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Stationary isothermic surfaces in Euclidean 3-space ∗

Rolando Magnanini†, Daniel Peralta-Salas‡ and Shigeru Sakaguchi§

July 10, 2014

Abstract

Let Ω be a domain in R3 with ∂Ω = ∂
(

R3 \ Ω
)

, where ∂Ω is unbounded and

connected, and let u be the solution of the Cauchy problem for the heat equation

∂tu = ∆u over R
3, where the initial data is the characteristic function of the set

Ωc = R3 \ Ω. We show that, if there exists a stationary isothermic surface Γ of u

with Γ ∩ ∂Ω = ∅, then both ∂Ω and Γ must be either parallel planes or co-axial

circular cylinders . This theorem completes the classification of stationary isothermic

surfaces in the case that Γ ∩ ∂Ω = ∅ and ∂Ω is unbounded. To prove this result, we

establish a similar theorem for uniformly dense domains in R3, a notion that was

introduced by Magnanini, Prajapat & Sakaguchi in [MaPS]. In the proof, we use

methods from the theory of surfaces with constant mean curvature, combined with a

careful analysis of certain asymptotic expansions and a surprising connection with the

theory of transnormal functions.

Key words. heat equation, Cauchy problem, Euclidean 3-space, stationary isothermic surface, uni-

formly dense domain, transnormal function, constant mean curvature surface, plane, circular cylinder.
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1 Introduction

Let Ω be a domain in R
N with N ≥ 2. Consider the unique bounded solution u = u(x, t)

of the Cauchy problem:

∂tu = ∆u in R
N × (0,+∞) and u = XΩc on R

N × {0}, (1.1)

where XΩc denotes the characteristic function of the set Ωc = R
N \Ω. A hypersurface Γ in

R
N is called a stationary isothermic surface of u if at each time t the solution u remains

constant on Γ (a constant depending on t). The following problem was raised in [MaPS]:

Classify all the domains Ω having a stationary isothermic surface.

For N = 2 the answer is easy: ∂Ω is either a circle, a straight line or a couple of parallel

straight lines (see [MaPS]). One can also easily show that, if ∂Ω is a sphere, a hyperplane

or, up to rescalings, any spherical cylinder Sk−1 × R
N−k, 2 ≤ k ≤ N − 1, then every level

surface of u is a stationary isothermic surface. Another interesting example is a helicoid

H in R
3. If Ω is a domain in R

3 with ∂Ω = H, then H is a stationary isothermic surface

of u (see [MaPS, p. 4824]).

In order to study this problem, the notion of uniformly dense domains was introduced

in [MaPS]. Let B(x, r) be the open ball of positive radius r and center x ∈ R
N and define

the density

ρ(x, r) =
|Ω ∩B(x, r)|
|B(x, r)| , (1.2)

where |Ω ∩B(x, r)| and |B(x, r)| denote the N -dimensional Lebesgue measure of the sets

Ω ∩ B(x, r) and B(x, r), respectively. As defined in [MaPS], Ω is uniformly dense in the

hypersurface Γ if and only if there exists r0 ∈ (dist(Γ, ∂Ω),+∞] such that, for every fixed

r ∈ (0, r0), the function x 7→ ρ(x, r) is constant on Γ.1 Thus, if ∂Ω = ∂
(

R
3 \ Ω

)

and Ω is

uniformly dense in Γ, it is clear that any point x ∈ Γ must have the same distance, say R,

from ∂Ω, i.e. Γ and ∂Ω are parallel hypersurfaces.

In fact, stationary isothermic surfaces and uniformly dense domains are connected by

the formula

1− u(x, t) = 2π−N/2|B(0, 1)|
∫ ∞

0
|Ω ∩B(x, 2

√
ts)| sN+1e−s2ds,

1This assumption can be relaxed: it would be enough to assume that there exist two functions r(x) ∈

(dist(Γ, ∂Ω),+∞) for x ∈ Γ and ρ0(r) ≥ 0 for r > 0 such that ρ(x, r) = ρ0(r) provided that x ∈ Γ and

0 < r < r(x).
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that can be easily derived and, by the arguments used in [MaPS, Theorem 1.1], implies

that Γ is a stationary isothermic surface of u if and only if Ω is uniformly dense in Γ

with r0 = ∞. Heuristically, this means that a stationary isothermic surface collects local

and global information about the set Ω, since that formula also informs us that the short

and large time behavior of u are respectively linked to the behavior of ρ(x, r) for small

and large values of r. The results presented in this paper only use the local information

about Ω, since they rely on the behavior of ρ(x, r) for small values of r, that is when

r0 < ∞. (Nevertheless, we believe that the assumption r0 = ∞, besides simplifying some

arguments as in [MaPS], is necessary to attempt a classification in general dimension of

uniformly dense domains and, of course, stationary isothermic surfaces.)

The case, where Γ ⊂ ∂Ω and Ω is uniformly dense in Γ, is considered in [MaPS,

Theorems 1.2, 1.3, and 1.4]. In particular it is shown that, if N = 3 and ∂Ω is connected,

then ∂Ω must be a sphere, a circular cylinder, or a minimal surface. Also, if ∂Ω is a

complete embedded minimal surface of finite total curvature in R
3, then it must be a

plane.

The case, where Γ∩∂Ω = ∅, ∂Ω is bounded, and Ω is uniformly dense in Γ, is studied

in [MaPS, Theorem 3.6] and [MaS3, Theorem 1.2], where in particular it is shown that ∂Ω

must be a sphere, if it is connected. The case, where Γ ∩ ∂Ω = ∅, ∂Ω is an entire graph

over R
N−1, and Γ is a stationary isothermic surface of u, is analyzed in [MaS2, Theorem

2.3] and in [Sa, Theorem 2], and it is shown that ∂Ω must be a hyperplane under some

additional conditions on ∂Ω.

To complete the picture, we mention that an interesting generalization of uniformly

dense domains — the so called K-dense sets — is considered in [ABG], [MM1] and [MM2]:

they correspond to the case in which the balls B(x, r) = x+ r B(0, 1) in (1.2) are replaced

by the family of sets x + r K, where K is any fixed reference convex body. It is proved

that, if Ω is a K-dense set for Γ = ∂Ω, 0 < |Ω| < ∞ and r0 = ∞, then both K and Ω

must be ellipses (homothetic to one another) if N = 2 ([ABG], [MM1]) and ellipsoids if

N ≥ 3 ([MM2]).

In the present paper, we work in R
3 and complete the classification of unbounded

stationary isothermic surfaces initiated in [MaPS], by the following theorem and corollary.

Theorem 1.1 Let Ω ⊂ R
3 be a domain with unbounded and connected boundary ∂Ω such

that ∂Ω = ∂
(

R
3 \Ω

)

and let D be a domain with D ⊂ Ω. Consider a connected component

Γ of ∂D satisfying

dist(Γ, ∂Ω) = dist(∂D, ∂Ω) (1.3)

3



and suppose that D satisfies the interior cone condition on Γ.2

If Ω is uniformly dense in Γ, then ∂Ω and Γ must be either parallel planes or co-axial

circular cylinders.

Corollary 1.2 Let Ω, D and Γ be as in Theorem 1.1. Assume that Γ is a stationary

isothermic surface of the solution u of the Cauchy problem (1.1).

Then ∂Ω and Γ must be either parallel planes or co-axial circular cylinders.

The proof of Theorem 1.1 relies on the observation that, being Ω uniformly dense in

Γ, ρ(x, r) and all the coefficients of its asymptotic expansion for r → R+ are independent

on x if x ∈ Γ. The regularity in r of ρ(x, r) descends from that of the uniformly dense

domain Ω, that we derive in Section 2 in general dimension and under the assumption that

∂Ω = ∂
(

R
N \ Ω

)

. The computation of the first coefficient of the asymptotic expansion of

ρ(x, r) for r → R+ was already carried out in [MaPS] for any N , while that of the second

one is performed for N = 3 in Proposition 3.1, which is the most technical part of the

paper (in the Appendix, we collect the calculations of some definite integrals needed in its

proof).

A key role is played by Propositions 2.3 and 3.3 that give useful geometrical insight

about the first and second coefficients of the aforementioned asymptotic expansion. In

summary, if Ω is uniformly dense in Γ, those propositions imply the existence of an inter-

mediate surface Γ∗ between ∂Ω and Γ, parallel to both ∂Ω and Γ, that has constant mean

curvature H∗ (Proposition 2.3) and of a polynomial Ψ = Ψ(t) of degree 4 at most such

that

‖∇K∗‖2 = Ψ(K∗) on Γ∗ (1.4)

(see Proposition 3.3 and the arguments yielding (4.2) in Section 4). Here, ‖∇K∗‖ is the

length of the gradient (with respect to the induced metric of Γ∗) of the Gauss curvature

K∗ of Γ∗. In particular, (1.4) tells us that K∗ is a transnormal function if K∗ is not

constant(see [W], [Mi], [B]).

The proof of our classification of uniformly dense sets and stationary isothermic sur-

faces — Theorem 1.1 and Corollary 1.2 — is in Section 4. We obtain it in two ways: by

combining ideas from the theories of minimal surfaces and surfaces with constant mean

curvature properly embedded in R
3, and the theory of transnormal functions; by directly

checking that the Gauss curvature of catenoids, helicoids and unduloids (that, together

2This assumption can be replaced by requiring that Γ satisfies the following center of mass condition:

for any x ∈ Γ, there is a number r ∈ (0, r0) such that x is not the center of mass of Ωc
∩B(x, r).
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with planes and circular cylinders, are the only surfaces of constant mean curvature that

we need to consider, as we will show) does not satisfy Eq. (1.4) with a polynomial function

Ψ.

Finally, in Section 5 we present a generalization of [MaPS, Theorem 1.4, p. 4824] by

using the theory of properly embedded minimal surfaces of finite topology in R
3.

2 Regularity of uniformly dense sets

For later use, we introduce some notations and recall some well-known facts. We define

the parallel surface

Γρ = {x ∈ Ω : dist(x, ∂Ω) = ρ} for 0 < ρ < R.

Also, ν and κ1, · · · , κN−1 will denote the inward unit normal vector to ∂Ω and the principal

curvatures of ∂Ω with respect to ν at a point ξ ∈ ∂Ω. For notational simplicity, the explicit

dependence of these quantities on the point ξ will be indicated only when it is needed to

avoid ambiguities. However, be aware that ν̂ and κ̂1, · · · , κ̂N−1 will denote the outward

unit normal vector to ∂D on Γ and the principal curvatures of Γ with respect to ν̂ at the

point x = ξ +Rν ∈ Γ.

In the spirit of [MaS3, Lemma 3.1] and by the arguments used in [MaPS, the proofs

of Theorems 2.4 and 2.5], we obtain the following lemma that is partially motivated by

Remark 2.2 below.

Lemma 2.1 Let Ω be a domain in R
N with N ≥ 2 and ∂Ω = ∂

(

R
N \ Ω

)

, and let D be

a domain in R
N with D ⊂ Ω. Consider a connected component Γ of ∂D satisfying (1.3)

and suppose that D satisfies the interior cone condition on Γ.

If Ω is uniformly dense in Γ, then the following properties hold:

(1) There exists a number R > 0 such that dist(x, ∂Ω) = R for every x ∈ Γ;

(2) Γ is a real analytic hypersurface embedded in R
N ;

(3) there exists a connected component γ of ∂Ω, which is also a real analytic hypersurface

embedded in R
N , such that the mapping γ ∋ ξ 7→ x(ξ) ≡ ξ + Rν(ξ) ∈ Γ is a

diffeomorphism; in particular, γ and Γ are parallel hypersurfaces at distance R;

(4) it holds that

κj <
1

R
on γ, for every j = 1, . . . , N − 1; (2.1)
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(5) there exists a number c > 0 such that

N−1
∏

j=1

(1−Rκj) = c on γ. (2.2)

Proof. Since Ω is uniformly dense in Γ, there exists r0 ∈ (dist(Γ, ∂Ω),+∞] such that for

every fixed r ∈ (0, r0) the function x 7→ |Ωc ∩ B(x, r)| is also constant on Γ. Therefore,

property (1) holds for some R > 0, since ∂Ω = ∂
(

R
N \ Ω

)

and Γ ∩ ∂Ω = ∅. Moreover

Eq. (1.3) yields that R = dist(Γ, ∂Ω) = dist(∂D, ∂Ω).

First, let us show that Γ is a C∞ hypersurface. Take an arbitrary function η ∈
C∞
0 (0, r0) and set ψ(x) = η(|x|) for x ∈ R

N . Then ψ ∈ C∞
0 (RN ), supp (ψ) ⊂ B(0, r0) and

the convolution ψ ⋆ XΩc belongs to C∞(RN ). Moreover we have that

ψ ⋆ XΩc(x) =

∫

Ωc∩B(x,r0)
η(|x− y|) dy =

∫ r0

0
η(r)|Ωc ∩ ∂B(x, r)| dr,

where |Ωc ∩ ∂B(x, r)| denotes the (N − 1)-dimensional Hausdorff measure of the set Ωc ∩
∂B(x, r).

The function ψ ⋆XΩc is constant on Γ. In fact, if we fix two points p, q ∈ Γ arbitrarily,

being Ω uniformly dense in Γ, we have that

|Ωc ∩B(p, r)| = |Ωc ∩B(q, r)| for every r ∈ (0, r0)

and hence, by differentiating with respect to r both sides, that

|Ωc ∩ ∂B(p, r)| = |Ωc ∩ ∂B(q, r)| for almost every r ∈ (0, r0). (2.3)

Thus, if we show that for every x ∈ Γ there exists a function η ∈ C∞
0 (0, r0) such that

∇ (ψ ⋆ XΩc) (x) 6= 0, then we can conclude that Γ is a C∞ hypersurface, by the implicit

function theorem. Suppose that there exists a point x0 ∈ Γ such that

∇ (ψ ⋆ XΩc) (x0) = 0 for every η ∈ C∞
0 (0, r0);

it follows that
∫ r0

0

[

∫

Ωc∩∂B(x0,r)
(x0 − y) dSy

]

η′(r)

r
dr = 0 for every η ∈ C∞

0 (0, r0),

where dSy denotes the area element of the sphere ∂B(x0, r). This, together with the fact

that Ωc ∩ ∂B(x0, r) = ∅ for 0 < r < R, gives that the surface integral in the brackets is

zero for almost every r ∈ (0, r0), and hence that
∫

Ωc∩B(x0,r)
(x0 − y) dy = 0 for every r ∈ (0, r0)
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— that is, x0 must be the center of mass of Ωc ∩B(x0, r) for every r ∈ (0, r0).

By the same argument as in [MaPS, the proof of Theorem 2.5], the interior cone

condition for Γ gives a contradiction. Thus, Γ is a C∞ hypersurface embedded in R
N .3

Now, since Γ is a connected component of ∂D, we notice that, in view of (1.3), prop-

erty (1) and the smoothness of Γ imply that

for each x ∈ Γ there exists a unique ξ ∈ ∂Ω satisfying x ∈ ∂B(ξ,R). (2.4)

Moreover, ξ = x+ Rν̂(x), and in view of property (1) and (2.4), comparing the principal

curvatures at x of Γ with those of the sphere ∂B(ξ,R) yields that

κ̂j ≤
1

R
on Γ, for every j = 1, . . . , N − 1. (2.5)

Since Γ is a connected component of ∂D, then Γ is oriented and divides RN into two

domains. Let E be the one of them which does not intersect D. By property (1) and (1.3),

E ∩
(

R
N \ Ω

)

contains a point, say, z. Set R0 = dist(z,Γ). Then R0 > R and there exists

a point p0 ∈ Γ such that R0 = |z−p0|. Comparing the principal curvatures at p0 of Γ with

those of the sphere ∂B(z,R0), yields that κ̂j(p0) ≤
1

R0
<

1

R
for every j = 1, . . . , N − 1.

By continuity, there exists a small δ0 > 0 such that

κ̂j(x) <
1

R
for every x ∈ Γ ∩B(p0, δ0) and every j = 1, . . . , N − 1, (2.6)

and the mapping Γ ∩ B(p0, δ0) ∋ x 7→ ξ(x) ≡ x + R ν̂(x) ∈ ∂Ω is a diffeomorphism onto

its image γ0 given by

γ0 = ξ (Γ ∩B(p0, δ0)) (⊂ ∂Ω) .

Hence γ0 is a portion of a C∞ hypersurface, since Γ is a C∞ hypersurface.

Notice that the principal curvatures κ1, · · · , κN−1 of γ0 satisfy

−κj(ξ(x)) =
κ̂j(x)

1−Rκ̂j(x)
for every x ∈ Γ ∩B(p0, δ0) and every j = 1, . . . , N − 1.

Therefore, since 1−Rκj(ξ(x)) = 1/(1 −Rκ̂j(x)), we see that (2.6) is equivalent to

κj <
1

R
on γ0 for every j = 1, . . . , N − 1. (2.7)

Here, notice that ∂Ω may have a point of selfcontact, since we only assume that

∂Ω = ∂
(

R
N \ Ω

)

. For this reason set

γ∗0 = {ξ ∈ γ0 : ξ is a point of selfcontact of ∂Ω}.
3It is clear that the following assumption would suffice: Γ is an immersed topological surface satisfying

the center of mass condition, as defined in the previous footnote.
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Then γ∗0 does not contain any interior points in γ0, since γ0 is a portion of a C∞ hyper-

surface and ∂Ω = ∂
(

R
N \ Ω

)

.

Let P,Q ∈ γ0 \γ∗0 be any two points and set ξ(p) = P , ξ(q) = Q for p, q ∈ Γ∩B(p0, δ0).

Then, it follows from (2.3) and the smoothness of γ0 that there exists a small number ε > 0

satisfying

|Ωc ∩ ∂B(p, r)| = |Ωc ∩ ∂B(q, r)| for every r ∈ (R,R+ ε).

Hence we can use [MaPS, Theorem 5.5], with R
N \Ω in place of Ω, to get





N−1
∏

j=1

(1−Rκj(P ))





− 1

2

=





N−1
∏

j=1

(1−Rκj(Q))





− 1

2

. (2.8)

Therefore, since γ∗0 does not contain any interior points in γ0, by continuity we conclude

that
N−1
∏

j=1

(1−Rκj) = c on γ0 (2.9)

where, for instance, c is the (positive) value of the right-hand side of (2.9) at the point

P0 = ξ(p0) ∈ γ0. Since 1−Rκj(ξ(x)) = 1/(1 −Rκ̂j(x)), we see that

N−1
∏

j=1

[1−R κ̂j(x)] = c−1 for every x ∈ Γ ∩B(p0, δ0).

Define a set J ⊂ Γ by

J =

{

p ∈ Γ : max
1≤j≤N−1

κ̂j(p) <
1

R
and

N−1
∏

j=1

[1−R κ̂j(p)] = c−1

}

.

By the previous argument we notice that J is a relatively open subset of Γ and J 6= ∅.

Moreover, J is a relatively closed subset of Γ. Indeed, for any sequence of points pk ∈ J

converging to some p ∈ Γ as k → ∞, in the limit we would get that

max
1≤j≤N−1

κ̂j(p) ≤
1

R
and

N−1
∏

j=1

[1−R κ̂j(p)] = c−1 > 0,

and the second equality implies that the first inequality must be strict; thus, J is closed.

Since Γ is connected, we conclude that J = Γ. Also, the regularity theory for nonlinear

elliptic equations implies that Γ is a real analytic hypersurface.

Let us set

γ = {ξ(x) ∈ R
N : x ∈ Γ}. (2.10)
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Then γ does not have any points of selfcontact, that is, the mapping ξ : Γ → ∂Ω is

injective. Indeed, suppose that there exists a point of selfcontact P∗ ∈ γ, that is, there

exist two open portions γ+, γ− of the manifold γ containing a common point P∗. Hence we

have two points p+, p− ∈ Γ and two inward normal vectors ν+ and ν− at P∗ ∈ γ (⊂ ∂Ω)

satisfying

ν+ + ν− = 0, p+ = P∗ +Rν+, and p− = P∗ +Rν−. (2.11)

Denote by κ±1 , · · · , κ±N−1 the principal curvatures of γ± at P∗ ∈ γ with respect to the

inward unit normal vectors ν± to ∂Ω, respectively. Then we observe that

− 1

R
< κ±j <

1

R
for every j = 1, . . . , N − 1. (2.12)

since J = Γ and P∗ is the point of selfcontact of γ. As before, take a point Q ∈ γ which is

not a point of selfcontact and set ξ(q) = Q for q ∈ Γ. Then it follows from (2.3) and the

smoothness of γ that there exists a small number ε0 > 0 satisfying

|Ωc ∩ ∂B(p+, r)| = |Ωc ∩ ∂B(q, r)| for every r ∈ (R,R+ ε0).

Hence, in view of (2.11) and (2.12), we can use [MaPS, Theorem 5.5] again to get

[

N−1
∏

j=1

(

1−Rκ+j

)

]− 1

2

−
[

N−1
∏

j=1

(

1 +Rκ−j

)

]− 1

2

=

[

N−1
∏

j=1

(1−Rκj(Q))

]− 1

2

. (2.13)

This is a contradiction, since (2.9) in which γ0 is replaced by γ holds true from the fact

that J = Γ.

Therefore, since κ̂j < 1/R on Γ for every j = 1, . . . , N − 1, we see that the injective

mapping Γ ∋ x 7→ ξ(x) ≡ x + R ν̂(x) ∈ γ is a real analytic diffeomorphism because of

the analyticity of Γ, and γ is a real analytic hypersurface embedded in R
N which is a

connected component of ∂Ω. Since the mapping: γ ∋ ξ 7→ x(ξ) ≡ ξ + Rν(ξ) ∈ Γ is the

inverse mapping of the previous diffeomorphism, property (3) holds. Both properties (4)

and (5) follow from the fact that J = Γ. The proof is complete. �

Remark 2.2 In [MaS3, Lemma 3.1 and its proof, pp. 2026–2029], the first and third

authors of this paper did not take care of the case in which γ has points of self-contact.

Thus, Lemma 2.1 completes the proof of [MaS3, Lemma 3.1, p. 2026] for the case of the

Cauchy problem.

Still, the argument we used to obtain (2.13) does not work in the case of the initial-

boundary value problem for the heat equation with boundary value 1 and initial value

9



0 — the matzoh ball soup setting considered initially in [MaS1]. Hence, statement 3 of

[MaS3, Lemma 3.1, p. 2026] should be corrected in such a way that γ is an immersed

hypersurface in R
N . Then γ may have points of self-contact.

On the contrary, the reflection argument due to Alexandrov works for a bounded

domain Ω, even if ∂Ω contains points of self-contact (see [A]). So the statement of Remark

right after [MaS3, Lemma 3.1, p. 2026] still holds true.

The following proposition follows directly from Lemma 2.1 and is one of the key ingre-

dients in the proof of Theorem 1.1. We preliminarily notice that, under the assumptions

of Theorem 1.1, there exists R > 0 such that

dist(x, ∂Ω) = R for every x ∈ Γ, (2.14)

since ∂Ω = ∂
(

R
3 \ Ω

)

and Ω is uniformly dense in Γ. Also, since ∂Ω is connected, Lemma

2.1 and (2.14) imply that

γ = ∂Ω, and ∂Ω and Γ are parallel surfaces at distance R > 0.

Furthermore, both ∂Ω and Γ are embedded in R
3.

Proposition 2.3 Under the assumptions of Theorem 1.1, set ρ∗ = R/(1 +
√
c), where

c > 0 is the number in (2.2) in Lemma 2.1, and

Γ∗ = {x ∈ Ω : dist(x, ∂Ω) = ρ∗}.

Then, Γ∗ is a real analytic hypersurface parallel to ∂Ω, Γ∗ is embedded in R
3, and Γ∗

has a constant mean curvature

H∗ =
1− c

2R
√
c
,

where the normal to Γ∗ is chosen to point in the same direction as the inward normal to

∂Ω. In particular, Γ∗ is a properly embedded surface with constant mean curvature (or a

properly embedded minimal surface when c = 1) in R
3, and hence it is complete.

Proof. Since both ∂Ω and Γ are embedded in R
3 and the mapping ∂Ω ∋ ξ 7→ ξ+ρ∗ν(ξ) ∈ Γ∗

is a diffeomorphism because 0 < ρ∗ < R, we see that Γ∗ is also a real analytic hypersurface

embedded in R
3 and Γ∗ is parallel to both ∂Ω and Γ.

For 0 < ρ < R, we denote by κρ1 and κ
ρ
2 the principal curvatures of Γρ at x = ξ+ρ ν(ξ) ∈

Γρ with respect to the unit normal vector to Γ∗ with the same direction as ν(ξ). Then

κj(ξ) =
κρj (x)

1 + ρκρj (x)
(j = 1, 2) for every ξ ∈ ∂Ω. (2.15)
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Substituting these in Eq. (2.2) yields

c(1 + ρκρ1)(1 + ρκρ2) = [1 + (ρ−R)κρ1][1 + (ρ−R)κρ2].

Hence, by letting ρ = ρ∗, with ρ∗ = R/(1 +
√
c), and Γ∗ = Γρ∗ , we see that

H∗ =
κρ∗1 + κρ∗2

2
=

1− c

2R
√
c
.

Let us see that Γ∗ is properly embedded in R
3. Observe that Γ∗ = {x ∈ Ω :

dist(x, ∂Ω) = ρ∗} where Ω is replaced by Ω. Since the distance function dist(x, ∂Ω) is

continuous on R
3, we see that Γ∗ is closed in R

3. Let K be an arbitrary compact sub-

set of R3. Then Γ∗ ∩ K is also compact in R
3. Let {pn} be an arbitrary sequence in

Γ∗ ∩K. By the Bolzano -Weierstraß theorem, {pn} has a convergent subsequence in R
3.

Let p ∈ Γ∗ ∩K be its limit point. Since p ∈ Γ∗, the smoothness of Γ∗ yields that there

exists δ > 0 such that B(p, δ)∩Γ∗ is represented by a real analytic graph over the tangent

plane of Γ∗ at p. This shows that the above subsequence also converges to p with respect

to the induced metric of Γ∗, which means that Γ∗ is properly embedded in R
3. (Similarly,

both ∂Ω and Γ are properly embedded in R
3.) �

3 Asymptotic expansions for ρ(x, r)

The second key ingredient in the proof of Theorem 1.1 is Proposition 3.1 below, in which we

prove an asymptotic formula for the 2-dimensional Hausdorff measure |∂B(x,R+ s)∩Ωc|
of the set ∂B(x,R+ s)∩Ωc for s→ 0+. The ensuing Proposition 3.3 will then clarify the

geometric meaning of the function g in (3.1). In Proposition 3.1, we choose a principal

coordinate system z = (z1, z2, z3) with the origin at ξ ∈ ∂Ω and such that, in some

neighborhood of ξ, ∂Ω is represented by the graph z3 = ϕ(z1, z2), with the z3 coordinate

axis lying in the direction −ν(ξ) and

ϕ(z1, z2) = −1

2
κ1(ξ)z

2
1 −

1

2
κ2(ξ)z

2
2 +O

(

(z21 + z22)
3

2

)

as
√

z21 + z22 → 0.

Hereafter, we abbreviate the partial derivatives of ϕ with respect to z1 and z2 by subscripts:

ϕ1 =
∂ϕ

∂z1
, ϕ11 =

∂2ϕ

∂z21
, ϕ112 =

∂3ϕ

∂z2∂z21
and so on.

Proposition 3.1 Let ξ ∈ ∂Ω and set x = ξ + Rν(ξ) ∈ Γ. Under the assumptions of

Theorem 1.1, we have:

|∂B(x,R + s) ∩ Ωc|
(R+ s)2

=
2π√
c

s

R
+

π

8 c
√
c
[h(K) + g]

( s

R

)2
+O

(

s
5

2

)

as s ↓ 0. (3.1)
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Here, K = κ1(ξ)κ2(ξ) is the Gauss curvature of the surface ∂Ω at the point ξ and h is a

2-degree polynomial:

h(t) = (R2t+ c− 1)2 − 4c (c + 3). (3.2)

Moreover, g ≤ 0 on ∂Ω and g = 0 if and only if the third-order derivatives ϕ111 and

ϕ222 of the function ϕ defined above vanish at the origin.

The starting point of the proof of this proposition is Lemma 3.2, for which we need ad

hoc notations and settings, in the spirit of those introduced in [MaPS].

In fact, we shall use the principal coordinate directions introduced before the statement

of Proposition 3.1 without further mention. Also, for sufficiently small s > 0, each point

w ∈ ∂B(x,R + s) ∩ Ωc can be parameterized by a spherical coordinate system with the

origin at x ∈ Γ as

w = x+ (R+ s)(sin η cos θ, sin η sin θ, cos η), 0 ≤ η ≤ η(s, θ), 0 ≤ θ < 2π,

where η = η(s, θ) (0 ≤ θ ≤ 2π) represents the closed curve ∂B(x,R + s) ∩ ∂Ω in that

system. Notice that, for sufficiently small s > 0, η = η(s, θ) satisfies

G(η, s, θ) = 0 for every 0 ≤ θ ≤ 2π, (3.3)

where the function G = G(η, s, θ) is given by

G(η, s, θ) = (R + s) cos η −R− ϕ((R + s) sin η cos θ, (R+ s) sin η sin θ). (3.4)

Thus, we obtain:

|∂B(x,R + s) ∩ Ωc|
(R+ s)2

=

∫ 2π

0
dθ

∫ η(s,θ)

0
sin η dη =

∫ 2π

0
(1− cos η(s, θ))dθ. (3.5)

Lemma 3.2 There exists a sequence {bj(θ)}∞j=1 such that b1 > 0 and η = η(s, θ) is

expanded as the Puiseux series in s:

η(s, θ) =

∞
∑

j=1

bj(θ)s
j

2 for small s ≥ 0, (3.6)

and as s ↓ 0

|∂B(x,R + s) ∩ Ωc|
(R+ s)2

=
1

2

∫ 2π

0
b21dθ s+

∫ 2π

0
b1b2dθ s

3

2

+
1

2

∫ 2π

0

(

b22 + 2b1b3 −
1

12
b41

)

dθ s2 +O
(

s
5

2

)

. (3.7)

12



Proof. Since the function G given by (3.4) satisfies

G(0, 0, θ) = 0 and
∂G

∂s
(0, 0, θ) = 1 for every 0 ≤ θ ≤ 2π,

by the implicit function theorem there exists a sequence {aj(θ)}∞j=1 such that s = s(η, θ)

is written as

s =

∞
∑

j=1

aj(θ)η
j for small η ≥ 0. (3.8)

By differentiating the identity G(η, s(η, θ), θ) = 0 with respect to η, we get

0 = sη cos η + (R+ s)(− sin η)

−ϕ1((R + s) sin η cos θ, (R+ s) sin η sin θ) ((R + s) cos η cos θ + sη sin η cos θ)

−ϕ2((R + s) sin η cos θ, (R+ s) sin η sin θ) ((R + s) cos η sin θ + sη sin η sin θ) .

By setting η = 0, we get

a1(θ) = sη(0, θ) = 0. (3.9)

Differentiating the above identity with respect to η once more and putting η = 0 yield

that

0 = sηη(0, θ)−R+R2κ1(ξ) cos
2 θ +R2κ2(ξ) sin

2 θ,

and hence

a2(θ) =
1

2
sηη(0, θ) =

1

2
R
[

(1−Rκ1(ξ)) cos
2 θ + (1−Rκ2(ξ)) sin

2 θ
]

≥ 1

2
R [1−Rmax{κ1(ξ), κ1(ξ)}] > 0. (3.10)

In view of (3.8), (3.9), and (3.10), we see that there exists a sequence {bj(θ)}∞j=1 such that

b1 > 0 and η = η(s, θ) is expanded as the Puiseux series (3.6) in s. With the aid of (3.6),

we calculate for η = η(s, θ)

1− cos η =
1

2
η2 − 1

24
η4 +O

(

η6
)

=
1

2
b21s+ b1b2s

3

2 +
1

2

(

b22 + 2b1b3 −
1

12
b41

)

s2 +O
(

s
5

2

)

as s ↓ 0,

and hence (3.5) implies (3.7), as we desired to prove. �

Proof of Proposition 3.1. Since ∂Ω is a real analytic hypersurface by Lemma 2.1, we can

write

ϕ(z1, z2) =
∞
∑

k=2

Pk(z1, z2) for sufficiently small
√

z21 + z22 , (3.11)
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where each Pk(z1, z2) is a homogeneous polynomial of degree k and in particular

P2(z1, z2) = −1

2
(κ1(ξ)z

2
1 + κ2(ξ)z

2
2). (3.12)

Now we compute the integrands of the expansion (3.7). For Pk given in (3.11), we

write

Pk(v) = Pk(cos θ, sin θ) for v = (cos θ, sin θ).

By substituting this and (3.11) into (3.3), since

cos η = 1− 1

2
η2 +

1

24
η4 +O

(

η6
)

and sin η = η − 1

6
η3 +O

(

η5
)

,

we see that

(R+ s)

(

1− 1

2
η2 +

1

24
η4 +O

(

η6
)

)

−R−
∞
∑

k=2

(R+ s)k
(

η − 1

6
η3 +O

(

η5
)

)k

Pk(v) = 0.

Then, with (3.6) (η = b1s
1

2 +b2s+b3s
3

2 +O
(

s2
)

) in hand, we equate to zero the coefficients

of s, s
3

2 , and s2. The coefficient of s gives

1− 1

2
Rb21 −R2b21P2(v) = 0. (3.13)

The coefficient of s
3

2 gives

−Rb1b2 − 2R2b1b2P2(v) −R3b31P3(v) = 0. (3.14)

The coefficient of s2 gives

−1

2

{

b21 +Rb22 + 2Rb1b3
}

+
1

24
Rb41

−P2(v)

{

2Rb21 +R2b22 + 2R2b1b3 −
1

3
R2b41

}

−3R3b21b2P3(v) −R4b41P4(v) = 0. (3.15)

Now, set

σj = 1−Rκj(ξ) > 0 for j = 1, 2. (3.16)

Notice that

σ1σ2 = c, (3.17)

where c > 0 is the positive number given by (2.2).

In view of (3.7), with the aid of (3.13) and (3.12), we obtain:

1

2
b21 =

1

R(1 + 2RP2(v))
=

1

R(σ1 cos2 θ + σ2 sin
2 θ)

. (3.18)
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The coefficient of s in (3.1) is thus easily computed from this formula, by using (3.17) and

(A.1):
1

2

∫ 2π

0
b21 dθ =

2π

R
√
c
; (3.19)

here c is the positive number given by (2.2).

By using (3.14) and (3.18), we have:

b1b2 = − 2
3

2R
1

2P3(v)

(σ1 cos2 θ + σ2 sin
2 θ)

5

2

, (3.20)

and hence we get
∫ 2π

0
b1b2d θ = 0, (3.21)

since b1b2 is the sum of odd functions of either cos θ or sin θ because of (3.20). Thus, by

(3.7) the coefficient of s3/2 in (3.1) is zero.

Finally, it follows from (3.15), (3.18), and (3.20) that

1

2

(

b22 + 2b1b3 −
1

12
b41

)

= − 7

6R2(σ1 cos2 θ + σ2 sin
2 θ)2

+
1

6R2(σ1 cos2 θ + σ2 sin
2 θ)3

− 4P2(v)

R(σ1 cos2 θ + σ2 sin
2 θ)2

+
4P2(v)

3R(σ1 cos2 θ + σ2 sin
2 θ)3

+
12R2(P3(v))

2

(σ1 cos2 θ + σ2 sin
2 θ)4

− 4RP4(v)

(σ1 cos2 θ + σ2 sin
2 θ)3

. (3.22)

A long but important computation, that is carried out in the Appendix (Lemmas A.3

and A.4), then yields the coefficient of s2 in (3.1), that is

R2

2

∫ 2π

0

(

b22 + 2b1b3 −
1

12
b41

)

dθ =
π

8c
√
c

{

(R2K + c− 1)2 − 4c (c + 3)

− 4

3
cR4

[

(1−Rκ1)
−3 (ϕ111)

2 + (1−Rκ2)
−3 (ϕ222)

2
]

}

,

where the derivatives of ϕ are evaluated at (0, 0).

In the last formula, we set

g = −4

3
cR4

[

(1−Rκ1)
−3 (ϕ111)

2 + (1−Rκ2)
−3 (ϕ222)

2
]

, (3.23)

that is clearly non-positive and is null if and only if both third derivatives vanish. �

In the next proposition, κ∗1 and κ∗2 denote the principal curvatures of Γ∗ at the point

x∗ = ξ+ρ∗ν(ξ) defined by (2.15) with ρ∗ = R/(1+
√
c), K∗ = κ∗1 κ

∗
2, and g is the function

appearing in (3.1), whose expression is given by (3.23).
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Proposition 3.3 It holds that

(κ∗2 − κ∗1)
2g = −4R4

3
√
c
· ‖∇K∗‖2
(1 + ρ∗κ∗1)

3(1 + ρ∗κ∗2)
3

(3.24)

or, in terms of the invariants H∗ and K∗,

‖∇K∗‖2 = 3
√
c

R4
g [K∗ − (H∗)2] [1 + 2 ρ∗H

∗ + ρ2∗K
∗]3, (3.25)

where ‖∇K∗‖ is the length of the gradient of the Gauss curvature K∗ with respect to the

induced metric of the hypersurface Γ∗.

Proof. Note that

κj =
κ∗j

1 + ρ∗κ∗j
for j = 1, 2, κ∗1 + κ∗2 =

1− c

R
√
c

and ρ∗ =
R

1 +
√
c
.

First notice that formula (3.24) holds true if κ1 = κ2 or, which is equivalent, if κ∗1 = κ∗2.

In fact, in this case, the Gauss curvature K∗ of Γ∗ attains its maximum value (H∗)2 (at

x∗). This means that ∇K∗ vanishes (at x∗) and hence both sides of (3.24) equal zero.

We now suppose that κ1 6= κ2. Thus, by using the Monge principal coordinate system

([BL, p. 156]), we have as
√

z21 + z22 → 0 that

ϕ(z1, z2) = −1

2
κ1z

2
1 −

1

2
κ2z

2
2

−1

6

{

∂κ1
∂z1

z31 + 3
∂κ1
∂z2

z21z2 + 3
∂κ2
∂z1

z1z
2
2 +

∂κ2
∂z2

z32

}

+O
(

(z21 + z22)
2
)

.

Therefore, we have at (0, 0):

ϕ111 = −∂κ1
∂z1

and ϕ222 = −∂κ2
∂z2

.

Hence, we obtain from (3.23):

− 3
√
c g

4R4
(1 + ρ∗κ

∗
1)

3(1 + ρ∗κ
∗
2)

3 = (1 + ρ∗κ
∗
1)

2

(

∂κ∗1
∂z1

)2

+ (1 + ρ∗κ
∗
2)

2

(

∂κ∗1
∂z2

)2

. (3.26)

By recalling that Γ∗ is parameterized in z by

(z, ϕ(z)) − ρ∗
1

√

1 + |∇zϕ(z)|2
(−∇zϕ(z), 1) ,

we have at z = 0 (that is at x∗ ∈ Γ∗) that

‖∇K∗‖2 = (1− ρ∗κ1)
−2

(

∂K∗

∂z1

)2

+ (1− ρ∗κ2)
−2

(

∂K∗

∂z2

)2

= (1 + ρ∗κ
∗
1)

2

(

∂K∗

∂z1

)2

+ (1 + ρ∗κ
∗
2)

2

(

∂K∗

∂z2

)2

.
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Notice now that
(

∂K∗

∂zj

)2

=

(

∂κ∗1
∂zj

)2

(κ∗2 − κ∗1)
2 for j = 1, 2,

since K∗ = κ∗1κ
∗
2 and κ∗1 + κ∗2 =

1−c
R
√
c
.

Therefore, combining these with (3.26) gives the formula (3.24), which completes the

proof of Proposition 3.3. �

4 Classification of stationary isothermic surfaces in R
3

We present two proofs of Theorem 1.1, each one with its own interest.

Proof of Theorem 1.1. Based on Propositions 2.3, 3.1 and 3.3, this proof relies on the

theories of properly embedded minimal surfaces and properly embedded constant mean

curvature surfaces in R
3 and the theory of transnormal functions and transnormal systems.

First of all, we note that, being parallel to ∂Ω, both Γ and Γ∗ are unbounded and

connected, which are properties they inherit from ∂Ω.

Since Ω is uniformly dense in Γ, by Proposition 3.1, there exists a constant d such that

h(K) + g = d on ∂Ω. (4.1)

Moreover, since

H∗ =
1− c

2R
√
c
, ρ∗ =

R

1 +
√
c
, and K =

K∗

1 + 2 ρ∗H∗ + ρ2∗K
∗ ,

after a few straightforward computations, Propositions 3.1 and 3.3 give that

‖∇K∗‖2 = Ψ(K∗) on Γ∗ and Ψ
(

(H∗)2
)

= 0, (4.2)

where Ψ is a polynomial with coefficients depending only on c,R, and d, and the degree

of Ψ is at most 4.

We distinguish two cases:

(A) K∗ is constant on Γ∗; (B) K∗ is not constant on Γ∗.

In case (A), since also H∗ is constant on Γ∗, then κ
∗
1 and κ∗2 are both constant on Γ∗

and hence Γ∗ must be either a plane or a circular cylinder, by a classical result. Thus, the

conclusion of Theorem 1.1 holds true, since both ∂Ω and Γ are parallel to Γ∗.

In case (B), the first equation in (4.2) shows that the Gauss curvatureK∗ is a transnor-

mal function on the connected complete Riemannian manifold Γ∗ and it induces a transnor-

mal system F (see Wang [W], Miyaoka [Mi], and Bolton [B]). To be precise, in our case,
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each component of the level sets of K∗ is called either “a foil” or “a singular foil” if its di-

mension is either 1 or 0 respectively, and all the components of the level sets of K∗ generate

F . All the foils are parallel to each other and any geodesic normal to a foil is orthogonal

to every foil. Here, every foil must be a regular curve properly embedded in Γ∗, and every

singular foil must be a point in Γ∗ which is a component of the focal varieties (possibly

empty) V+ = {x ∈ Γ∗ : K
∗(x) = maxK∗} and V− = {x ∈ Γ∗ : K

∗(x) = minK∗}.
Since a regular curve properly embedded in Γ∗ is either a closed curve or a curve with

infinite length and Γ∗ is unbounded, we have that

Γ∗ is homeomorphic to either S1 × R or R2. (4.3)

This result was proved by Miyaoka in [Mi, Theorem 1.1]. For instance, if there exists a

singular foil, then every foil in a neighborhood of it must be a closed curve and eventually

Γ∗ must be homeomorphic to R
2, and if there is no singular foil and one foil is a closed

curve, then Γ∗ must be homeomorphic to S
1 × R.

Accordingly, it suffices to prove that (B) contradicts the fact that Γ∗ has constant mean

curvature, as guaranteed by Proposition 2.3. We arrive at this conclusion by examining

two possibilities.

(I) If Γ∗ has non-zero constant mean curvature (that is when the constant c in (2.2) is

different from 1), Proposition 2.3, together with (4.3), shows that Γ∗ is properly embedded

and of finite topology in R
3, it is homeomorphic to either S2 \{N ,S} or S2 \{N} (here, N

and S denote the north and south poles of the sphere S2), and each of its ends corresponds

to each pole. Then, a theorem due to Meeks [Me, Theorem 1, p.540] shows that Γ∗ is

homeomorphic to S
2 \{N ,S} and, moreover, a theorem due to Korevaar-Kusner-Solomon

[KoKS, Theorem 2.11, p. 476] shows that Γ∗ must be either a circular cylinder or an

unduloid. See also Kenmotsu [Ke, p. 46] for an unduloid and [KoK] for a survey of

properly embedded surfaces in R
3 with constant mean curvature.

Since K∗ is not constant on Γ∗ by assumption (B), we have that Γ∗ is an unduloid,

and hence ∂Ω is parallel to an unduloid, by Proposition 2.3. Thus, we can choose two

points P,Q ∈ ∂Ω such that

K(P ) = K+ > 0 and K(Q) = K− < 0; (4.4)

P and Q lie on ∂Ω at the maximum (minimum) distance from the common axis of ∂Ω

and Γ∗. The symmetry of ∂Ω ensures that the function g in Proposition 3.1 vanishes at

P and Q, and hence we obtain that

h(K(P )) + g = h(K+) and h(K(Q)) + g = h(K−). (4.5)
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On the other hand, by the intermediate value theorem, there are points P±
∗ in ∂Ω with

0 < K(P+
∗ ) < K+ and K− < K(P−

∗ ) < 0. Since h(K) = R4K2 + 2(c− 1)R2K + h(0) and

g ≤ 0, we obtain that h(K(P+
∗ ))+ g ≤ h(K(P+

∗ )) < h(K+), if c > 1, and h(K(P−
∗ ))+ g ≤

h(K(P−
∗ )) < h(K−), if 0 < c < 1. These contradict (4.5) because of (4.1).

(II) If Γ∗ has zero mean curvature (that is when c = 1), again we can claim that Γ∗ is

a properly embedded and of finite topology in R
3 and that it is homeomorphic to either

S
2 \ {N ,S} or S2 \ {N} with each of its ends corresponding to each pole.

Thus, if Γ∗ is homeomorphic to S
2 \ {N ,S}, either combining results of Schoen [Sc]

and Collin [C, Theorem 2, p. 2] or combining results of López and Ros [LR] and Collin

[C, Theorem 2, p. 2] implies that Γ∗ must be a catenoid. Instead, if Γ∗ is homeomorphic

to S
2 \ {N}, a theorem of Meeks III and Rosenberg [MeR, Theorem 0.1, p. 728] implies

that Γ∗ must be either a plane or a helicoid. See also [MeP] and [CM2] for a survey on

the minimal surface theory in R
3. Thus, since K∗ is not constant, Γ∗ must be either a

catenoid or a helicoid.

Now, recall that for c = 1 we have that

K =
K∗

1 + ρ2∗K
∗ . (4.6)

Assume that Γ∗ is a catenoid; then we know that K∗ ≤ 0 and κ∗j → 0 as |x| → ∞ for

j = 1, 2, and hence, by (4.6), we infer that

K ≤ 0 and κj → 0 as |x| → ∞ (j = 1, 2).

Then, with the aid of the interior estimates for the minimal surface equation ([GT,

Corollary 16.7, p. 407]) and Schauder’s interior estimates for higher order derivatives

([GT, Problem 6.1. (a), p. 141]), by proceeding as in [MaPS, Proof of Theorem 4.1, pp.

4833-4834], we see that, for any k ∈ N, the k−th order derivatives of the function ϕ in

Proposition 3.1 converge to zero as |x| → ∞; thus, it follows that

h(K) + g → h(0) as |x| → ∞. (4.7)

On the other hand, since ∂Ω is parallel to the catenoid Γ∗, we choose a point P0 ∈ ∂Ω,

which is one of the points nearest to the common axis of ∂Ω and Γ∗, and which satisfies

K(P0) = inf
P∈∂Ω

K(P ) < 0. Again, the symmetry of ∂Ω ensures that the function g in

Proposition 3.1 vanishes at P0 and we conclude that

h(K(P0)) + g = h(K(P0)) = R4K(P0)
2 + h(0) > h(0),
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that contradicts (4.7) because of (4.1).

Assume now that Γ∗ is a helicoid. Note that K∗ attains its negative minimum on the

axis ℓ of Γ∗ and K∗ together with the principal curvatures κ∗1, κ
∗
2 tend to zero as the point

goes away from ℓ, as shown in [MoR, Example 3.46 (Helicoid), p. 91]. The same example

and (4.6) imply that K attains its negative minimum on the helix ℓ̃ in ∂Ω corresponding

to ℓ, and K together with the principal curvatures κ1, κ2 tend to zero as the point goes

away from ℓ̃. Therefore, by the same argument used in the case of the catenoid, as the

point on ∂Ω goes away from ℓ̃, we obtain that

h(K) + g → h(0) + 0 = h(0). (4.8)

On the other hand, if we choose a point ξ0 ∈ ℓ̃ corresponding to a point x∗0 ∈ ℓ, since

K∗ attains its negative minimum on ℓ, at x∗0 we have:

∇K∗ = 0 and κ∗1 6= κ∗2;

this, together with (3.24), yields that g = 0 at ξ0 ∈ ℓ̃. Therefore, it follows that

h(K(ξ0)) + g = R4(minK)2 + h(0) + 0 > h(0),

that contradicts (4.8). The proof is complete. �

The proof of Theorem 1.1 presented above is divided in two steps. First, by using the

transnormal condition (4.2) and the theories of CMC and minimal surfaces, we proved

that either Γ∗ has constant Gauss curvature or it is globally isometric to an unduloid, a

catenoid or a helicoid. Second, using the symmetries of the unduloid, the catenoid and the

helicoid, and appropriate Schauder estimates (see the proof between Eqs. (4.6) and (4.7)),

we showed that Γ∗ cannot be isometric to any of these surfaces. This second step of

the proof makes use of general arguments that may be useful in other contexts, but we

would like to remark that there is an elementary proof using the explicit expressions of

the unduloid, catenoid and helicoid.

Alternative proof of Theorem 1.1. The proof proceeds by inspection, we just check that

the transnormal condition (4.2), which is coordinate independent, does not hold on these

surfaces.

(1) The unduloid. The family of the unduloids can parametrized using coordinates (u, v) ∈
R/(2πZ) × R, and two real parameters b > a > 0, see e.g. [HMO]. In these coordinates

the induced metric reads as

g =
1

2

(

a2 + b2 + (b2 − a2) sin
2v

a+ b

)

du2 + dv2 ,
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and the Gauss curvature is

K =
1

(a+ b)2
− 4a2b2

(a+ b)2

(

a2 + b2 + (b2 − a2) sin
2v

a+ b

)−2
.

A straightforward computation using the metric g and the curvature K yields that

‖∇K‖2 = (Kv)
2 =

[

1− (a+ b)2K
]2{

A1 +A2 [1− (a+ b)2K]1/2 +A3 [1− (a+ b)2K]
}

,

where A1, A2, A3 are real constants that can be written explicitly in terms of a and b, but

whose expressions are not relevant for our purposes. It can be checked that A2 6= 0 for

any values of a and b, thus implying that ‖∇K‖2 is not a polynomial of K, and hence the

surface Γ∗ cannot be an unduloid on account of Eq. (4.2).

(2) The catenoid. The family of the catenoids can be parametrized using coordinates

(u, v) ∈ R/(2πZ) × R and a real constant a > 0, cf. [MeP] and [CM2]. In this coordinate

system the induced metric and Gauss curvature are

g = a2 cosh2
(v

a

)

du2 + cosh2
(v

a

)

dv2 , K =
−1

a2 cosh4(v/a)
.

As before, after some computations the quantity ‖∇K‖2 can be written in terms of K as

‖∇K‖2 = (Kv)
2

cosh2(v/a)
=

16

a
(−K)5/2 + 16K3 ,

which is not a polynomial of K. Therefore, Γ∗ cannot be a catenoid.

(3) The helicoid. The family of the helicoids can be parametrized with coordinates (u, v) ∈
R
2 and a real constant a > 0, see [MoR]. The induced metric and Gauss curvature read

in these coordinates as

g = (a2 + v2) du2 + dv2 , K =
−a2

(a2 + v2)2
.

Algebraic calculations again yield that ‖∇K‖2 is not a polynomial of K, in fact,

‖∇K‖2 = (Kv)
2 =

16

a
(−K)5/2 + 16K3 .

Therefore, Γ∗ cannot be a helicoid either. �

Remark 4.1 We can also show that, in the proof of Theorem 1.1, if K∗ is not constant,

then it is an isoparametric function, namely it satisfies the system of equations

‖∇K∗‖2 = Ψ(K∗) and ∆Γ∗K
∗ = Φ(K∗) on Γ∗,

21



for some continuos function Φ; here, ∆Γ∗ is the Laplace-Beltrami operator on Γ∗. In our

case, Φ and Ψ are polynomials.

In fact, the umbilical points of the surface Γ∗ of constant mean curvature are isolated

(see [Ke, Proposition 1.4 and (1.40), p. 21] ), and by [Ke, (1.41), p. 22]

∆Γ∗ log
√

(H∗)2 −K∗ − 2K∗ = 0 on Γ∗ \ { umbilical points }.

Therefore, it follows from the first equation of (4.2) that

∆Γ∗K
∗ = −4K∗ [(H∗)2 −K∗]− 1

(H∗)2 −K∗ Ψ(K∗).

Thus, the second equality of (4.2) guarantees that the right-hand side of this equation is

written as Φ(K∗) for some polynomial Φ = Φ(t) in t ∈ R.

5 Uniformly dense domains in R
3: the case Γ = ∂Ω

With the aid of Nitsche’s result [N], the theory of embedded minimal surfaces of finite

topology in R
3 ([BB], [MeR], [C]) gives the following generalization of [MaPS, Theorem

1.4, p. 4824]:

Theorem 5.1 Let S be a complete embedded minimal surface of finite topology in R
3, and

let Ω be one connected component of R3 \ S.
If Ω is uniformly dense in S (= ∂Ω), then S must be either a plane or a helicoid.

Proof. First of all, we note that S must be properly embedded in R
3 by Colding and

Minicozzi II [CM1, Corollary 0.13, p. 214], and hence S separates R3 into two connected

components.

We shall use an argument similar to those used in [MaPS, Proof of Theorem 1.4, p.

4833–4834]. Since S is of finite topology, there exist a compact Riemann surfaceM without

boundary in R
3 and a finite number of points p1, . . . , pm ∈M such that S is homeomorphic

to M \ {p1, . . . , pm} and each end corresponds to each pj. Then the structure theorem

of Bernstein-Breiner [BB] (see also Meeks III-Rosenberg [MeR] and Collin [C]) shows the

following:

(i) If m ≥ 2, then S has finite total curvature and each end of S is asymptotic to either

a plane or a half catenoid. See [BB, Corollary 1.4, p. 357] and [C, Theorem 2, p. 2];

(ii) If m = 1, then either S is a plane or it has infinite total curvature and its end is

asymptotic to a helicoid. See [BB, Corollary 1.4, p. 357] and [MeR, Theorems 0.1

and 0.2, p. 728];
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(iii) The Gauss curvature of S is bounded, and hence the principal curvatures of S are

also bounded. See [Sc, Proposition 1, p. 801] and [HPR, Theorem 1, p. 1336]

together with [BB] and [MeR].

See also [MeP] and [CM2] for the minimal surface theory in R
3.

Now, item (iii) above guarantees that there exists δ > 0 such that, for every x ∈ S, the

connected component of Bδ(x)∩S containing x is written as a graph of a function over the

tangent plane to S at x (see [CM2, Lemma 2.4, p. 74] for a proof). Hence combining the

above (iii) with the interior estimates for the minimal surface equation (see [GT, Corollary

16.7, p. 407]) yields that the convergence in (i) and (ii) is in the Ck local topology for any

k ∈ N.

Therefore, in view of the geometry of a hyperplane, a half catenoid, and a helicoid,

each of (i) and (ii) gives a sequence of points {Pj} in S such that the principal curvatures

of the connected component of Bδ(Pj)∩S containing Pj tend to zero uniformly as j → ∞.

Thus we can apply [MaPS, Theorem 4.1, p. 4833], which uses Nitsche’s result [N], to

complete the proof of Theorem 5.1. �

In terms of stationary isothermic surfaces, and using [MaPS, Theorems 1.1 and 1.3],

Theorem 5.1 implies the following corollary:

Corollary 5.2 Let Ω be a domain in R
3 whose boundary ∂Ω is an unbounded complete

embedded surface. Assume that ∂Ω has finite topology and is a stationary isothermic

surface of the solution u of the Cauchy problem (1.1). Then ∂Ω must be a plane, a

circular cylinder or a helicoid.

Appendix

The following list of definite integrals will be used in the calculations of Lemmas A.1–A.4.

They easily follow by means of successive differentiations and algebraic manipulations of

the formula:
1

2π

∫ 2π

0

dθ

σ1 cos2 θ + σ2 sin
2 θ

= σ
− 1

2

1 σ
− 1

2

2 ; (A.1)

here, σ1 and σ2 are two positive parameters. For 0 ≤ j ≤ m and m = 0, 1, . . . we have:

1

2π

∫ 2π

0

(cos θ)2j(sin θ)2m−2j

(σ1 cos2 θ + σ2 sin
2 θ)m+1

dθ =
1

22m
(2j)!(2m − 2j)!

m!j!(m− j)!
σ
− 1

2
−j

1 σ
− 1

2
−(m−j)

2 ; (A.2)

for 0 ≤ j ≤ m and m = 0, 1, . . . ;

1

2π

∫ 2π

0

dθ

(σ1 cos2 θ + σ2 sin
2 θ)m+1

=
1

22m

m
∑

j=0

(

2j

j

)(

2(m− j)

m− j

)

σ
− 1

2
−j

1 σ
− 1

2
−(m−j)

2 ; (A.3)
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1

2π

∫ 2π

0

cos2 θ dθ

(σ1 cos2 θ + σ2 sin
2 θ)m+2

=

1

22m+1

m
∑

j=0

2j + 1

m+ 1

(

2j

j

)(

2(m− j)

m− j

)

σ
− 1

2
−j−1

1 σ
− 1

2
−(m−j)

2 (A.4)

and

1

2π

∫ 2π

0

sin2 θ dθ

(σ1 cos2 θ + σ2 sin
2 θ)m+2

=

1

22m+1

m
∑

j=0

2m− 2j + 1

m+ 1

(

2j

j

)(

2(m− j)

m− j

)

σ
− 1

2
−j

1 σ
− 1

2
−(m−j+1)

2 . (A.5)

In this paper we use (A.2) for 1 ≤ m ≤ 3, (A.3) for 1 ≤ m ≤ 2, (A.4) and (A.5) for

m = 1, respectively. In the sequel, we set κj = κj(ξ), for j = 1, 2, and abbreviate the

partial derivatives of ϕ with respect to z1 and z2 by subscripts; whenever it is needed, we

shall specify their arguments: the varying point z = (z1, z2) or the origin (0, 0).

The following two lemmas are preparatory for Lemmas A.3 and A.4 below.

Lemma A.1 The following formulas hold:

−2 c
3

2

π

∫ 2π

0

P2(v) dθ

(σ1 cos2 θ + σ2 sin
2 θ)2

= κ1 σ2 + κ2 σ1;

−8 c
5

2

π

∫ 2π

0

P2(v) dθ

(σ1 cos2 θ + σ2 sin
2 θ)3

= κ1
(

3σ22 + σ1σ2
)

+ κ2
(

σ1σ2 + 3σ21
)

;

2532c
7

2

π

∫ 2π

0

[P3(v)]
2 dθ

(σ1 cos2 θ + σ2 sin
2 θ)4

=

5 (ϕ111)
2σ32 + 9 (ϕ112)

2σ1σ
2
2 + 9 (ϕ122)

2σ21σ2 + 5 (ϕ222)
2σ31+

6 (ϕ111)(ϕ122)σ1σ
2
2 + 6 (ϕ112)(ϕ222)σ

2
1σ2;

25 c
5

2

π

∫ 2π

0

P4(v) dθ

(σ1 cos2 θ + σ2 sin
2 θ)3

= (ϕ1111)σ
2
2 + 2 (ϕ1122)σ1σ2 + (ϕ2222)σ

2
1 .

Here, we mean that the derivatives of ϕ are evaluated at (0, 0).

Proof. Since −2P2(v) = κ1 cos2 θ + κ2 sin2 θ, with the aid of (3.17), the first formula

follows from (A.2) for m = 1, and the second one follows from (A.4) and (A.5) for m = 1.
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Observe that

36 [P3(v)]
2 =

{

(cos θ ∂1 + sin θ ∂2)
3 ϕ

}2

= (ϕ111)
2 cos6 θ + 9 (ϕ112)

2 cos4 θ sin2 θ + 9 (ϕ122)
2 cos2 θ sin4 θ + (ϕ222)

2 sin6 θ

+ 6 (ϕ111)(ϕ122) cos
4 θ sin2 θ + 6 (ϕ112)(ϕ222) cos

2 θ sin4 θ

+ [ the sum of odd functions of either cos θ or sin θ ] ,

and

24P4(v) = (cos θ ∂1 + sin θ ∂2)
4ϕ

= (ϕ1111) cos
4 θ + 6 (ϕ1122) cos

2 θ sin2 θ + (ϕ2222) sin
4 θ

+ [ the sum of odd functions of either cos θ or sin θ ] .

Then, with the aid of (3.17), the third and fourth formulas follow from (A.2) with m = 3

and m = 2 respectively. �

Lemma A.2 Let ϕ be the function representing ∂Ω locally as in Proposition 3.1. If Ω is

uniformly dense in Γ, then

σ2ϕ111 + σ1ϕ122 = 0, σ1ϕ222 + σ2ϕ112 = 0, (A.6)

σ−1
1 ϕ1111 + σ−1

2 ϕ1122 = −2R

c

{

ϕ111ϕ122 − (ϕ112)
2
}

+
1

Rc

[

4(c− 1)κ21 +Rκ21(κ1 + 3κ2)
]

, (A.7)

and

σ−1
2 ϕ2222 + σ−1

1 ϕ1122 = −2R

c

{

ϕ222ϕ112 − (ϕ122)
2
}

+
1

Rc

[

4(c− 1)κ22 +Rκ22(κ2 + 3κ1)
]

. (A.8)

Here, σ1 and σ2 are given by (3.16) and the derivatives of ϕ are evaluated at (0, 0).

Proof. Since (2.2) gives

−R(κ1 + κ2) +R2κ1κ2 = c− 1, (A.9)

the function ϕ(z1, z2) satisfies the partial differential equation:

R
√

1 + ϕ2
1 + ϕ2

2

{

(1 + ϕ2
2)ϕ11 − 2ϕ1ϕ2ϕ12 + (1 + ϕ2

1)ϕ22

}

+

R2
{

ϕ11ϕ22 − (ϕ12)
2
}

= (c− 1)(1 + ϕ2
1 + ϕ2

2)
2, (A.10)
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for z in a neighborhood of (0, 0).

Recall that at (0, 0)

ϕ1 = ϕ2 = ϕ12 = 0 and ϕjj = −κj(ξ) for j = 1, 2. (A.11)

By differentiating (A.10) with respect to z1, we obtain

R
ϕ1ϕ11 + ϕ2ϕ12
√

1 + ϕ2
1 + ϕ2

2

{

(1 + ϕ2
2)ϕ11 − 2ϕ1ϕ2ϕ12 + (1 + ϕ2

1)ϕ22

}

+R
√

1 + ϕ2
1 + ϕ2

2

{

2ϕ2ϕ12ϕ11 + (1 + ϕ2
2)ϕ111 − 2ϕ11ϕ2ϕ12 − 2ϕ1(ϕ12)

2 − 2ϕ1ϕ2ϕ112

+2ϕ1ϕ11ϕ22 + (1 + ϕ2
1)ϕ122

}

+R2(ϕ111ϕ22 + ϕ11ϕ122 − 2ϕ12ϕ112)

= 4(c− 1)(1 + ϕ2
1 + ϕ2

2)(ϕ1ϕ11 + ϕ2ϕ12) (A.12)

Letting z = (0, 0) in (A.12) yields, in view of (A.11), that

R (ϕ111 + ϕ122)−R2 (κ2 ϕ111 + κ1 ϕ122) = 0,

and hence the first formula in (A.6). By differentiating (A.10) with respect to z2, a similar

calculation gives the second formula in (A.6).

Again, differentiating (A.12) with respect to z1 and then letting z = (0, 0) in the

resulting equation with (A.11) in hand yield that

−Rκ21(κ1 + κ2) +R
{

ϕ1111 − 2κ21κ2 + ϕ1122

}

+R2
{

−κ2 ϕ1111 + 2ϕ111ϕ122 − κ1 ϕ1122 − 2 (ϕ112)
2
}

= 4(c− 1)κ21.

Hence, with the aid of (3.16) and (3.17), we obtain (A.7). By differentiating (A.10) twice

with respect to z2 and then letting z = (0, 0) in the resulting equation, similar calculations

yield (A.8). �

We now complete the computation of the coefficient of s2 in (3.1); we must integrate

over [0, 2π] the function in (3.22).

In view of (3.16), (3.17), (A.9), we preliminarily note that

σ1 + σ2 = 1 + c−R2K and κ1 + κ2 =
1− c

R
+RK. (A.13)

In the following lemma, we use (A.3) for m = 1, 2 and the first two formulas in Lemma

A.1 and, by (A.13), (3.17) and some algebraic manipulations, obtain the integrals of the

first four terms in (3.22).
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Lemma A.3 The following formulas hold:

−
∫ 2π

0

7 dθ

6R2(σ1 cos2 θ + σ2 sin
2 θ)2

=
7π

6R2c3/2
(R2K − 1− c),

∫ 2π

0

dθ

6R2(σ1 cos2 θ + σ2 sin
2 θ)3

=
π

24R2c5/2

[

3R4K2 − 6(1 + c)R2K + 3c2 + 2c+ 3
]

,

−
∫ 2π

0

4P2(v) dθ

R(σ1 cos2 θ + σ2 sin
2 θ)2

= − 2π

R2c3/2
(R2K + c− 1),

∫ 2π

0

4P2(v) dθ

3R(σ1 cos2 θ + σ2 sin
2 θ)3

= − π

6R2c5/2

[

3R4K2 − 2(3 + c)R2K − (c2 + 2c− 3)
]

.

We finally obtain the integrals of the last two terms in (3.22) by the last two formulas

in Lemma A.1, Lemma A.2 and similar algebraic manipulations.

Lemma A.4 The following formula holds:

∫ 2π

0

12R2[P3(v)]
2 dθ

(σ1 cos2 θ + σ2 sin
2 θ)4

−
∫ 2π

0

4RP4(v) dθ

(σ1 cos2 θ + σ2 sin
2 θ)3

= −πR
2

6
√
c

[

(1−Rκ1)
−3(ϕ111)

2 + (1−Rκ2)
−3(ϕ222)

2
]

+
π

8R2c5/2

{

(c+ 3)[R4K2 + 2(c − 1)R2K]− 3(c− 1)3
}

.
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