 is the zeroth-order Bessel
function.43 Figure 10 shows the computed n(k) for a system of
N = 200 dipolar bosons at three different temperatures, for a
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FIG. 10. Momentum distribution n(k) for an assembly of
N = 200 dipolar bosons in a two-dimensional harmonic trap. The
strength of the trap is such that the interparticle distance at its center
is rs = 0.122. Results shown are for temperatures T = 0.05 (solid
line), 0.2 (dashed line), and 0.4 (dot-dashed line), all in units of T �,
defined in the text.

trap strength yielding a value of rs ∼ 0.122 in the middle of the
trap, i.e., well into the superfluid region of the phase diagram.
The development of a sharp peak at k = 0 as the temperature
is lowered is clear; the value of the superfluid fraction at low
T approaches 100% in this case. No evidence of such a peak
is observed in our simulations for values of rs for which the
assembly of dipolar particles does not display a measurable
superfluid response.

Thus, the results of this study suggest that much of the
physics of the crystal-superfluid transition in dipolar bosons
can be probed experimentally on a system comprising as few
as several hundred particles.

VI. DISCUSSION AND CONCLUSION

We have investigated by extensive quantum Monte Carlo
simulations the properties of dipolar bosons confined in
two-dimensional traps. In particular, we have analyzed the
structure of the system, superfluidity, and Bose-Einstein
condensation, as well as the ground-state phase diagram for the
Hamiltonian (1) for different system sizes and as a function of
in-trap density. We have considered system sizes up to N =
1000, a number relevant to current and planned experiments. It
is therefore our expectation that a direct comparison between
theory and experiment should be possible.

We find that the physics of the system in the middle of
the trap closely mimics that expected in an infinite system, at
least in the region of density wherein the superfluid-insulator
quantum phase transition is expected, if the number of particles
in the trap is of the order of a few hundreds. In particular,
a transition between superfluid and crystal-like phases is
evident, as shown by our results for the density profiles
and local pair correlation function as well as the superfluid
and condensate fractions. By considering system sizes up
to N = 1000, we verify that such a transition occurs for an
interparticle separation of 0.055 � rs � 0.07, which is consis-
tent with the most reliable theoretical predictions for the bulk
case.16

In order to gain deeper understanding of the elusive relation-
ship between superfluidity and Bose-Einstein condensation,
a study of the global and local superfluid properties has
also been performed. The general conclusion is consistent
with that obtained for systems with different interactions,
namely, that strong interparticle interactions have a much
more pronounced quantitative effect on the condensate than
on the superfluid fraction. However, our results are consistent
with the concurrent disappearance of both as the system
freezes at high density. With the exception of a narrow region
near the edge of the trap, where BEC is either enhanced or
suppressed depending on particle localization, the superfluid
and condensate density are largely uniform throughout the
system.

In striking contrast with the case of hard-core bosons,41

BEC is not depressed at the center of the trap in the presence
of strong interactions (i.e., at high density). Such a qualitative
difference points to the importance of the long-range nature of
the interactions in (1), with the inference that a local density
approximation cannot be straightforwardly applied here.

We have also investigated the momentum distribution as
a function of temperature. The presence of coherence at low
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temperature, if the system features a superfluid ground state,
is rendered evident by the appearance of a pronounced peak
at zero momentum, in the low-temperature limit. This seems
to indicate that important signatures of a quantum phase
transition predicted in the bulk system, should be readily
observed in current or planned experiments.
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42J. Böning, A. Filinov, P. Ludwig, H. Baumgartner, M. Bonitz, and

Y. E. Lozovik, Phys. Rev. Lett. 100, 113401 (2008).
43M. Boninsegni, Phys. Rev. B 79, 174203 (2009).

014534-9

http://dx.doi.org/10.1103/PhysRev.91.1291
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevLett.77.3695
http://dx.doi.org/10.1023/A:1022530112706
http://dx.doi.org/10.1023/B:JOLT.0000038518.10132.30
http://dx.doi.org/10.1103/PhysRevE.74.036701
http://dx.doi.org/10.1103/PhysRevE.74.036701
http://dx.doi.org/10.1103/PhysRevB.56.14620
http://dx.doi.org/10.1103/PhysRevB.62.14337
http://dx.doi.org/10.1103/PhysRevB.62.14337
http://dx.doi.org/10.1103/PhysRevLett.94.160401
http://dx.doi.org/10.1103/PhysRevLett.94.160401
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1103/PhysRevA.83.023602
http://dx.doi.org/10.1103/PhysRevLett.80.249
http://dx.doi.org/10.1103/PhysRevLett.80.249
http://dx.doi.org/10.1103/PhysRevLett.104.223002
http://dx.doi.org/10.1103/PhysRevLett.98.060404
http://dx.doi.org/10.1103/PhysRevLett.98.060405
http://dx.doi.org/10.1103/PhysRevB.76.064511
http://dx.doi.org/10.1103/PhysRevB.76.064511
http://dx.doi.org/10.1103/PhysRevB.70.155114
http://dx.doi.org/10.1103/PhysRevLett.105.070401
http://dx.doi.org/10.1103/PhysRevLett.105.070401
http://dx.doi.org/10.1103/PhysRevB.82.014508
http://dx.doi.org/10.1103/PhysRevLett.105.135301
http://dx.doi.org/10.1103/PhysRevB.37.4950
http://dx.doi.org/10.1103/PhysRevB.37.4950
http://dx.doi.org/10.1103/PhysRevLett.63.1601
http://dx.doi.org/10.1103/PhysRevLett.63.1601
http://dx.doi.org/10.1103/PhysRevA.44.7439
http://dx.doi.org/10.1088/1367-2630/10/4/045006
http://dx.doi.org/10.1134/1.1780555
http://dx.doi.org/10.1103/PhysRevLett.96.070601
http://dx.doi.org/10.1103/PhysRevLett.96.070601
http://dx.doi.org/10.1103/PhysRevLett.97.045301
http://dx.doi.org/10.1103/PhysRevLett.97.045301
http://dx.doi.org/10.1103/PhysRevA.75.033201
http://dx.doi.org/10.1063/1.1872775
http://dx.doi.org/10.1063/1.1872775
http://dx.doi.org/10.1103/PhysRevB.74.174522
http://dx.doi.org/10.1103/PhysRevB.74.174522
http://dx.doi.org/10.1103/PhysRev.97.1474
http://dx.doi.org/10.1103/PhysRev.104.576
http://dx.doi.org/10.1103/PhysRevB.26.2507
http://dx.doi.org/10.1023/B:JOLT.0000038518.10132.30
http://dx.doi.org/10.1103/PhysRevB.83.100507
http://dx.doi.org/10.1103/RevModPhys.67.279
http://dx.doi.org/10.1103/PhysRevLett.100.145301
http://dx.doi.org/10.1103/PhysRevLett.100.145301
http://dx.doi.org/10.1103/PhysRevA.63.023602
http://dx.doi.org/10.1103/PhysRevLett.100.113401
http://dx.doi.org/10.1103/PhysRevB.79.174203

