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In the search for new single molecule magnets (SMM), i.e., molecular systems that

can retain their magnetization without the need to apply an external magnetic field, a

successful strategy is to associate 3d and 4f ions to formmolecular coordination clusters.

In order to efficiently design such systems, it is necessary to chemically project both the

magnetic building blocks and the resultant interaction before the synthesis. Lanthanide

ions can provide the required easy axis magnetic anisotropy that hampers magnetization

reversal. In the rare examples of 3d/4f SMMs containing CrIII ions, the latter turn out to

act as quasi-isotropic anchors which can also interact via 3d-4f coupling to neighbouring

Ln centres. This has been demonstrated in cases where the intramolecular exchange

interactions mediated by CrIII ions effectively reduce the efficiency of tunnelling without

applied magnetic field. However, describing such high nuclearity systems remains

challenging, from both experimental and theoretical perspectives, because the overall

behaviour of the molecular cluster is heavily affected by the orientation of the individual

anisotropy axes. These are in general non-collinear to each other. In this article, we

combine single crystal SQUID and torque magnetometry studies of the octanuclear

[Cr4Dy4(µ3-OH)4(µ-N3)4(mdea)4(piv)8]·3CH2Cl2 single molecule magnet (piv=pivalate

and mdea=N-methyldiethanol amine). These experiments allowed us to probe the

magnetic anisotropy of this complex which displays slow magnetization dynamics due

to the peculiar arrangement of the easy-axis anisotropy on the Dy sites. New ab initio

calculations considering the entire cluster are in agreement with our experimental results.

Keywords: lanthanides, transition metals, 3d/4f coordination clusters, single crystal magnetometry, torque

magnetometry, magnetic anisotropy
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INTRODUCTION

In the search for innovative solutions for data storage and
manipulation at the nanoscopic scale, magnetic molecules like
the so-called single molecule magnets (SMM) could play a
predominant role. They could store information (Caneschi et al.,
1993; Sessoli et al., 1993; Thomas et al., 1996), and be used for
computing (Leuenberger and Loss, 2001; Affronte et al., 2007;
Lehmann et al., 2007). Indeed, the electronic spin carried by a
molecule is both addressable, on a surface for example (Mannini
et al., 2009, 2011; Bhandary et al., 2011), and manipulable using
different techniques, two pertinent characteristics for quantum
computing (Ardavan et al., 2007; Boulon et al., 2017; Godfrin
et al., 2017a,b) or for spintronics (Bogani and Wernsdorfer,
2008; Perrin et al., 2015; Coronado and Yamashita, 2016). The
design and the elaboration of functional molecules is however
challenging and continue to stimulate the community of chemists
and physicists, from both experimental and theoretical points
of view. Bringing molecules inside devices requires a deeper
understanding of the relevant properties, and one of them
is the magnetic anisotropy having led to the development
of experimental (Cornia et al., 2001; Cucinotta et al., 2012;
Boulon et al., 2013a,b; Perfetti et al., 2014; Meng et al., 2016)
and theoretical (Karlström et al., 2003; Aquilante et al., 2010)
studies in the past years. There is no doubt that complementary
approaches are crucial for improving the properties of molecules,
as recently demonstrated with the record of the highest
temperature for a SMM (Guo et al., 2018).

The chemistry of complex polynuclear lanthanide systems is
constantly developing and, at the current stage, allows to tune and
target specific properties by playing with the ligand field (Sessoli
and Powell, 2009; Zhang et al., 2013, 2018; Liu et al., 2018).
Another strategy to improve magnetic properties can also be to
gather 3d and 4f ions into a polynuclear complex (Andruh et al.,
2009). The strong spin orbit coupling of lanthanides provides
the required easy axis magnetic anisotropy, while transition
metals can be used to engineer structures with strong exchange
interactions. In this respect, the combination of DyIII and CrIII

ions has been proven to be the most successful to achieve
remarkable magnetic properties (Rinck et al., 2010; Langley et al.,
2013, 2015). However, characterising the magnetic anisotropy of
such systems remains a challenge.

With this in mind, we present a combined experimental
and theoretical approach to complete the previously reported
study on a tetranuclear Dy complex (Rinck et al., 2010).
The core of [Cr4Dy4(µ3-OH)4(µ-N3)4(mdea)4(piv)8]·3CH2Cl2
is constituted by a perfect square of four DyIII cations. Each pair
of adjacent DyIII centres is bridged by a (µ3-OH) ligand to a CrIII

cation. The four CrIII centres are displaced alternately above and
below the Dy4 square in the D2d site symmetry as represented in
Figure 1. In this work, we have used single crystal magnetometry
(SCM) which provides a direct measurement of the anisotropy of
the magnetic susceptibility complemented by cantilever torque
magnetometry (CTM) in order to determine the orientation and
magnitude of the magnetic anisotropy of each magnetic ion.
Individual anisotropies have previously been deconvoluted both
in transition metal clusters and lanthanide polynuclear systems

FIGURE 1 | Molecular structure of the [Cr4Dy4(µ3-OH)4(µ-N3)4(mdea)4(piv)8]

complex viewed along the c axis (turquoise: Dy, purple: Cr, blue: N, red: O,

black: C, H are omitted) with symmetry elements: red S4 axes, green 2-fold

axes, and blue mirrors planes.

(Rigamonti et al., 2015; Mihalcea et al., 2016) using this very
sensitive technique. We have compared here our experimental
results with state-of-the-art ab initio calculations finding good
agreement.

MATERIALS AND METHODS

Synthesis
A crystal of [Cr4Dy4(µ3-OH)4(µ-N3)4(mdea)4(piv)8]·3CH2Cl2
was prepared as previously described (Rinck et al., 2010).

Angular Resolved Magnetometry
Angular resolved susceptibility measurements were performed
on a Quantum Design MPMS SQUID magnetometer
(Superconducting Quantum Interference Device) using the
commercial horizontal rotator from Quantum Design. The
single crystal habit was determined by using a single crystal
Oxford Xcalibur3 X-Ray diffractometer. The crystal was
mounted on a square acetate foil (side ≈ 2mm) and fixed onto
the horizontal rotator using silicon grease. Details about the
crystal orientation can be found in Table S1.

Torque Magnetometry
Torque magnetometry experiments were performed by using
a homemade two-legged CuBe cantilever separated by 0.1mm
from a gold plate (Perfetti, 2017). The cantilever was inserted into
an Oxford Instruments MAGLAB2000 platform with automated
rotation of the cantilever chip in a vertical magnet. The
capacitance of the cantilever was detected with an Andeen-
Hegerling 2500. An Ultra Precision Capacitance Bridge. Details
about the crystal orientation can be found in Table S1.

Ab initio Calculations
Ab initio calculations were performed by using MOLCAS 7.8
quantum chemistry package (Aquilante et al., 2010). Each mdea
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ligand deviates from mirror symmetry by a slight twisting
about the Cr-N bond. Two structures of the Cr4Dy4 compound
were therefore considered, which differ in the arrangement
of the twist directions of the four ligands of the molecule:
Structure 1 has D2 point group symmetry (two Dy sites
were calculated ab initio) whereas Structure 2 has an S4
point group symmetry (one Dy site was computed ab initio
since all Dy sites are equivalent). Mononuclear structures
containing only one Dy site were built by replacing neighbouring
metal sites by their diamagnetic equivalents: Lu was used
in place of neighbouring Dy sites while Sc3+ ions were
employed in place of Cr3+ in these calculations. Importantly,
the entire ligand framework of the original Cr4Dy4 molecule
was kept unaltered. All atoms were described by ANO-RCC
basis sets of VTZP/VDZP quality (Roos et al., 2004, 2005,
2008). The employed basis set contractions are listed in the
Supplementary Information. All calculations were of the SA-
CASSCF/RASSI kind (Malmqvist et al., 2002; Chibotaru et al.,
2008). The active space of the CASSCF method included the
4f 9 configuration of the Dy site. The spin-orbit coupling was
included within RASSI method. All spin sextet states, 128 spin
quartet states and 130 spin doublet states arising from the
defined active space CAS(9in7) were included in the spin-
orbit interaction. In the basis of the obtained spin-orbital
multiplets, the g tensor, parameters of the crystal field and
other related magnetic properties were evaluated within the
SINGLE_ANISO module (Aquilante et al., 2010; Chibotaru and
Ungur, 2012).

RESULTS

Angular Resolved Magnetometry
From the single crystal magnetometry experiment, whose
results are reported in Figure 2, it appears that the out-
of-plane anisotropy is, as expected for a tetragonal system,
more pronounced than the in-plane anisotropy. In rotation
along c (open circles in Figure 2), the resulting in-plane
contribution of the anisotropy is investigated whereas for the
rotation along a, the magnetic field goes from perpendicular
to parallel to the molecular plane (see Table S1). Rotating the
sample along a (filled circles in Figure 2) results in a strong
variation of the ratio of the magnetization and the magnetic
field M/B, assumed at this moderate field to coincide with
the susceptibility and reported as χ . This is in agreement
with previous theoretical calculations (Figure S1). Indeed, the
previously proposed model (Rinck et al., 2010) suggested a
strong variation between the in-plane and the out-of-plane
magnetic susceptibility. However, the minimum of the magnetic
susceptibility is surprisingly measured when the magnetic field
is applied along the fourfold axis, and, the maximum when the
magnetic field is applied in the (ab) plane. Consequently, the
rotation along c, during which the magnetic field remains inside
the molecular plane is almost constant at the maximum value,
the small deviation being attributed to an experimental error of
about 2◦ in the orientation of the crystal for this measurement
(see Supplementary Information).

FIGURE 2 | Angular dependence of the magnetic susceptibility at 0.1 T and 2

(blue), 5 (green), and 10K (red) along a (filled circles) and c (open circles).

Single Crystal Magnetization
Measurements
Magnetic field dependence of the magnetization and temperature
(T) dependence of the susceptibility were measured on a single
crystal in order to unequivocally determine the orientation of the
maximum of themagneticmoment within the crystal. At all fields
and temperatures, the magnetic response along the (ab) plane
is higher than along c. This is in agreement with the angular
dependence of the susceptibility measurements. Interestingly,
the in-plane χT vs. T curve (Figure 3 green dots) exhibits a
slight decrease followed by a sharp increase at low temperatures.
This behaviour can be attributed to a mixture of effects, namely
the depopulation of the CF levels of the DyIII ions and the
presence of coupling between the magnetic ions. Conversely,
the magnetization curve obtained along c (Figure 3 pink dots)
exhibits amonotonic increase from low to high temperature, with
absence of saturation even at room temperature, at difference
from what was expected from calculations (Rinck et al., 2010).

If we take the weighted average of the single crystal
measurements according to 1/3(χT||+ 2 χT−) then the obtained
room temperature value of 62.3 emuKmol−1 is close to that
expected for the randomly orientated independent ions of
χT = 64.2 emuKmol−1.

Cantilever Torque Magnetometry
SCM experiments provide the magnetic anisotropy of the system
but do not help to disentangle the single centres contributions.
The latter are symmetry related but not necessarily coincident
if the symmetry of the site is lower than the symmetry of the
crystal. The symmetry of the molecule (Figure 1) constrains
the main anisotropy axes to lie along the mirror planes of
the molecule. Moreover, as the metal ions lie on symmetry
elements, mirror planes and 2-fold axes for the CrIII and DyIII

ions, respectively, also the individual principal anisotropies show
geometrical constraints. In particular, the only free parameter,
beyond anisotropy amplitude, is the Euler angle between the z
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magnetic axis of the single centres and the c crystallographic
axis. Cantilever torque magnetometry represents an excellent
technique for this purpose. The measurements were performed
using high magnetic fields to overwhelm the intramolecular
interactions and directly access the single ion contributions. The
good alignment of the crystal is proven by the symmetry of the
peaks and the position of the zeros in the angular dependence of
the torque moment (Figure 4), which in the experimental setup
used here is detected along the rotation axis (Table S1). The in-
plane rotation exhibits a τ = 0 every 45◦, i.e., when the field lies
along a principal crystallographic axis and along a mirror plane.
The deviation from a perfect sinusoidal curve (steeper/smoother
variation of the torque when the field is perpendicular/parallel to
the easy axis) is a characteristic feature of torque measurements
taken at high fields and is the key to disentangle noncollinear
contributions. (Perfetti et al., 2014). Moreover, the out-of-
plane rotation shows two significant features: (i) a shoulder
at 90◦ and (ii) the peculiar shape of the torque moment
near 0◦ and 180◦ with τ increasing less rapidly than expected
(Perfetti, 2017). The comparable magnitude between the two
rotations indicates that the z axes of the lanthanides should
be significantly tilted from the c axis, since the DyIII ions are
expected to be the dominant contributors to the anisotropy of
the complex.

Due to the intrinsic complexity of this system, our
approach to simulate the torque data included the smallest
number of parameters able to reproduce the experimental
data. A global simulation of all the experimental torque data
(Figure 4; Figure S2) was thus obtained using the following
spin Hamiltonian, which does not account for the exchange
interaction between metal sites:

H =

4∑

i=1

{
µBgz,DyHzi · Ŝzi + µBgxy,DyHxyi · Ŝxyi + µBgCrH · Ŝi

+ DCrŜ
2
zi

}

where the summation contains the Zeeman energy (first three
terms) and the zero-field splitting (ZFS, fourth term). Coupling
terms were neglected due to the high applied fields (B ≥ 5T).
The DyIII ions were described as S = ½ pseudospins with axially
anisotropic g factors. The CrIII ions were modelled using an
isotropic g and an axial ZFS term. The individual zi axes of the
four DyIII and CrIII ions are related by the symmetry elements of
the molecule. The best agreement with experiments was obtained
using the parameters in Table 1.

The shoulder near 90◦ in the out of plane rotation can only
be reproduced if the easy axes of the DyIII ions are very close to
the (ab) plane (between 75 and 85◦ from the c axis, depending on
the chosen g components). The slope between 0◦ and 40◦ (and,
by symmetry, between 140◦ and 180◦) can only be reproduced by
introducing an axially anisotropic contribution D from the CrIII

FIGURE 4 | Angular variation of the magnetic torque moment at 2K and 5T

for both in plane (red) and out of plane (blue) rotation along with the best fit

(solid line).

FIGURE 3 | (A) Magnetization curves recorded at 2.5K. (B) χT vs. T curves recorded at 0.1 T (2–50K) and 1 T (40–300K). Pink and green dots represent

measurements with the field being parallel and perpendicular to c, respectively. The black lines are a guide to the eye.
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ions (D=−0.7 cm−1) with the z axis at 0–10◦ from c (depending
on the value of D). The correlation between the value of D and
the angle between the z axis of the CrIII ions and c is intrinsically
difficult to disentangle based on the experimental data that we
collected. In Figure 5 we reported the contributions of the DyIII

and CrIII ions to the torque in both rotations. Interestingly, the
CrIII anisotropy does not significantly affect the data in the in-
plane rotation, i.e., along c, whose features are unambiguously
indicative of the almost in-plane orientation of the DyIII easy
axes. The simplification of themodel, i.e., neglecting the exchange
interaction between the magnetic ions, was necessary for the
treatment of the contributions of DyIII and CrIII ions to the
total magnetic anisotropy. However, the development of a more
complex model, also encompassing interactions and excited
states, is ongoing.

Ab initio Calculations
In the previous work published by some of us (Rinck et al., 2010),
mononuclear fragments of Dy and Cr units were computed.
In the light of the new experimental data, we performed new
ab initio calculations on the two full structures of Cr4Dy4
molecules without altering the ligand framework for the cluster
fragmentation.Table 2 reports the obtained energy spectrum and
g-tensor of the groundKramers doublet on the calculatedDy sites
and the angle made by the ground main magnetic axis with the
c crystallographic axis for both Structure 1 and Structure 2. On
each Dy site there are several excited Kramers doublets with small
excitation energy. Therefore, we can expect the lowest of them to
be admixed by the DyIII-CrIII exchange interaction.

TABLE 1 | Best fit parameters to the torque experiment.

Ion Spin gz gxy D (cm-1) ẑc(◦)

CrIII 3/2 2.0 (1) 2.0 (1) −0.7 (1) 5 (5)

DyIII 1/2 (fictitious) 16.5 (2) 2.4 (2) – 77 (5)

These new computation results, corroborated by the SCM
and the CTM experiments, give the main anisotropy axis of the
DyIII ions lying much closer to the Dy4 plane than predicted by
the previously published calculations. The improvement of the
output can be explained by the high sensitivity of the ab initio
results on the cluster fragmentation in the Cr4Dy4 complexes,
as, due to insufficient computational resources, the applied
fragmentation was more severe in the previous calculations.

DISCUSSION

In our previous work several theoretical models had been
proposed to rationalise the magnetic anisotropy of the Cr4Dy4

TABLE 2 | Ab initio calculated low-lying energy splitting (in cm−1) of the ground

J = 15/2 of the Dy sites in the two Cr4Dy4 structures.

Structure 1 (D2 symmetry) Structure 2 (S4 symmetry)

Site Dy1 Site Dy2 Site Dy

0.0 0.0 0.0

22.3 37.4 29.2

37.8 77.6 58.4

70.1 118.6 91.8

104.4 148.3 123.4

116.3 155.2 135.4

145.1 204.7 176.2

445.8 439.3 442.1

MAIN VALUES OF THE g tensor IN THE GROUND DOUBLET STATE

0.731 0.260 0.414

2.528 0.599 1.103

16.956 19.024 18.563

ANGLE BETWEEN THE MAIN AXIS gz AND THE c CRYSTALLOGRAPHIC

AXIS (◦)

80.29 83.12 83.27

FIGURE 5 | Torque magnetometry data recorded at 2K and 5T. At the beginning of the rotation from plane to axis (A) the field was oriented along the (ab) plane (at

45◦ from a, see Table S1). At the beginning of the rotation along c (B) the field was oriented along a (see Table S1). Symbols are experimental points, the turquoise,

and purple lines represent the contributions of the DyIII and CrIII ions, respectively. The solid blue and red lines are the resultant torque of the molecule. The red line on

the (B) is largely superimposed to the turquoise line since the Cr anisotropy is not significantly contributing.
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FIGURE 6 | A possible representation of the anisotropy axis for Dy (green, dark: experimental, light green: calculated ab initio considering S4 symmetry) and Cr

(orange, experimental) ions. (turquoise: Dy, purple: Cr, black: C, red: O, blue: N; H are omitted). The Cr anisotropy should be considered as an effective one, able to

reproduce the experimental data in the employed simplified model (see text).

cluster (Rinck et al., 2010). The outcome of the most accurate
one suggested that the orientation of the z anisotropy axis for
the DyIII ions (fictitious S = 1/2, gx = 1.7, gy = 2.2, gz = 14.4)
stands at an angle of 20.06◦ from the crystallographic c axis.
Simulating the angular dependence of the magnetic susceptibility
with the aforementioned parameters does not reproduce our
experimental results and instead presents an opposite phase to
what we measure (Figure S1). SCM and CTM results clearly
indicate that the easy anisotropy axis of individual DyIII ions is
lying close to the molecular plane, thus giving rise to an overall
easy plane type behaviour. To shed light on this discrepancy,
improved ab initio calculations have been performed considering
the entire ligand framework of the cluster. The outcome of
the improved calculations predicts an orientation of the main
anisotropy axis much closer to the (ab) plane (80–83◦ from
the crystallographic c axis, depending on the employed cluster
geometry). This now provides excellent agreement with the
experiments and constitutes a clear warning: fragmentation of
lanthanide clusters might lead to incorrect results. Figure 6

gives a possible representation of the anisotropy axes for all
the magnetic ions of the molecule (light green: from ab initio
calculation and dark green: from experimental results analysis).
Note that experiments alone would have left the ambiguity of
associating a given easy axis direction to one particular Dy
ion, but this ambiguity is resolved by the ab initio calculations.
The anisotropy of the g tensors of the Dy ions extracted from
the experiments seems less pronounced compared to the one
obtained by the ab initio calculation. The physical origin of this
discrepancy could be related to interactions not included in our
models.

Figure S3 reports the magnetization calculated with the
applied magnetic field B parallel and perpendicular to c using a
simplified (S = 1/2) experimental model. It appears that the low
field data at the lowest temperature are poorly reproduced, with
experimental data lower than the calculated ones. Interestingly,
a better agreement is observed at T = 5K. The advantage of
using CTM, with its exceptional sensitivity at high fields, is

evident as the agreement with experiments at high fields is
better.

However, the exchange interaction between themagnetic ions,
which we neglect in our present model, was estimated, in the
previous simulations (Rinck et al., 2010), to be one order of
magnitude larger than the CrIII ZFS used here [j(Cr-Dy) = –
(5–10) cm−1 vs. D(Cr) = −0.7 cm−1). Therefore, it could be
a driving force for the arrangement of magnetic moments on
CrIII ions. Accordingly, in the low-energy exchange states these
are expected to lie as close as possible to the plane of the two
neighbouring Dy magnetic moments, i.e., close to the (ab) plane.
The ab initio calculations also predict two low-lying excited
Kramers doublets on each Dy site, which would be expected to
be admixed by the exchange interaction and would contribute
to the field and temperature dependence of the torque and
magnetization of the complex.

CONCLUSION

The combination of paramagnetic 3d and 4f ions in molecular
units is a successful strategy to improve the single molecule
magnet behaviour, mainly thanks to the reduction of tunnel
efficiency. The design of better performing SMMs requires the
optimization of the magnetic anisotropy of the individual ions
and of their orientation. The previously encountered difficulties
in the determination of the anisotropic contributions of this
polynuclear molecule, evidence the need to use the combination
of experimental tools and ab initio calculations to fully unravel
the magnetic properties of such complex systems. Moreover,
fragmentation of the molecular framework to simplify these
calculations should be ruled out as much as possible to avoid
spurious effects. The SCM technique allows us to work at low
field, thus nicely complementing CTM that instead is more
suitable to investigate the high field regime. The experimental
results of our investigation unequivocally point to a more
toroidal like orientation of the anisotropy axes of the Dy ions
than previously predicted. However, the employed simplified
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phenomenological model reproduces the high field values of
the magnetization but fails in reproducing the low field regime.
This is not surprising since our model does not take into
account the exchange interaction between all magnetic ions
neither the low-lying excited Kramers doublets on the Dy
sites. The work of improving the description of the field and
temperature dependency of the magnetic anisotropy is currently
ongoing.
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