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5Università degli Studi “Sapienza”, Dipartimento di Scienze Anatomiche, Roma, Italy

February 26, 2019

Abstract

It is well known that venules equipped with valves play a critical

role in regulating blood flow. Essentially they are peristaltic pumps
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that increase the efficiency of venous blood return to the heart, thanks

to the presence of valves preventing backflow. Inspired by two recent

papers [5], [6], we have modeled the venule as a vessel with valves

placed at its ends and walls animated by radial oscillations that are

indipendent of heart pulsation and respiratory rhythm. Differently

from the previous papers, the present model takes into account the

valves inertia allowing, for progressive closing/opening stages. The

numerical simulations produce a pressure pulse and a velocity profile

which agree almost perfectly with the experimental data of [5], elimi-

nating the discrepancies found in [6], arising from the hypothesis that

valves act instantaneously.

1 Introduction

The phenomenon of vasomotion consists in periodic oscillations of blood ves-

sels walls and it was studied for the first time by Thomas Wharton Jones [14]

in 1852. He observed spontaneous oscillations of the venules in the batwing

membrane and rightly concluded that its effect was to enhance blood flow.

Also Intaglietta [13] pointed out the effects of vasomotion on blood flow in

small vessels, distinguishing between the arterioles and the venules. Grat-

ton et al. [11] made experiments on pregnant rats and they concluded that

vasomotion has many potential functions, including modulation of vascular

resistance. In particular, the authors claimed that the arterioles hydraulic

resistance increases as the amplitude of vasomotion increases and this re-

sult appears consistent with experimental observations. The whole matter

of blood dynamics in the presence of vasomotion has been recently reconsid-
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ered in [6] and in [7], where the authors made a clear distinction between

the flow in the venules and in arterioles. In a recent paper [5] Dongaonkar et

al. experimenting on batwings focused on the presence of valves in venules.

Batwings are characterized by a very thin membrane allowing in vivo, non-

invasive, nondestructive measurements with simple light microscopy without

the use of anesthesia or surgery.

Looking at Fig. 3 of [5] we immediately realize the oscillating behavior of

the venule walls and the absence of retrograde flow. Moreover, such oscilla-

tions are unrelated to heart pulsations since their period is too long (almost

7 s) and they act as a peristaltic pump, with valves preventing the back-flow.

Thus, the peristaltic action results in pressure pulses greatly enhancing the

effect of the heart generated hydraulic pressure gradient. As a consequence

the vessel resistance is considerably reduced, as shown in [6]. Indeed, by

preventing reflux, microvalves turn the periodic oscillations of venules walls

into a pumping action. In the contraction phase the rear valve closes, while

expansion causes the closure of the front valve, thus making flow unidirec-

tional. In valveless vessels (like arterioles) vasomotion scarcely influences the

net blood discharge (and in a negative way in a purely Newtonian framework

[7]).

It is frequently believed that valves are absent in human body veins

smaller than two millimeters in diameter and so investigations on the patho-

physiology of chronic venous diseases normally consider and evaluate only

the vascular competence of large veins. On the contrary, reviewing litera-

ture (see, Caggiati et al. [2] and the recent book [8]) it turns out that the

discovery of microscopic venous valves dates almost a hundred years ago.
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The mechanisms triggering vasomotion are discussed in a number of pa-

pers. We refer the reader to the reviews [15], [12], [1] and to the numerous

references therein. However the focus of this paper is not on the mecha-

nisms that cause and control vasomotion, but rather on the consequences

that vasomotion has on the blood flow in venules equipped with compliant

valves.

A mathematical model for the venular flow recorded by Dongaonkar et al.,

[5], has been formulated and studied in [6] and [7]. Such a model describes

peristaltic effect arising from the combination of the walls oscillations and of

the valves action fitting the experimental data of [5] reasonably well. The

discrepancy between the predicted and the experimental vasomotion-related

pressure peaks consists in a retardation of the pressure ascending phase and

in an anticipation of the descending branch. We believe that the underlying

cause is that the time taken by the valves to open or close was simply ignored.

Indeed, in [6] and [7] valves were modeled as massless bodies which open/close

as the pressure in the venule becomes larger/smaller than the one outside.

In other words, valves inertia was neglected.

The purpose of this study is to propose a simple model which accounts

effectively for valves inertia. The valves, indeed, are driven by the flow in

a complicated way and their response can never be instantaneous, due to

their mass. We believe that the model here proposed, though tentative, can

be useful because explains qualitatively and quantitatively how vasomotion

affects blood flow in venules, giving an excellent agreement with the experi-

mental data. Further, the model is also able to reproduce the effects of some

pathologies like the partial incontinence of the valves.
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The fitting procedure has been developed with the available data by [5],

and its purpose is to show how the model is able to reproduce the experi-

ments. The pressure data that we consider in this paper refer to the venular

flow in bat wing. It could be interesting to compare our results with hu-

man venules, especially with pathological cases. However, to the best of our

knowledge, these data are not available. Nevertheless, inserting the param-

eters concerning human venules vasomotion (vessels size, oscillation period

and amplitude) one could make some predictions about the effect of this

phenomenon.

2 Methods

We consider a cylindric vessel whose length1 is L∗ and whose radius oscillates

with period T ∗ (typically T ∗ ≈ 6−7 s for bats), namely R∗ = R∗
0R (t∗), with

R∗
0 maximum radius and R (t∗) dimensionless periodic function such that

(1− 2δ) ≤ R (t∗) ≤ 1, with δ < 0.5. We remind that vasomotion period is

not related to heart rhythm, as pointed out by Intaglietta in [13].

The ratio ε =
R∗

0

L∗ and the the Reynolds number Re are small (typically

ε = 2.5 × 10−3 and Re ≤ 10−4) and this allows writing the flow equations

in a greatly simplified form (see [6]). Actually, the limitations of the model

are essentially linked to these two hypothesis: creeping flow (Re � 1) and

lubrication regime (ε� 1).

We remark that we consider synchronous oscillations, i.e. R = R (t), and

not a peristaltic progressive wave, for the following reasons. First in [5] there

1All symbols with ∗ denote dimensional quantities.
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are no information on the phase velocity (or, equivalently, on the wavelength

λ∗). The authors reports only the oscillations frequency and amplitude. Next

the effects of the peristaltic wave length λ∗ on the flow has been analyzed

in [6] and in [9]. In these papers three cases have been considered: (i) λ∗

much smaller than the vessel length L∗, (ii) λ∗ of the same order of L∗, (iii)

λ∗ much larger than L∗. Case (i) is extremely disadvantageous for the flow,

resulting in a sharp increase of the vessel hydraulic resistance. In case (ii)

the fit with the experimental data of [5] is very poor. So, the only interesting

case turns out to be case (iii), which basically corresponds to synchronous

oscillations.

We also suppose that the inlet-outlet pressure difference ∆p∗ is known

and we introduce ∆p =
∆p∗

p∗ref
, p∗ref being the reference pressure obtained from

Poiseuille formula (exploiting the data of [5], p∗ref = 0.37 cmH2O). We

indeed remark that the flow is driven by the hydraulic pressure gradient due

to heart to which the peristaltic pressure is superimposed. The oscillation of

the vessel walls provides an active venular pumping thanks to the presence

of compliant valves (a characteristic of reciprocating pumps), which prevent

retrograde flow.

For simplicity we consider the blood to be a Newtonian fluid whose viscos-

ity is µ∗ = 3.5 mPa · s. In [3] a power-law model is considered but numerical

simulations have pointed out that such a more complex rheology does not

improve the fit with the experimental data of [5]. We therefore conclude that

the simple Newtonian model is satisfactory for our scope.

The dimensionless space and time variables are

x =
x∗

L∗ , r =
r∗

R∗
0

, t =
t∗

T ∗ , (1)
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where x∗ and r∗ are the longitudinal and the radial coordinate, respectively.

We also introduce the dimensionless pressure

p =
p∗ (x∗, t∗)− p∗ (L∗, t∗)

p∗ref
,

so that p|inlet = ∆p and p|outlet = 0.

The analysis developed in [6] provides for p the differential equation

∂2p (x, t)

∂x2
=

16

δR3 (t)

dR (t)

dt
, (2)

whose solution is

p (x, t) =
8

δR3 (t)

dR (t)

dt
x2 + A (t)x+B (t) , (3)

where A (t) and B (t) have to be determined using the conditions imposed

at the vessel ends. From (3) we can compute the dimensionless discharge Q,

getting

Q (x, t) = −π
8

∂p (x, t)

∂x
R4 (t) = −π

8

(
16

δR3 (t)

dR (t)

dt
x+ A (t)

)
R4 (t) , (4)

and the centerline blood longitudinal velocity

v1|r=0 = −1

4

∂p

∂x
R2 (t) = −1

4

(
16

δR3 (t)

dR (t)

dt
x+ A (t)

)
R2 (t) . (5)

The valves dynamics excluding inertia (model adopted in [6] and [7]) is de-

scribed by the following two steps:

1. The inlet valve (x = 0) closes when the pressure caused by the vessel

contraction exceeds the imposed one, i.e. ∆p. This fact prevents the

back-flow, forcing the discharge Q to vanish when p|x=0 > ∆p.
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2. The outlet valve (x = 1) closes when pressure falls below the outlet one

(which we have set equal to 0).

These conditions (graphically represented by the step functions, i.e. solid

lines, in Fig. 1) allow to find A (t) and B (t) and eventually, exploiting (3)

and (4), to get an explicit formula for pressure and discharge. In this way the

valves are modeled as massless devices which open/close instantaneously as

the pressure in the vessel becomes larger/smaller than the one outside. Such

an approach, though providing a significant agreement with the experiments,

is now improved by somehow taking into account the valves inertia, which

induces a delay in their action. An effective way of representing this delay is

to smooth the original boundary conditions 1 and 2, replacing them with

p|x=0 = ∆p

(
∂p

∂x

∣∣∣∣
x=0

)
− n

∂p

∂x

∣∣∣∣
x=0

. (6)

and

p|x=1 =
m

∂p

∂x

∣∣∣∣
x=1

, (7)

where n, m are two effective parameters characterizing the opening/closing

speed. Thus, once given the radius oscillation profile R (t), we have to cou-

ple (6) and (7) with (3), in order to numerically determine A (t) and B (t).

Then formulas (4) and (5) provide the explicit expression for the respective

quantities.

We remark that an accurate description of valves dynamics would require

quantitative information about their mechanical properties, such as their
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Figure 1: Boundary conditions at x = 0 and x = 1 (pressure gradient vs.

pressure). The solid lines represent the instantaneous “open/close” condi-

tions, while the dotted lines are their smoothed version.
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mass, shape, stiffness in addition to their interaction with flowing blood. As

stated earlier, such extremely complex dynamics has been bypassed in [6]

and [7], by assuming that valves have a simple on/off behavior (i.e. they

open and close immediately when requested). Since the actual study of the

valves dynamics is far beyond our possibility of investigation, we came to the

compromise of mimicking the implied delay by introducing some progressive

way in the opening and closing, which in the model amounts in replacing the

step functions (the solid lines in Fig. 1) with smooth functions (the dotted

lines in Fig. 1) characterized by the parameters m and n. Though they do

not have a precise physical meaning, they allow to introduce in the model

the effects of valves reduced efficiency due to their inertia and, in extreme

cases, to pathological reasons.

3 Results and discussion

Omitting mathematical technicalities, we illustrate the main results (the

readers are referred to [3] where mathematical details are illustrated). We

select

R(t) = 2.37t3(1−t3)3+0.75, repeated periodically with period T = 1, (8)

and take R∗
o = 70 µm, T ∗ = 6 sec, fitting very well the oscillation of R∗

shown in Fig. 3 of [5]. Next, we exploit equations (6) and (7) to get the

parameters A (t) and B (t) appearing in (3) and (5).

The dashed line in Fig. 2 is the pressure pulse produced by the present

model (with n = 100 and m = 50), the continuous line the one produced by

the model illustrated in [7] and the stars are the experimental data by [5].
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Figure 2: Vasomotion-induced pressure pulse. Comparison between the ex-

perimental data of [5] (stars), the model illustrated in [7] (solid line), and

the model developed in this paper (dashed line) with n = 100 and m = 50.

In order to better appreciate the differences two periods are shown.

Clearly, the model presented here matches the experimental data of [5]

better than the one of [7] which disregarded valves inertia, confirming at the

same time that the two-valve model is reliable and that valves inertia have

a substantial influence.

Moreover, the model predicts that, during a certain time, both valves

are open. This occurs when the lumen diameter is close to its maximum or

minimum. In that stage, that we can call “inert phase”, both valves are open

and the blood flow is simply driven by the pressure difference generated by

the heart.

We observe further that the model can be used for making predictions

about pathological cases as shown in Fig. 3. For instance, in the case of

varicose the vasomotion ceases or is reduced owing to the wall relaxation, as
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in Fig. 3(a) where the oscillation amplitude is reduced by 30%. The reduction

of vasomotion entails in turn an appreciable reduction of the pumping action,

Fig. 3(b), caused by the spontaneous oscillation of the venous walls.

Valves incontinence can be simulated by a partial opening/closure, which

can be effectively represented by further slowing the valves action. In Fig.

4 we have plotted the inlet discharge corresponding to efficient valves (con-

tinuous line) and incontinent valves (dashed line). In this case back-flow

(namely negative discharge) occurs during the compression stage and the

net discharge practically vanishes. The inlet valve does not stem the pres-

sure generated by the contraction of the vessel wall and this generates the

retrograde flow (which is absent in the case of healthy valves).

We remark that, as shown in [4], the role of the valves is not only to

prevent reflux but also to increase the outflow. And also the insufficiency

of the microvalves determines both microreflux (see, for instance, the recent

paper [10]), and reduction of the venular outflow. The model agrees quali-

tatively with these results. For instance, the inlet discharge of valves whose

opening/closure is reduced by 70%, decreases by about 95% with respect to

the healthy case.

Possible future developments could concern a more accurate investigation

of the energetic benefits that vasomotion brings to the circulatory system.

For example, which additional effort is required to the heart in case of pathol-

ogy affecting valves? This could give important qualitative information on

the cardiac effects of venous diseases.
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(a) Radius oscillation in healthy condition (contin-

uous line) and in the presence of a varicose pathol-

ogy (dashed line).

(b) Pressure pulse in healthy condition (continu-

ous line) and in the presence of a varicose pathol-

ogy (dashed line).

Figure 3: Comparison between healthy and varicose vasomotion.
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Figure 4: Inlet discharge in case of efficient valves (continuous line) and

incontinent valves (dashed line) whose opening/closure is reduced by 70%.

The net discharge is reduced by about 95% compared to the healthy valve

case.
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