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Abstract 

Poorly maintenance scheduling and the resulting downtime are costly. Deliver maximum 

performance while minimising costs and risks over the whole life of engineering systems required 

a developmental transition from traditional maintenance strategies to smart predictive 

maintenance. This PhD study aimed at maximising the value realised from complex engineering 

assets and systems. To this end, statistical modelling and machine learning were established to 

problems in intelligent maintenance operations, characterized by data-driven innovations.  

The outcome of this study are far better avoidance of failures, significantly reducing whole-life 

costs, better running of assets, increasing the resilience of components while no inappropriate risk 

has to be taken.  

This thesis contains six chapters. The first and final chapters are devoted to Introduction 

(including the general structure of the thesis) and Conclusion, while the remainder chapters are 

presented in the following order:  

o Chapter 2: To quantify the uncertainty associated with failure modelling a new framework 

was developed. The stochastic trend existed in the inter-arrival time of failures has to be 

incorporated if making an informed decision over the availability and maintainability of 

system is of importance. Accordingly, and given that the time between failures are 

dependently distributed or independently, the Hierarchical Bayesian Model and Maximum 

Likelihood Estimation was applied to model the reliability of the process and highlight the 

magnitude of the deviation value in different failure modelling approaches. A case study 

of Natural Gas Regulating and Metering Stations in Italy has been considered to illustrate 

the application of proposed framework. The results highlight that relaxing the renewal 

process assumption and taking the time dependency of the observed data into account will 

result in more precise failure models. 

 

o Chapter 3: Following to the research outcome of second chapter, a dynamic time 

dependent reliability assessment was proposed. This chapter aimed at proposing a 

probabilistic model to predict the complexity of the non-stationary behavior in monitoring 

data. To this end, Bayesian inference with hierarchical structure was employed given 

minimal repair assumption. The raw data collected from observations in condition 
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monitoring of gas pipelines consists of non-stationary trends, short term cycle and noise. 

As the noise has a complex time-dependent auto-correlation structure, Empirical Mode 

Decompositions (EMD) was adopted to extract the disturbing noises from the time series. 

The advantages of the methodology were demonstrated through a case study of a Natural 

Gas Regulating and Metering Station operating in Italy. Based on pressure data acquired 

from the case study, the model is able to predict overpressure thus directly avoiding 

unnecessary maintenance and safety consequences.  

 

o Chapter 4: In this chapter an online reliability assessment was developed in order to 

signifying the impact of risk factors on safety indicators when consideration is given to 

uncertainty quantification. For this purpose, the generalized linear model (GLM) is applied 

to offer the explanatory model as a regression function for risk factors and safety indicators. 

Hierarchical Bayesian approach (HBA) is then inferred for the calculations of regression 

function including interpretation of the intercept and coefficient factors. With Markov 

Chain Monte Carlo simulation from likelihood function and prior distribution, the HBA is 

capable of capturing the aforementioned fluctuations and uncertainties in the process of 

obtaining the posterior values of the intercept and coefficient factors. To illustrate the 

capabilities of the developed framework, an autonomous operation of Natural Gas 

Regulating and Metering Station in Italy has been considered as case study. The resulted 

model provides designers, risk managers and operators a framework for risk mitigation 

planning within the energy supply processes, whilst also assessing the online reliability. 

 

o Chapter 5: A generic framework of Dynamic Bayesian Network (DBN) based Markovian 

deterioration model was proposed to predict the health condition of the system and to 

clarify the behaviour of failure probability, considering the exogenous undisciplinable 

perturbations. The DBN is then extended to an ID for decision making regarding the 

optimum maintenance interval as well as the maintenance type. This will assist the 

operators and risk and safety managers for a more robust risk analysis and maintenance 

decision making to improving the lifetime reliability and availability of the industrial 

operations. An example of Natural Gas Regulating and Metering Stations (NGRMS) is 

given to show how the application of developed ID in risk-based maintenance optimization 
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can be applied. To demonstrate the applicability of the methodology, three cases of 

seasonal observations of specific PV (pressure) are considered. 

 

This thesis helps policymakers and asset managers move from a cost-based to a value-based 

approach to asset management, from traditional maintenance policies to intelligent maintenance. 

 

Keywords: Reliability Engineering, Informed decision making, complex engineering systems, 

Bayesian inference, smart predictive maintenance.  
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1. Introduction 

 

 

1.1 Background  

Asset management is not limited to managing the maintenance and securing a reliable safety level 

for the system or process as usually thought, but also includes the kinds of people, knowledge and 

skills an organization needs. The asset management system is, therefore, defined as the ability to 

effectively extract value from its assets throughout the whole life of engineering systems. 

Consequently, the ongoing researches on this topic are classified into three strands; first to measure 

the performance of given assets. This cluster known as strategic asset management. To address 

this issue, the correlations and associations of all elements, within the assets of given engineering 

process, have to be treated (Hanski et al., 2019; Márquez et al., 2020; Too et al., 2006).  The second 

division focused more on technical aspects, including the type of data required to be collected from 

the operation, how to inferred the information from collected data, how to make an informed 

decision based on available information to optimize the maintenance policy or to assess the 

required budget to spend on the maintenance investments (Aremu et al., 2018; Dewey et al., 2019; 

Liang et al., 2019; Liu et al., 2020; Rasmekomen et al., 2016). Finally, the third strand devoted to 

the quality of information. This is how to manage the data to support the asset management 

(Heaton et al, 2019; Raouf et al., 2006; Srinivasan et al., 2013; Zhang et al., 2007).  

Accordingly, given aforementioned strands, this PhD thesis is devoted to investigate the risk-based 

asset integrity model using advanced mathematical models. The methodologies and tools 

developed in this PhD research can be applied to engineering operations on any of devices and 

structures. 
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1.2 Research Objectives and Research Questions 

The primary objective of this PhD research project is to improve the current state of scientific 

knowledge regarding the smart maintenance in engineering process. This is particularly to be 

addressed through the following objectives: 

o to develop a comparison model for enabling industry on indicating the possible 

differentiation in failure assessment of random process under the assumption constraint. 

o to develop a framework for predicting failure mode given the noise associated with the 

operational data. 

o to address the involved and, most of the time, unconsidered risk to make a prediction of 

safety conditions through the autonomous operation in future. 

o to develop a decision making framework for maintenance time schedule optimization using 

Markov degradation model. 

In order to achieve the research objectives in this PhD research, the proposed work is broken down 

into a number of specific research questions: 

o How to highlight the magnitude of the deviation value in different failure modelling 

approaches? 

o How to identify and filter out the noise with its time-dependent auto-correlated structure 

from the operational data? 

o How to address the involved and, most of the time, unconsidered risk to make a prediction 

of safety conditions through the autonomous operation in future? 

o How to optimize the maintenance time schedule given Markov degradation model? 

 

1.3 Scope and limitations 

The focus of this PhD research is to develop new methodologies for intelligent predictive 

maintenance of engineering operations. The presented frameworks are proposed based on the 

condition monitoring data of the autonomous operation to predict the reliability of the operation. 

The scope of this research are: 

o firstly, to highlight the magnitude of the deviation value in different failure modelling 

approaches. Hierarchical Bayesian modelling (HBM) and Maximum Likelihood 
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Estimation (MLE) approaches are applied to investigate the effect of utilizing observed 

data on inter-arrival failure time modelling. The results highlight that relaxing the renewal 

process assumption and taking the time dependency of the observed data into account will 

result in more precise failure models.  

o secondly, to propose a probabilistic model to predict the system reliability given the 

complexity of the non-stationary behavior in monitoring data. To this end, an integration 

of Empirical Mode Decomposition (EMD) and Hierarchical Bayesian Model (HBM) is 

developed. Based on observation data acquired from the case study, the model is able to 

predict failures when consideration is given to uncertainty quantification. 

o thirdly, to present a probabilistic framework for risk mitigation planning within the energy 

supply processes, whilst also assessing the online reliability. For this purpose, the canonical 

link function has been employed to describe the interactions and association between risk 

factors and safety indicators. Bayesian inference with hierarchical structure has been 

inferred for the calculations of regression function including interpretation of the intercept 

and coefficient factors. 

o finally, to develop a decision model for intelligent predictive maintenance schedule. Given 

the exogenous undisciplinable perturbations associated with time series data, a DBN based 

deterioration model was proposed to extend the remaining useful lifetime of the operations. 

Discrete time case is considered through measuring or observing the PVs. Decision 

configurations and utility nodes are defined through the model to represent maintenance 

activities and their associated costs.  

The methodologies and tools developed in this study are able to be adopted to any type of 

engineering process from oil and gas to renewable and offshore operations. This PhD research can 

quantify the uncertainties associated with prediction of failures or defects, thus opening the door 

to risk remediation planning and smart predictive maintenance.  

1.4 Organization of the thesis 

This thesis is written in manuscript format (paper-based). A summary of the thesis outline is 

provided in the section below. To a large extent these chapters are independent and can be read 

individually. 
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Chapter 2: On Reliability Challenges of Repairable Systems Using Hierarchical 

Bayesian Inference and Maximum Likelihood Estimation 

Chapter two explores the magnitude of the deviation value in different failure modelling 

approaches. The resulted methodology is capable of presenting a comparison model for enabling 

industry on indicating the possible differentiation in failure assessment of random process under 

the assumption constraint. This study can help asset managers to optimize the reliability 

assessment of repairable systems based on available data. 

Chapter 3: A Condition Monitoring Based Signal Filtering Approach for 

Dynamic Time Dependent Safety Assessment of Natural Gas Distribution 

Process 

This chapter presents a dynamic failure model based on noisy monitoring data. The developed 

model can successfully predict failure mode thus directly avoiding unnecessary maintenance and 

safety consequences which is because of I) analyzing the observational data given their non-

stationary and nonlinear nature in time series, II) Filtering the noise associated with the raw data 

considering the time-dependent auto-correlation structure of noise, III) Observing the correlation 

and variability of data source over the time. 

Chapter 4: A Bayesian Regression Based Condition Monitoring Approach for 

Effective Reliability Prediction of Random Processes in Autonomous Energy 

Supply Operation 

Chapter four proposes an online reliability assessment for an ongoing engineering process. 

Assuming that the intercept and coefficients are uncertain, a generalized linear model (GLM) were 

employed to offer the explanatory model as a regression function to describe the interactions and 

association between risk factors and safety indicators. The proposed model can provide a risk 

remediation plan based on developed online reliability.  

Chapter 5: Multi-Level Optimization of Maintenance Plan for Natural Gas 

System Exposed to Deterioration Process. 

Through the fifth chapter, a risk-based optimization methodology for a maintenance schedule 

considering Process Variables (PVs), within the framework of asset integrity assessment was 
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proposed. Accordingly, Dynamic Bayesian Network, Damage Modelling and sensitivity analysis 

was integrated to clarify the behavior of failure probability, considering the exogenous 

undisciplinable perturbations. The proposed methodology could either analyse the failure based 

on precursor data of PVs or obtain the optimum maintenance schedule based on actual condition 

of the systems. 
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2. On Reliability Challenges of Repairable Systems 

Using Hierarchical Bayesian Inference and 

Maximum Likelihood Estimation 

 

 

 

Abstract  

Failure modelling and reliability assessment of repairable systems has been receiving a 

great deal of attention due to its pivotal role in risk and safety management of process industries. 

Meanwhile, the level of uncertainty that comes with characterizing the parameters of reliability 

models require a sound parameter estimator tool. For the purpose of comparison and cross-

verification, this paper aims at identifying the most efficient and minimal variance parameter 

estimator. Hierarchical Bayesian modelling (HBM) and Maximum Likelihood Estimation (MLE) 

approaches are applied to investigate the effect of utilizing observed data on inter-arrival failure 

time modelling. A case study of Natural Gas Regulating and Metering Stations in Italy has been 

considered to illustrate the application of proposed framework. The results highlight that relaxing 

the renewal process assumption and taking the time dependency of the observed data into account 

will result in more precise failure models. The outcomes of this study can help asset managers to 

find the optimum approach to reliability assessment of repairable systems. 

Keywords: Repairable system, Failure modelling, Time dependency, Hierarchical Bayesian 

Analysis, Maximum Likelihood Estimation 
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2.1  Introduction 

Failure time modelling of repairable components has attracted a great deal of attention owing to 

the high level of risk associated with the failure events occurring within process industries. Using 

statistical inference, different probability distributions are adopted to model the rate of occurrence 

of failures (ROCOF). These probability distributions are characterized by one or more parameters. 

The parameter estimation process may be implemented based on different assumptions regarding 

maintenance strategies including Perfect Repair (PR) or Minimal Repair (MR).  

PR represents an ideal model in which the time between successive failures of a given system are 

independent and identically distributed (iid) random variables. Although PR is recognized as the 

most applied assumption by a number of researches (Nandi et al., (2005), Quy et al., (2006), 

Toroody et al., (2016a), Quy et al., (2008), Louit et al., (2009) Toroody et al., (2016b) and Barabadi 

et al., (2014)), neither of these have accounted for the system to be “as bad as old” after repair. In 

the present paper, it is illustrated that analyzing failure times given PR (also known as renewal 

process) often yields improper results and subjects to a significant level of uncertainty.  

A comprehensive reliability analysis must include a time dependent study, if the system is 

degrading or improving. Therefore, an ongoing effort on reliability assessment based on MR are 

carried out (Majeske 2007, Slimacek and Lindqvist 2016, Antonov and Chepurko 2017, Peng, 

Shen et al. 2018, Sheu et al., 2018). Li et al. (2017) used two recurrent-event change-point models 

arisen from a non-homogeneous Poisson process (NHPP) to find the time of change in driving 

risk. In another recent study, Pesinis and Tee (2017) presented a model for reliability analysis of 

failure data based on NHPP incorporated with a robust structural reliability model. Furthermore, 

an extensive review of PR, MR and probabilistic knowledge elicitation made with a wide range of 

engineering applications is presented by Crow (1975), Asher and Feingold (1984) and most 

recently by Ross (2014) and Modarres et al., (2016). 

In the present paper, two mathematically robust and efficient approaches are implemented to 

represent the state of system after repair. Maximum Likelihood Estimation (MLE) and 

Hierarchical Bayesian Modelling (HBM) are established based on actual data in order to predict 

the likelihood of studied failures, given PR and MR assumptions. The capability of HBM in 

modelling the variability of non-stationary data and the correlation between nonlinear data via 
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open source Markov Chain Monte Carlo (MCMC) sampling software packages, i.e., OpenBUGS 

(Spiegelhalter et al. 2007), have resulted in its widespread use in engineering applications, e.g. 

probabilistic risk assessment and condition monitoring (Behmanesh et al., 2015, Chitsazan et al., 

2015, Yu et al., 2017, Mishra et al., 2018). Recently, Abaei et al. (2018) developed an HBM for 

safety assessment of vessels crossing shallow-waters based on time-domain hydrodynamic 

simulations. There is also a great deal of methods developed based on MLE that show the 

applicability of this method in risk and reliability assessment of complex engineering systems, 

examples of which are structural degradation modeling, risk-based maintenance planning, 

geotechnical risk assessment, etc. (Straub 2009, Arzaghi et al. 2017, Abaei et al. 2018, Leoni et al. 

2018, BahooToroody et al. 2019). Nielsen and Sørensen (2017) estimated the remaining useful 

lifetime (RUL) of a wind turbine to calibrate a Markovian deterioration model based on MLE 

approach.  

Different assumptions (e.g. MR, PR) and tools (e.g. MLE, HBM) lead to distinct results which are 

discussed here for the purpose of comparison and cross-verification. Accordingly, this paper aimed 

at presenting a comparison model for enabling industry on indicating the possible differentiation 

in failure assessment of random process under the assumption constraint. Consequently, the 

magnitude of the deviation value in different failure modelling approaches is highlighted. The 

developed framework in this study opens the door for the use of engineering researchers in risk 

analysis and reduction plan throughout the industries.  

The remainder of present paper is structured as follows: the procedure of models specification and 

overview is presented first, followed by a characterization of the application of the developed 

methodology in a Natural Gas Regulating and Metering Stations (NGRMS) in Florence, Italy. In 

Section 2.10, the results and discussions including a comparison of the investigated methods are 

presented, while Section 2.11 provides the concluding remarks of this research.    

2.2 Assumptions 

The outcomes of a maintenance plan, which is the condition of repaired systems, can be modelled 

stochastically throughout the operation. The division of repair categories is made based on a 

number of factors including whether the failure interarrival times are dependent over the asset 
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operational time or not. The differentiation formed based on such factor is explained through the 

following assumptions:   

2.2.1 Perfect Repair 

The renewal process belongs to the class of stochastic point processes where inter-arrival times 

are assumed to be iid random variables. In this category, any repair originated by a failure in the 

system is assumed to be perfect and subsequently the system is said to be “as good as new”. The 

expected number of failures, 𝐸[𝑁(𝑡)], in time, 𝑡, is defined as renewal function given by Equation 

2.1: 

where 𝑇𝑓 is successive failure times, 𝑁(𝑡) is the number of failure and 𝐹(𝑡) is the cumulative 

distribution function (CDF) of 𝑇. Measuring the changes of variables in both sides of Equation 1 

with respect to the change of time results in Equation 2.2: 

 
𝑚′(𝑡) = 𝜆(𝑡), 𝜆(𝑡) = 𝑓(𝑡) + ∫ 𝑓(𝑡 − 𝑇𝑓)𝜆(𝑇𝑓)𝑑𝑇𝑓

𝑡

0

 
(2.2) 

where 𝑓(𝑡) is the corresponding probability density function (PDF) of successive inter-arrival 

times, 𝑇𝑓. One of the most celebrated renewal processes including iid assumption is the 

Homogeneous Poisson Process (HPP) (Louit et al., 2009, Barabadi et al., 2014, Hajati et al., 2015) 

which is recognized by the method presented in this paper.  

2.2.2 Minimal Repair  

Based on the HPP assumption, the failure rate will be independent of time. However, in reality the 

system condition in ith time-step is dependent on its condition in time-step ti-1. Relaxing the iid 

assumption leads to the Nonhomogeneous Poisson Process (NHPP) in which the system retains 

the “as bad as old” condition following a relatively instant repair action. Implementing MR, the 

observation process can be carried out either failure-truncated or stopped in a fix time. The 

calculation methods are similar in both mentioned approaches and here the failure-truncated case 

 
𝐸[𝑁(𝑡)] = 𝑚(𝑡), 𝑚(𝑡) = 𝐹(𝑡) + ∫𝐹(𝑡 − 𝑇𝑓)𝑑𝑚(𝑇𝑓) 

(2.1) 
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will be adopted as recommended by Kelly and Smith (2009). The expected number of failures 

through the specific time interval, [𝑡𝑛, 𝑡𝑛+1], 𝐸[𝑁(𝑡)], is given using Equation 2.3.    

 
𝐸[𝑁(𝑡)] = ∫ 𝜆(𝑡)𝑑𝑡

𝑡𝑛+1

𝑡𝑛

 
(2.3) 

where an appropriate functional form for ROCOF, 𝜆(𝑡), must be determined to represent the 

expected number of failures, accordingly. For this purpose, power-law, log-linear and linear 

models are suggested in the literature (Kelly and Smith 2009, El-Gheriani et al., 2017). Power-law 

model is one of the most common forms of ROCOF in reliability assessment (Abaei et al., 2018) 

as it can predict the nonlinearity of the stochastic process with reasonable precision. The 

relationship for power law is given by Equation (2.4). 

 
𝜆(𝑡) =

𝛼

𝛽
(
𝑇

𝛽
)
𝛼−1

 
(2.4) 

According to Arzaghi et al. (2018), the inter-arrival of times between successive failures, 𝑇, in the 

power-law process follows a Weibull distribution, 𝑓(𝑡, 𝛽, 𝛼), with shape parameter, 𝛼, and scale 

parameter, 𝛽, given by:  

 
𝑓(𝑡, 𝛽, 𝛼) =

𝛼

𝛽
(
𝑇

𝛽
)
𝛼−1

exp[−(𝑇 𝛽⁄ )𝛼] 
(2.5) 

2.3 Parameter estimation methods 

Observed data, manipulated information, and gathered knowledge are three consecutive steps of 

making inference. The effectiveness of a specific model must be examined, that is, how well the 

model fits the collected data. This question is answered through the process of parameter 

estimation. In case of reliability analysis, not only the assumptions but also the methods of 

parameter estimations are of high importance affecting the accuracy level of final results. Once the 

assumption is specified, and the data is observed, the mathematical method for estimating the 

parameter of interest should be established. In the present study, MLE and HBM as the most 

popular choices of model fitting in reliability assessment are utilized, as recommended by previous 

researchers (Mahadevan and Rebba 2005, Neil et al., 2008, Rebba and Mahadevan 2008, Peng et 

al., 2013). A brief introduction to these methods can be found in the following sections.  
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2.3.1 Maximum Likelihood Estimation (MLE) 

Assuming that vector 𝑔 = (𝑔1, … , 𝑔𝑛) is a random sample of an available data source, MLE is 

performed to predict the most likely data source that would yield the random sample, 𝑔. For this 

purpose, it is necessary to identify both the appropriate distribution of data source and its 

corresponding parameters. Consider that 𝑥 = (𝑥1, … , 𝑥𝑛) is a vector specified within the parameter 

space, therefore the PDF of the data vector, 𝑔, would be achieved by Equation 6, given by:  

 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛|𝑔) = 𝑓1(𝑥1|𝑔)𝑓2(𝑥2|𝑔)…𝑓𝑛(𝑥𝑛|𝑔) (2.6) 

2.3.2 Hierarchical Bayesian Model (HBM) 

A summary of the process for performing inference using data and a probabilistic model is 

presented in Figure 2.1. As shown in this figure, the raw data are the collected values from a 

process. Evaluation of the data results in information and knowledge is obtained by gathering 

information. The process of making conclusion based on what once knows is referred to as 

inference. There is a need for models for obtaining information based on raw data. The models 

available for this purpose can be categorized into deterministic or probabilistic approaches (Kelly 

and Smith 2009). In this regard, probabilistic models are able to represent the uncertainty 

associated with available data where a HBM approach will assist in achieving the posterior 

distribution of the parameters of interest. HBM is carried out based on the Baye’s theorem, given 

by Equation 2.7 (El-Gherian et al., 2017): 

 
𝜋1(𝜃|𝑥) = 

𝑓(𝑥|𝜃)𝜋0(𝜃)

∫ 𝑓(𝑥|𝜃)𝜋0(𝜃)𝑑𝜃
𝜃

 
(2.7) 

where 𝜃 denotes the unknown parameter of interest, 𝜋1(𝜃|𝑥) is the posterior distribution, and 

𝑓(𝑥|𝜃) is the likelihood function. HBM utilizes multistage prior distributions for the parameter of 

interest indicated by 𝜋0(𝜃) (Abaei et al., 2018) as follow:  

 
𝜋0(𝜃) = ∫𝜋1(𝜃|𝜑)𝜋2(𝜑)𝑑𝜑

∅

 
(2.8) 

where, 𝜋1(𝜃|𝜑) is the first-stage prior as the population variability in 𝜃;𝜑 denotes a vector of 

hyper-parameters, (e.g. 𝜑 = (𝛼, 𝛽)) , while 𝛼 and 𝛽 are the shape and scale parameters of a 
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Weibull distribution, respectively. The uncertainty in 𝜑 is represented by 𝜋2(𝜑) as the hyper-prior 

distribution. The prior distribution, 𝜋0(𝜃) is specified using generic data collected from different 

sources (numerical simulations, experiments or collected from industrial operations ) to estimate 

the posterior distribution (Abaei et al., 2018).  

 

Figure 2.1 An overview of inference process and its key elements. 

 

2.4 Model specification  

In order to predict the condition of a system after it has undergone a repair, the precise and powerful 

mathematical approaches are established. A well-known parameter estimator (MLE) and the recent 

advances in Bayesian statistical methods (HBM) are accounted for revealing the gap between PR 

and MR.  Based on the numbers of parameter required for characterization of distribution of failure 

time, Weibull and Exponential distributions are used to perform the analysis. Particularly, with a 

NHPP assumption, the time to failure cannot be characterized by an exponential distribution where 

𝛼 = 1. So, a two-parameter Weibull distribution is required (Dar et al., 2015, Pesinis and Tee 

2017). This is while for a HPP, Exponential distributions can be employed, as recommended by 

Hajati, Langenbruch et al. (2015) and Kumar and Chakraborti (2015).  
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Figure 2.2 Developed framework for failure modelling based on different repair categories 

and parameter estimator tools. 

 

2.5  Homogenous Poisson Process 

2.5.1 Maximum Likelihood Estimation (MLE) 

As discussed in Section 2.2.1, given a perfect repair condition, the probability distributions of 

failure inter-arrival times, denoted by 𝑇, are expressed by Equations. (2.9) and (2.10): 

 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡 (2.9) 

 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 (2.10) 

where 𝜆 is defined as the rate parameter with a likelihood function expressed by Equation (2.11): 

 
𝐿(𝜆) = ∏𝜆𝑒−𝜆𝑇𝑖

𝑛

𝑖=1

= 𝜆𝑛𝑒(−𝜆∑ 𝑇𝑖
𝑛
𝑖=1 ) = 𝜆𝑛𝑒(−𝜆𝑛�̅�) 

(2.11) 



36 

 

where �̅� is the mean of the inter-arrival times and n is the total number of failures observed. Thus, 

the maximum likelihood of rate parameter 𝜆, is given by Equation (2.12) (Ross 2014): 

 
�̂� =

1

�̅�
=

𝑛

∑ 𝑇𝑖𝑖
 

(2.12) 

It is anticipated that by using this approach to uncertainty modelling, the obtained exponential 

distribution would be a representative of the failure inter-arrival times during the future operations 

of studied system.  

2.5.2 Hierarchical Bayesian Model (HBM) 

For a system with failure events that follow a Poisson distribution, the number of failures, 𝑥, can 

be modelled by Equation (2.13):  

 
𝑓(𝑥|𝜆) =

(𝜆𝑡)𝑥𝑒−𝜆𝑡

𝑥!
,𝑥 = 0,1, … 

(2.13) 

where 𝑡is the exposure time and 𝜆 is the intensity of the Poisson distribution. For a HPP, a gamma 

distribution can be utilized to describe the variability of 𝜆 among the observed failure times. 

Therefore, given the hyper-parameters 𝛼 and 𝛽, the first-stage prior distribution can be achieved 

by the Gamma distribution, as expressed by Equation (2.14) (Siu and Kelly 1998):  

 
𝜋1(𝜆|𝛼, 𝛽) =

𝛽𝛼𝜆𝛼−1𝑒−𝛽𝜆

Γ(𝛼)
 

(2.14) 

Diffusive Gamma distribution is applied independently to model the prior distribution of hyper-

parameters, as suggested by El-Gheriani, Khan et al. (2017).  

It should be noted that although the hyper-parameters are considered as independent random 

variables prior to any observations, they become dependent as soon as observations are introduced. 

According to Kelly and Smith (2009), this dependency is accounted for by the joint posterior 

distribution.  

Once the model, including the prior distribution and likelihood functions, are developed, MCMC 

simulations are carried to predict the posterior distribution of the Gamma parameters, 𝛼 , 𝛽.  This 
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results in the estimation of Exponential distribution with a rate parameter of 𝜆, and its associated 

uncertainty. 

2.6  Non-Homogenous Poisson Process 

2.6.1 Maximum Likelihood Estimation (MLE) 

The method of estimating the probability distribution of failure inter-arrival times, based on a MR 

assumption, is explained earlier in section 2.2.2. In order to obtain the ML of Weibull parameters, 

the recommended likelihood function is given by Equation (2.15) (Asher and Feingold 1984): 

 
𝐿 = ∏𝑓(𝑇𝑖)

𝑛

𝑖=1

 
(2.15) 

where 𝑇𝑖 is the time at which the 𝑖th failure has occurred and 𝑛 is the total number of failures. The 

ML of shape and scale parameters 𝛼, 𝛽 are given by Equations (2.16) and (2.17) (Crow 1975): 

 
�̂� =

𝑇𝑛

𝑛
1

𝛽⁄
 

(2.16) 

 
�̂� =

𝑛 − 1

∑ ln (
𝑇𝑛

𝑇𝑖
⁄ )

𝑛−1

𝑖=1

 
(2.17) 

where 𝑇𝑛 is the time at which last failure, 𝑛, has occurred.  

2.6.2 Hierarchical Bayesian Model (HBM) 

In order to reflect on the dependency of the inter-arrival times, 𝑇𝑖, a conditional probability must 

be established. This probability for the time interval [𝑡𝑖−1, 𝑡𝑖] can be expressed by Equation 2.18 

(El-Gheriani et al., 2017). 

 
𝑓(𝑡𝑖|𝑡𝑖−1) = 𝑓(𝑡𝑖|𝑇𝑖 > 𝑡𝑖−1) =

𝑓(𝑡𝑖)

Pr(𝑇𝑖 > 𝑡𝑖−1)
 

(2.18) 

Consequently, the Weibull distribution and the corresponding likelihood function are given by 

Equations. (2.19) and (2.20), respectively.  
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𝑓(𝑡𝑖|𝑡𝑖−1) =

𝛼

𝛽𝛼
(𝑡𝑖)

𝛼−1𝑒
[(

𝑡𝑖−1
𝛽

)
𝛼

−(
𝑡𝑖
𝛽

)
𝛼

]
 

(2.19) 

where 𝑖 = 2, … , 𝑛.  

 
𝑓(𝑇1, 𝑇2, … , 𝑇𝑛|𝛼, 𝛽) = 𝑓(𝑇1)∏𝑓(𝑡𝑖|𝑡𝑖−1)

𝑛

𝑖−2

 
(2.20) 

where 𝑇1and 𝑇𝑛 are the times of first and nth failure events. Furthermore, the uncertainty of 

parameters 𝛼 and 𝛽 are modelled by HBM representing the variability of failure inter-occurrence 

times. Similar to the HPP case, these parameters will become inter-dependent once observations 

are made. The likelihood function is not pre-programmed into MCMC sampling software 

packages, OpenBUGS. Based on the suggestions provided by Kelly and Smith (2009), the 

likelihood function, 𝜑, which is a vector of 𝑛 array can be assigned to the model. This function 

𝜑 = 𝑙𝑜𝑔(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) as defined by Equation 2.21 adopts samples of 𝛼 and 𝛽 from the prior 

distribution in Equation 22 (Abaei, Arzaghi et al. 2018). 

 𝜑 = log(𝛼) − 𝛼 × log(𝛽) + (𝛼 − 1) log(𝑇𝑖) − (𝑇𝑛 𝛽)⁄ 𝛼
𝑛⁄  (2.21) 

 

 {
𝛼~𝐺𝑎𝑚𝑚𝑎(0.0001,0.0001)
𝛽~𝐺𝑎𝑚𝑚𝑎(0.0001,0.0001)

 
(2.22) 

where 𝑇𝑛 and 𝑇𝑖 are the last and 𝑖th observation of the failure times in the simulation, and 𝑛 is the 

vector size. As similar to HPP, an independent diffuse is assumed for the prior distribution of 

hyper-parameters (El-Gheriani et al., 2017). The updated posterior distribution of the hyper-

parameters obtained from the MCMC sampling using the observed data are inserted into the 

Weibull distribution, 𝑓(𝑡, 𝛽, 𝛼), in order to estimate the PDF of failure under MR assumption.   

2.7 Application of methodology  

In order to demonstrate the application of the developed method and establish a comparison among 

the employed models, a practical example from the degradation process of Natural Gas Regulating 

and Metering Stations (NGRMS) operating in Italy is considered as the case study. 
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2.7.1  Scenario development 

NGRMS is installed in a distribution network and supplied with natural gas flow through a 

(number of) transmission pipeline(s). Pressure reduction and gas flow measurements are the 

fundamental duties of these facilities that consist of five main sections including the inlet, filter, 

metering, regulator and outlet. In order to prevent any interruptions in the process caused by 

failures events, the redundant line is set up. A schematic of NGRMS is illustrated in Figure 2.3. 

 

Figure 2.3 A schematic of Natural Gas Regulating and Metering Stations (Gonzalez-

Bustamante et al., 2007). 

 

A range of process variables characterize the health condition of the process in NGRMS, e.g. 

pressure, temperature and vibration. In this study pressure is considered as the variable of interest 

for the analysis of the degradation process. The failure of system is defined as an event where the 

value of pressure exceeds the desired safety limit of the operation. The recorded time series of 

operational, are illustrated in Figure 2.4. This figure also shows the observed failure times of 

system. It is worthwhile to mention that the random noise in operational pressure data is filtered 
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from nonstationary and nonlinear raw data by adopting Empirical Mode Decomposition (EMD) 

method. The explanation of EMD is beyond the scope of this paper and readers are referred to the 

following researches for detailed discussions on this topic (Huang et al., 1998, Wu and Huang 

2004, Wu et al., 2007, Li and Pandey 2017, BahooToroody et al., 2019). 

 

(a) 

 

(b) 

Figure 2.4 (a) Time series of pressure data collected from NGRMS (b) Time to failure for 

given pressure values. 

 

As depicted in Figure 2.4, pressure values are recorded during a 631-days operation where 15 

failure events have occurred. These data have been utilized in the analysis process. 
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2.8 Homogenous Poisson Process modelling 

2.8.1 Maximum Likelihood Estimation (MLE) 

The presented method in section 2.5.1 is applied on the pressure data based on an HPP assumption. 

The ML of rate parameter is estimated as 𝜆 = 0.0246 (per day) resulting in an exponential PDF 

of failure inter-arrival time illustrated in Figure 2.5. The specifications of this exponential 

distribution including its Mean Time To Failure (MTTF) are provided later in the summary of 

statistical analyses (see Table 2.2).  

 

Figure 2.5 assigned Exponential probability distributions fitted on operational data given a 

perfect repair assumption. 

 

2.8.2 Hierarchical Bayesian Model (HBM) 

The failure rates of considered operation in Table 2.1, have been extracted from the pressure time-

series. Three chains with over-dispersed initial values of 𝛼 and 𝛽 were used to ensure the 

convergence of simulations. In order to calculate the parameters of interest, the HBM was 

performed in OpenBUGS with 1000 burn-in iterations, followed by 300,000 iterations through 

each chain. The caterpillar plot of credible intervals of failure rate, 𝜆, for all 12 interval is illustrated 
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in Figure 2.6. The mean value of posterior predictive distribution of 𝜆 is 0.0243 per day (see Table 

2.2). This average value of failure rate also incorporates an estimate of the interval-to-interval 

variability.  

 

Table 2.1 Failure (pressure exceedance) rate data during NGRMS operation. 

Region No. of Failures Exposure time (day) 

1 2 52 

2 0 57 

3 1 50 

4 0 53 

5 1 56 

6 5 55 

7 0 54 

8 3 45 

9 1 50 

10 0 54 

11 0 53 

12 2 49 
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Figure 2.6 The posterior mean and 95% credible interval for pressure exceedance from 

safety limits over time given a PR assumption. Note: black dots are posterior means for 

each interval, the red line is average of posterior means. 

2.9  Non-Homogenous Poisson Process modelling 

 

2.9.1 Maximum Likelihood Estimation (MLE) 

Given a NHPP, the failure inter-occurrence times, 𝑇, in the power-law process generate a Weibull 

distribution, 𝑓(𝑡, 𝛽, 𝛼) , with shape parameter, 𝛼, and scale parameter, 𝛽, which can be estimated 

using Equations (15-17) through the application of MLE. The maximum likely 𝛼 and 𝛽 are 

computed as 52.83 and 1.1069, respectively (for more details see Table 2.2). Figure 2.7 shows the 

resultant Weibull distributions of MLE on the available data. 
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Figure 2.7 Obtained Weibull distribution of failure inter-arrival times considering a MR 

assumption. 

 

2.9.2 Hierarchical Bayesian Model (HBM) 

In order to estimate the likelihood function and posterior probability of Weibull parameters,𝛼 and 

𝛽, the recorded failures were entered into the HBM. Similar to the HPP application, using MCMC 

simulations, three chains from separate points were assigned with 1000 burn-in iterations, followed 

by 300,000 iterations at each chain in order to ensure the convergence of the simulation and 

accurately predict the posterior probabilities of the parameters of interest. Figure 2.8 shows the 

predicted posterior distribution of  𝛼 and 𝛽. The dynamic trace of Weibull parameters is depicted 

in Figure 2.9 confirming the convergence. A summary of the estimated marginal posterior 

distributions for 𝛼, 𝛽 as well as their corresponding MTTFs are listed in Table 2.2. 
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Figure 2.8 Posterior distributions of Weibull (a) shape parameter (b) and scale parameter. 

 

 

Figure 2.9 Dynamic trace of Weibull shape parameters (a) and scale parameter (b) in 

MCMC simulation. 

 

2.10 Results and discussion 

 

2.10.1    comparison  

According to the presented models, a range of comparisons are drawn to illustrate the deviation of 

uncertainty quantifications throughout the characterized failure functions. To this end, Cumulative 

Distribution Functions (CDFs) of each failure modelling approach were developed, as illustrated 

in Figure 2.10. The estimated MTTF for each approach is also shown in their CDFs in this Figure. 

Table 2.2 summarizes the details of obtained results. An assumption-based approach covers the 

comparison between the two assumptions made regarding the distribution of inter-arrival times of 
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failure events during the studied operation i.e. those with the 𝑖𝑖𝑑 assumption, represented by a HPP 

and those without this assumption which are modelled as a NHPP. The comparison of HBM and 

MLE reveals a difference in the estimated posterior distribution of parameters, which is attributed 

to the impact of correlation between the observed data. The results of these analyses are discussed 

in more details in the following sections.  

2.10.1.1 Assumption-based comparison 

The MTTF values, estimated by the MLE approach, are 40.67 and 50.87 days for PR and MR, 

respectively. The significant difference between the obtained MTTF is due to the fact that the PR 

assumption neglects the dependency amongst failure interarrival while MR accounts for this. As 

shown in Figure 2.10, a similar difference level is observable between the MTTF values estimated 

by using a HBM approach. The MTTF of HPP and NHPP are found to be 41.15 and 55.57 days, 

respectively. These results confirm that discounting the time dependency of failure events may 

lead to between 25% to 35% difference in MTTF, regardless of the modelling approach (HBM or 

MLE). 

2.10.1.2 Parameter estimator-based comparison 

Regarding the HBM, to allow the results to be compared with MLE, independent and diffuse 

priories were adopted for 𝛼 and 𝛽. A gamma distribution prior was used for both shape and scale 

parameters, as suggested by Kelly and Smith (2009).   

Based on PR, the MLE yields a failure rate of 𝜆𝑀𝐿𝐸 = 0.0246 with a 95% confidence interval of 

(0.0137,0.0385) while the posterior mean of this parameter is estimated by HBM as 𝜆𝐻𝐵𝑀 =

0.0243, having a 95%  confidence interval of (0.0044,0.0631). In the light of estimated value for 

parameter of interest, lambda, given HPP, it is interpreted that the source to source variability of 

data carrying out by MCMC simulation in the HBM is less reflected. Subsequently, the MLE and 

HBM of MTTF are estimated at 40.67 and 41.15, respectively, suggesting a minimal difference 

(see Figure 2.10).  

For a MR assumption, HBM yields a posterior mean for the shape parameter 𝛼 = 1.107 with a 

95% credible interval of (0.605, 1.757) while the MLE model resulted in 𝛼 = 1.106, highlighting 
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a good agreement between the employed approaches. Bayesian inference 𝛽, yields a posterior 

mean of 57.71. However, the MLE, which disregards the correlation between observed data, 

results in a smaller shape parameter of 52.83 (8% deviation). Finally, this deviation in the posterior 

mean of 𝛽 in HBM and MLE is appeared again in the MTTF (see Table 2.2).  

 

Table 2.2 Summary of statistical analyses results of different failure modelling approaches. 

Assumption Distribution Estimation method Parameter value MTTF SD* 

Perfect repair Exponential MLE 𝜆= 0.0246 40.666 1.6538e+03 

Perfect repair Exponential HBM 𝜆= 0.0243 41.152 1.6935e+03 

Minimal repair Weibull MLE 𝛼= 1.106 

𝛽= 52.83 

50.872 2.1179e+03 

Minimal repair Weibull  HBM 𝛼= 1.107 

𝛽= 57.71 

55.569 2.5270e+03 

*Standard Deviation 

 

Figure 2.10 Cumulative distribution function and corresponding MTTF values for 

different repair categories estimated by MLE and HBM methods. 
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2.10.2    Discussion: The unbiased and minimal variance category of failure 

modelling approaches 

The results listed in Table 2.2 reveal that the value of the Weibull shape parameter, estimated using 

both parameter estimation approaches (HBM, MLE), are higher than 1, confirming that the number 

of failure events are dependent upon time. This is in contrary to the PR assumption, where the 

failure rate is assumed to be constant with time. That is, a MR assumption is appearing to be more 

credible for the failure modelling of NGRMS. In order to categorized the efficient approach among 

the presented models given MR assumption, the probability plot for Weibull distribution was 

developed, as depicted in Figure 2.11. As shown in the figure, the ML of shape and scale 

parameters of Weibull distribution include higher uncertainty than their estimation through the 

HBM approach. Therefore, the HB model given an MR assumption seems to be the most reliable 

approach amongst the reviewed methods. That is, the Bayesian method can efficiently take 

advantage of the available data to predict the parameters of failure model hence providing an 

opportunity for improvements of asset management plans.  

 

 

Figure 2.11 Weibull probability plot for time-dependent failure modelling approaches. 
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2.11 Conclusion 

A major challenge in failure modelling of repairable systems is choosing applicable tools and 

making valid assumptions. This will also help in reducing the uncertainty associated with the 

obtained results. The differences between application of two mostly utilized assumptions in failure 

modelling, MR and PR, have been addressed in this paper. This was carried out in a case study of 

natural gas regulation and measurement plant by MLE and Bayesian inference method. The final 

results highlighted that relaxing the renewal process assumption (constant failure rate) and taking 

the time dependency between the observed failure times into account, results in a more precision 

of failure modelling where the shape parameter value of Weibull distribution in both parameter 

estimation approaches (HBM, MLE) are higher than 1, confirming that the number of failure 

events are dependent upon time. On the other hand, HBM is able to model the correlation between 

the failure data through an MCMC simulation, leading to less uncertainty in MTTF calculations. 

This is approved through the developed probability plot for Weibull distribution where the 

estimated shape and scale parameters of HB model has better precisions than ML estimation. The 

results also suggest that a minimal repair assumption for an HBM failure analysis estimates longer 

MTTF which avoid the conduct of premature maintenance or compromise operational safety.  As 

a further investigation, it is recommended to model generalized perfect repair assumption with 

hierarchical Bayesian inference.   
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3. A Condition Monitoring Based Signal Filtering 

Approach for Dynamic Time Dependent Safety 

Assessment of Natural Gas Distribution Process 

 

 

Abstract  

Condition monitoring of natural gas distribution networks is a fundamental prerequisite for 

evaluating safety of the operation during the lifetime of the system. Due to the high level of 

uncertainty in the observed data, predicting the operational reliability of the networks is 

complicated. Moreover, there is a fluctuation in most of the monitoring data in different time 

scales, as most of the derived data tend to be of non-stationary nature and are complex to model 

or forecast. Therefore, a more realistic data driven approach for developing a reliability framework 

needs to be considered. This paper aims at proposing a probabilistic model to predict the 

complexity of the non-stationary behaviour in monitoring data. It also aims at developing a novel 

framework for the time dependent reliability assessment of a natural gas distribution system using 

condition-monitoring data. To this end a methodology by integrating Empirical Mode 

Decomposition (EMD) and Hierarchical Bayesian Model (HBM) is developed. The advantages of 

the methodology are demonstrated through a case study of a Natural Gas Regulating and Metering 

Station operating in Italy. Based on pressure data acquired from the case study, the model is able 

to predict overpressure thus directly avoiding unnecessary maintenance and safety consequences.   

Keywords: Condition monitoring, Time dependency assumption, Empirical Mode Decomposition 

(EMD), Hierarchical Bayesian Model (HBM), Noise 
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3.1 Introduction  

Natural gas operational facilities and distribution networks are associated with potential hazards, 

which pose a threat not only to the workers, but also to the people living around the facilities.  

Natural gas is considered as the cleanest burning fossil fuel which supplies more than 20% of 

energy consumption to the European Union (Montiel et al., 1996). A great deal of ongoing effort 

is made to increase the operational reliability of the natural gas networks by considering real-time 

condition monitoring of their subsystems. For conducting realistic real time monitoring of the 

networks, identifying the convenient Process Variables (PVs) is necessary to obtain a safe 

operation.  

Different damages such as cumulative damage, fault damage zone, etc. occur gradually or 

suddenly (Deloux et al., 2009). Sudden damage is defined as an undetected steady deterioration 

trend in the system. Therefore, owing to the rise in the components’ wear, regular observation of 

conditions must take place to detect the gradual deterioration (Fouladirad et al., 2008) and achieve 

suitable predictive maintenance decisions according to the deterioration trend (Yam et al., 2001). 

Considering the previous researches on Condition Monitoring (CM) in engineering systems, 

different statistical approaches have been developed to investigate the performance of systems 

under the associated uncertainties (Collacott 2012, Hameed et al., 2009, Liu et al., 2013, Chetouani 

2014, Nandi et al., 2005) The CM maintenance paradigm has received significant development in 

recent decades, although a longstanding gap continues to exist as there is still lack of a unified 

model to capture the effect of noise on the raw data, and also the associated uncertainty with time-

variant parameters.  

The classical models of time series data (Box et al., 2015), such as Auto Regressive Moving 

Average (ARMA) models, regression methods (e.g. Least Squares Regression (LSR)), and 

statistical process control (SPC) methods have been widely used by different researchers. For 

instance, Carden and Brownjohn (Carden et al., 2008) presented a sound physical basis for forming 

ARMA models of structural response data. Nair et al. (2006) applied ARMA to analytical and 

experimental outcomes of the American Society of Civil Engineering (ASCE) benchmark structure 

to detect and locate damaged signals. Pham and Yang (2010) proposed the hybrid model of ARMA 

and generalized autoregressive conditional heteroscedasticity (GARCH) to predict the machine 
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state based on vibration signal. Kruger and Dimitriadis (2008) developed fault diagnosis scheme 

to extract the fault signature by applying local Partial Least Square (PLS) model. Wang et al. 

(2003) presented an application of recursive partial least squares (RPLS) algorithms together with 

adaptive confidence limits to reduce the number of false alarms. Zhou et al. (2006) integrates the 

statistical process control technology and the Haar wavelet transform for cycle-based waveform 

signal to detect a process degradation and to estimate the magnitude of mean shifts.  

These approaches focused on evaluating the health condition of considered system over time. 

However, neither of these models are practical for data with non-stationary and nonlinear nature. 

ARMA models are applicable to stationary time series data without identifying any long term 

trends. In the application of statistical regression method, the predicted trend is predetermined 

since the form of the data should be specified prior to performing a prediction. LSR and SPC are 

subject to the same drawback and need a pre-specified form that representing the trend.  In the 

case of SPC especially, the level of noise is assumed to be small and data are given to be distributed 

normally.    

The raw data collected from observations in condition monitoring of gas pipelines consists of non-

stationary trends, short term cycle and noise. As the noise has a complex time-dependent auto-

correlation structure, Empirical Mode Decompositions (EMD) is recommended in recent studies 

as a suitable statistical method to extract the disturbing noises from the time series. EMD has been 

successfully applied in different fields, from engineering to climate science and tourism 

challenges, in order to predict the long-term trend of the observed data with a minimum trace of 

noise. The model is particularly useful for degradation modeling and for gaining useful knowledge 

for future decision making strategies (Bin et al., 2012, Lei et al., 2013, Liu et al., 2006, Žvokelj et 

al., 2010) 

Li and Pandey (2017) presented EMD as a statistical algorithm method for condition monitoring, 

able to isolate the noise and diagnose the ongoing degradation process by recognizing the long-

term trend. Although in previous studies, the noise is extracted from the non-stationary data, the 

long-term trend is considered as the complement of fluctuation trend which can be either mean 

trend or a constant. This provides uncertainty in the long-term trend, since the correlation and 

variability of data is not observed over time. Therefore, an appropriate probability model is 
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necessary to consider the time dependency of the data. HBM is a probabilistic tool which 

incorporates the information on various types of uncertainties over time. HBM is considering the 

nonlinear nature of the observed data via Markov Chain Monte Carlo (MCMC) sampling. It has 

been widely used in different fields including probabilistic risk assessment (PRA) and CM (Averill 

et al., 2018, Kelly et al., 2009, Yang et al., 2013, Weidl et al., 2005, Yu et al., 2017, Abaei et al., 

2018a). There is also a great deal of research on PRA and CM applying Bayesian inference (Abaei 

et al., 2018b, Abbassi et al., 2016, Xin et al., 2017, Straub et al., 2010, Toroody et al., 2016, 

Arzaghi et al., 2018, Leoni et al., 2018). Likewise, several engineering challenges have been 

struggled by the extensions of Bayesian approach, i.e., Dynamic Bayesian Network (Abaei et al., 

2017, Arzaghi et al., 2017, BahooToroody et al., 2019, Luque et al., 2013). 

This paper attempts to develop methodology by integrating the EMD and HBM in a systematic 

framework for dealing with the noise and the uncertainty associated with variability of monitoring 

data. Given the non-stationary and nonlinear nature of the captured data, the condition of PVs is 

monitored to predict the likelihood of the variables exceeding the safe operational limit. To this 

end, nonhomogeneous Poisson process (NHPP) is adopted to model the number of times that PVs 

pass the safety threshold. A Natural Gas Regulating and Metering Station (NGRMS) operating in 

Italy is selected as a case study to indicate the advantages of the developed methodology. 

3.2 Empirical Mode Decomposition  

The raw data is an amalgamation of true signal and noise. Noise is introduced to the data by either 

data gathering instruments such as sensors or system conditions due to concurrent phenomena. 

Considering the time-dependent auto-correlation structure of noise, filtering processes are 

complex and in some cases impossible (Wu et al., 2004) As an effective filtering method, EMD is 

introduced based on Hilbert-Huang Transform (Huang et al., 1998) According to EMD method, 

the time series data is decomposed into a set of functions, known as Intrinsic Mode Functions 

(IMFs) and a trend known as residual term given by Equation 3.1 (Li et al., 2017). 

 
𝑥(𝑡) = ∑ 𝑐𝑘(𝑡)

𝑛

𝑘=1

+ 𝑟(𝑡) 
(3.1) 
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where 𝑐𝑘(𝑡) is 𝑘-th IMF, 𝑛 as the number of sifted IMFs and 𝑟(𝑡) is the residue which indicates a 

long term trend in the process. An extensive review of the sifting process to decompose a time 

series, including wide range of applications in condition monitoring, is provided by (Huang et 

al.,.1998) Each IMF can be either random noise or true signal. Thus, the time series is finally 

decomposed according to Equation 3.2. 

 

𝑥(𝑡) = ∑ 𝑐𝑇,𝑘(𝑡)

𝑖

𝑘=1

+ ∑ 𝑐𝑁,𝑘(𝑡)

𝑗

𝑘=1

+ 𝑟(𝑡) 

(3.2) 

where 𝑐𝑇,𝑘(𝑡) and  𝑐𝑁,𝑘(𝑡) are a 𝑘-th IMF of true and noise data, respectively and 𝑟(𝑡) is the 

residue similarly. As suggested by Wu et al. (2007) and Li et al. (2017), it is necessary to 

distinguish and filter out the noise from the raw data by conducting a Statistical Significance Test 

(SST) on the recorded time series of the process. The idea behind the SST is based on evaluating 

the energy density and the mean period of determined IMFs (Wu et al., 2004).  

3.3 Hierarchical Bayesian Modelling 

Observed data, manipulated information, and gathered knowledge are three consecutive steps of 

making inference throughout a model. Models have two fundamental types; aleatory and 

deterministic. Aleatory models are uncertain since they are imprecisely known. Herein, HBM as 

one of the most advanced of Bayesian statistical methods, can be applied using open source 

MCMC software packages such as OpenBUGS (Lunn et al., 2009) to describe aleatoric 

uncertainty. Subsequently, the associated uncertainty with variability of the observations existing 

among the data source is to be properly represented by the resulting posterior distribution (Kelly 

et al., 2009) given by Equation 3.3. 

 
𝜋1(𝜃|𝑥) = 

𝑓(𝑥|𝜃)𝜋0(𝜃)

∫ 𝑓(𝑥|𝜃)𝜋0(𝜃)𝑑𝜃
𝜃

 
(3.3) 

where 𝜃 is the unknown parameter of interest, 𝑓(𝑥|𝜃) is the likelihood function, and 𝜋1(𝜃|𝑥) is 

the posterior distribution. Hierarchical Bayes utilizes multistage prior distribution for the 

parameter of interest indicated 𝜋0(𝜃) (Kelly et al., 2009) as follow:  
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𝜋0(𝜃) = ∫𝜋1(𝜃|𝜑)𝜋2(𝜑)𝑑𝜑

∅

 
(3.4) 

where, 𝜋1(𝜃|𝑥) denotes the first-stage prior as the population variability in 𝜃;𝜑 is a vector of 

hyper-parameters, e.g., 𝜑 = (𝛼, 𝛽) , while 𝛼 and 𝛽 are the shape and scale parameters of a Weibull 

distribution respectively. The uncertainty in 𝜑 is represented by 𝜋2(𝜃) as the hyper-prior 

distribution. An informative prior distribution, 𝜋0(𝜃), is developed using generic data collected 

from different sources (numerical simulations, experiments or collected from different industrial 

sectors) to estimate the posterior distribution (Abaei et al., 2018b) 

3.4 Methodology: Time Dependent Reliability Assessment 

To predict the existing health condition of the gas distribution, an integrated approach is proposed 

to conform EMD and HBM in a unified framework. Although EMD is ideally appropriate for 

analyzing data of non-stationary and nonlinear nature, it still cannot resolve the most complex 

cases, e.g., nonlinear process in which the noise also has the same time-scale as the signal (Wu et 

al., 2004). Accordingly, to model the remaining uncertainty in noise extracted time series data, 

HBM is adopted. The developed methodology eliminates random noise emerging from monitored 

data and reduces the uncertainty involved in the engineering process. The developed methodology 

includes two different parts, as presented in Figure 3.1. A detailed description of these parts is 

provided in the following sections. The developed framework in this study could be used in 

different engineering contexts to compute the failure rates. It would also be a base for further 

development on risk-based maintenance scheduling optimization. 
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 Figure 3.1 Developed methodology for time dependent reliability assessment of gas 

distribution networks. 

 

3.4.1 EMD Modelling 

Appropriate signal processing techniques must be applied for acquiring and processing the raw 

data to estimate the states of the system. The acquired raw data is generated either from engineering 

PVs, such as pressure, or environmental conditions such as temperature. The EMD is adopted in 

developed methodology to extract the random noise from nonstationary and nonlinear raw data. 

To this end, the considered time series data is decomposed into its IMFs and a long term trend. 

Considering mean period and energy density of each IMF, the SST will be carried out 

correspondingly. Mean period of the 𝑘th IMF, 𝑇𝑘 , is given by Equation 3.5. 

 𝑇𝑘 =
𝑚

𝑃𝑘
 

(3.5) 
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where 𝑚 is the number of raw data points and 𝑃𝑘 indicates number of peaks in the 𝑘th IMF, 𝑐𝑘 . 

The general properties of the energy density are considered as function of period for the data (Wu 

et al., 2004) and is given by Equation 3.6.   

 
𝐸𝑘 =

1

𝑚
∑|𝑐𝑘(𝑗)|

2

𝑚

𝑗

 
(3.6) 

where 𝐸𝑘is the energy density of the 𝑘th IMF. Similar to the mean period, 𝑚 denotes the number 

of data points and 𝑐1(𝑗),… , 𝑐𝑛(𝑗), 𝑗 = 1,… ,𝑚 are 𝑛 IMFs. In order to identify the noisy IMFs, the 

SST is applied based on mean and variance of the IMFs which are represented by mean period and 

energy density, respectively. According to previous conducted studies, there are two substantial 

beliefs for selecting the first IMF as the main source of the noise in the process (Abaei et al., 2017, 

Wu et al., 2004, Wu et al., 2007). One belief is that the first IMF has the highest order of 

fluctuations, and the second one is the mean period (𝑇1) and energy density (𝐸1) are not much 

affected by the sampling uncertainty. Wu et al. (2007) proposed a hypothesis test for any 𝑘th IMF 

in which the Null Hypothesis is that an IMF, 𝑐𝑘, 𝑘 = 2,… , 𝑛 , is a noisy IMF and the test statistics 

is (ln 𝐸𝑘 + ln 𝑇𝑘). The confidence interval of this hypothesis is defined by Equation 3.7. 

 
ln (

1

3
𝐸1) + ln 𝑇1 < ln𝐸𝑘 + ln𝑇𝑘 < ln (3𝐸1) + ln 𝑇1 

(3.7) 

Given this SST, noise signals and true signals are those IMFs for which the Null Hypothesis is 

rejected and accepted, respectively. After identifying and removing the noisy IMFs, the 

combination of remaining IMFs and the trend function will result in the noise separated signal. 

This signal will be then used as the input for the second part of the methodology for investigating 

the exceedance times and frequencies. 

3.4.2  Process Failure Assessment 

An operational limit should be taken into account to preserve the process in a safe condition during 

the operation. For this purpose, the times that the operation enters the unsafe zone is recorded 

considering the noise separated data. These observations are given as the input for predicting the 

likelihood of safety threshold exceedances. To model the uncertainty in a process, it is more 
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realistic to indicate the correlation of monitoring data in a time series. Unlike a renewal process, 

that presumes that the inter-arrival times of an observation data are independently and identically 

distributed (iid), Nonhomogeneous Poisson Process (NHPP) is based on the assumption that 𝑖𝑡ℎ 

time-step (𝑡𝑖) is dependent on the value in previous time-step, 𝑡𝑖−1. Therefore, in this study, the 

exceedance rate of safety limit, 𝜆(𝑡), in a time series is modeled by NHPP. Consequently, the 

expected number of exceedances through the specific time interval, [𝑡𝑛, 𝑡𝑛+1] in the process, 

𝐸(𝑁𝐸), is given by Equation 3.8.    

 
𝐸(𝑁𝐸) = ∫ 𝜆(𝑡)𝑑𝑡

𝑡𝑛+1

𝑡𝑛

 
(3.8) 

where an appropriate function for 𝜆(𝑡) must be determined to represent the rate of exceedance 

limit accordingly. To develop an appropriate function for the exceedance rate of safety limit, 

power-law, log-linear and linear models are recommended by previous researchers (Kelly et al., 

2009, Chang 2001). In order to predict the nonlinearity of random process more precisely in 

comparison with linear modelling, the power-law is taken into account for this study (see Equation 

3.9) as suggested by different researchers (Kelly et al., 2009, Abaei et al., 2018a).   

 
𝜆(𝑡) =

𝛼

𝛽
(
𝑡

𝛽
)𝛼−1 

(3.9) 

Constant model (Equation 3.10) and linear model (Equation 3.11) are conjugate to power-law 

function;  considering power-law function, the constant model can be included by 𝛼 = 1. 

 
𝜆(𝑡) =

1

𝛽
 

(3.10) 

and by 𝛼 = 2, the linear model can be produced which is typically addressed by: 

 𝜆(𝑡) = 𝛼 + 𝛽𝑡 (3.11) 

The time to first exceedance of safety limit based on the power-low process generates a Weibull 

distribution, (𝑡, 𝛽, 𝛼) , with shape parameter, 𝛼, and scale parameter, 𝛽, given by Equation 3.12 

(Kelly et al., 2009).  
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 𝑓(𝑡, 𝛽, 𝛼) =
𝛼

𝛽
(
𝑡1

𝛽
)𝛼−1exp[−(𝑡1 𝛽⁄ )𝛼] (3.12) 

The observation process will be performed by conducting a failure-truncated approach as 

recommended by (Kelly et al., 2009). In order to reflect the dependency of times in which the PV 

exceeds the safety limit, a conditional probability must be defined for each desired time interval 

[𝑡𝑖−1, 𝑡𝑖] by using Equation 3.13 (Ross et al., 2004). 

 
𝑓(𝑡𝑖|𝑡𝑖−1) = 𝑓(𝑡𝑖|𝑇𝑖

′ > 𝑡𝑖−1) =
𝑓(𝑡𝑖)

Pr(𝑇𝑖
′ > 𝑡𝑖−1)

 
(3.13) 

where 𝑇𝑖
′ is the observed exceedances time of the safety limit for a considered PV. Consequently, 

the truncated Weibull distribution based on the power law function, Equation 3.14 would be 

achieved. 

 
𝑓(𝑡𝑖|𝑡𝑖−1) =

𝛼

𝛽𝛼
(𝑡𝑖)

𝛼−1exp[−(
𝑡𝑖
𝛽
)

𝛼

+ (
𝑡𝑖−1

𝛽
)
𝛼

] 
(3.14) 

where, 𝑖 = 2, … , 𝑛, and subsequently the likelihood function is given by using Equation 3.15. 

 
𝑓(𝑡1, 𝑡2, … , 𝑡𝑛|𝛼, 𝛽) = 𝑓(𝑡1)∏𝑓(𝑡𝑖|𝑡𝑖−1)

𝑛

𝑖−2

 
(3.15) 

𝛼 and 𝛽 are modelled by HBM to represent the population variability of exceedances time of the 

safety limits in an operation. It is worth noting that 𝛼 and 𝛽 as the hyper-parameters are 

independent, prior to the observation of the data. Once, an operational variable is observed, these 

parameters would be dependent. Using Openbugs, the marginal posterior distributions as well as 

statistics of hyper-parameters are executed by MCMC sampling from their joint distribution. The 

likelihood function provided by using Equation 3.15 is not pre-programmed into Openbugs. While, 

as suggested by (Kelly et al., 2009), it is possible to create a vector of 𝑛 array which is assigned to 

a generic distribution with parameter, 𝜑. By defining 𝜑 = 𝑙𝑜𝑔(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) given by Equation 

3.16 and considering samples of 𝛼 and 𝛽 from the prior distribution in Equation 3.17, Openbugs 

can update the parameters in the likelihood function (phi) (Abaei et al., 2018a) 
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 𝜑 = log(𝛼) − 𝛼 × log(𝛽) + (𝛼 − 1) log(𝑡𝑖) − (𝑡𝑛 𝛽)⁄ 𝛼
𝑛⁄  (3.16) 

where 𝑡𝑛 and 𝑡𝑖 are the last and 𝑖th observation of the exceedances event in the simulation, 

respectively, and 𝑛 is the vector size. Diffusive Gamma distribution is applied independently for 

the prior distribution of hyper-parameters, 𝛼 and 𝛽, as suggested by (El-Gheriani et al., 2017).  

 
{
𝛼~𝐺𝑎𝑚𝑚𝑎(0.0001,0.0001)
𝛽~𝐺𝑎𝑚𝑚𝑎(0.0001,0.0001)

 
(3.17) 

MCMC sampling for 𝑖 = 1,… , 𝑛 leads to estimating the updated posterior distribution of hyper-

parameters (𝛼, 𝛽).  

Based on the resulted Weibull distribution, 𝑓(𝑡, 𝛽, 𝛼), the failure probability distribution function 

for each PV will be predicted. This process could be repeated for each PV to control the operation 

and enhance the operational reliability of a system.  

3.5 Application to a Case Study 

Application of the proposed framework is explained by using a practical example of stochastic 

deterioration process of Natural Gas Regulating and Metering Stations (NGRMS) operating in 

Italy. Matlab and Openbugs are the available tools applied in this study for execution of the 

proposed method. The following sections provide a detailed discussion on application of each part 

of the proposed methodology to the case study. 

3.5.1 Scenario development 

NGRMS are set up in a distribution system and are fed by transmission pipelines. They are 

designed in five main sections; inlet, filter, metering, regulator, and outlet. The basic functions of 

a NGRMS are to reduce the pressure and to measure the gas flow by regulators and metering 

devices, respectively. NGRMS are designed with redundant parts to ensure that if one part fails, 

the entire system will not stop.  Figure 3.2 illustrates a typical NGRMS scheme.  
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 Figure 3.2  Typical plan of Natural Gas Regulating and Metering Station (Gonzalez et al., 

2007). 

 

In this study, the pressure is a selected PV to extract the noise and to analyze the potential 

deterioration process by means of predicting the performance of the network over time. 

3.6 EMD modelling of pressure data 

The condition monitoring data collected from NGRMS are depicted in Figure 3.3. This historical 

data consists of pressure values gathered over 108 weeks and would be used as raw data to extract 

the noise.   
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 Figure 3.3 Pressure data collected from the NGRMS. 

 

Applying the EMD method on the empirical time series data led to 6 IMFs and a residual trend 

(see Figure 3.4). In order to discriminate noisy IMFs from actual signals, statistical significance 

test (SST) was taken based on energy density and mean period. Table 3.1 gives the energy density 

and the mean period of each IMF. Based on the application of the SST, the first two IMFs, 𝑐1and 

𝑐2 were recognized as noise signals (see Figure 3.5). So the four remaining IMFs, 𝑐3 − 𝑐6, are 

actual signals.  

The long term trend function (see Figure3.4. (g)) illustrates that the pressure values are increasing 

over time. However, since correlation modelling between data are not considered, this trend is not 

reliable.  
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 Figure 3.4 Estimated IMFs (C1, C2, C3, C4, C5, C6) and the residue function (r) of pressure 

in time series. 
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Table 3.1 Energy density and mean period of IMFs for pressure data. 

kth IMF Ek  [(mgKOH/g)2] Tk (week) 

1 0.0398 2.7 

2 0.0203 4.909 

3 0.0800 12 

4 0.2578 21.6 

5 0.1277 27 

6 0.1659 54 

 

 

 Figure 3.5 SST adopted to the decomposed IMFs of pressure data to identify the noise 

signals. 

 

The total noise signals extracted from the raw data are depicted in Figure 3.6. A comparison 

between mean and standard deviations of noise signals and actual signals (presented in Table 3.2) 
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proved that EMD is remarkably effective for extracting the noise.  Figure 3.7 shows this 

comparison by true signal (defined as a summation of noise signals and actual signals) and noise 

separated signal in time series. 

 

 Figure 3.6 The superimposed noisy signals extracted by EMD. 

Table 3.2 Statistical Summary of the noise and true signals derived from EMD. 

Signal Mean Standard deviation 

Noise separated signal -0.0875 0.4478 

True signal  -0.0855 0.5003 
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 Figure 3.7 Comparison of True Signal (actual signal and noise signal) and actual signal 

(noise separated signal). 

 

In order to estimate the Noise Separated Signal (NSS), the noisy IMFs were removed from the 

monitoring data and then the remaining IMFs (C3 to C6) and long term trend function (r) are 

subsequently superimposed.  Figure 3.8 represents the NSS graph along with raw monitoring data 

and trend function. The NSS is the final filtered signal which is considered as the input for the 

failure assessment of the process in the second part of the framework. 
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 Figure 3.8 Pressure time series data after noise separation. 

3.7  Failure assessment: Hierarchical Bayesian Model 

In order to evaluate performance of the operation over time, a safety limit was assigned according 

to the Italian National Gas distribution regulations (UNI 2012). Based on the characteristics of the 

selected NGRMS, an output pressure bound of [4,5] bar, was determined as the safety limit. 

Considering the noise separated pressure data, the number of times that the pressure exceeded 

safety limit were recorded. These observations were then entered into the HBM in order to estimate 

the likelihood function and calculate the posterior probability of the Weibull parameters, 𝛼 and 𝛽. 

To this end, three chains were used by the MCMC simulation to check the convergence and to 

predict the posterior distribution of the parameters (𝛼 , 𝛽). Each chain started from a separate point 

with 300,000 iterations, so a total number of 900,000 iterations was established. Figure 3.9 

illustrates the iteration history of the shape parameter, 𝛼. The results for the estimated posterior 

probability of 𝛼, as well as the correlation between Weibull parameters (𝛼 , 𝛽) are plotted in  

0

1

2

3

4

5

6

7

1 21 41 61 81 101

P
re

ss
u
re

 (
B

ar
)

Time (Week)

Noise Separated Signal

Long-Term Trend

Raw Monitoring Pressure Data



68 

 

Figure 3.10. It is worth to mention that three colors in Figure 3.9 and Figure 3.10 (b) are 

representing the treatment of mentioned chains through the MCMC simulation.  Furthermore, the 

summary of estimated marginal posterior distribution for𝛼 , 𝛽 and the expected value for the First 

Time To Exceed (FTTE) of safe limit are listed in Table 3.3. FTTE is interpreted as the first sign 

of gradual degradation in the process.  

 

 

Figure 3.9 Iteration history of three chains for posterior estimation of shape parameter. 
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 Figure 3.10 Posterior distribution of Weibull shape parameter, 𝜶 (a) and the correlation 

between 𝜶  and 𝜷, (b). 

The posterior mean value of 𝛼 is 5.29 with a 95% credible interval of (3.68, 7.17). The shape 

parameter value is higher than one, inferring the number of times entering into unsafe limits for 

pressure, are increasing with time. The statistics for the posterior 𝛽, were evaluated as a mean 

value of 54.36 with a 95% credible interval of (40.59, 66.19). Thereby, probability of pressure 

exceedance of safe limit in NGRMS operation is computed according to the estimated 

uncertainties; and the cumulative density function (CDF) illustrated in Figure 3.11. The lower and 

upper percentile of FTTE accounted for were 36.62 % and 61.996 %, respectively. The expected 

value of FTTE was estimated at 50.07 week which means the first exceedance is expected to occur 

in the 50th week.  

Owing to relaxing the renewal process assumption (constant failure rate) and taking the time 

dependency of the observed data into account, the proposed framework can model the pressure 

exceedance from the safety limit more precisely.  

 

 

 

 

 

(a) (b) 
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Table 3.3 Statistical summary of the Weibull parameters. 

 𝜶 𝜷 FTTE 

 mean 2.5 

percentile 

97.5 

percentile 

mean 2.5 

percentile 

97.5 

percentile 

mean 2.5 

percentile 

97.5 

percentile 

HBM 5.293 3.683 7.176 54.36 40.59 66.19 50.075 36.621 61.996 

 

 

 Figure 3.11 CDF of pressure exceedance of the recognized safety limit for the selected 

NGRMS. 

 

3.8 Conclusion  

The uncertainties associated with the deterioration of natural gas distribution networks require a 

sound condition monitoring methodology for reliability assessment. This paper presented a 

methodology for time dependent reliability assessment of engineering operations by considering a 

strategy for noise reduction in monitoring demanding parameters. For this purpose, condition 
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monitoring of an NGRMS subject to degradation was selected to simply explain the application of 

the developed methodology. Pressure was considered as the PV for observing and modelling the 

associated uncertainty throughout the process. The considered data had nonlinear and non-

stationary nature, so it could not be analyzed by a standard method, e.g., SPC or LSR. 

Subsequently, in order to remove the noise from the raw data in the observation process, EMD 

was selected as the statistical tool to filter out the data. During the sifting process, the raw data in 

the time series were decomposed into a set of IMFs, while the noisy IMFs were identified by 

conducting the SST approach. Later, a Bayesian predictive tool was employed to model the 

associated uncertainties influenced on the process over the operational time. The results show that 

the expected time for exceeding the safe limit is 50 weeks with a credible interval of (38, 64) weeks 

for the 2.5 and 97.5 percentile of estimated distribution, respectively. The predicted exceedance 

distributions facilitate the exploration of the onset of deterioration. The developed methodology is 

capable of being considered as a predictive tool for estimating lifetime condition of an engineering 

process, and regarded as a platform for future decision making analysis to improve asset integrity 

management of an industrial operation.  
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4. A Bayesian Regression Based Condition Monitoring 

Approach for Effective Reliability Prediction of 

Random Processes in Autonomous Energy Supply 

Operation 

 

 

 

Abstract 

The probabilistic analysis on condition monitoring data has been widely established through the 

energy supply process to specify the optimum risk remediation program. In such studies, the 

fluctuations and uncertainties of the operational data including the variability between source of 

data and the correlation of observations, have to be incorporated if the efficiency is of importance. 

This study presents a novel probabilistic methodology based on observation data for signifying the 

impact of risk factors on safety indicators when consideration is given to uncertainty 

quantification. It provides designers, risk managers and operators a framework for risk mitigation 

planning within the energy supply processes, whilst also assessing the online reliability. These 

calculations address the involved and, most of the time, unconsidered risk to make a prediction of 

safety conditions of the operation in future. To this end, the generalized linear model (GLM) is 

applied to offer the explanatory model as a regression function for risk factors and safety 

indicators. Hierarchical Bayesian approach (HBA) is then inferred for the calculations of 

regression function including interpretation of the intercept and coefficient factors. With Markov 

Chain Monte Carlo simulation from likelihood function and prior distribution, the HBA is capable 

of capturing the aforementioned fluctuations and uncertainties in the process of obtaining the 
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posterior values of the intercept and coefficient factors. To illustrate the capabilities of the 

developed framework, an autonomous operation of Natural Gas Regulating and Metering Station 

in Italy has been considered as case study.  

Keywords: Condition monitoring, Canonical link function, Bayesian regression, Reliability 

assessment, Energy supply 

4.1 Introduction  

Adverse safety consequences of natural gas distribution systems can persuade policymakers, asset 

managers and stakeholders to apply well established predictive risk management techniques as 

well as novel probabilistic approaches in parallel with new indicators of safety performance. 

Within this fact, there are two possibilities for the probabilistic design over components’ failure 

times in a repairable system; first is to rely on the accident and incident reporting system. Next is 

to count on (near) real time censored operational data. The uncertainty associated with the 

variations in operational conditions makes the establishment of incident precursor data unreliable. 

Moreover, since any occurred event in the process is reflected by observation data, the failure 

analysis based on censored operational data has attracted more attention in process engineering 

than taking historical data into account (Fast and Palme 2010, Tahan et al. 2017, Artigao et al. 

2018, Valdés et al. 2018).  

Condition monitoring analysis consists of two key steps; data acquisition (Bechhoefer and Taylor 

2011) and data processing (Heng et al. 2009). The process of communicating raw data from 

operation by means of various sensors such as micro-sensors (Mitchell et al. 1999), ultrasonic 

sensors (Giurgiutiu et al. 2002), acoustic emission sensors (Loutas et al. 2009), etc. or wireless 

technologies like Bluetooth (Benghanem 2009), to data storage and handling like enterprise 

resource planning systems (ERP) (Moore and Starr 2006), computerized maintenance 

management systems (CMMS) (Kans 2008), etc., is defined as data acquisition. The data 

processing step is captured within data cleaning (Li and Pandey 2017) and data analysis (Nikula 

et al. 2016). Three different categories are specified (Jardine et al. 2006) based on the type of 

collected data for data analysis as: value type (Allgood and Upadhyaya 2000, Sinha 2002), 

waveform type (Back et al. 2016, Guk et al. 2018) and multi-dimension type (Antonino-Daviu et 

al. 2017, Zhang et al. 2018).  
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Different tools have been applied to develop the data analysis in condition monitoring of safety 

indicators, like autoregressive moving average (ARMA), support vector machine (SVM), principal 

component analysis (PCA), fast Fourier transform (FFT), wavelet transform, etc. examples 

include: Baptista et al. (2018) proposed an integration of ARMA and PCA to predict the failure 

time of the aircraft engine in order to optimize the maintenance time schedule. Miao et al. (2017) 

developed a one-against-one SVM to model the degraded machine using observation data of the 

accelerated life time test. Gowid et al. (2015) applied FFT in the acoustic emission field, using 

operational data to diagnose the fault of high speed centrifugal equipment. Han et al. (2016) 

established wavelet transform as a part of fault diagnosis of a bearing system to detect informative 

weak signals buried under random noises.  

Across these algorithms the development of random-effect models (REM) and specially Markov 

Chain Monte Carlo (MCMC) lead to a vast and quick extension of the Bayesian inference 

applications in different research areas (Kelly and Smith 2009) like econometrics (Kastner 2018), 

psychology (Wagenmakers et al. 2018), medicine (Elkin et al. 2018), climate and geophysical 

science (Hermans et al. 2018), engineering (Paltrinieri and Khan 2016), etc. Related literature set 

sound examples of HBA for engineering process (Abbassi et al. 2016, Toroody et al. 2016, Abaei 

et al. 2018, Arzaghi et al. 2018, BahooToroody et al. 2019b). Zarei et al. (2018) employed BN to 

exploit the dynamic feature of this tool in a framework integrated with intuitionistic Fuzzy set 

theory to model a hybrid dynamic human factor analysis.  In a very recent published study, Leoni 

et al. (2019) applied BN as a heart of the Risk Based Maintenance (RBM) model to estimate the 

maintenance time for the components of a Natural Gas Regulating and Measuring Station 

(NGRMS). Choi et al. (2018) established HBA to work out the ground thermal conductivity and 

borehole thermal resistance parameters given the associated uncertainty in order to design a valid 

ground-source heat pump. In present study, Bayesian regression approach is employed to analyze 

the behavior of process variables (PVs) and its impact on their exceedance rate from the safe 

operational limit throughout the engineering processes. For this purpose, a systematic framework 

is developed to estimate the reliability of very high values of PVs like pressure, temperature, etc., 

through the NGRMS process. These calculations address the involved and, most of the time, 

unconsidered risk to make a prediction of safety conditions of the operation in future. A NGRMS 

in Florence, Italy is considered to verify the presented model on real data of the pressure values. 
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The aggregated framework of this study can aid the engineering researchers in estimating the 

likelihood of safety incidents as one of the most important practical implications in all industries.  

4.2 Methodology: hierarchical Bayesian regression 

The proposed methodology attempts to specify a dynamic model signifying the impact of risk 

factors on the treatment of safety indicators, e.g., failure probability function. A variety of 

mathematical and statistical approaches have been established to define a function with 

observational data as inputs and failure prediction as outputs (Tinsley and Brown 2000, Roffel and 

Betlem 2007). The complexity of process, stochastic characteristic of operational data and 

nonlinear behavior of the industrial process make the specification of function more sophisticated. 

Employing an appropriate model is still highly important that can assist the researcher not only in 

minimizing the associated uncertainties but also for a more robust risk analysis and improving the 

lifetime reliability and availability of the industrial operations. Consequently, in present study, this 

function is implemented based on Generalized Linear Model (GLM) as a mathematically robust 

and efficient model (Zeger and Karim 1991, Breslow and Clayton 1993, Guisan et al. 2002) 

considering both of the variability of non-stationary data and the correlation between nonlinear 

data with the application of hierarchy levels through the Bayesian inference via MCMC simulation 

based on Gibbs sampling with open source software packages, i.e., OpenBUGS (Spiegelhalter et 

al. 2007). The promising framework is introduced in the ensuing sub-sections. 

4.3  Canonical link function  

A safety indicator function like hazard rate function can be an explicit function of condition 

monitoring data which leads to relaxing the constant rate assumption. Accordingly, the stochastic 

behavior of observable quantities is reflected by this function. To this end, the GLM 

implementation is sketched out incorporating the key steps of this model, as shown in Figure 4.1.  

The combination of explanatory variables is characterized by systematic components. An example 

of the systematic components is: 

 
𝛼0 + ∑∑ ∑ 𝛼𝑖𝐶𝑗

𝑘

𝑟

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 
(4.1) 
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where 𝛼0 is the intercept, 𝛼𝑖 are the coefficients, 𝐶𝑗 are the covariates i.e., process variables, k is 

an integer exponent, 𝑖 and 𝑗 are the number of coefficients and covariates, respectively. 

Engineering knowledge and historical data are the crucial factors for determining the interactions 

and associations between independent variables throughout the different types of model from 

linear to nonlinear.  

 

Figure 4.1 Different stages of GLM to define the explanatory model. 

 

Following, the random components, refers to the probability distribution followed by response 

variable, required to be defined.  According to the GLM, the probability distribution of dependent 

variable is given to be of exponential family. For instance the response variable, 𝑅, can follow 

Poisson distribution, 𝑓(𝑥; 𝜆), with the parameter of interest 𝜆.  

Upon specifying the random and systematic components, the canonical link function can describe 

the link between the independent variables and the parameter of interest of the response 

distribution. Consequently, different potential explanatory models such as linear, quadratic (in 

specific PV), etc., can be established in order to describe the associations between these categorical 

variables.  
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Based on the type of random component, systematic component and link function, specific GLM 

such as multinomial response, loglinear, etc., can be applied to describe the quality of associations 

between covariates and response variable. As an illustration, given that the response variable 

follows a Poisson distribution, 𝑓(𝑥; 𝜆), the explanatory model is : 

 
𝑓(𝑅) = 𝛼0 + ∑∑ ∑ 𝛼𝑖𝐶𝑗

𝑘

𝑟

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 
(4.2) 

where the response variable, 𝑅, can be defined as hazard rate. Furthermore, the canonical link 

function and 𝜆 would be achieved by Poisson regression as: 

 
ln(𝜆) = 𝛼0 + ∑∑ ∑ 𝛼𝑖𝐶𝑗

𝑘

𝑟

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 
(4.3) 

and 

 
𝜆 = exp(𝛼0 + ∑∑ ∑ 𝛼𝑖𝐶𝑗

𝑘

𝑟

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

) 
(4.4) 

where 𝛼0 is the intercept, 𝛼𝑖 are the coefficients and 𝐶𝑗 are the covariates like process variables.  

4.4  Regression tool: hierarchical Bayesian approach 

According to the characterized GLM, a great deal of regression tools has been applied, yet 

associated uncertainty has not been properly investigated. The aim of regression tools is to interpret 

the intercept and coefficient factors. In this study, for the purpose of incorporating the fluctuation 

associated with calculation, Bayesian inference with hierarchy levels is employed. Figure 4.2. 

illustrates the sequence of establishing the hierarchical Bayesian regression using MCMC 

simulation with sampling hyper-parameters. 
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Figure 4.2 The sequence of the hierarchical Bayesian regression procedure. 

Adopting the HBA as a regression tool leads to assume that the parameter of interest of dependent 

variable,𝜃, is not a certain value, rather follow a distribution with a prior probability of:  

 
𝜋0(𝜃) = ∫𝜋1(𝜃|𝜑)𝜋2(𝜑)𝑑𝜑

∅

 
(4.5) 

where, 𝜋1(𝜃|𝜑) is the first-stage prior representing the population variability in 𝜃;𝜑 denotes a 

vector of hyper-parameters and its uncertainty is represented by 𝜋2(𝜑) as the hyper-prior 

distribution. Through the Bayesian regression approach, the hyper-parameters are represented by 

the intercept and coefficient factors, 𝛼𝑖. Therefore, the prior distribution of the parameter of 

interest,𝜋0(𝜃), is: 

 

𝜋0(𝜃) =  ∫ ∫ …

+∞

−∞

+∞

−∞

∫ 𝜋1(𝜃|𝛼0, 𝛼1, … , 𝛼𝑖)𝜋2(𝛼0, 𝛼1, … , 𝛼𝑖)𝜕𝛼0𝜕𝛼1 … 𝜕𝛼𝑖

+∞

−∞

 (4.6) 
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In HBA, the hyper-parameter is sampled from a distribution given for  modelling the uncertainty 

associated with population variability existing in data source of prior distribution of 𝜃. The hyper-

parameter distribution is preferably considered to be of non-informative one because of two main 

reasons; first, through the MCMC simulation, this distribution is able to generate data within any 

particular range since there is no preference for data generation. Second and more important; using 

Bayesian updating, the prior probability distribution does not affect the posterior probability 

distribution strongly if it is properly sampled by non-informative distribution. As a result, the 

nature of data including the uncertainties will be reflected by the posterior distribution (Yu et al. 

2017). The uniform distribution, Jeffrey’s prior, diffuse gamma and diffuse normal distribution are 

the typical choice of non-informative distribution for hyper-parameter. A diffuse normal prior 

suggested by (Kelly and Smith 2011) is employed to allow the results to be compared with other 

parameter estimator approaches such as maximum likelihood estimation. Accordingly, in the 

present study, an independent diffusive normal prior is applied as the prior distribution of hyper-

parameters (described by Equation 6) for developing the HBA script in OpenBUGs software. 

 𝜑~𝑁(𝜇, 𝜎2) (4.7) 

In order to utilize the prior distribution of hyper-parameters the observation data of dependent and 

independent variables must be captured. The first-stage prior distribution, 𝜋1(𝜃|𝜑), and the 

likelihood function of the parameter of interest given observed data, 𝑙(𝐷|𝜃), are accordingly 

addressed through the GLM by the resulted explanatory model determined as Equation 4.2. 

Considering the estimation of likelihood function of the parameter of interest given observed data, 

𝑓(𝐷|𝜃), the next step is to obtain the likelihood function of the hyper-parameter given observed 

data, 𝑓(𝐷|𝜑), with respect to the parameter of interest, 𝜃. Again, if the intercept and coefficient 

factors represent the hyper-parameters, the likelihood function can be expressed as: 

  
𝑓(𝐷|𝛼0, 𝛼1, … , 𝛼𝑖) = ∫𝑓(𝐷|𝜃)𝜋(𝜃|𝛼0, 𝛼1, … , 𝛼𝑖)𝜕𝜃

𝜃

 
(4.8) 

Based on Bayes’s theorem, the posterior probability distribution of hyper-parameters can be 

obtained as: 
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𝜋(𝛼0, 𝛼1, … , 𝛼𝑖|𝐷) = 

𝑓(𝐷|𝛼0, 𝛼1, … , 𝛼𝑖)𝜋(𝛼0, 𝛼1, … , 𝛼𝑖)

∬. . . ∫ 𝑓(𝐷|𝛼0, 𝛼1, … , 𝛼𝑖)𝜋(𝛼0, 𝛼1, … , 𝛼𝑖) 𝜕𝛼0𝜕𝛼1 … 𝜕𝛼𝑖

 
(4.9) 

Since the hyper-parameters have conjugate priors, simulating MCMC to the joint probability of 

hyper-parameters, (𝛼0, 𝛼1, … , 𝛼𝑖), is an approach to solve the analytically intractable integrals in 

the dominator. Finally, the posterior predictive distribution specifying the population variability in 

the parameter of interest,𝜃, would be achieved by marginalization over hyper-parameters as: 

 

𝜋(𝜃|𝐷) = ∫ ∫ …

+∞

−∞

+∞

−∞

∫ 𝜋(𝜃|𝛼0, 𝛼1, … , 𝛼𝑖)𝜋((𝛼0, 𝛼1, … , 𝛼𝑖)|𝐷)𝜕𝛼0𝜕𝛼1 … 𝜕𝛼𝑖

+∞

−∞

 

 

(4.10) 

Equally, the typical intractable integral in Equation 4.10 can be computed via MCMC simulation 

based on sampling hyper-parameters through their joint probability distribution.  

The derived directed acyclic graphic (DAG) model for the developed hierarchical Bayesian 

regression is depicted in Figure 4.3, where 𝐶𝑗 and 𝑅, represented as data, 𝐷, are covariates and 

regressand, respectively. 𝛼𝑖 is coefficient and intercept factors, given as hyper-parameter, and 

finally 𝜃 denotes the parameter of interest of dependent variable.  

 

Figure 4.3 Directed acyclic graphic (DAG) model for the developed hierarchical Bayesian 

regression. 
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4.5 Application of methodology; Case study 

The health condition of an operation can be dynamically demonstrated basing on different risk 

factors like the stochastic behavior of process variables. In this regard, the presented method is 

applicable in a wide range of engineering processes, e.g., chemical process, energy supply, etc. In 

this section, an online probabilistic reliability assessment has been executed on a NGRMS 

operating in Italy according to the different steps of the developed methodology. This assessment, 

as a verification of the proposed framework, focuses on adopting the pressure as a process variable 

and capturing how the pressure behavior can affect the trend of failure function.  

4.5.1  Scenario development 

As plotted through schematic plan in Figure 4.4, a standard NGRMS is made up of five main 

sections: heater, filter, metering, regulator and odorization. It is established with two aims; first, to 

regulate the Natural Gas outlet pressure to a setting value and, second, to measure the regulated 

gas flow. In order to reduce the downtime of the operation, one or two redundancy lines are set up. 

More details i.e., a good introduction on NGRMS operations, is provided in (BahooToroody et al. 

2019a, BahooToroody et al. 2019b). 
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Figure 4.4 Simple system architecture of NGRMS. 

 

Herein, the pressure data collected from the NGRMS operation is placed under scrutiny to predict 

any potential degradation in the given process. The failure is accounted as any exceedance from 

the operational safety limit by considered process variable. Figure 4.5 illustrates the time series 

pressure data of 631 days as well as the safe operational threshold which is set as the pressure of 

5 bar. This operational safety limit was assigned based on both the Italian National Gas distribution 

regulations (UNI 2009, UNI 2009, UNI 2012) and the characteristic of selected NGRMS. It is 

worthwhile to mention that the random noise in operational pressure data is filtered from 

nonstationary and nonlinear raw data by adopting Empirical Mode Decomposition (EMD) method 

to be sure that the reported over-pressure data is true. The explanation of EMD is beyond the scope 

of this paper and readers are referred to the following researches for detailed discussions on this 

topic (Huang et al. 1998, Wu and Huang 2004, Wu et al. 2007, Li and Pandey 2017, BahooToroody 

et al. 2019b). 
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Figure 4.5 Pressure observation data collected from NGRMS. 

 

4.6  Standard explanatory model; normal-binomial model 

Upon characterizing the components and random system, an explanatory model can be generated. 

As this study focused on investigating the impact of pressure trend on the failure function, there is 

one predictor variable. The resulting component system is given by: 𝑎 + 𝑏𝑥, where 𝑎 and 𝑏are 

intercept and slope coefficient, respectively, and also 𝑥 denotes the observed pressure data.  

The regressand, defined as the exceedance rate, is considered to be the binomial random variable 

whose the probability of exceedance is 𝜋. Subsequently, the exceedances rate variable, 𝐸, follows 

a binomial distribution given by: 

 𝐸~𝐵(𝑛, 𝜋); 𝑃(𝐸 = 𝑘) = (𝑛
𝑘
)𝜋𝑘(1 − 𝜋)𝑛−𝑘  (4.11) 

where 𝑛 is the number of trials corresponding to the collected pressure records (631 data points). 

Each of these trials can end in a pressure lower or higher than the assigned safety threshold.  Also, 

𝑘 represents the number of exceedances from the safety limit. Accordingly, the canonical link 

function is the logit function, 𝑙𝑜𝑔𝑖𝑡(𝜋), expressed as: 

 𝑙𝑜𝑔𝑖𝑡(𝜋) = ln (
𝜋

1 − 𝜋
) (4.12) 
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where 𝜋 can be obtained as: 

 
𝜋 =

𝑒(𝑎+𝑏𝑥)

1 + 𝑒(𝑎+𝑏𝑥)
 

(4.13) 

Consequently, the standard explanatory model would be achieved by: 

 𝑙𝑜𝑔𝑖𝑡(𝜋) = 𝑎 + 𝑏𝑥 (4.14) 

4.7  Hierarchical Bayesian regression; sampling the 

coefficients 

The resulted explanatory model is applied in the hierarchical Bayesian inference paradigm to 

predict the posterior mean of 𝑎, 𝑏 and 𝜋 as intercept, coefficient and parameter of interest of the 

binomial aleatory model, respectively.  

Based on aforementioned steps in section 4.4, an independent diffusive normal prior is employed 

as the prior distribution of intercept and coefficient. Then, the number of times that the pressure 

exceeded safety limit were recorded and entered into HBA in order to work out the likelihood 

function and predict the posterior distribution of the hyper-parameter, 𝑎 and 𝑏. Three chains with 

over-dispersed initial value of 𝑎 and 𝑏 were used in MCMC sampling to check the convergence 

and to estimate posterior distribution of hyper-parameters by simulating 1000 burn-in iterations 

followed by 105 iterations through each chain. Figure 6 shows the predicted posterior probability 

of intercept and coefficient. The confirmation of simulation process is also depicted by the trace 

plot of hyper-parameters in the same figure. Furthermore, the statistical summary of hyper-

parameters, 𝑎 and 𝑏, is listed in Table 4.1.  



85 

 

  

 

Figure 4.6 Predicted posterior distribution for (a) intercept, (b) pressure coefficient, as well 

as trace plot for (c) intercept and (d) pressure coefficient. 

 

The validity of predicted model is examined by estimation of Bayesian p-value through the 

Bayesian chi-square statistic. While as suggested by Kelly and Smith (2009, 2011), the mean of 

p-value should be near 0.5, the subsequent p-value for the developed HBA script in present study 

has a mean of 0.7433 proving the validity of the developed Bayesian regression model.  
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Table 4.1 Statistical summary of predicted hyper-parameters. 

 Mean  Standard 

deviation 

2.5 

percentile 

median 97.5 

percentile 

𝒂 (intercept) -51.9 7.676 -68.95 -51.2 -39.1 

𝒃 (pressure coefficient) 8.343 1.423 5.956 8.22 11.48 

 

The intercept and coefficient factors reported in Table 4.1 and also recorded pressure data are 

incorporated into the explanatory model to obtain the corresponding logit function, 𝑙𝑜𝑔𝑖𝑡(𝜋), 

according to Equation 4.14. The resulting standard link function is depicted in Figure 4.7. As it 

can be viewed in this figure, characterizing the intercept and slop coefficient through a confidence 

interval with a normal distribution resulted in a normal logit function with a mean of -15.895 and 

standard deviation of 3.759.  (see Figure 4.7).  

 

Figure 4.7 Illustration of canonical link function according to the posterior hyper-

parameter distribution and pressure condition monitoring data as well as its assigned 

probability density function. 
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The obtained probability of exceedance, 𝜋, describes the binomial probability density function 

(PDF) of pressure exceedance from safe operational limit. The estimated PDF is shown in Figure 

4.8. The binomial Probability of different number of failures picked up in two exceedances from 

acceptable risk level, with the probability of slightly higher than 25% (it then declines steadily). 

One exceedance and three exceedances ranked second and third, respectively, in the binomial 

probability of failure.  Based on the provided data from the considered case study, it is inferred 

that experiencing higher than 5 failures is almost unlikely referred as rare event. The presented 

PDF can be correspondingly applied for establishing the risk mitigation strategies. 

 

 

Figure 4.8 Probability density function of pressure exceedances from safe operational limit. 

In order to quantify the on-line probability of reliability based on the observation made during the 

operation (depicted in Figure 4.5), the exceedance probability, 𝜋, for each day was obtained (as 

discussed earlier by Equation 4.13) and shown in Figure 4.9. The results suggest that 

approximately in a slightly higher percentile than the 95th one of the collected pressure data (617 

days), the probability of reliability is almost zero. Furthermore, the probability of having a risk of 

exceedance for the remaining days (14 days) is in an interval of [10-4, 3.5×10-3] per day. For 
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instance, the maximum probability of failure appraised at almost 3.5×10-3 is expected to be 

experienced by the 315th working day. The likelihood of considered failure, given by the proposed 

model may lead to develop decision making approaches aiming at reducing the risk associated 

with the process.  

 

Figure 4.9 Illustration of on-line reliability prediction for the application of NGRMS 

operation. 

Other crucial results, applicable for a risk remediation program, were figured out with inverse-

binomial function as stated by Equation 4.15 corresponding with the provided pressure data. 

Accordingly, the number of exceedances from acceptable risk level given 5th, 50th and 95th 

percentile probability of failure was predicted to evolve additional data for risk-based decision 

making.  

 𝑘~𝑏𝑖𝑛𝑜𝑖𝑛𝑣(𝑃, 𝑛, 𝜋) (4.15) 

In this equation, 𝑘 is the number of exceedances, 𝑃 represents the probability function of 

exceedances with parameter of interest 𝜋 and 𝑛 is the number of collected pressure data points. 

The maximum possible number of failures in the presented case study is estimated at five, as shown 

in Figure 4.10. It means, if the probability of exceedance from safety threshold is given as 0.95, 

then the pressure will exceed the threshold 5 times throughout the process, on average once in 
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approximately four months. Conversely, considering a probability of failure of 0.05, no 

exceedance will be experienced. To describe the failure trend and make figure 4.10 more clear, the 

time series prediction of the number of exceedances given the probability of failure is 0.5 is 

illustrated. In this case, two exceedances were predicted; the first exceedance was estimated to be 

occurred after 193 days while the second and last failure was predicted to be on the 468th day.  

 

 

Figure 4.10 Number of exceedances from acceptable risk level based on different 

probabilities of failure. 
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4.8 Conclusions 

A comprehensive methodology for predicting the trends of safety indicators affected by stochastic 

risk factors through the supply energy services sector was developed in this study. Given the 

uncertainty and complication associated with captured operational data, in the developed model, 

Bayesian inference with hierarchical structure and GLM was integrated to define a regression 

function. Accordingly, the random component, systematic component and link function were 

specified to characterize the explanatory model. Herein, the response variable followed a binomial 

distribution and the resulting link function and explanatory model were logit and logistic 

regression. Through the Bayesian regression approach, the hyper-parameters were represented by 

the intercept and coefficient factors, 𝛼𝑖. These factors were then sampled on the basis of 

operational observations by MCMC simulation to predict their posterior distribution. The obtained 

regression function is capable for forecasting on-line reliability assessment and consequently 

developing more efficient remediation plans. As a case study, a stochastic pressure trend of a 

NGRMS was investigated. Any exceedances from the operational safety threshold have been 

accounted as a failure. The predictions suggest that in 2% of the operational period, the probability 

of failure appraised at an interval of [10-4, 3.5×10-3] per day. In order to boost the uncertainty 

quantification and as a potential future research direction, it is suggested to consider a continuous 

random component through the GLM.  
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5. Multi-Level Optimization of Maintenance Plan for 

Natural Gas System Exposed to Deterioration 

Process 

 

 

 

Abstract 

In this paper, a risk-based optimization methodology for a maintenance schedule considering 

Process Variables (PVs), is developed within the framework of asset integrity assessment. To this 

end, an integration of Dynamic Bayesian Network, Damage Modelling and sensitivity analysis are 

implemented to clarify the behaviour of failure probability, considering the exogenous 

undisciplinable perturbations. Discrete time case is considered through measuring or observing the 

PVs. Decision configurations and utility nodes are defined inside the network to represent 

maintenance activities and their associated costs. The regression analysis is considered to model 

the impact of perturbations on PVs for future applications. The developed methodology is applied 

to a case study of Chemical Plant (Natural Gas Regulating and Metering Stations). To demonstrate 

the applicability of the methodology, three cases of seasonal observations of specific PV (pressure) 

are considered. The proposed methodology could either analyse the failure based on precursor data 

of PVs or obtain the optimum maintenance schedule based on actual condition of the systems.  

Keywords: Risk-based maintenance, Regression tools, Dynamic Bayesian network, Influence 

diagram, Asset integrity assessment  
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5.1 Introduction 

Since the operational fields of natural gas distribution networks extend far beyond the border of 

the above ground plant, the safety target community is not limited to the firm’s assets but also 

includes human life and the environment. Over the past few years, significant attention has been 

paid by researchers to the inclusion of these aspects in the safety and risk assessment of gas 

distribution pipelines (Dawotola et al. 2013; De Rademaeker et al. 2014; Mannan 2012; Pasman 

2015, Han et al., 2011, Jo et al., 2005). A more recent conducted study by Zarei et al. (2017) 

developed a comprehensive quantitative dynamic risk assessment framework to alleviate the 

associated failure with natural gas distribution network. Up to now, many methodologies have 

been developed to undertake comprehensive risk analysis of an industrial plant. Tixier et al. (2002) 

identified 62 methodologies divided into three different phases (identification, evaluation and 

hierarchy). In order to understand their key features and to categorize them into different classes, 

the paper examines input data, utilized methods and obtained output data.  

There is also a great deal of research on asset integrity management and optimization of 

maintenance plans (Adriaan et al. 2010; Ahmed et al. 2015; Arunraj and Maiti 2007; Azadeh et al. 

2015; Khan et al. 2006). This has resulted in many innovative methodologies being developed for 

asset maintenance in the process industry, where the most common classification of the policies 

based on the time of application and the geographic location of an asset for single or multi-units, 

are corrective maintenance (CM), preventive maintenance (PM), predictive maintenance, and 

proactive maintenance (Barnard 2006; Iqbal et al. 2016; Khan et al. 2004; Moubray 1991).  

The last two categories have attracted significant attention from researchers for increasing both 

effectiveness and efficiency of integrity management (Khan and Haddara 2004). Abbassi et al. 

(2016) developed a risk-based model to integrate predictive and preventive maintenance strategies 

in an optimal way. It was concluded that the risk-based methodology developed using Bayesian 

Network (BN) maintains the desired availability and safety level while minimizing the 

maintenance cost. Bhandari et al. (2016) proposes a methodology for the design of an optimum 

maintenance program integrating a dynamic risk-based approach in BN. Their method is based on 

failure prediction and utilizes precursor information in order to revise the risk profile of the system. 
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BN as a parametric and non-parametric probabilistic method, has been widely used for risk and 

reliability assessment of complex engineering systems Barua et al. 2016; Kabir et al. 2015; Yu et 

al. 2017). Khakzad et al. (2013) demonstrated and compared the application of bow-tie and BN 

models in conducting quantitative risk analysis of offshore drilling operations. The results of their 

study show that BN provides more efficient potential than bow-tie models for probabilistic 

analysis, since it can consider common cause failures and conditional dependencies along with the 

ability to perform probability updating and sequential learning based on accident precursors data 

or new available evidence. 

Dynamic Bayesian Network (DBN) is a practical extension of static BN whenever an evolving 

phenomenon must be modelled. In many cases, such as deterioration processes, capturing the 

dynamic (temporal) behaviour is an important aspect of a modelling process. Daniel Straub (2009) 

developed a methodology for stochastic modelling of degradation processes. The proposed 

framework facilitates a robust reliability analysis and Bayesian updating of the model with 

measurements, monitoring and inspection results. This makes the method highly applicable to 

near-real time condition monitoring and integrity management. 

Another extension to BNs are Influence Diagrams (IDs) which are utilized for developing decision 

support tools. Conventional graphic-based approaches to decision issues, like Decision Trees, 

suffer from a number of weaknesses including poor efficiency in representing decision issues with 

large numbers of parameters and the need for reliable prior information. However, IDs are an 

alternative which are widely established in engineering applications (Abaei et al. 2017; Arzaghi et 

al. 2017; Friis-Hansen 2000; Luque and Straub 2013). 

Although, a number of researches are conducted for improving the performance of industrial 

operations using advance probability models, however, little attention has been paid to considering 

perturbation effects that may be involved in the long-term trend of the industrial process due to its 

uncertain nature. Therefore, it is essential to have a more in-depth study on estimating the long 

term trend of the observation data as a unique operational function that can show the performance 

of the process over the time. This will help to improve the previous studies more accurately 

capturing fluctuations and the uncertainty of operational parameters. This is a crucial step for a 

reliable failure modelling of the processes and a better solution platform for decision making 

problems. Also, BN is applied less for considering the impact of exogenous undisciplined 
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perturbations as one of the important concepts of dynamic reliability. Other tools such as diffusion 

equations and Monte Carlo simulations etc. are widely used to solve these issues (Gao et al. 2011; 

Rief 1984; Roos et al. 2008). It should be noted that the present study does not aim at developing 

a fault detection method. Therefore, there is no specific failure event such as a leakage or crack to 

be detected by the proposed methodology. However, a mathematical perturbation model is 

developed based on Fourier series and observation data to predict the lifetime of the process that 

can assist in monitoring the process using a DBN as an inspection tool.  

The present paper focuses on adopting the Process Variables (PVs) and assessing how their 

variations can be used for determining the optimum maintenance schedule. That is, what 

temperature or pressure, for instance, can change the failure rate of a component in the system for 

which a maintenance task may be essential. Among all contributors, the perturbation plays a 

pivotal role. It is the amount of deviation from expected steady state condition of normal operation. 

A DBN is established to model the damage and the estimation of failure probability distribution, 

considering the observed trends in PVs. The DBN is then extended to an ID for decision making 

regarding the optimum maintenance interval as well as the maintenance type. A risk-based 

approach is selected for proposing the methodology and to demonstrate its application.  

Developing a risk-based maintenance policy for a Natural Gas Reduction Station in Florence, Italy 

is considered.  

5.2 Methodology 

In this study, a framework for stochastic modelling of dynamic processes using a DBN is 

developed. To this end, the fundamentals of BNs are discussed first, then the steps of the developed 

methodology (see Figure 5.1) are discussed in detail in the following sections. The model can be 

used in different applications for estimating the failure rates based on precursor data and for 

optimising the maintenance schedules using a risk-based approach. 
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Figure 5.1 Developed methodology for maintenance planning based on PV behavior and 

impacts of exogenous perturbations. 
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5.3 Tools  

5.3.1 Bayesian Network 

A detailed discussion on probabilistic knowledge elicitation using BN with a wide range of 

engineering applications is presented by (Barber 2012, Neapolitan 2004, Nielsen 2009) BN is a 

strong tool to incorporate the deterministic data into the probabilistic model with robust 

connections to graph theory. Based on the capability of including different types of uncertainty 

(aleatory and epistemic), BN is recognised as a promising method for risk analysis of complex 

systems. BN is also able to incorporate both causes and consequences of the failure event in a 

single network.  

BN is a Directed Acyclic Graph (DAG) in which the nodes (random variables) are inter-connected 

with arcs that represent probabilistic dependencies among variables. For instance,  Figure 5.2 

presents a schematic BN where node 𝑋3 is a child of 𝑋1 and 𝑋2; nodes 𝑋1 and 𝑋2 are considered 

as parent nodes of 𝑋3. Each node consists of a conditional probability table (CPT). Based on the 

conditional independencies and the chain rule, BN estimates the joint probability distribution of a 

set of random variables (Barber 2012) given in Equation 5.1. 

 
𝑃(𝑋₁, 𝑋₂, … , 𝑋𝑛) = ∏𝑃

𝑛

𝑖=1

(𝑋1|𝑃𝑎(𝑋1)) 
(5.1) 

As an example, the joint probability distribution of the random variables 𝑋1, 𝑋2 and𝑋3 shown in  

Figure 5.2 is estimated by 𝑃(𝑋1, 𝑋2, 𝑋3) = 𝑃(𝑋1)𝑃(𝑋2)𝑃(𝑋3|𝑋1, 𝑋2) 

In case new information becomes available for one or more chance nodes, BN is able to update 

the joint probability distribution based on the Bayes’ theorem given in Equation 5.2 (Nielsen 

2009): 

 
𝑃(𝑋|𝐸) =

𝑃(𝑋, 𝐸)

∑ 𝑃(𝑋, 𝐸)𝑋
 

(5.2) 
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Figure 5.2 A schematic Bayesian Network. 

 

5.3.2 Dynamic Bayesian Network 

A DBN represents a stochastic process as a sequence of several time slices, each consisting of 

inter-dependent nodes. As an illustration, if the BN in  Figure 5.2 is expanded into multiple time 

slices t = {1, … , T}, a DBN will be constructed, as shown in  Figure 5.3. 

  

Figure 5.3 Example of Dynamic Bayesian Network. 

 

5.3.3  Influence Diagram 

An ID can be established by including utility nodes (diamonds) and decision nodes (rectangles) 

into a BN (see Figure 5.4). A decision node consists of several decision alternatives available to 

the user. Since the parents of a decision node incorporate the required information at the time of 
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decision making, the arc pointing to a decision node is an information arc, not an expression of 

probabilistic dependency. Utility nodes are the descendants of either chance nodes and/ or decision 

nodes and have no successors. The utility values (including benefits or losses) of a utility node are 

determined as the preference of the user/operator over each configuration of the decision 

alternatives and those chance nodes that are the parents of the utility node. Once the ID is 

completely formed for a decision issue, the expected utility of each decision alternative can be 

estimated. The optimal decision is the one that maximizes the total expected utility, in agreement 

with classical decision analyses.  

 

Figure 5.4 An Influence Diagram including utility and decision nodes (𝑿: chance nodes, 𝑫: 

decision node, 𝑼: utility node). 

 

5.4    Function time series prediction 

The proposed methodology aims at developing a dynamic model that represents the changes in 

PVs over time. Both mathematical and statistical modelling are applied to predict the behaviour of 

PVs (more explanation is referred to in (Roffel and Betlem 2006; Tinsley and Brown 2000)). 

However, implementing an appropriate model for monitoring the nonlinear behaviour of the 

industrial process is highly important that can assist for minimizing the associated uncertainties.  

It is then necessary to consider a more reliable model that can represent this stochastic behaviour 

and provide a tool for better understating the complexity of the process. This will assist the 
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operators and risk and safety managers for a more robust risk analysis and improving the lifetime 

reliability and availability of the industrial operations. For this purpose, a new perturbation model 

is developed in this paper to incorporate the fluctuations and uncertainty of the observation data 

as a basis for conducting future failure analysis and decision-making. As a result, the framework 

will be able to monitor the nonlinearity of the observation data by considering perturbation model 

over the life-time of the project for a better understanding of the operational performance.  

5.5    Failure analysis  

Consider a DBN model that describes the condition of PVs before and after applying a set of 

perturbations. Failure analysis has been developed to assess the related failures. For the purpose 

of this class, two subsections will be presented in detail. 

5.5.1 PVs Monitoring Mechanism modelling 

The generic DBN model for stochastic modelling of PVs is represented in Figure 5.5. The proposed 

DBN is applied as a generalization of Markov process models. In a Markov process, the future is 

independent on the past, given the present, as given in Equation 5.3. Here the Markov process is 

modelled as a chain of nodes that represent the PV. 

 𝑃(𝑋𝑡+1|𝑋𝑡, … , 𝑋0) = 𝑃(𝑋𝑡+1|𝑋𝑡) (5.3) 

In order to ensure that the DBN is homogenous with identical time slices, the arcs connecting 

nodes [Ɛ1, … , Ɛ𝑇] are considered. The transition between these nodes are modelled with diagonal 

matrices resulting in Ɛ𝑡 = Ɛ𝑡−1 ,𝑡 = {2,…, 𝑇}(similar assumption is implemented for 𝛺). This 

is performed to facilitate the model building process and for a better graphical presentation of the 

model. As suggested by Daniel Straub (2009), these arcs have no impact on the computational 

efficiency of the model.  

Although the model here is proposed in general, the numbers of PVs can vary based on the demand 

of application with times as: 

 𝐾𝑗(𝑡) ∈ 𝐾𝑗 = {𝐾1
𝑗
, 𝐾2

𝑗
, … , 𝐾𝑡

𝑗
}; 𝑗 = 1,… , 𝑛 (5.4) 
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For instance, temperature or vibration can be the PV modelled with this method. Owing to the fact 

that updating in the light of new evidence is counted as a feature of the present model, observations 

can be adopted from each 𝐾𝑗(𝑡), as given in Equation 5.5: 

 𝑂𝑗(𝑡) ∈ 𝑂𝑗 = {𝑂1
𝑗
, 𝑂2

𝑗
, … , 𝑂𝑡

𝑗
}; 𝑗 = 1,… , 𝑛; (5.5) 

where 𝑗 is the number of observation and 𝑖 indicates the PV being monitored. The same condition 

is assumed for the extent and type of perturbation variables such as system perturbation and 

exogenous perturbation, see Equation 5.6. 

 Ɛ𝑞; 𝑞 = 1,2, … , 𝑥 (5.6) 

The model has 𝑛 time slices representing the entire process time divided into discrete number of 

time steps. All the distributions of variables with continuous analytical expression are discretized 

into a number of mutually exclusive states. The univariate discretization is proposed so that the 

continuity in the probability distributions is achieved precisely. More detail of the discretization 

process of the variables is explained in the following sections.  

5.5.2 Model specification  

Each perturbation parameter has a stationary process and consequently its probability distribution 

does not change when shifted in time (Ɛ𝑡 = Ɛ𝑡−1 = Ɛ , 𝑡 = 2, … , 𝑇). Therefore, the parameters 

of the suitable probability distribution must be estimated only once and the CPT of perturbation 

can be filled after discretization of the final distribution. It is suggested that for the sake of 

simplicity and without loss of generality, the perturbation data be fitted to a Normal distribution.  
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Figure 5.5 Developed DBN for stochastic modeling of process of PVs under impact of 

exogenous perturbations. Network nodes are, Ɛ: perturbations, 𝑲: state of PV, 𝑶: 

observations, 𝜴: sensor uncertainty, 𝑭: Failure. 

 

To obtain the Probability Density Function (PDF) of PV elements in the first time slice, the 

historical data should be analysed. The available database contains lower and higher bounds and 

fault threshold rates. Based on the trend and the extreme values, the most suitable distribution for 

the data can be figured out by several methods such as Maximum Likelihood Estimation (MLE), 

or Least-Squares Estimation (LSE). MLE has been recommended in previous research (Myung 

2003), since it has many features such as efficiency in the calculations, consistency and 

parameterization invariance. As a result, the MLE is adopted in the present study and the PDF of 

PVs is accordingly discretized.    

The CPT of PVs (𝑃(𝐾𝑖|𝐾𝑖 − 1, Ɛ𝑖)) is defined with binary values based on the limit state concept. 

These binary values are presented in 𝑁 × 𝑁 × 𝑀 transition probabilities, where 𝑁 and 𝑀 are the 

state numbers of 𝐾𝑖 and Ɛ𝑖, respectively. Limit state function is discussed further, later in this 

section. In order to fill the transitional CPTs, it is necessary to define a safe operational interval 
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for the considered PV. For instance, the interval [𝑎, 𝑏] can be chosen to determine whether the PV 

is within this interval. It is through this comparison that CPTs can be filled, as given in Equation 

5.7: 

 𝐶𝑃𝑇 =  {
𝑖𝑓𝑎 ≤ 𝑃𝑉 ≤ 𝑏𝑡ℎ𝑒𝑛0
𝑒𝑙𝑠𝑒1

 (5.7) 

The DBN model used in the proposed methodology provides the user with an opportunity to 

consider new evidence to update the probability distributions. Observations can be made from 

many strategies such as real time monitoring and failure monitoring. In the present study, 

inspection results are incorporated into the network and the uncertainty associated with the results 

is characterized by Probability of  Detection (𝑃𝑜𝐷), Daniel Straub (2004) provides a number of 

𝑃𝑜𝐷 functions based on empirical methods. A common approach to define the 𝑃𝑜𝐷 function is 

the one-dimensional exponential threshold model, previously used by several researchers (Ambühl 

2017; J. S. S. Nielsen, J. D. 2011; J. S. Nielsen and Sørensen 2017; D.  Straub 2004) ,and given 

by: 

 
𝑃𝑜𝐷(𝐷) = 𝑃0 [1 − exp (−

𝐷

𝜆
)] 

(5.8) 

where 𝐷 is as the actual perturbation, 𝑃0the maximum probability of detection and 𝜆 is the expected 

value of the smallest detectable perturbation. 

In order to complete the 𝑃𝑜𝐷 model, probability distributions are discretized into 𝐸 states. It should 

be noted that the number of states for node 𝑂 should be the same as the states of node 𝐾. The 

discretized probabilities are set in the first column of the 𝑁 × 𝐸(𝑁 = 𝐸) matrix. The perturbation 

in the former states of PV cannot be detected as damage in the latter states of inspection (for 

example the perturbation value in 𝐾1is not detectable in 𝑂2or 𝑂3). So, the final CPT of 𝑃(𝑂𝑖|𝐾𝑖) 

is as follows: 
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[
 
 
 
 
 
 
 
𝑃𝑜𝐷100 … .00
𝑃𝑜𝐷2𝑃𝑜𝐷20 … .00
...…...
...…...
...…...
...…...

𝑃𝑜𝐷𝑁−1𝑃𝑜𝐷𝑁−1𝑃𝑜𝐷𝑁−1 ….𝑃𝑜𝐷𝑁−10
𝑃𝑜𝐷𝑁𝑃𝑜𝐷𝑁𝑃𝑜𝐷𝑁 ….𝑃𝑜𝐷𝑁1]

 
 
 
 
 
 
 

 

 

(5.9) 

The method for estimating 𝑃𝑜𝐷 in other time slices (from the second time slice onwards) is 

different from the first, since these nodes have an extra parent node which is the node incorporating 

the uncertainty of sensors. Although 𝑃𝑜𝐷 function is applied to model the reliability of inspection, 

the uncertainty of sensor values can be represented in three forms, from no attention to uncertainty 

at all, to the highest resolution of uncertainty information: point uncertainty, interval uncertainty 

and probabilistic uncertainty (Cheng 2003). In the present paper, probabilistic uncertainty 

approaches are adopted.  

Considering 𝛺𝑖, the model reflects the reliability of sensors as well. As a general concept of this 

work (as done for perturbation), normal distribution is proposed as the suitable probability 

distribution being fitted to uncertainty of sensors, however, other distributions can be adopted 

based on the available data and characteristics of sensors. This parameter is time-invariant, so, the 

calculation of PDF and discretized value of probability must be done only once for the whole 

process. 

Assuming that 𝑁 and 𝐸 are the state numbers of 𝑂𝑖 and 𝐾𝑖 subsequently, and 𝐿 is the number of 

states (S) in node 𝛺𝑖, the final CPT of 𝑃(𝑂𝑖|𝐾𝑖, 𝛺𝑖) is shown in Equation (10) in the form of 

[𝑁 × 𝐸] × [𝐿] :   
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× [𝑆1, 𝑆2, … , 𝑆𝐿] 

 

 

(5.10) 

Failure probability is assessed using limit state function (Kamphuis 2010). This approach is 

adopted as follows here:  

 𝐺 = 𝐶– 𝑃𝑅 (5.11) 

where 𝐺 is  failure function, 𝐶 is critical PV interval and 𝑃𝑅 is the actual PV interval. 

Consequently, the conditional probability of failure 𝑃(𝐹𝑖|𝐾𝑖) in the DBN is expressed with two 

states of Safe and Fail, 1 (fail) if 𝐺 ≤ 0 and 0 (safe) when 𝐺 > 0.  

5.6    Decision making support tool 

The next stage of the methodology is to develop an ID for optimising the maintenance. The ID 

developed in this paper (see Figure 5.6) incorporates the socio-economic aspects including 

operation and maintenance costs into the decision-making process. As discussed in section 5.5.3, 

two additional node types, utility and decision nodes, are added to the DBN for constructing the 

ID. 

The decision node (𝑀𝑖) characterizes different decision alternatives (repair, replace, continue 

without any maintenance actions). It is made based on the results of inspections and subsequently 

it affects its descendent including the chance node (𝐾′(𝑡)). The nodes 𝐾′(𝑡) are introduced into 

the network for discriminating between the status of the PV before and after a decision regarding 

maintenance. In case the decision is made to continue without any maintenance actions, the CPTs 
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of 𝐾′(𝑡) nodes are identical to that of 𝐾(𝑡) node from the same time slice. This is while the CPTs 

vary if maintenance (repair or replace) is carried out in the previous time slice.  

It should be noted that if a decision is made for repairing or replacing the system, the state of PV 

will be recovered to its initial time steps. The value of recovery is directly depending on the norms 

and practices in the industry of interest.   

 

Figure 5.6. The ID of the multi-criteria decision-making model developed for maintenance 

planning of a stochastic process. Network nodes are, Ɛ: perturbations, 𝑲: PVs condition, 

𝑲’: PVs condition after maintenance, 𝑶: observations, 𝜴: device uncertainty, 𝑭: Failure, 

𝑴: Maintenance, 𝑼𝑴: utility of maintenance, 𝑼𝑭: Utility of Failure. 
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The costs associated with system failure are accounted for using the utility of failure (𝑈𝐹𝑖 node) 

in the network. The initial time slices can be filled based on the amount of collected data from the 

structure. The inevitable cost of failure in the future periods of operation is given by (Usher et al. 

1998): 

 𝐶𝐹𝑗 = 𝐶𝐹.̅̅̅̅̅ ℎ�̅�(1 + 𝑓)𝑗 (5.12) 

Where cost of failure (𝐶𝐹) in period (𝑗) is estimated by a simple Rate of OCcurrence Of Failures 

(ROCOF) constant, 𝐶𝐹̅̅̅̅  (in units of $/unit-failure-rate) multiplied by the average ROCOF, (ℎ̅). It 

is also assumed that the cost of a failure taking a place in future will be subjected to inflation at a 

rate of 𝑓 percent in the considered period of 𝑗. For the sake of simplification, it is suggested a linear 

approximation be considered for the average of ROCOF (Referred to (Usher et al. 1998) for more 

explanations). 

The utility values developed for maintenance alternatives are suggested to be evaluated in detail 

separately for each configuration. The cost of replacement of the equipment is estimated as: 

 𝐶𝑅𝑗 = 𝐶𝑅̅̅ ̅̅ (1 + 𝑟)𝑗 (5.13) 

where 𝐶𝑅 is a constant cost for replacing the equipment. In the present paper, the values for 𝐶𝑅 

are adopted from historical data. Similar to the case of failure, a separate inflation rate (𝑟) is 

considered for replacements over the period 𝑗. 

Finally, if the system requires a repair, the regular cost for this activity (𝐶𝑅’) will be affected by 

an inflation rate of 𝑟’ percent per period, therefore the cost of repair is given by Equation 5.14. 

 𝐶𝑅′𝑗 = 𝐶𝑅′̅̅ ̅̅̅(1 + 𝑟′)𝑗 (5.14) 

5.7 Application of developed methodology: Case study 

An example of Natural Gas Regulating and Metering Stations (NGRMS) is given to show how the 

application of developed ID in risk-based maintenance can be applied. GeNie software is used as 
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a tool for modelling the ID. A detailed discussion on application of each step of the developed 

methodology in the case study is discussed in the following sections.    

5.7.1 Scenario development  

NGRMS are established in the gas distribution networks to reduce the Natural Gas outlet pressure 

to a setting value. To handle the process, there are two regulating streams with two regulators 

arranged in a series for each line.  One is the main regulator and the other is used as a control/slam 

shut valve. Through the normal operation, one line is working while the other line is on stand-by. 

If main and slam regulator (both) fail, the other standby line starts to work. As illustrated in Figure 

5.7, the standard configurations of lines in NGRMS are made up of control valve, pressure 

regulator-passive controller, main pressure regulator with a built-in slam-shut valve and filters.  

      

Figure 5.7 Simple System Architecture of NGRM stations. 

 

The requirements for particular characteristics of delivered gas, including gas specification, 

odorisation and pressure are specified in both local and international regulations. (see (UNI 2009a, 

2009b, 2012)). Such regulations are issued to obtain smooth operations with the lowest possible 

number of maintenance interruptions, failure losses and accidental damages. In the present study, 
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the pressure is applied as PV to analyse the deterioration process and to finally achieve the optimal 

time schedule of maintenance.   

5.8 Function prediction  

To set up the decision making process, the pressure values during 36 months of process operation 

were taken into account. The time series predictions are depicted in Figure 5.8 along with historical 

and validation data. The historical data is predicted by different regression tools to find the most 

suitable one based on their predictive performance. In this study, the competitive evaluation of 

models summed up and selected Fourier as the suitable one due to stable results across samples 

with below representation (see Equation 5.15).  

 

𝑃(𝑡) = 𝛼0 + ∑(𝛼𝑖 cos
𝑖𝜋𝑡

𝐿
+ 𝛽𝑖 sin

𝑖𝜋𝑡

𝐿
)

∞

𝑖=1

 

 

(5.15) 

Where first term of Fourier equation (𝛼0) is actually the expected amount of observed pressure 

since it is defined by Equation 5.16.  

 
𝛼0 =

1

𝑇
∫ 𝑃(𝑡)

𝑇

0

= �̅� 
(5.16) 

Based on historical data, it can be reckoned that although the process engineering gives protection 

for pressure behaviours against perturbations, there are nevertheless a wide range of perturbations 

in the pressure. These perturbations can be modelled by regression tools of pressure through time. 

As a result, 𝛼𝑖  and 𝛽𝑖 are considered as independent perturbation parameters and follow from: 

 Ɛ =  {𝛼𝑖, 𝛽𝑖; 𝑖 = 0, 1… ,6} (5.17) 

 

 
𝛼𝑖 =

1

𝑇
∫ 𝑃(𝑡) cos

𝑖𝜋𝑡

𝐿

𝑇

0

 
(5.18) 
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𝛽𝑖 =

1

𝑇
∫ 𝑃(𝑡) sin

𝑖𝜋𝑡

𝐿

𝑇

0

 
(5.19) 

By taking pressure (including perturbation) into account, the condition of pressure is predicted in 

time based on its initial treatments. Each 𝛼 and 𝛽 in the model experienced a normal distribution 

with specific mean (𝜇) and standard deviation(𝜎2). So Equation 5.15 can be represented as:  

 

𝑃(𝑡) = �̅� + ∑(
1

√2𝜋𝜎𝑖
2
𝑒

−
(𝛼𝑖−𝜇𝑖)

2𝜎𝑖
2 cos

𝑖𝜋𝑡

𝐿
+

1

√2𝜋𝜎𝑖
2
𝑒

−
(𝛽𝑖−𝜇𝑖)

2𝜎𝑖
2 sin

𝑖𝜋𝑡

𝐿
)

∞

𝑖=1

 

 

(5.20) 

 

Figure 5.8 Time series ahead prediction of Pressure treatment. 

 

5.9 Pressure monitoring model  

To demonstrate the time dependent stochastic modelling of a PV (pressure), a DBN model is 

developed (see Figure 5.9). For the purpose of this study, the model is simplified by analysing the 

pressure behaviour for a period of four seasons (each season representing a time slice; 𝑃0, 𝑃1, … , 𝑃4) 

with influence of exogenous perturbations on it. Although in reality, the system will often be 



110 

 

maintained (repaired or replaced) at a fixed time, especially after detection of failure, in the method 

presented in section 5.4, it is assumed that the system has not been maintained for three years. 

  

  

Figure 5.9 Developed DBN model including exogenous perturbations for four seasons. 

Network nodes are, {𝜶𝟎, 𝜶𝟏, … , 𝜶𝟔, 𝜷𝟏, 𝜷𝟐, … , 𝜷𝟔}:perturbations, 𝑷𝟎: Initial Pressure 

condition, 𝑷: Pressure condition, 𝑶: observations, 𝑮: device uncertainty, 𝑭: Failure. 

 

The parameter 𝑃0 accounts for the initial pressure (historical data of pressure) and has a Weibull 

distribution with scale and shape parameters of 𝐴 and 𝐵 respectively. It is assumed that both 

parameters have negligible deviation and a constant rate of 𝐴 = 4.455 and 𝐵 = 10.244. On the 

contrary, other parameters applied in the model are normally distributed. The distribution of each 

parameter mentioned in Table 5.1 is split into a specific number of intervals. In addition to these 

parameters, the observation node is similarly discretised using 10 intervals while avoiding round-

off errors by using MATLAB software (see Figure 5.10).  

It should be mentioned that pressure size in the following time slices are discretized using the same 

uniform interval lengths as 𝑃0. A detailed discussion of the sequence of filling the CPTs for all 
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parameters (pressure size 𝑃(𝑃𝑖|𝑃𝑖−1, Ɛ𝑖 ), observation 𝑃(𝑂𝑖|𝑃𝑖, 𝛺𝑖 ), and failure 𝑃(𝐹𝑖|𝑃𝑖)) is 

stated in section 5.5.2.  

Table 5.1 Parameters of stochastic modelling of pressure with univariate perturbations 

variables. 

Variable Description Distribution 

(discretized interval) 

Mean  Standard 

deviation 

𝜶𝟎 1st Perturbation parameter Normal (5) 4.885 3.118 

𝜷𝟏 2nd Perturbation parameter Normal (5) -0.638 3.031 

𝜶𝟏 3rd Perturbation parameter Normal (5) -0.6945 2.8985 

𝜷𝟐 4th Perturbation parameter Normal (5) -0.11 0.3829 

𝜶𝟐 5th Perturbation parameter Normal (5) -0.7374 5.6264 

𝜷𝟑 6th Perturbation parameter Normal (5) 0.2462 1.7332 

𝜶𝟑 7th Perturbation parameter Normal (5) -0.2168 2.5258 

𝜷𝟒 8th Perturbation parameter Normal (5) 0.0346 3.5336 

𝜶𝟒 9th Perturbation parameter Normal (5) -0.0044 0.9305 

𝜷𝟓 10th Perturbation parameter Normal (5) 0.1719 1.1268 

𝜶𝟓 11th Perturbation parameter Normal (5) 0.0515 0.6279 

𝜷𝟔 12th Perturbation parameter Normal (5) 0.1096 0.561 

𝜶𝟔 13th Perturbation parameter Normal (5) -0.0989 2.4919 

Ω Devices uncertainty Normal (3) 0.0002 0.05 
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Figure 5.10 Discretized Weibull Distribution of initial pressure size. 

 

5.10 Utility efficiency     

Recognizing the optimal maintenance strategies and times are  conducted by an extension of DBN 

into ID (see  Figure 5.11; due to space limitation nodes 𝑃0 to 𝑃2 of the decision model are only 

depicted). To evaluate the effect of maintenance on process, the maintenance alternatives are 

defined consequently in three actions including continue, repair and replace. The elements of 

drawn ID were previously introduced in section 5.6. 
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Figure 5.11 Developed Influence Diagram for maintenance planning considering exogenous 

perturbations.  Network nodes are {𝜶𝟎, 𝜶𝟏, … , 𝜶𝟔, 𝜷𝟏, 𝜷𝟐, … , 𝜷𝟔}:perturbations, 𝑷𝟎: Initial 

Pressure condition, 𝑷: Pressure condition, 𝑶: observations, 𝑮: device uncertainty, 𝑭: 

Failure 𝑴: Maintenance, 𝑼𝑭: Utility of Failure 𝑼𝑴: Utility of Maintenance. 

 

Iqbal et al. (2016) presented a comprehensive review on inspection and maintenance policies for 

oil and gas pipelines. They defined the repair of a unit as Imperfect maintenance after which, 

although the unit is not taken into account as new, it is supposed to be younger than before. The 

replacement is also assumed to be established either at complete failure or after fixed number of 

failures. To improve the effectiveness of the decision making process, the hybrid policies have 

been examined with mentioned decision alternatives later.   

Based on aforementioned assumptions and Equation 5.13 and Equation 5.14, the costs associated 

with repair and replacement are compared and depicted in Figure 5.12. The line graph illustrates 

the repair value and bar chart represents the replacement expenses for the entire domain of pressure 

(as illustrated in Figure 5.10.  the pressure variable is discretised in 10 intervals). Units are 

measured in Euros.  
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Overall, the expected cost is changing through different intervals for repair, while experiencing 

constant rate for replacement. It is proved again that the most desired pressure value is starting 

from the third and finishing at the fifth interval as the repair costs decline and rise significantly 

before and after these intervals. Additionally, it is necessary to note that steady rate of replacement 

cost does not mean that for any conditions of pressure in any time of replacement, the expected 

cost would be the same. This will be explained in detail in the following section by considering 

different occasions.  

 

 

Figure 5.12 Utility value of maintenance alternatives, repair and replace, for each interval 

of pressure. 

 

5.11 Influence Diagram application: results 

To assess the advantage of the developed methodology, three different seasonal inspection cases 

were considered. To make clear reported data in Table 5.2, in case B, the observations are made 

with a pressure in state 2 followed by state 7 of pressure intervals in the third season. The health 

of the system is not monitored for the second and last seasons.  
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Table 5.2 Observations of pressure size in the NGRM station. Three cases of different 

monitoring results were considered. Note: the cells with dashes illustrate times where 

monitoring is not performed. 

Month 3 6 9 12 

Case A State 1 State 6 State 8 - 

Case B State 2 - State 7 - 

Case C State 8 - - - 

 

The line graphs in Figure 5.13, Figure 5.14 and Figure 5.15 depict the Expected Utility (EU) for 

three maintenance alternatives (repair, replace and continue) based on inspection results reported 

in Table 5.2 over a period of one year.   

Starting with case A, the deterioration is mapped through the gradual increase of pressure from its 

1st state to 6th and lastly 8th state. Although at the beginning of the considered period, continuing 

the operation is the most beneficial option, the subsequent drop of EU in this line at the second 

season implies that this is not an appropriate alternative after six months. Based on results depicted 

in Figure 5.13, it is deduced that the optimal strategy is continuing at the first season, followed by 

repairing at the second stage. The utility of all three options for the final season is predicted to be 

approximately equal. Ultimately, according to the model, the maximum benefits are achieved if in 

the 3rd and 4th seasons replace and continue alternatives are applied respectively, where the EU 

reaches a peak of 12000 and 1000 Euros. 
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Figure 5.13 Expected utilities of three decision alternatives: Replace, Repair and Continue 

operation for case (A) with different pressure size incidents as detailed in table 5.2. 

In case B, continuing the operation is considered as the best configuration of maintenance decision 

in the first 2 seasons. As can be seen in Figure 5.14, since the pressure experienced its 7th interval 

at the end of the 9th month, it is proposed that the system must undergo a repair process at the third 

season to recover its healthy state. This action has the maximum EU of approximately 15000 € at 

3rd season NGRMS. Similar to case A, it is predicted that conducting the suitable maintenance 

policy optimizes the EU in the upcoming season. 

 

Figure 5.14 Expected utilities of three decision alternatives: Replace, Repair and Continue 

operation for case (B) with different pressure size incidents as detailed in table 5.2. 
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Considering Case C (illustrated in Figure 5.15), the EU of continue option, deviates noticeably 

over the period given, while for the other two alternatives it changes minimally. Considering the 

status of pressure in the first season, the model assesses the EU of replace as the optimal alternative 

where it reaches a peak of about 4000 Euros. Executing this decision configuration will result in a 

surge in EU of other options in the future, this trend can be seen chiefly through continue to the 

end of studied time. 

 

Figure 5.15 Expected utilities of three decision alternatives: Replace, Repair and Continue 

operation for case (C) with different pressure size incidents as detailed in table 5.2. 

 

5.12 Conclusion  

A novel methodology using Markov degradation model as an underlying principle of decision 

making is developed to estimate the optimal maintenance time schedule. The treatment of PVs 

under the influence of perturbations in time series has been analysed applying DBN and ID. 

Furthermore, the proposed approach enables investigating uncertainty related to parameters, 

models and historical data through limit state function. The failure mode has also been explained 

in a limit state equation. The model has been enabled to update the probability based on new 

observation of system. The reliability of inspection has been characterized by 𝑃𝑜𝐷 through one-

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

0 3 6 9 12

Ex
p

ec
te

d
 U

ti
lit

y

Month

Continue Repair Replace



118 

 

dimensional exponential threshold model. In addition to model the reliability of inspection, the 

uncertainty of sensor values is also represented.  The expected cost associated with failures and 

maintenances is estimated considering inflation. The study has been implemented on actual 

examples of stochastic deterioration process of Natural Gas Regulating and Metering Stations 

(NGRMS) in order to validate the proposed method using real field data. The pressure has been 

taken into account as PV. The Fourier series is used as the regression tool to predict the trend of 

pressure considering perturbation parameters in time. To examine the method, three different 

seasonal inspection cases have been introduced into the network to determine the optimum 

maintenance times and strategies. The proposed framework highlights that repairing the 

components in second season for the first time is the most economic decision for case A. this is 

while the optimum approach for case B is that the system undergoes a repair process at the third 

season. In case C also the model assesses the EU of replace as the most cost-effective strategy on 

the 3rd month of the operation.  The present framework is able to perform a risk-based maintenance 

planning for the industrial processes aiming at minimizing the operational and maintenance costs. 

A non-stationary model can be developed in order to predict the trend of PVs in the process, since 

condition monitoring data tend to have a more non-linear behaviour. Therefore, it is recommended 

to apply a noise reduction approach for filtering the observations data and smoothing the 

unexpected fluctuations. 
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6. Conclusions and Recommendations 

 

The proposed research attempts to undertake risk-based asset integrity modelling of engineering 

process. With four main objectives, different frameworks developed to evaluate the reliability 

engineering operation subjected to random stochastic behavior. To deal with the first objective a 

differences between application of two mostly utilized assumptions in failure modelling, MR and 

PR, have been addressed in this paper. This was carried out in a case study of natural gas regulation 

and measurement plant by MLE and Bayesian inference method. The final results highlighted that 

relaxing the renewal process assumption (constant failure rate) and taking the time dependency 

between the observed failure times into account, results in a more precision of failure modelling 

where the shape parameter value of Weibull distribution in both parameter estimation approaches 

(HBM, MLE) are higher than 1, confirming that the number of failure events are dependent upon 

time. This study can help asset managers to optimize the reliability assessment of repairable 

systems based on available data. To address the second objective, a methodology for time 

dependent reliability assessment of engineering operations were presented by considering a 

strategy for noise reduction in monitoring demanding parameters. The considered data had 

nonlinear and non-stationary nature, so it could not be analysed by a standard method, e.g., SPC 

or LSR. Subsequently, in order to remove the noise from the raw data in the observation process, 

EMD was selected as the statistical tool to filter out the data. The results show that the expected 

time for exceeding the safe limit is 50 weeks with a credible interval of (38, 64) weeks for the 2.5 

and 97.5 percentile of estimated distribution, respectively. The predicted exceedance distributions 

facilitate the exploration of the onset of deterioration. The developed methodology is capable of 

being considered as a predictive tool for estimating lifetime condition of an engineering process, 

The third objective is achieved by developing a comprehensive methodology for predicting the 

trends of safety indicators affected by stochastic risk factors through the supply energy services 

sector. Given the uncertainty and complication associated with captured operational data, in the 

developed model, Bayesian inference with hierarchical structure and GLM was integrated to define 

a regression function. The obtained regression function is capable for forecasting on-line reliability 
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assessment and consequently developing more efficient remediation plans. The predictions 

suggest that in 2% of the operational period, the probability of failure appraised at an interval of 

[10-4, 3.5×10-3] per day. The final objective is achieved by assessing a novel methodology using 

Markov degradation model as an underlying principle of decision making is developed to estimate 

the optimal maintenance time schedule. The treatment of PVs under the influence of perturbations 

in time series has been analysed applying DBN and ID. Furthermore, the proposed approach 

enables investigating uncertainty related to parameters, models and historical data through limit 

state function. The failure mode has also been explained in a limit state equation. The model has 

been enabled to update the probability based on new observation of system. The reliability of 

inspection has been characterized by PoD through one-dimensional exponential threshold model. 

In addition to model the reliability of inspection, the uncertainty of sensor values is also 

represented. To examine the method, three different seasonal inspection cases have been 

introduced into the network to determine the optimum maintenance times and strategies. The 

proposed framework highlights that repairing the components in second season for the first time 

is the most economic decision for case A. this is while the optimum approach for case B is that the 

system undergoes a repair process at the third season. In case C also the model assesses the EU of 

replace as the most cost-effective strategy on the 3rd month of the operation.  The present 

framework is able to perform a risk-based maintenance planning for the industrial processes 

aiming at minimizing the operational and maintenance costs. 

6.1 Recommendations 

In order to boost the risk based asset integrity modelling and as a potential future research 

direction, it is suggested to:  

o effectively using the diverse, high-dimensional, high-velocity condition monitoring data of 

industrial assets to improve their availability and resilience. 

o design of robotic systems that can self-certify and guarantee their safe operation; Self-

diagnosis of faults and self-healing 

o extending the concept of IoT to develop the ‘social network of things’. If machines can 

report their ‘status’ into a common data-sharing platform – or social network – it becomes 

possible to create a single view of how the whole factory is running.  
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