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We investigate the zero-temperature excitation spectrum of two-dimensional soft-core bosons for a wide
range of parameters and across the phase transition from a superfluid to a supersolid state. Based on mean-field
calculations and recent quantum Monte Carlo results, we demonstrate the applicability of the Bogoliubov-de
Gennes equations, even at high interaction strengths where the system forms an insulating cluster crystal.
Interestingly, our study reveals that the maximum energy of the longitudinal phonon band in the supersolid phase
connects to the maxon energy of the superfluid at the phase transition.
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I. INTRODUCTION

A supersolid is a phase of matter that simultaneously
accommodates diagonal as well as off-diagonal long-range
order, which means that particles self-assemble into a rigid,
regular crystal but at the same time can flow superfluidly
through the formed solid. More than 40 years ago, this
peculiar state was conjectured to emerge in pressurized solid
helium [1–3], which led to an intense search for supersolidity
in such systems [4]. In 2004, experimental evidence for
superfluidity in toroidal oscillator measurements [5,6] greatly
revived interest in supersolid helium and initiated a recent
surge of activity on this problem. Yet, theoretical work has
not reached a general consensus [7–11] as to whether solid
4He can display superfluidity, and very recent experiments
[12] are casting doubt on the original interpretation of the
measurements [5,6].

At the same time, ultracold atomic gases have emerged as a
promising alternative platform to realize and study continuous-
space supersolids in an unambiguous and controlled fashion.
Recent work has demonstrated that long-range soft-core inter-
actions between bosonic atoms can be engineered via optical
coupling to high-lying electronic Rydberg states [13–20]
or via light-induced interactions in an optical cavity [21].
Such soft-core interactions can give rise to so-called cluster
solids [22] and cluster supersolids [13,15], i.e., crystalline ar-
rangements of atomic clusters or droplets where superfluidity
can arise from particle hopping between the self-assembled
droplets.

On a more formal level, supersolidity can be understood
in terms of the simultaneous breaking of fundamentally
different symmetries: (i) the breaking of translational sym-
metry responsible for the crystalline ordering and (ii) the
breaking a global gauge symmetry that enables long-range
phase coherence and thereby superfluidity of the system. A
direct consequence is the emergence of Goldstone bosons,
i.e., gapless modes in the excitation spectrum for each of
the broken symmetries. Therefore, the excitation spectrum
provides a powerful experimental way to probe supersolidity,
e.g., via Bragg scattering [23,24], and has recently attracted
considerable theoretical interest [25–31]. Most recently, quan-
tum Monte Carlo [32] simulations have been used to determine
the dynamical structure factor of two-dimensional soft-core
bosons [25], while mean-field approaches have been applied

in numerous works [26,27,33–36], aiming at a simplified
description of the zero-temperature physics of these systems.

Here we present a thorough comparison between these
two approaches and show that the excitation spectrum can
be accurately described by the Bogoliubov-de Gennes (BdG)
equations. Surprisingly, we find quantitative agreement with
Monte Carlo simulations, not only in the superfluid and
supersolid phases, but also in the strongly interacting regime,
where superfluidity is destroyed by quantum fluctuations and
mean-field approaches are generally expected to fail. This
finding should prove valuable for future work, as it justifies
the use of more efficient mean-field calculations, which,
moreover, enable investigations of dynamical processes such
as relaxation phenomena or externally driven systems. Here,
we exploit this fact to study the excitation spectrum for a
wide range of parameters and find unexpected features at the
superfluid-supersolid phase transition.

II. GROUND-STATE PROPERTIES

We consider an ensemble of bosons confined to two
dimensions with mass m and positions qi , as described by
the Hamiltonian

Ĥ =
∑

i

− h̄2

2m
∇2

i +
∑
i<j

V (qi − qj ). (1)

As a prototype example for soft-core interactions, we chose
a simple step-function potential V (r) = V0�(R0 − r), where
�(r) denotes the Heaviside function and V0 and R0 define
the strength and range of the interaction potential. Upon
scaling lengths by R0 and energies by h̄2/mR2

0, the zero-
temperature physics, determined by Eq. (1), depends only
on two dimensionless parameters: an effective interaction
strength α′ = V0mR2

0/h̄
2 and the dimensionless density ρR2

0 .
At the mean-field level, this set of parameters can be further
reduced. In this case, the system dynamics is described by a
nonlocal Gross-Pitaevskii equation (GPE), which, in terms of
the rescaled variables, can be written as

i∂tψ0(r) =
[
−∇2

2
+ α

∫
dr′U (r − r′)|ψ0(r′)|2

]
ψ0(r), (2)

where r = q/R0, U (r) = �(1 − r), and α = mρV0R
4
0/h̄

2 is
a dimensionless interaction strength that solely determines
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FIG. 1. (Color online) Superfluid fraction of two-dimensional
bosons as a function of the dimensionless interaction strength α =
mρV0R

4
0/h̄

2. The points show results of Monte Carlo simulations for
320 particles with a density of R2

0ρ = 4.4, whereas the continuous
line is a guide for the eye. The superfluid fraction drops abruptly
at α ≈ 13.4 (dotted line), marking a first-order superfluid-supersolid
phase transition, in close agreement with the mean-field prediction
of α = 12.7 (dashed line). Around α ≈ 22, the systems enter an
insulating phase. The insets show PIMC snapshots for different α,
illustrating the particle density profile in the three different phases.
We checked that the results do not change for a temperature range of
0.1–0.75 h̄2/mR2

0 and particle numbers 160, 320, 640.

the dynamics and ground-state properties. Such a mean-field
treatment is expected to be valid in the limit of weak
interactions, reached by decreasing α′ and increasing the
density ρ such that the product α′ρ stays finite. In this
regime, the zero-temperature physics is determined only by
the effective interaction strength α, which greatly simplifies
the analysis of the underlying phase diagram.

For small α, the system is in a homogenous superfluid
phase whose energy πα follows directly from Eq. (2). We
describe the modulated supersolid state by a variational wave
function that is composed of localized Gaussians, arranged on
a triangular lattice. Their dispersion σ and the lattice constant
a is obtained by minimizing the total energy. This simple
analysis shows that density modulations become energetically
favorable for α � 12.65, marking a first-order phase transition
to a cluster supersolid state composed of small superfluid
droplets [13,14,32]. The droplets become more localized as

the interaction strength increases, where both their size as well
as the lattice spacing decreases from σ = 0.39 and a = 1.51
at the phase transition to σ = 0.22 and a = 1.40 for α = 40.

In order to test these predictions, we additionally performed
path-integral Monte Carlo (PIMC) simulations at finite temper-
ature based on the continuous-space worm algorithm [37,38],
carefully extrapolating the zero-temperature behavior. Figure 1
shows the obtained superfluid fraction as a function of α for a
total number of 320 particles with a density of ρR2

0 = 4.4
corresponding to eight particles per droplet. One finds a
first-order phase transition at α ≈ 13.4, signaled by an abrupt
drop of the superfluid fraction from unity in the homogenous
superfluid phase to ∼0.6 at α = 13.6, in remarkable agreement
with the above mean-field prediction. Also consistent with the
above discussion, a further increase of α leads to a stronger
localization of the droplets, and, hence, a drop of the superfluid
fraction [3]. Around α ≈ 22, the particle density between
the droplets decreases to a point where quantum fluctuations
destroy phase coherence between individual clusters such
that the system enters an insulating crystal of superfluid
droplets without long-range off-diagonal order [15]. While this
transition evidently cannot be captured by Eq. (2), the mean-
field theory nevertheless yields an accurate description of the
excitation spectrum in the insulating phase, as discussed below.

III. EXCITATIONS

The excitation spectrum is obtained by expanding the field,
ψ̂ = ψ0 + δψ̂ , around the ground state. Substituting small
perturbations of the form

δψ̂(r,t) = e−iμt
∑

n

[un(r)e−iωtan − v∗
n(r)eiωta†

n], (3)

where n labels the bands, into the GPE (2) yields, to leading
order in δψ̂ , the familiar BdG equations for the Bogoliubov
modes un and vn. We solve these equations in real space by
expanding the modes into Bloch waves,

un(r) = un,k(r)eik·r, vn(r) = vn,k(r)eik·r, (4)

where the functions un,k(r) and vn,k(r) obey the translational
symmetry of the underlying ground state, i.e., a continuous
translational symmetry in the superfluid phase and a discrete
triangular lattice periodicity in the supersolid phase. This
ansatz leads to the following set of equations:

(
k2

2
− ik · ∇ − 1

2
∇2 + αA(r) − μ

)
un,k(r) + αψ0(r)

∫
dr′U (r − r′)ψ0(r′)eik·(r′−r)[un,k(r′) − vn,k(r′)] = ωkun,k(r),

(5)

−
(

k2

2
− ik · ∇ − 1

2
∇2 + αA(r) − μ

)
vn,k(r) + αψ0(r)

∫
dr′U (r − r′)ψ0(r′)eik·(r′−r)[un,k(r′) − vn,k(r′)] = ωkvn,k(r),

for un,k and vn,k, where A(r) = ∫
dr′U (r′ − r)|ψ0(r′)|2. Re-

cently, the excitation spectrum has been investigated by calcu-
lating the dynamical structure factor via PIMC simulations
[25], using the so-called genetic inversion via falsification
of theories (GIFT) approach [39]. In the following, these
first-principles results will be employed to assess the predictive
power of Eqs. (5).

In the homogeneous superfluid phase, Eqs. (5) can be solved
analytically and yield the familiar Bogoliubov spectrum

ωk =
√

k2

2

[
k2

2
+ 2αŨ (k)

]
, (6)

where Ũ (k) = 2πJ1(k)/k and J1 denotes the Bessel function
of the first kind. For α � 5.03, the spectrum develops a
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FIG. 2. Excitation spectrum in the superfluid phase according to
Eq. (6) (line) compared to the PIMC data (circles) of Ref. [25].

roton-maxon structure and roton softening occurs at α =
14.74, preceded by the supersolid phase transition at α = 12.7.
Figure 2 illustrates the roton-maxon spectrum of the superfluid
phase for an interaction strength of α = 11.86, i.e., slightly
below the superfluid-supersolid phase transition. Equation (6)
is in excellent agreement with the numerical PIMC results of
Ref. [25], indicating that the system can indeed be described
as a weakly coupled fluid.

In the supersolid phase, a reliable calculation of the
excitation spectrum requires accurate knowledge of the ground
state and its chemical potential. To this end, we iterate the time-
independent GPE [40], μψ0(r) = [−∇2/2 + αA(r)]ψ0(r),
starting from our optimized variational wave function and
employing the same grid used to solve Eqs. (5). In Fig. 3,
we show the obtained spectrum of low-energy excitations for
two values of the interaction strength that lie in the supersolid
(α = 16.93) and in the insulating crystal (α = 30.62) phase,
respectively. The figure shows the excitation energies along
the three symmetry axes of the Brillouin zone corresponding
to the underlying triangular lattice. We find three gapless

bands, i.e., three Goldstone modes, reflecting the symmetries
that are broken in the supersolid phase [26]. In addition to
the “superfluid band” due to the breaking of global gauge
symmetry, there are two bands corresponding to longitudinal
and transverse phonon excitations of the two-dimensional
lattice. While the latter were not accessible by the PIMC
calculations of Ref. [25], we find good agreement for the
two longitudinal modes in the supersolid phase (α = 16.92).
Somewhat surprisingly, even in the insulating phase, Eq. (5)
yields excellent agreement for the longitudinal phonon mode,
despite its evident inability to describe the breakdown of
global superfluidity. This indicates that each individual droplet
maintains a high condensate fraction despite the apparent lack
of global phase coherence between the crystalline ordered
droplets (see Fig. 1). A proper identification of each band
can be done by computing local fluctuations on top of
the mean-field solution ψ0(r) [41]. The substitution ψ̂(r) =
eiδϕ̂(r)

√
|ψ0(r)|2 + δρ̂(r) allows us to identify local density

and phase fluctuations:

〈δρ̂†(r)δρ̂(r)〉/|ψ0(r)|2 =
∑
n,k

|un,k(r) − vn,k(r)|2,
(7)

〈δϕ̂†(r)δϕ̂(r)〉 · 4|ψ0(r)|2 =
∑
n,k

|un,k(r) + vn,k(r)|2.

Figures 3(c)–3(h) shows the contributions to (7) for one
specific value of k for each of the three gapless bands at
α = 16.93. One clearly distinguishes the transverse band from
the direction of the fluctuations, orthogonal to the perturbing
vector k. The contribution of this band to phase fluctuations is
strongly suppressed. The first and third band both contribute
to density and phase fluctuations with different weight though.
The first band is mostly responsible for phase, whereas the third
is for density fluctuations. Therefore, the lower band can be
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FIG. 3. (Color online) Mean-field spectra (lines) at (a) α = 16.93 and (b) α = 30.62 obtained from Eqs. (5) along the three symmetry
directions of the Brillouin zone [see inset of panel (b)]. The symbols represent the PIMC data of Ref. [25] for longitudinal excitations
computed along the direction �–M–� in the first two Brillouin zones. (c)–(e) Density fluctuations ρn

k (r) = |un,k(r) − vn,k(r)|2 and (f)–(h)
phase fluctuations ϕn

k(r) = |un,k(r) + vn,k(r)|2 computed at α = 16.93 and k = 	�K/10 (directed along the horizontal axis) for the (c), (f)
lowest (solid line) band, (d), (g) middle (dashed line) band, and (e), (h) higher (dot-dashed line) gapless band.
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FIG. 4. (Color online) (a) Linear dispersion v = ∂ω/∂k|k=0

(h̄2/mR0) of the gapless modes and (b) their energy ω(h̄2/mR2
0)

at distinct momenta as a function of α. In the superfluid phase (α <

12.7), panel (b) shows the maxon energy (line) and the excitation
energies (circles) of the three gapless modes at the M point (ωM ) and
of the longitudinal and transverse phonon band at the K point (ωK )
in the supersolid phase (see Fig. 3).

associated to the superfluid response of the system, whereas the
other two to the classical collective excitations of the crystal.

Having demonstrated the accuracy of the mean-field de-
scription, we can now exploit its efficiency to study the mode
structure over a wider range of interaction strengths and, in
particular, across the superfluid-supersolid phase transition.
The results are summarized in Fig. 4, which shows the linear
dispersion v = ∂ω/∂k|k=0 as well as the excitation frequency
at several distinct momenta. As expected for a first-order
phase transition, the linear dispersion exhibits a discontinuous
jump [Fig. 4(a)], reflecting the sudden onset of finite density
modulations at the phase transition. On the other hand, the
excitation energy shows a different and rather unexpected
behavior. Figure 4(b) shows the α dependence of the maxon
energy in the superfluid phase, along with the excitation
energy of the three gapless bands at the M symmetry point
of the Brillouin zone (see Fig. 3). At this symmetry point, the
longitudinal phonon mode provides the maximum energy in
the entire reciprocal space. Interestingly, we observe that the
maxon energy of the superfluid merges into the latter at the
superfluid-supersolid phase transition, i.e., it does not show a
discontinuous jump. Remarkably, at the phase transition, this
energy also coincides with the excitation energy at the other

symmetry point (K point) where, in addition, the longitudinal
and transverse phonon modes are degenerate.

IV. CONCLUSION

Based on PIMC simulations and mean-field calculations,
we studied the zero-temperature physics of two-dimensional
soft-core bosons and, in particular, their excitation spectrum
at the phase transition to a supersolid droplet phase. The
close match between both methods not only demonstrates the
predictive power of the mean-field approach, but also attests to
the accuracy of the GIFT method [39] for extracting dynamical
properties from quantum Monte Carlo simulations. Our spectra
are consistent with recent calculations of Refs. [26,27], but
differ qualitatively from the results of Ref. [42], where only one
gapless mode was found in the supersolid phase of soft-core
dipoles.

A careful scan of the particle interaction revealed that the
maxon energy of the superfluid phase merges into the energy
of longitudinal phonons at both reciprocal symmetry points of
the supersolid phase. This degeneracy at the phase transition
may suggest that the maxon part of the superfluid excitations
plays a more significant role than thus far anticipated—an
implication which calls for further investigation. Future studies
of other types of soft-core interactions [13,15,21] will clarify
whether this behavior is of a generic nature or a mere
consequence of the step-function potential considered in this
work. Moreover, PIMC simulations [25] would allow one
to elucidate the effects of correlations, i.e., to address the
question of whether the found connection between maxon
and phonon excitations persists in the strong-coupling regime
beyond the validity of the BdG equations (5). Along these
lines, the behavior of Goldstone modes for related scenarios,
e.g., at the crystallization point of dipolar systems [43] or
at the superfluid-solid transition of helium [11,44], is itself
an interesting question for future studies. Finally, recent
measurements that demonstrated supersolidity of ultracold
atoms in an optical cavity via Bragg scattering [21] would
provide a viable experimental way to investigate this question
for yet another important type of soft-core interactions.
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