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Abstract

Let T = (T,w) be a weighted finite tree with leaves 1, ..., n. For any I := {i1, ..., ik} ⊂
{1, ..., n}, let DI(T ) be the weight of the minimal subtree of T connecting i1, ..., ik; the DI(T )
are called k-weights of T . Given a family of real numbers parametrized by the k-subsets of
{1, ..., n}, {DI}I∈({1,...,n}k ), we say that a weighted tree T = (T,w) with leaves 1, ..., n realizes

the family if DI(T ) = DI for any I.
In [14] Pachter and Speyer proved that, if 3 ≤ k ≤ (n + 1)/2 and {DI}I∈({1,...,n}k ) is a family

of positive real numbers, then there exists at most one positive-weighted essential tree T with
leaves 1, ..., n that realizes the family (where “essential” means that there are no vertices of
degree 2). We say that a tree P is a pseudostar of kind (n, k) if the cardinality of the leaf
set is n and any edge of P divides the leaf set into two sets such that at least one of them
has cardinality ≥ k. Here we show that, if 3 ≤ k ≤ n − 1 and {DI}I∈({1,...,n}k ) is a family

of real numbers realized by some weighted tree, then there is exactly one weighted essential
pseudostar P = (P,w) of kind (n, k) with leaves 1, ..., n and without internal edges of weight 0,
that realizes the family; moreover we describe how any other weighted tree realizing the family
can be obtained from P. Finally we examine the range of the total weight of the weighted trees
realizing a fixed family.

1 Introduction

For any graph G, let E(G), V (G) and L(G) be respectively the set of the edges, the set of the vertices
and the set of the leaves of G. A weighted graph G = (G,w) is a graph G endowed with a function
w : E(G) → R. For any edge e, the real number w(e) is called the weight of the edge. If all the
weights are nonnegative (respectively positive), we say that the graph is nonnegative-weighted
(respectively positive-weighted); if the weights of the internal edges are nonzero, we say that the
graph is internal-nonzero-weighted and, if all the weights are nonnegative and the ones of the
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internal edges are positive, we say that the graph is internal-positive-weighted. For any finite
subgraph G′ of G, we define w(G′) to be the sum of the weights of the edges of G′. In this paper we
will deal only with weighted finite trees.

Definition 1. Let T = (T,w) be a weighted tree. For any distinct i1, ....., ik ∈ V (T ), we define
D{i1,....,ik}(T ) to be the weight of the minimal subtree containing i1, ...., ik. We call this subtree “the
subtree realizing D{i1,....,ik}(T )”. More simply, we denote D{i1,....,ik}(T ) by Di1,....,ik(T ) for any order
of i1, ..., ik. We call the Di1,....,ik(T ) the k-weights of T and we call a k-weight of T for some k a
multiweight of T .

If S is a subset of V (T ), the k-weights give a vector in R(S
k). This vector is called k-dissimilarity

vector of (T , S). Equivalently, we can speak of the family of the k-weights of (T , S).
If S is a finite set, k ∈ N and k < #S, we say that a family of real numbers {DI}I∈(S

k)
is treelike

(respectively p-treelike, nn-treelike, inz-treelike, ip-treelike) if there exist a weighted (respectively
positive-weighted, nonnegative-weighted, internal-nonzero-weighted, internal-positive-weighted) tree
T = (T,w) and a subset S of the set of its vertices such that DI(T ) = DI for any k-subset I of S.
If in addition S ⊂ L(T ), we say that the family is l-treelike (respectively p-l-treelike, nn-l-treelike,
inz-l-treelike, ip-l-treelike).
Graphs and in particular weighted graphs may have applications in several disciplines, such as bi-
ology, psychology, archeology, engineering. Phylogenetic trees are positive-weighted trees whose
vertices represent species and the weight of an edge is given by how much the DNA sequences of the
species represented by the vertices of the edge differ. There is a wide literature concerning graphlike
dissimilarity families and treelike dissimilarity families, in particular concerning methods to recon-
struct positive-weighted trees from their dissimilarity families; these methods are used by biologists
to reconstruct phylogenetic trees (see for example [13], [19] and [7], [17] for overviews); also archeol-
ogists represent evolutions of manuscripts by positive-weighted trees. See the introduction in [6] for
some applications to psychology. Also the case of general weighted graphs can be interesting. For
example, consider a web of pipes such that, when a particle or a material goes from a vertex of an
edge to the other vertex, it gets or looses some quantity of a particular substance; call this quantity
weight of the edge, so that the web becomes a weighted graph G; making a material run from a
vertex i of the graph to another j, we get a value for Di,j(G); analogously, the numbers Di1,...,ik(G)
can represent how much a material, by going from the leaf is to the leaves i1, ...., îs, ..., ik, gets or
loses of a certain substance. So weighted graphs can represent hydraulic webs or webs in the human
body; moreover they can represent also railway webs where for some lines the difference between
the earnings and the cost of the line is positive and for the other lines is zero or negative. If we
know “how much we get or lose” by going from a leaf of a weighted tree to other leaves (the values
Di1,....,ik), we can try to reconstruct the weighted tree. It can be interesting, given a family of real
numbers, {Di1,...,ik}i1,...,ik , to wonder if there exists a weighted tree with it as family of k-weights,
if it is unique and, if it is not unique, which is the tree realizing the given family and with maxi-
mum/minimum total weight (if there exists); for instance, for “railway trees” where for some lines
the difference between the earnings and the cost of the line is postive and for the other lines is zero
or negative, we can be interested in searching the trees with maximum total weight. Moreover, in
research fields where only positive-weighted trees are studied, if from experimental data we get a
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family of k-weights, for some k, which is treelike but not positive-treelike, this can suggest that there
is a systematic underestimate of the weights.
One of the first results on weighted trees is a criterion for a metric on a finite set to be nn-l-treelike,
see [5], [18], [20]:

Theorem 2. Let {DI}I∈({1,...,n}2 ) be a set of positive real numbers satisfying the triangle inequalities.

It is p-treelike (or nn-l-treelike) if and only if, for all distinct a, b, c, d ∈ {1, ..., n}, the maximum of

{Da,b +Dc,d, Da,c +Db,d, Da,d +Db,c}

is attained at least twice.

As we have already said, also the study of general weighted trees can be interesting and, obviously,
it cannot be deduced from the study of positive-weighted trees; in [3], Bandelt and Steel proved a
result, analogous to Theorem 2, for general weighted trees:

Theorem 3. (Bandelt-Steel) For any set of real numbers {DI}I∈({1,...,n}2 ), there exists a weighted

tree T with leaves 1, ..., n such that DI(T ) = DI for any I ∈
({1,...,n}

2

)
if and only if, for any

a, b, c, d ∈ {1, ..., n}, at least two among Da,b +Dc,d, Da,c +Db,d, Da,d +Db,c are equal.

In [8] some results on graphs with minimal total weight among the ones realizing a given metric
space were established.
For higher k the literature is more recent, see [1], [4], [9], [10], [11], [12], [14], [15], [16]. Three of the
most important results for higher k are the following:

Theorem 4. (Herrmann, Huber, Moulton, Spillner, [9]). If n ≥ 2k, a family of positive real
numbers {DI}I∈({1,...,n}k ) is ip-l-treelike if and only if the restriction to every 2k-subset of {1, ..., n} is

ip-l-treelike.

Theorem 5. (Levy-Yoshida-Pachter, [11]) Let T = (T,w) be a positive-weighted tree with
L(T ) = {1, ..., n}. For any i, j ∈ {1, ..., n}, define

S(i, j) =
∑

Y ∈({1,...,n}−{i,j}k−2 )

Di,j,Y (T ).

Then there exists a positive-weighted tree T ′ = (T ′, w′) such that Di,j(T ′) = S(i, j) for all i, j ∈
{1, ..., n}, the quartet system of T ′ is contained in the quartet system of T and, defined T≤s the
subforest of T whose edge set consists of edges whose removal results in one of the components
having size at most s, we have T≤n−k ∼= T ′≤n−k.

Theorem 6. (Pachter-Speyer, [14]). Let k, n ∈ N with 3 ≤ k ≤ (n + 1)/2. A positive-weighted
tree T with leaves 1, ..., n and no vertices of degree 2 is determined by the values DI(T ), where I
varies in

({1,...,n}
k

)
.
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Pachter-Speyer Theorem raises naturally some questions. It is natural to ask what happens if k >
(n + 1)/2: Pachter and Speyer showed that in this case the statement does not hold, but is there a
class of trees such that at most one tree in this class realizes a given family {DI}I∈({1,...,n}k )?

Furthermore we can wonder what happens if we consider general weighted trees instead of positive-
weighted ones.
Finally, if a family {DI}I∈({1,...,n}k ) is realized by more than one (positive-)weighted tree, can we

say something about the ones, among the weighted trees realizing the family, that have maxi-
mum/minimum total weight (if they exist)?
To state our results we need the following definition.

Definition 7. Let k ∈ N− {0}. We say that a tree P is a pseudostar of kind (n, k) if L(P ) = n
and any edge of P divides L(P ) into two sets such that at least one of them has cardinality greater
than or equal to k.

Figure 1: A pseudostar of kind (10, 8)

We prove that, if 3 ≤ k ≤ n−1, given a l-treelike family of real numbers, {DI}I∈({1,...,n}k ), there exists

exactly one internal-nonzero-weighted pseudostar P of kind (n, k) with leaves 1, ..., n and no vertices
of degree 2 such that DI(P) = DI for any I; it is positive-weighted if the family is p-l-treelike.
Moreover, any other tree realizing the family {DI}I and without vertices of degree 2 is obtained from
the pseudostar by a certain kind of operations we call “OI operations” and by inserting some internal
edges of weight 0 (see Definition 11 and Theorem 16). In particular we get that the statement of
Pachter-Speyer Theorem holds also for general weighted trees.
Finally, in §4, given a p-l-treelike family {DI}I∈({1,...,n}k ) in the set of positive real numbers, we examine

the range of the total weight of the trees realizing it and we show that the pseudostar of kind (n, k)
realizing it has maximum total weight (see Theorem 18); then we study the analogous problem for
l-treelike families in R (see Theorem 19).

2 Notation and some remarks

Notation 8. • Let R+ = {x ∈ R| x > 0}.
• For any n ∈ N with n ≥ 1, let [n] = {1, ..., n}.
• For any set S and k ∈ N, let

(
S
k

)
be the set of the k-subsets of S.
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• Throughout the paper, the word “tree” will denote a finite tree.
• We say that a vertex of a tree is a node if its degree is greater than 2.
• Let F be a leaf of a tree T . Let N be the node such that the path p between N and F does not
contain any node apart from N . We say that p is the twig associated to F . We say that an edge is
internal if it is not an edge of a twig.
• We say that a tree is essential if it has no vertices of degree 2.
• Let T be a tree and let {i, j} ∈ E(T ). We say that a tree T ′ is obtained from T by contracting
{i, j} if there exists a map ϕ : V (T )→ V (T ′) such that:

ϕ(i) = ϕ(j),

ϕ−1(y) is a set with only one element for any y 6= ϕ(i),

E(T ′) =
{
{ϕ(a), ϕ(b)}| {a, b} ∈ E(T ) with ϕ(a) 6= ϕ(b)

}
.

We say also that T is obtained from T ′ by inserting an edge.
• Let T be a tree and let S be a subset of L(T ). We denote by T |S the minimal subtree of T whose
set of vertices contains S. If T = (T,w) is a weighted tree, we denote by T |S the tree T |S with the
weight induced by w.
• Let T = (T,w) be a weighted tree. We denote w(T ) by Dtot(T ) and we call it total weight of T .
• Let n, k ∈ N, n ≥ 3 and 1 < k < n. Given a family of real numbers {DI}I∈([n]

k ), we say that a

weighted tree T = (T,w) with L(T ) = [n] realizes the family {DI}I if DI(T ) = DI for any
I ∈

(
[n]
k

)
.

Definition 9. Let T be a tree.
We say that two leaves i and j of T are neighbours if in the path from i to j there is only one node;
furthermore, we say that C ⊂ L(T ) is a cherry if any i, j ∈ C are neighbours.
We say that a cherry is complete if it is not strictly contained in another cherry.
The stalk of a cherry is the unique node in the path with endpoints any two elements of the cherry.
Let i, j, l,m ∈ L(T ). We say that 〈i, j|l,m〉 holds if in T |{i,j,l,m} we have that i and j are neighbours, l
and m are neighbours, and i and l are not neighbours; in this case we denote by γi,j,l,m the path between
the stalk of {i, j} and the stalk of {l,m} in T |{i,j,l,m}. The symbol 〈i, j|l,m〉 is called Buneman’s
index of i, j, l,m.

Remark 10. (i) A pseudostar of kind (n, n− 1) is a star, that is, a tree with only one node.
(ii) Let k, n ∈ N− {0}. If n

2
≥ k, then every tree with n leaves is a pseudostar of kind (n, k), in fact

if we divide a set with n elements into two parts, at least one of them has cardinality greater than or
equal to n

2
, which is greater than or equal to k.

Definition 11. Let k, n ∈ N− {0}. Let T = (T,w) be a weighted tree with L(T ) = [n]. Let e be an
edge of T with weight y and dividing [n] into two sets such that each of them has strictly less than k
elements. Contract e and add y/k to the weight of every twig of the tree. We call this operation a
k-IO operation on T and we call the inverse operation a k-OI operation.

Remark 12. It is easy to check that, if T = (T,w) and T ′ = (T ′, w′) are weighted trees with
L(T ) = L(T ′) = [n] and T ′ is obtained from T by a k-IO operation on an edge e of weight y, we
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have that T and T ′ have the same k-dissimilarity vector. Furthermore, if T is positive-weighted we
have that Dtot(T ′) > Dtot(T ), precisely

Dtot(T ′) = Dtot(T ) +
n− k
k

y.

Example. Let k = 5, n = 8. Consider the weighted trees in Figure 2, where the labelled vertices are
the numbers in bold and the other numbers are the weights. The tree on the left is not a pseudostar
of kind (8, 5) because of the edge e; the tree on the right is obtained from the one on the left by a
5-IO operation on e. The 5-weights of the two trees are the same.

e
10
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Figure 2: a 5-IO operation

3 Existence and uniqueness of a pseudostar realizing a tree-

like family

The following proposition is useful for the proof of Theorem 16 but it can be interesting on its own;
it shows that Buneman indices of weighted pseudostars can be recovered from their k-weights. The
result was known only for positive-weighted trees.

Proposition 13. Let k, n ∈ N with 2 ≤ k ≤ n−2. Let P = (P,w) be a weighted tree with L(P ) = [n].

1) Let i, l ∈ [n].
(1.1) If i, l are neighbours, then Di,X(P)−Dl,X(P) does not depend on X ∈

(
[n]−{i,l}
k−1

)
.

(1.2) If P is an internal-nonzero-weighted essential pseudostar of kind (n, k), then also the converse
is true.

2) Let i, j, l,m ∈ [n].
(2.1) If 〈i, j|l,m〉 holds or P |i,j,l,m is a star, then

Di,m,R(P) +Dj,l,R(P) = Di,l,R(P) +Dj,m,R(P)

for any R ∈
(
[n]−{i,j,l,m}

k−2

)
.

(2.2) Let k ≥ 4 and P be an internal-nonzero-weighted essential pseudostar of kind (n, k). We have
that 〈i, j|l,m〉 holds if and only if at least one of the following conditions holds:
(a) {i, j} and {l,m} are complete cherries in P ,
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(b) there exist S,R ∈
(
[n]−{i,j,l,m}

k−2

)
such that

Di,j,S(P) +Dl,m,S(P) 6= Di,l,S(P) +Dj,m,S(P), (1)

Di,j,R(P) +Dl,m,R(P) 6= Di,m,R(P) +Dj,l,R(P). (2)

Proof. (1.1) Obvious.

(1.2) Let P be as in the assumptions and suppose that Di,X(P) − Dl,X(P) does not depend on

X ∈
(
[n]−{i,l}
k−1

)
. For every δ ∈ [n], let δ be the node on the path from i to l such that

path(i, l) ∩ path(i, δ) = path(i, δ).

Suppose, contrary to our claim, that i and l are not neighbours. Therefore, on the path between i
and l there are at least two nodes. For any a, b nodes in the path between i and l, we say that a ≤ b
if and only if path(i, a) ⊂ path(i, b). Let x, y be two nodes on the path between i and l such that
there is no node in the path between x and y apart from x and y; thus in the path between x and y
there is only one edge since P is essential. Suppose x < y, see Figure 3. We can divide [n] into two
disjoint subsets:
X = {δ ∈ [n] | δ ≤ x},
Y = {δ ∈ [n] | δ ≥ y}.
Since P is a pseudostar of kind (n, k), then either #X ≥ k or #Y ≥ k; suppose #X ≥ k (we argue
analogously in the other case); let γ1, ..., γk−1 be distinct elements of X − {i} with γk−1 = x. Up to
interchanging the names of γ1, .., γk−2 (and correspondingly the names of γ1, ..., γk−2), we can suppose
γ1 ≤ γ2 ≤ ....... ≤ γk−1. Let η ∈ Y − {l} such that η = y.

i

γ1
γk−1 η

l
x y

Figure 3: Neighbours in pseudostars

If k ≥ 3, we have:

Di,γ1,....,γk−1
−Dl,γ1,....,γk−1

= w(path(i, γ1))− w(path(l, γk−1))

Di,γ1,....,γk−2,η −Dl,γ1,....,γk−2,η = w(path(i, γ1))− w(path(l, η)).

Since the first members of the equalities above are equal by assumption, we have that

w(path(l, γk−1)) = w(path(l, η)),
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that is
w(path(l, x)) = w(path(l, y)),

thus the weight of the edge {x, y} must be 0, which contradicts the assumption.
If k = 2, we have:

Di,γ1, −Dl,γ1 = w(path(i, γ1))− w(path(l, γ1)) = w(path(i, x))− w(path(l, x))

Di,η −Dl,η = w(path(i, η))− w(path(l, η)) = w(path(i, y))− w(path(l, y)).

Since the first members of the equalities above are equal, we must have that the weight of the edge
{x, y} must be 0, which contradicts the assumption.

(2.1) Let R ∈
(
[n]−{i,j,l,m}

k−2

)
, A = P |i,j,l,m,R and A′ = P |i,j,l,m. Suppose 〈i, j|l,m〉 holds. Call x the

stalk of the cherry {i, j} and y the stalk of the cherry {l,m} in A′. Let us denote the set of the
connected components of A− A′ by CA−A′ . For any H ∈ CA−A′ , let vH be the vertex that is both a
vertex of H and a vertex of A′. Then Di,m,R(P) is equal to

Di,m(P) +
∑

H∈CA−A′

w(H) + w

 ⋃
H∈C

A-A′ s.t.
vH∈V (path(j,x))

path(vH , x)

+ w

 ⋃
H∈C

A-A′ s.t.
vH∈V (path(l,y))

path(vH , y)

 .

Analogous formulas hold for Di,l,R(P), Dj,m,R(P), Dj,l,R(P) and we can easily prove our statement.
If A′ is a star, we argue analogously.

(2.2) ⇐ Obviously (a) implies 〈i, j|l,m〉. Suppose (b) holds; then, if P |i,j,l,m were a star or 〈i, l|j,m〉
or 〈i,m|j, l〉 held, from (2.1) we would get a contradiction of the assumptions. Thus 〈i, j|l,m〉 holds.
⇒ Let us consider the path between i and l. We use the same notation as in (1.2). By assumption
j < m. Let m′ ∈ [n] be such that m′ is the maximum node strictly less than m and let j′ ∈ [n] be
such that j′ is the minimum node strictly greater than j. We could possibly have j′ = m and m′ = j
or j′ = m′. In Figure 4 we sketch the situation in case j′ < m′.

i

j

l

mm′j′

Figure 4: j′ and m′

Since P is a pseudostar of kind (n, k), we have:

#{x ∈ [n]| x ≤ m′} ≥ k or #{x ∈ [n]| x ≥ m} ≥ k (3)

and
#{x ∈ [n]| x ≤ j} ≥ k or #{x ∈ [n]| x ≥ j′} ≥ k. (4)

8



• First suppose that there exists s ∈ [n] − {i, j} such that s ≤ j and there exists t ∈ [n] − {l,m}
such that t ≥ m. From (3) and (4) we get

#{x ∈ [n]| x ≤ m′} ≥ k or #{x ∈ [n]| x ≥ j′} ≥ k.

Suppose #{x ∈ [n]| x ≤ m′} ≥ k (the other case is analogous). Let R be a (k − 2)-subset of
{x ∈ [n]− {i, j}| x ≤ m′} such that, if m′ 6= j, then R contains s and m′. Then

Di,j,R(P)−Dl,j,R(P) = w(path(i,min(j ∪R)))− w(path(l,max(j ∪R)))
= w(path(i,min(R)))− w(path(l,m′)),

Di,m,R(P)−Dl,m,R(P) = w(path(i,min(m ∪R)))− w(path(l,max(m ∪R)))
= w(path(i,min(R)))− w(path(l,m))

So we get that Di,j,R(P) −Dl,j,R(P) −Di,m,R(P) + Dl,m,R(P) = −w({m′,m}), which is nonzero by
assumption. Thus Di,j,R(P) +Dl,m,R(P) 6= Dl,j,R(P) +Di,m,R(P); hence (2) holds.
• Now suppose that there exists s ∈ [n]−{i, j} such that s ≤ j and there does not exist t ∈ [n]−{l,m}
such that t ≥ m (analogously if the converse holds). Then #{x ∈ [n]| x ≤ m′} ≥ k. By taking R to
be a (k − 2)-subset of {x ∈ [n]− {i, j}| x ≤ m′} such that, if m′ 6= j, then R contains s and m′, we
conclude as above that (2) holds.
• Finally, if there does not exist s ∈ [n]−{i, j} such that s ≤ j and there does not exist t ∈ [n]−{l,m}
such that t ≥ m, then (a) holds.
By considering the path between i and m, we get analogously that either (1) holds or (a) holds.

The following proposition characterizes Buneman indices in terms of k-weights in the case k = 3.

Proposition 14. Let n ≥ 5. Let P = (P,w) be an essential and internal-nonzero-weighted tree with
L(P ) = [n] (so it is a pseudostar of kind (n, 3)). Let i, j, l,m ∈ [n].
We have that 〈i, j|l,m〉 holds if and only if at least one of the following conditions holds:
(a) there exists r ∈ [n]− {i, j, l,m} such that the inequality

Di,j,l(P) +Dm,r,l(P) 6= Di,r,l(P) +Dm,j,l(P)

holds and the inequalities obtained from this by swapping i with j and/or l with m hold.
(b) for any r ∈ [n]− {i, j, l,m}, the following inequalities hold:

Di,j,r(P) +Dm,l,r(P) 6= Di,m,r(P) +Dj,l,r(P),

Di,j,r(P) +Dm,l,r(P) 6= Di,l,r(P) +Dj,m,r(P).

Proof. ⇒ Let x be the stalk of the cherry {i, j} in P |i,j,l,m and let y be the stalk of the cherry
{l,m} in P |i,j,l,m . Suppose first that in V (γi,j,l,m) there are some nodes of P different form x and
y; call c the node of P in V (γi,j,l,m) − {x, y} such that path(x, c) ⊂ path(x, c′) for any c′ node of
P in V (γi,j,l,m) − {x, y} (that is c is the node in γi,j,l,m “nearest” to x). Let r ∈ [n] be such that
path(x, y) ∩ path(x, r) = path(x, c). For such an r, we have the inequalities in (a), in fact the edge
{x, c} has nonzero weight by assumption. Thus, if (a) does not hold, then there are no nodes of P
in V (γi,j,l,m)− {x, y}, hence γi,j,l,m is an edge; by assumption w(γi,j,l,m) 6= 0 and we can prove easily
that (b) holds.
⇐ We can easily prove that, if (a) holds or (b) holds, then P |i,j,l,m is not a star and 〈i,m|j, l〉 and
〈i, l|j,m〉 do not hold.
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Corollary 15. Let n, k ∈ N with 3 ≤ k ≤ n−2. Let {DI}I∈([n]
k ) be a family of real numbers. The DI

for I ∈
(
[n]
k

)
determine the Buneman’s indices of an internal-nonzero-weighted essential pseudostar

P = (P,w) of kind (n, k) with L(P ) = [n] and realizing the family {DI}I .

In fact, by part 1 of Proposition 13, the DI for I ∈
(
[n]
k

)
determine the complete cherries of an internal-

nonzero-weighted essential pseudostar P = (P,w) of kind (n, k) with L(P ) = [n] and realizing the
family {DI}I ; so, by part 2 for k ≥ 4 they determine its Buneman’s indices. For k = 3 we can use
Proposition 14.

Theorem 16. Let n, k ∈ N with 3 ≤ k ≤ n− 1. Let {DI}I∈([n]
k ) be a family of real numbers. If it is

l-treelike, then there exists exactly one internal-nonzero-weighted essential pseudostar P of kind (n, k)
realizing the family. Any other weighted essential tree realizing the family {DI}I can be obtained from
P by k-OI operations and by inserting internal edges of weight 0.
If the family {DI}I∈([n]

k ) is p-l-treelike, then P is positive-weighted and any other positive-weighted

essential tree realizing the family {DI}I can be obtained from P by k-OI operations.

Proof. Let T = (T,w) be a weighted tree with L(T ) = [n] and realizing the family {DI}I∈([n]
k ).

Obviously we can suppose that it is essential. By k-IO operations and contracting the internal
edges of weight 0 we can change T into an internal-nonzero-weighted essential pseudostar P of kind
(n, k); it realizes the family {DI}I by Remark 12. If T is positive-weighted, obviously also P is
positive-weighted.
If k = n − 1, it is easy to see that there exists at most a weighted essential star with leaves 1, ..., n
realizing the family {DI}I .
Suppose k ≤ n−2. By Corollary 15, the DI for I ∈

(
[n]
k

)
determine determine the Buneman’s indices,

and then they determine P , in fact it is well known that the Buneman’s indices of a tree determine
the tree (see for instance [7]). We have to show that the DI determine also the weights of the edges
of P . The argument is completely analogous to the proof of the theorem in [14]; we sketch it for the
convenience of the reader. Let e be an edge of P which is not a twig. Then there exist i, j, l,m ∈ [n]
such that e = γi,j,l,m (see Definition 9 for the meaning of γi,j,l,m); since P is a pseudostar of kind

(n, k), there exists R ∈
(
[n]−{i,j,l,m}

k−2

)
such that e is not an edge of P |R. Then

2w(e) = Di,m,R(P) +Dj,l,R(P)−Di,j,R(P)−Dl,m,R(P),

so w(e) is determined by the DI . For any I ∈
(
[n]
k

)
we have that

DI(P) =
∑

e ∈ E(T |I)
e not twig

w(e) +
∑
i∈I

w(ei), (5)

where ei denotes the twig associated to i.
So, for any i, j ∈ [n] and for any S ∈

(
[n]−{i,j}
k−1

)
, we have:

w(ei)− w(ej) =
∑
l∈(iS)

w(el)−
∑
l∈(jS)

w(el) =
(
DiS −

∑
e ∈ E(T |iS)
e not twig

w(e)
)
−
(
DjS −

∑
e ∈ E(T |jS)
e not twig

w(e)
)
.
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Hence the difference of the weights of the twigs is determined by the DI . From the formula (5) we
get the weight of every twig.

Corollary 17. The statement of Pachter-Speyer Theorem holds also for general weighted trees.

We point out that the unicity statement of Theorem 16 in the case of positive-weighted trees can be
deduced also from Theorem 5; anyway it was not stated there (the definition of pseudostar is new).
Observe that the complexity of an IO-operation on a tree with n leaves is O(n) and the internal
edges of an essential tree with n leaves are at most n, so changing an essential tree into a pseudostar
of kind (n, k) requires not more than O(n2) elementary operations.
Finally we want to mention that in [2], by using also the idea of pseudostar introduced in this paper,
we give a characterization of treeelike families of real numbers parametrized by k-subsets of a finite set
and that the website http://web.math.unifi.it/users/baldisser/Downloads.html contains a program
(which uses the ideas of [2]) whose aim is to establish if a family of real numbers is treelike and, if
so, to compute the unique internal-nonzero-weighted essential pseudostar realizing the family.

4 The range of the total weight

Let {DI}I∈([n]
k ) be a p-l-treelike family in R+. If 2 ≤ k ≤ (n+1)/2 we know that there exists a unique

positive-weighted essential tree T = (T,w) with L(T ) = [n] and realizing the family (see Theorem
6). On the other hand, for k > (n+ 1)/2 this statement no longer holds and, if we call U the set of
all positive-weighted trees realizing the family {DI}I , we can wonder which is the range of the total
weight of the weighted trees in U .

Theorem 18. Let k, n ∈ N with 3 ≤ k ≤ n − 1. Let {DI}I∈([n]
k ) be a p-l-treelike family of positive

real numbers and let U be the set of the positive-weighted trees with [n] as set of leaves and realizing
the family {DI}I . Call P the unique essential pseudostar of kind (n, k) in U (see Theorem 16). The
following statements hold:
(i)

sup
T ∈U
{Dtot(T )} = Dtot(P)

and the supremum is attained only by P;
(ii) if #U > 1, then

inf
T ∈U
{Dtot(T )} = Dtot(P)− (n− k) ·m

where m is the minimum among the weights of the twigs of P; the infimum is not attained.

Proof. (i) Let T = (T,w) be a weighted tree in U . Without changing the dissimilarity family and the
total weight we can suppose that it is essential. By using several k-IO operations, we can transform
it into a pseudostar of kind (n, k). By Remark 12 the dissimilarity family does not change, so, by
Theorem 16, the pseudostar of kind (n, k) we have obtained must be the unique essential pseudostar
of kind (n, k) in U , that is P . By Remark 12 we have that Dtot(T ) ≤ Dtot(P); furthermore, if T is
different from P , then Dtot(T ) < Dtot(P).
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(ii) Suppose #U > 1. Then we can make a k-OI operation on P : we add an edge of weight kx,
where x < m, in such a way that the edge divides the tree in two trees each with less than k leaves,
and we subtract x from the weight of every twig of P . Let T be the tree we have obtained. We have

Dtot(T ) = Dtot(P) + k · x− n · x = Dtot(P)− (n− k) · x

Obviously, the limit of Dtot(T ), as x approaches m, is Dtot(P)− (n− k) ·m.
Finally, let A ∈ U . Without changing the dissimilarity family and the total weight we can suppose
that it is essential. We can transform A into P by several k-IO operations, contracting edges with
weights y1, y2, ...ys and adding y1+y2+...+ys

k
to the weight of every twig. Then we get:

Dtot(P) = Dtot(A) +
n− k
k

(y1 + y2 + ...+ ys). (6)

Furthermore, since, to obtain P from A, we have added y1+y2+...+ys
k

to the weight of every twig, we
have that

m >
y1 + y2 + ...+ ys

k
. (7)

Thus, from (6) and (7) we get:

Dtot(A) = Dtot(P)− n− k
k

(y1 + y2 + ...+ ys) > Dtot(P)− (n− k) ·m.

The following theorem answers the analogous problem for general weighted trees.

Theorem 19. Let k, n ∈ N with 3 ≤ k ≤ n− 1. Let {DI}I∈([n]
k ) be a l-treelike family of real numbers

and let U be the set of weighted trees with [n] as set of leaves and realizing the family {DI}I .
(i) If in U there are only weighted pseudostars of kind (n, k) (for instance if k ≤ n

2
), then Dtot(P) =

Dtot(P ′) for any P ,P ′ ∈ U ; in particular

inf
P∈U
{Dtot(P)} = sup

P∈U
{Dtot(P)}.

(ii) If in U there are weighted trees that are not pseudostars of kind (n, k), then

inf
T ∈U
{Dtot(T )} = −∞, sup

T ∈U
{Dtot(T )} = +∞.

Proof. (i) Let P and P ′ be in U . Denote by P̂ and P̂ ′ the weighted trees obtained respectively from
P and P ′ by contracting the internal edges of weight 0. Let P and P ′ be the weighted essential
trees equivalent respectively to P̂ and P̂ ′. Obviously both P and P ′ pseudostars of kind (n, k) and
realize the family {DI}I ; so, by Theorem 16, they are equal. Thus Dtot(P) = Dtot(P ′), therefore
Dtot(P) = Dtot(P ′).
(ii) Let T = (T,w) be an element of U that is not a pseudostar of kind (n, k); then there is an edge e
dividing the tree into two trees such that each of them has less than k leaves. Let z ∈ R. We define
on T a new weight w′ as follows:

w′(e) := w(e) + z;
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for every twig t,

w′(t) := w(t)− 1

k
z;

for any edge e different from e and not contained in a twig, we define w′(e) = w(e).
Let T ′ = (T,w′). We have that DI(T ′) = DI for any I ∈

(
[n]
k

)
, so T ′ ∈ U . Furthermore

Dtot(T ′) = Dtot(T ) + z − n

k
z = Dtot(T )− n− k

k
z.

Hence limz→−∞Dtot(T ′) = +∞, while limz→+∞Dtot(T ′) = −∞.

Acknowledgemnts. This work was supported by the National Group for Algebraic and Geometric
Structures, and their Applications (GNSAGA-INdAM). The first author was supported by Ente
Cassa di Risparmio di Firenze.

References

[1] A. Baldisserri, E. Rubei, On graphlike k-dissimilarity vectors, Ann. Comb. 18 (2014)
356-381

[2] A. Baldisserri, E. Rubei, Treelike families of multiweights, arXiv:1404.6799, v4 December
2015

[3] H-J Bandelt, M.A. Steel, Symmetric matrices representable by weighted trees over a
cancellative abelian monoid, SIAM J. Discrete Math. 8 (1995) 517–525

[4] C. Bocci, F. Cools, A tropical interpretation of m-dissimilarity maps, Appl. Math. Com-
put. 212 (2009) 349-356

[5] P. Buneman, A note on the metric properties of trees, J. Combinatorial Theory Ser. B 17
(1974) 48-50

[6] H. Colonius, H.H. Schultze, Tree structure from proximity data, British J. Math. Statist.
Psych. 34 (1981) 167-180

[7] A. Dress, K. T. Huber, J. Koolen, V. Moulton, A. Spillner, Basic phylogenetic combina-
torics, Cambridge University Press, Cambridge, 2012

[8] A. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of
certain groups: a note on combinatorial properties of metric spaces, Adv. Math. 53 (1984)
321-402

[9] S.Herrmann, K.Huber, V.Moulton, A.Spillner, Recognizing treelike k-dissimilarities, J.
Classification 29 (2012) 321-340

[10] B. Iriarte Giraldo, Dissimilarity vectors of trees are contained in the tropical Grassman-
nian, Electron. J. Combin. 17 (2010)

[11] D. Levy, R. Yoshida, L. Pachter, Beyond pairwise distances: neighbor-joining with phy-
logenetic diversity esitimates, Mol. Biol. Evol. 23 (2006) 491-498

13



[12] C. Manon, Dissimilarity maps on trees and the representation theory of SLm(C), J.
Algebraic Combin. 33 (2011) 199-213

[13] M. Nei, N.Saitou, The neighbor joining method: a new method for reconstructing phylo-
genetic trees, Mol. Biol. Evol. 4 (1987) 406-425

[14] L. Pachter, D. Speyer, Reconstructing trees from subtree weights, Appl. Math. Lett. 17
(2004) 615-621

[15] E. Rubei, Sets of double and triple weights of trees, Ann. Comb. 15 (2011) 723-734

[16] E. Rubei, On dissimilarity vectors of general weighted trees, Discrete Math. 312 (2012)
2872-2880

[17] C. Semple, M. Steel, Phylogenetics, Oxford University Press, Oxford, 2003

[18] J.M.S. Simoes Pereira, A Note on the Tree Realizability of a distance matrix, J. Combi-
natorial Theory 6 (1969) 303-310

[19] J.A. Studier, K.J. Keppler, A note on the neighbor-joining algorithm of Saitou and Nei,
Mol. Biol. Evol. 5 (1988) 729-731

[20] K.A. Zaretskii, Constructing trees from the set of distances between pendant vertices,
Uspehi Mat. Nauk 20 (1965) 90-92

14


	Introduction
	Notation and some remarks
	Existence and uniqueness of a pseudostar realizing a treelike family
	The range of the total weight

