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ABSTRACT: The stabilization of the optical properties of
anisotropic plasmonic particles upon thermal annealing and laser
irradiation is an important issue in many biomedical applications.
Here, we address the effect of small thiols on the thermal and
photostability of gold nanorods. As-synthesized colloids were
treated with mixtures of thiolated polyethylene glycol and
methylbenzenethiol with molar ratios ranging from 0, for pure
PEG, to 20 and then incubated in an oven at sub-boiling
conditions. We found that small thiols dramatically enhance the
thermal stability of gold nanorods. For instance, after 1 h at 90 °C
samples with pure PEG lost more than 70% of optical absorbance
at their initial peak position, while particles coated with a thicker
layer of methylbenzenethiol remained nearly unchanged. We
ascribe this effect to a modulation of the activation barrier for surface diffusion of gold atoms. Additionally, we addressed the
translation of this effect to the photostability of gold nanorods irradiated under conditions of interest in photoacoustic imaging and
found that small thiols delay relevant damage thresholds by as much as a factor of 2. Our findings will help researchers design novel
tags that overcome the limitations related to thermal and photoinstabilities in a broad variety of applicative contexts.

■ INTRODUCTION

Over the past couple of decades or so, near-infrared resonant
plasmonic particles exhibiting conformational anisotropy have
received substantial interest for applications as contrast agents
in biomedical optics.1−6 In some cases, their use has literally
accompanied the emergence of major innovations, such as
photoacoustic imaging7−9 and flow cytometry,10,11 where these
materials have appeared ever since seminal papers. In these
contexts, the optimization of their photostability is a recurrent
issue10,12−19 because, in most cases of practical interest,
relevant thresholds fall well below maximum permissible
exposure (MPE) boundaries20 and so represent a limiting
factor. Even at room temperature,21 but much more
prevalently upon irradiation with short optical pulses, noble-
metal particles start to premelt through a process of atomic
surface diffusion that requires no phase transition, proceeds
with thermal activation through Arrhenius behavior,21−24 and
promotes a collective reconfiguration that tends to lower their
surface to volume ratio, that is, to gain higher sphericity.25 The
exact pathway behind this reconfiguration remains a subject of
ongoing research. In the case of gold nanorods, most authors
have postulated a gradual relocation of material from the end-
caps to the side walls.22,24,26 However, other authors have
evoked more complex phenomena, such as the ejection of
spherical fragments according to Rayleigh-Plateau instability,27

as occur in metal wires28,29 and liquid columns. In a recent

paper,23 we outlined a simple model for the kinetics of the
transformation of gold nanorods where we implemented a
constant value of 0.6 eV for the activation energy for atomic
surface diffusion. However, an accurate description of this
parameter needs to account for local details, such as
curvature22,24 or chemical coordination,30−32 which make
sharper tips more mobile, and environmental features, such
as stiffness,21,24 which modify the overall dynamics.
Among the strategies proposed to inhibit the effect of

reshaping, the use of thick shells made of silica,14,33 mixed Si−
Ti oxide,34 or organosilica18 stands out as an effective tool that
constrains the initial shape by acting as a rigid mold. As a rule
of thumb, for instance, we quantified that the threshold of
optical fluence for reshaping of gold nanorods increases by as
much as 10% per nanometer of added organosilica.18 However,
this approach modifies the functionality of plasmonic particles
in very many respects. In a sense, silanization may confer
valuable porosity and tunable hydrophilicity for use, for
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instance, to carry and enable the controlled release of
drugs33,35,36 or to host upconverting lanthanides for local
thermometry.37 In another sense, its effect may be intrusive
and bring along significant drawbacks, in terms of much more
complexity, cytotoxicity,18 and a negative impact on near field-
based applications, such as surface enhanced raman scattering
(SERS) or colorimetric assays.
Here, we present a protocol that makes use of a small thiol

to affect the kinetics of premelting of gold nanorods, and we
assess its performance under conditions of practical relevance
for applications in vitro and in vivo. The interaction between
noble metal films or particles, small thiols, and their self-
assembled monolayers has been the subject of extensive and
ongoing research.38−40 In particular, the adsorption and
desorption of such species have been investigated under a
broad variety of conditions.41−48 What emerges is that denser
layers of aromatic thiols supporting π-interactions tend to
exhibit more stability42−45,48 as a rule of thumb. However,
much less attention has been paid to the other side of the
interface, which may reveal more opportunities for techno-
logical applications. Our work fits in this gap. We postulate that
thiolate-bound gold atoms are more constrained and exhibit
higher activation energy for surface hopping,30,32 thus delaying
the onset of reshaping. We demonstrate this effect on the
thermal stability of a colloidal suspension of gold nanorods left
in an oven at moderate temperature and discuss its implication
on their photostability under conditions of interest in
photoacoustic imaging.

■ EXPERIMENTAL METHODS
Materials. α-Methoxy-ω-mercapto poly(ethylene glycol)

(PEG, MW 5000 Da, mPEG-SH) was acquired from Iris
Biotech GmbH (Marktredwitz, Germany). All other chemicals
were purchased from Sigma-Aldrich (St. Louis, MO, U.S.A.)
and used as received.
Synthesis of the Particles. Gold nanorods were

synthesized according to our variant of the protocol developed
by Vigderman and Zubarev.49,50 After synthesis, particles were
brought to a concentration of 1.6 mM Au in a 100 mM acetate
buffer of pH 5.0 containing 500 μM cetrimonium bromide
(CTAB) and 0.005% (w/w) polysorbate 20 and 50 μM
mPEG-SH.51 After 30 min under gentle agitation at 37 °C,
suspensions were supplemented with different doses of
methylbenzenethiol (MBT), that is, none (sample PEG/
MBT 1:0), 50 μM (PEG/MBT 1:1), or 1 mM (PEG/MBT
1:20), and left at rest at 4 °C for 24 h. Finally, all particles were
purified by three cycles of centrifugation, in order to remove
the excess of free thiols, and transferred to ultrapure water
containing 0.005% (w/w) polysorbate 20. The reaction buffer
and the supernatant obtained after the first cycle of
centrifugation were treated with Ellman’s reagent, and their
optical absorbance around 412 nm was compared in order to
assess the percentage of unreacted thiols.
Optical and Morphological Characterization of the

Particles. The PEGylation and collodial stability of the
particles were checked by dynamic light scattering52 with a
Zetasizer Nano ZS 90 platform from Malvern Instruments
(Malvern, U.K.). Spectra of optical extinction were recorded
with a Lambda 950 spectrophotometer from PerkinElmer
(Waltham, MA, U.S.A.). Optical spectra were analyzed with a
numerical model that represents a convolution of a Weibull
distribution of aspect ratio (AR, or ratio of length to diameter)
times the line shape returned from the dipolar approximation

of Mie-Gans theory.53 Details are given elsewhere.25,54 This
model allows us to work out an effective distribution of AR
from the optical spectra of gold nanorods or the refractive
index of their medium. Since particles are rendered as
spheroids, results fail to account for subtle details of their
shape,55 such as the precise layout of facets and so forth, and
are approximate. However, the final outcome is often accurate
to the level of a few percent25 and succeeds to capture major
trends involved in the process of reshaping.
SERS experiments were carried out using a Xplora

microRaman spectrometer from Horiba (Villeneuve-d’Ascq,
France) coupled to 532 or 785 nm wavelength laser sources.
Single acquisitions were performed with integration time of 10
s, laser power at the sample of 4.8 mW, and a 1200-grooves/
mm grating. The backscattered signal was acquired by means
of a 10× microscope objective (0.25 NA), generating an ∼7
μm beam waist that provides an average response, in turn
minimizing possible local signal variability. SERS measure-
ments were performed by focusing the laser beam on the
exposed face of a 7 μL droplet of suspended particles (PEG/
MBT 1:0, 1:1, and 1:20) accommodated in 3 mm2 round holes
obtained from a polylpropylene support.56 SERS data are
reported as average over 15 random measurement points from
3 replicated samples.
Transmission electron micrographs were acquired in the

laboratories of Center for Electronic Microscopy Laura Bonzi
of CNR in Sesto Fiorentino with a CM12 platform from
Philips (Amsterdam, The Netherlands) operated at 100 kV or
at Simbioz Center for the Collective Use of Research
Equipment in the Field of Physical−Chemical Biology and
Nanobiotechnology of IBPPM RAS in Saratov with a Libra-
120 transmission electron microscope from Carl Zeiss (Jena,
Germany). For TEM measurements, suspensions of particles
were centrifuged twice and resuspended in ultrapure water.
Five microliters of samples were deposited onto 300-mesh
copper grids covered with Formvar films and left to dry in an
oven at 40 °C.

Photoacoustic Characterization of the Particles.
Photoacoustic experiments were carried out with a homemade
inverted photoacoustic microscope.50,57 The optical source was
a fiber-coupled diode-pumped microchip laser by Asclepion
Laser Technologies (Jena, Germany) emitting pulses with a
wavelength of 1064 nm, duration of 3.3 ns, and repetition rate
of 10 Hz. An attenuator placed in front of the output was used
to tune the optical fluence, which was monitored in real time
with a QE8SP pyroelectric detector from Gentec-EO (Quebec,
QC, Canada). Photoacoustic signals were acquired by an
amplified immersion transducer from Olympus Panametrics
(mod V382-SU-F, sensor diameter 0.5 in., frequency range 3.5
MHz, focal distance 0.83 in., 40 dB amplifier mod 5676,
Tokyo, Japan) and recorded with a RTO1004 digital
oscilloscope from Rohde&Schwarz (Munich, Germany).
Flow chambers (μ-Slide I Luer Family, channel height 200

μm, IBIDI GmbH, Planegg/Martinsried, Germany) were filled
with suspensions of gold nanorods, coupled to a peristaltic
pump (model FH10, Thermo Scientific, Waltham, MA
U.S.A.), and immersed in DI water.57 The use of microfluidic
chambers is a promising tool to assess the performance of
photoacoustic systems and contrast agents.58,59 The laser beam
was focused perpendicular to the flow chamber with a spot
diameter of 300 μm.
Photoacoustic signals (I) were analyzed in terms of peak-to-

peak amplitude and their trend with fluence of the optical
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trigger (F) was modeled with an analytical function that
describes a depletion of optical absorbance according to a
sigmoid curve18,23

= + ·

+ ( )
I a

b F

1 F
F

p

0 (1)

The parameters contained in the sigmoid term were worked
out to extract a threshold for photoinstability as Fth = (1/3)1/p·
F0, which amounts to a loss of efficiency of photoacoustic
conversion by 25%, consistent with our previous defini-
tion.16,18,23

■ RESULTS AND DISCUSSION

Model of Thiolated Particles. In order to assess the effect
of small thiols on the stability of gold nanorods, we added
different amounts of MBT to the reaction mixture used for
their PEGylation. The latter probably represents the most
standard modification of gold nanorods for applications in
biomedical optics.51,60−62 Figure 1a shows a representative
transmission electron image of the particles used in this work.
We chose MBT for its ability to form self-assembled
monolayers63−66 that change in conformation and stability
with density due to the effect of π-stacking. In addition,
benzene thiols are a common choice for use as reference for
performance assessment of SERS substrates67 or to prepare
SERS tags for biomedical sensing.68,69 Here, we treated as-
synthesized gold nanorods with thiolated PEG and MBT at
different molar ratios. We started with a rate of thiolated PEG/
MBT of 1:0, which has no MBT but just our PEGylated
benchmark. Next, the ratio was modified to 1:1, where the
dosage of MBT was such that the nominal size of gold surface
area available per small thiol was about 25−50 Å2, and finally a
ratio of 1:20, that is, a gold surface area per MBT molecule
around 1.3−3 Å2. Since the footprint of MBT in a self-
assembled monolayer on gold is 19 Å2,70 the latter sample
theoretically reflects a condition of oversaturation. Instead, the
intermediate case stands below saturation. Note that we use
the labels PEG/MBT 1:0, 1:1, and 1:20 in order to indicate
these three cases according to their ratios of thiols dosed in the
reaction mixture. The actual density of PEG and MBT
immobilized on the particles is more difficult to determine.
The quantification of thiols left unreacted in the reaction buffer
suggests that sample 1:1 is close to the nominal density of
MBT, and sample 1:20 reaches saturation and actually carries
as much as 2−4 monolayers of MBT, probably stacked through
hydrophobic interactions prior to subsequent purification. In
practice, we consider sample 1:20 as the subject of our study,
1:0 as our benchmark, and 1:1 as an intermediate case used to
verify the existence of a trend. Figure 1b provides a cartoon of
our samples for use as a memo, where some details may be
inaccurate. In particular, as we shall see, the persistence of PEG
in the particles treated with MBT may be subject to dynamic
thiol exchange. Conversely, different observations concur to
confirm the trend in density of MBT bound per particle.
Figure 1c displays the spectra of optical extinction of our

samples. We observed a red shift of the plasmonic bands upon
increase in dosage of MBT with their longitudinal oscillations
peaking from 1143 to 1167 to 1172 nm. We analyzed these
spectra with a numerical model derived from Mie-Gans
theory53 that was demonstrated elsewhere25,54 and double-
checked once more in this work (see Supporting Information).

According to this model, the optical features of our samples
arise from a distribution of AR with an average of 7.7 and
standard deviation of 0.8, and their shift points to an increase
of effective refractive index from 1.33 to 1.36 to 1.37. A red
shift of the plasmonic bands of gold nanospheres that tends to
saturate with density of MBT was also reported by Lu et al.71

Figure 1d compares the Raman spectra of our samples. The
Au−S modes around 380 cm−1 increase with dosage of MBT,
which accounts for an overall enrichment in thiols anchored to
the metal surface. The change of intensity ratio between the
SERS bands corresponding to vibrational modes with in-plane
A1 to out-of-plane B1 symmetry seen from sample PEG/MBT
1:1 to 1:20 suggests a compaction of the layer of MBT71−74

Figure 1. (a) Representative transmission electron micrograph of the
particles used in the main text of this work. (b) Cartoon representing
the different modifications with a ratio of PEG/MBT of 1:0, 1:1, or
1:20, from left to right. Methoxylated PEG is drawn as a curled strand.
(c) Their spectra of optical extinction. (d) Their Raman spectra
acquired with an excitation wavelength of 785 nm. Curves were offset
by 50 counts for clarity.
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(see Table S1 in Supporting Information for an attribution of
peaks according to symmetry).75 For an orientative estimate,
the prescriptions by Szafranski et al.73 for roughened gold
electrodes would project a decrease of average tilt angle of the
aromatic ring from 26 to 21° with respect to the normal. In
addition, the sharp rise of vibrational modes at 1372 and 1593
cm−1 suggests the onset of charge transfer from gold to
MBT,76−78 which points to a net change of surface electronic
states (see also Figure S1 in Supporting Information).
Meanwhile, the weak SERS bands associated with PEG that
are visible in sample PEG/MBT 1:0 tend to disappear, which is
consistent with a change of conformation that makes PEG
more extended outward79 or the onset of dynamic thiol
exchange. PEG is the most popular choice to enhance the
colloidal stability of particles intended for biomedical
applications51,60−62 and its loss may trigger flocculative
processes.80 However, we never observed any sign of
flocculation, that is, no increase of hydrodynamic size,
broadening of the plasmonic bands,81 nor sedimentation, and
we found consistent values of hydrodynamic size for all three
samples. These qualitative observations collectively point to
some persistence of PEG. Another detail discernible from our
SERS spectra is the lack of clear Raman signals from
CTAB82,83 (see Figure S2 in Supporting Information), which
is a cytotoxic surfactant used in the synthesis of gold nanorods.
The presence of CTAB is a critical issue for the translation of

gold nanorods into biomedical applications, and its thorough
removal is a recurrent subject of research.84−87 In this respect,
our single-step protocol for PEGylation and purification in an
acetate buffer containing polysorbate 20 is an efficient solution,
consistent with our previous findings on the biological profiles
of our particles.51

Thermal Stability. In order to verify the effect of MBT on
the thermal stability of gold nanorods, we used an oven set at
90 °C and followed the shift of their plasmonic bands over
time. We chose this temperature for no particular reason but to
accelerate all kinetics without the nuisance of a boiling
medium.
The upper left panel of Figure 2 shows the spectra of optical

extinction of PEGylated particles left at 90 °C for different
times. The longitudinal band blue shifts from 1144 to 998 nm
after 1 h and then more slowly drifts to 970 nm after 2 h. In
order to reconstruct the underlying transformation, we
analyzed all spectra with the numerical model based on Mie-
Gans theory, which allows us to translate the distribution of
optical modes into one of shape.25 The plasmonic shift
corresponds to a modification of the distribution of AR from
7.7 ± 0.8 to 6.3 ± 0.6 after 1 h to 6.0 ± 0.6 after 2 h. The
transmission electron micrographs reported in Supporting
Information corroborate the validity of this interpretation, and
reveal additional details. Upon annealing, the overall shape of
the particles becomes smoother, that is, side-walls get flatter

Figure 2. Normalized spectra of optical extinction and their decryption in terms of distributions of AR for particles modified with the named
mixtures of thiols and treated for the named intervals at 90 °C. Note that the right-hand histograms integrate to unity. The lower panels summarize
the kinetics of evolution of peak position of the longitudinal band and average value of AR: dots are experimental values; lines are drawn to guide
the eye.
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and end-caps get rounder. The loss of AR derives more from
an increase in diameter than a decrease in length, so that the
average size of the particles seems to grow as in the presence of
collective effects, such as Ostwald ripening88 or coalescence.
The possibility of Ostwald ripening has been evoked by
previous authors in the presence of a large excess of
surfactant,26 or in the case of ultrasmall particles,27 and will
be the subject of our future investigation. The overall dynamics
closely resemble the transformation of so-called gold nano-
dogbones that we found in a poly(vinyl alcohol) film heated to
110 °C25 or of PEGylated gold nanorods constrained in an
epoxy resin left at 120 to 220 °C,24 that is, a rather sharp
transition followed by a slow stabilization to a smoother
intermediate between the initial shape and the spherical limit.
Meanwhile, the fraction of spherical particles returned by our
optical analysis did not increase over time (see Figure S3 in
Supporting Information), which is in disagreement with a
mechanism of spheroidization driven by Rayleigh-Plateau
instability.
In this context, MBT exerts a significant stabilization of the

initial shape. Figure 2 summarizes all optical results together
with their decryption in morphological terms. The kind of
rapid development that occurs around 45 min for PEGylated
particles sets on around 90 min in sample PEG/MBT 1:1 and
after more than 2 h in sample PEG/MBT 1:20. For instance,
after 1 h at 90 °C, the rearrangement of AR from 7.7 ± 0.8 to
6.3 ± 0.6 seen in sample PEG/MBT 1:0 reduces to 7.5 ± 0.8
in sample PEG/MBT 1:1 and only 7.6 ± 0.8 in 1:20. After 2 h,
the drift to 6.0 ± 0.6 in sample PEG/MBT 1:0 compares with
6.0 ± 0.8 in sample PEG/MBT 1:1 and 7.0 ± 0.8 in 1:20. In
practice, after 1 h sample PEG/MBT 1:0 lost more than 70%
of optical absorbance at its initial peak position, while 1:1
retained more than 96% and 1:20 retained more than 99%. We
may say that sample PEG/MBT 1:0 already transitioned but
the other two did not. After 2 h, sample PEG/MBT 1:0 lost
more than 80%, 1:1 lost more than 70%, while 1:20 still
retained more than 70%. Therefore, samples PEG/MBT 1:0
and 1:1 transitioned but 1:20 just began. According to our
SERS data, no significant modification in the arrangement of
the shell occurred in sample PEG/MBT 1:20 until 150 min of
thermal treatment (see Figure S6 in Supporting Information),
and so the onset of the deformation does not seem to originate
from the desorption of MBT. We hypothesize that the density
of facets and defects in gold nanorods grown at ambient
conditions may raise the stability of the adsorbate.89

From a technological perspective, the conditions applied in
the thermal treatment of our samples are too severe to simulate
major cases as the optical hyperthermia of cancer, where the
typical combination of temperature and time is much milder,
and PEGylated gold nanorods are quite enough.2,3,33,61

However, in other emerging contexts, such as the use of
plasmonic particles in biochemical processes as the polymerase
chain reaction,90−92 our results may make a substantial impact
(see Supporting Information).
We hypothesize that the effect of MBT delays the process of

premelting and stabilizes the initial shape through the interplay
of different factors. One possible factor is chemical
coordination,30−32 as it determines the difference between
subsurface and surface diffusivity as well as more subtle effects,
such as the relative stability of rounder rods.22,24 Another
relevant factor is the stiffness of the environment,21,24 which is
regarded as the main player involved in alternative strategies as
silanization.14,18,24,33 We suggest that the adsorption of small

thiols may synergistically affect both aspects, that is, gold
coordination and adlayer stiffness, with a high density of
surface atoms tightly pinned to an aromatic shell cooperatively
hardened by the effect of π-stacking.42−45,48 A similar
mechanism was already invoked to explain the effect of small
thiols on the mechanical strength of nanoporous gold.93 The
steric crowdedness of the organic shell may be another element
playing against a loss of surface to volume ratio, as was
proposed in the case of polymers as PEG.24 Previous authors
have predicted31 and observed26,27 that a weak adsorbate may
enhance the thermal stability of ultrathin gold nanowires and
rods by retarding their surface atom diffusivity, and that a
stronger and stabler interaction may enhance this effect. Our
work suggests that a dense layer of aromatic thiols may
represent a viable solution to fulfill this objective. Finally, we
emphasize that different elements of our results prove to be
very robust and were confirmed in different batches of gold
nanorods prepared from the same or alternative synthetic
protocols (see Supporting Information): that PEGylated
particles undergo a thermal transformation over a few tens of
minutes around 90 °C that settles to an intermediate shape
between the initial one and the spherical limit and that MBT
stabilizes the initial shape and delays its deformation easily by a
factor around 3 in time.

Stability of Photoacoustic Conversion. In order to
challenge the versatility of our concept in a context of more
practical relevance and more established solutions, we verified
the use of MBT to enhance the stability of photoacoustic
conversion of gold nanorods suspended in an aqueous
medium. Here, we exploited a microfluidic setup57 to monitor
the intensity of the photoacoustic signal versus the fluence of
the optical trigger set at a wavelength of 1064 nm. The typical
outcome is a linear behavior that persists until the onset of a
sublinearity related to a photoinstability.57,94 Indeed, the slope
of the curve corresponds to the efficiency of photoacoustic
conversion, which starts to decrease as the subpopulation of
particles that resonate with the optical trigger begins to reshape
within the time scale of each pulse. The regime at play is very
different from the previous conditions, that is, a time scale in
the order of few nanoseconds or shorter, peak temperature up
to several hundreds of centigrades,15,16 and optical selectivity
for the subpopulation of particles with the appropriate shape
and instantaneous orientation.95,96 However, it is understood
that the underlying process is the same, that is, overheating and
premelting22,23 with the possibility of additional photo-
mechanical effects.50 Figure 3 displays our results.
In order to analyze our results, we fitted the experimental

curves to an empirical model that is the product of a linear
trend times a sigmoid function18,23 describing the depletion of
optical absorbance of the particles. Regardless of the
theoretical justification of this model, its use provides an
excellent description of the experimental data, and a
quantitative tool to identify the onset of the sublinearity.
Figure 3b shows the optical fluence that corresponds to a level
of loss of efficiency of photoacoustic conversion of 25% of the
initial value, consistent with our previous gauge.16,18,23 We
found an increase from (15 ± 3) mJ/cm2 for our PEGylated
benchmark to (19 ± 4) mJ/cm2 for sample PEG/MBT 1:1 to
(30 ± 6) mJ/cm2 for 1:20. The effect of MBT in sample PEG/
MBT 1:20 is also evident on visual inspection, and amounts to
a doubling of damage threshold, which brings our particles to
approach relevant MPE limits in the near-infrared window of
biological tissue.20 This result is rather surprising, when it is
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considered that an increase of damage threshold by 100% is
what we predicted for a shell of organosilica as thick as 10
nm.18 We hypothesize that the elasticity and self-healing
capacity97,98 of a dense layer of MBT supporting the
deformation and reformation of intermolecular noncovalent
interactions99 may provide an advantage with respect to a
brittle glass as organosilica, where eventual failure probably
relates to a photomechanical event of irreversible rupture. In
this regime of optical excitation, the effect of density seems to
be more prominent than the case of simple annealing at 90 °C
for reasons that may belong to the cooperative resistance of the
monolayer against desorption.42−45,48

■ CONCLUSIONS
In conclusion, we have investigated the effect of an aromatic
thiol as MBT on the thermal and photostability of gold
nanorods. We have treated colloidal suspensions of gold
nanorods with mixtures of thiolated PEG and MBT with
different molar ratios ranging from pure PEG to PEG/MBT
1:20. During annealing in an oven set at 90 °C, we found a
sharp effect of MBT to delay the deformation of gold
nanorods, for example, from 45 min to beyond 2 h. For
instance, whereas after 1 h particles with PEG alone lost more
than 70% of optical absorbance at their initial peak position,
those saturated with MBT remained nearly unchanged. This
result may enable the introduction of gold nanorods in
biochemical processes as the polymerase chain reaction that
require thermal annealing at temperatures approaching the
boiling point of water over tens of minutes. In addition, we
addressed the effect of MBT on the photostability of gold

nanorods irradiated under conditions of interest for photo-
acoustic imaging. Also, in this case we found a delay of relevant
damage thresholds by about a factor of 2, that is, from 15 to 30
mJ/cm2, which becomes comparable with MPE constraints at a
wavelength of 1064 nm.
In the future, we will address the extension of our findings to

other models of small mono-, di-, and multivalent thiols,
including the effect of a higher density of thiolated PEG,86,87

binary or more complex mixtures, cofactors, or more kinds of
soft templates, in order to understand their generality and to
pursue their optimization for real-world applications. We are
confident that our results will inspire more work to overcome
the limitations related to the thermal and photostability of
plasmonic tags.
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