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Introduction

This work is an attempt to combine two themes in group theory, in particular
in the infinite group theory. The first subject concerns some types of relations
between two subgroups of a given group. In particular, given a class of groups C
and a group G, we will say that two subgroups A and B of G are C-connected if
and only if for all a ∈ A and for all b ∈ B, the subgroup 〈a, b〉 belongs to the class
C. This definition, that is central in this work, was formulated for the first time
by Carocca in [14].

As many authors have reconstructed, for instance, in [32] or [13], the origin of
the definition is to be attributed to the study of totally permutable groups. In
fact, it is easy to show that given A and B two totally permutable subgroups,
for all elements a ∈ A and b ∈ B, the group 〈a, b〉 is supersolvable, or in other
words total permutability implies what later has been called U -connection, where
U is the class of supersolvable groups. From this consideration Carocca investi-
gated C-connection in finite groups, giving two results about N -connection and
S-connection, where, N is the class of nilpotent groups and S that of solvable
groups. In this work, however, we deal only with N -connection.

In the literature, the results about N -connection mainly concern products of
finite groups. An example where the authors did not assume G to be a product
is in [27]. However, we are able to find examples that, in our opinion, discourage
the continuation of the research in that direction. Briefly, the examples we will
show are two groups, i.e. the first Grigorchuk group and S8, that are generated
by two subgroups respectively N4-connected and N3-connected and these groups
lose most of the property of the generating subgroups.

Furthermore, the fact that in the finite case we know many properties of fac-
torized N -connected groups, confers both motivations and interest in the attempt
to generalize some results to infinite groups.

For these reasons the second subject we studied is the groups product theory.
We will say that G is a product of its subgroups A,B ≤ G, i.e. G = AB, if

G = { ab | a ∈ A, b ∈ B }

In this theory there are many problems that have been studied for a long time. To
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give some examples, we cite the existence of a non-trivial factorization of a group,
or, in other words, the fact that given a group G there exist (or not) two subgroups
A 6= 1 and B 6= 1, such that G = AB. Another interesting issue, given a factorized
group G = AB, is the existence of a normal group N in G that is contained in
A or in B. To conclude this list we cite also the existence of a factorization for
a given subgroup of a factorized group. A collection of these and other problems
on groups product theory are available for instance in the Kourovka Notebook
[39]. Anyway, the main question in the study of factorized groups is what we call
structure problem, as follows:

Given G = AB a factorized group where A and B are subgroups; suppose that
A and B satisfies a certain property P, what can be said about the whole structure
of the group G?

Two theorems that are milestones in this field are the theorem of Itô [33] and
the theorem of Kegel [36] and Wielandt [55]. The first is about the product of two
abelian subgroups that, with an easy and very clever calculation, is proved to be
metabelian. The second is based on the famous Burnside pαqβ theorem, proving
that the product of two finite nilpotent subgroups is solvable.

Moreover, it is also interesting to give negative answers to the structure prob-
lems discovering, identifying and sometimes conceiving group constructions to
show that, with certain given hypothesis on the factors, it is not possible to prove
an established property for the whole group. A classical example is the theorem
of Suchkov [52] that proved the existence of a countable group G = AB where A
and B are locally finite while G contains a free group of infinite rank.

Coming back to the structure problem and assuming other hypotheses such as,
for instance, some solvability conditions on G, we have many remarkable results.
For some detailed surveys on this kind of topic, we suggest those of Kazarin and
Kurdachenko [35] or Amberg [4].

This brief overview makes it clear that products of groups are in general difficult
to manage. So the introduction of some nilpotency relations between the factors is
somehow reasonable. In particular, the fact that in the finite case such nilpotency
relations, the so-calledN -connection, work well as the results in [13] or [32] witness,
led us to study the products of groups with those additional properties.

What we essentially did is to consider a group G factorized by twoN -connected
subgroups A and B that satisfy a certain property P . Our purpose had been to
establish as much as possible about the structure of G. We succeeded in proving
three non-trivial results about, respectively, three classes of solvable groups with
some finiteness conditions assigned to the factors A e B. The classes in question
are the class of supersolvable groups that is a subclass of solvable groups satisfying
the maximal condition on subgroups. Furthermore the class of Černikov groups
that is an important class of groups satisfying the minimal condition on subgroups.



The third is the class of hypercentral minimax groups.

Our work is divided into five chapters. The first is an introductive chapter in
which we present several topics in group theory, starting from elementary facts and
definitions to cover many themes about finiteness conditions; then we introduce
the most important classes of generalized nilpotent groups. The scope is mainly
to give a quick reference and to fix the notations.

The second chapter has, similarly, an introductive nature; in it we focus on the
theory of groups product. We start presenting the main definitions and lemmas
following the introductive chapter of [1]. Moreover we show some results about
the factorizations of certain normalizers of subgroups of a factorized group. In
particular we proved 2.1.6 and 2.1.8, that are two non-trivial lemmas, that we
used, in our proofs, to construct certain series of factorized groups. Finally we
present some issues on the theory of groups.

The third chapter is completely devoted to C-connection. We list the principal
classes of groups that are mainly involved in the connection, we try to give a more
precise idea of the origin of the definition and we try to do a survey and illustrate
the state of the art.

In the fourth chapter, we show some properties that are particular to the N -
connection and that we investigated. In particular, we present properties about
groups that somehow belong to the infinite groups theory with a special regard to
local nilpotency. First of all, we show that in a factorized group G = AB, under
N -connection and few other hypotheses, both the torsion group and the isolator
group of subgroup containing A∩B factorize. Then we point out how in a product
G of N -connected locally nilpotent subgroups, this FC(G) ≤ Z∞(G) holds. Fur-
thermore, we are able to generalize one of his theorems involving FC-hypercentre
and hypercentre in locally nilpotent groups to the product of N -connected lo-
cally nilpotent subgroups. The last section is dedicated to some examples of N -
connected subgroups.

The last chapter is the main part of this thesis. Essentially here we present the
statements and the detailed proofs we demonstrated. We start with two solvable
products of groups. The first proposition is to continue with the pattern laid
out about abelian factorization. It turns out that the theorem of Itô together
with N -connection simplify the description of these groups. The second result
on solvable factorization is however interesting for the generality in which it is
done and it turns out to be convenient for many proofs we did in the rest of
the chapter, because it essentially gives local nilpotence that is not, in general,
an easy property to verify. In the following section we deal with a product of
supersolvable N -connected subgroups. We prove that this product comes out to
be supersolvable. The proof is done essentially by induction on the Hirsch length
and we use several properties characterizing this class. After that, we continue



our study on products of groups satisfying chain condition approaching Černikov
groups. We demonstrate that a product of two N -connected Černikov subgroups
is Černikov. The proof is divided in the case of product of Černikov p-subgroups
and then the general case. The third result is about the product of N -connected
hypercentral minimax subgroup. This proof is also divided in two parts, the first
assuming that the set of torsion elements is trivial, the second assuming that the
isolator of the intersection of the factor is the whole group. We would like to stress
the fact that in all the three proofs the properties of the factors are transmitted
to the group, so this means that we are able to generalize all these results to a
finite number of pairwise permutable N -connected subgroups. At the end of the
chapter we present some examples and remarks to conclude.



Chapter 1

Basic concepts

This first chapter of the thesis is conceived to introduce and fix the notations,
recall the principal definitions and the main standard results we will need through-
out the rest of the work. The topics we introduce are basic facts of group theory
and they are available in many text books. The main objective is, actually, to give
a quick reference for the readers that need some explanations and to attempt to
offer a self-contained structure of the work.

1.1 Commutators

Let G be a group and let x, y be elements of G. The conjugate of x by y is
denoted by xy = y−1xy, while the commutator of x and y is defined as

[x, y] = x−1y−1xy

We can also define commutators involving more than two elements. In fact, given
n ∈ N, n ≥ 2 and x1, . . . , xn ∈ G, we define single commutator of weight n
recursively as follows

[x1, . . . , xn] = [[x1, . . . , xn−1], xn]

Another symbol it is possible to find very often is the iterated commutator [x,n y]
that is recursively defined as

[x,1 y] = [x, y]

and
[x,n y] = [[x,n−1 y], y]

The next lemma summarizes the main properties of commutators and manipula-
tions in commutator calculus.
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Lemma 1.1.1. Let G be a group and x, y, z elements of G. Then:

1) [x, y]−1 = [y, x];

2) [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z;

3) [x, y−1] =
(

[x, y]y
−1
)−1

and [x−1, y] =
(

[x, y]x
−1
)−1

;

4) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1 (the Hall-Witt identity).

Then, one proves the following simple formulas.

Lemma 1.1.2. Let G be a group and x, y, z elements of G and n ∈ N, here
xy+z = xyxz. Then:

[xn, y] = [x, y]x
n−1+xn−2+...+x+1

Moreover if [x, y, x] = 1 and [x, y, y] = 1, we get

(xy)n = xnyn[y, x](
n
2).

If X and Y are non empty subset of the group G, we set

XY = 〈xy | x ∈ X, y ∈ Y 〉

and
[X, Y ] = 〈[x, y] | x ∈ X, y ∈ Y 〉

From this last definition we can define recursively for all X1, . . . , Xn ⊆ G

[X1, . . . , Xn] = [[X1, . . . , Xn−1], Xn]

and
[X,n Y ] = [[X,n−1 Y ], Y ]

Given a group G we define the derived subgroup G′ such as [G,G]. We define
inductively G(1) = G′ and G(n+1) = [G(n), G(n)], n ∈ N. These subgroups are all
characteristic and they form the derived series. The group G is said to be solvable
if there exists t ∈ N such that G(t) = 1. The smallest t for which this fact holds is
called derived length.

Using commutators it is possible to define another fundamental series of charac-
teristic subgroups of a group G. Inductively we call γ1(G) = G, and for 1 ≤ n ∈ N
we define γn+1(G) = [γn(G), G] = [G,nG]. A group G is said to be nilpotent if
there exist some t such that γt+1(G) = 1. The smallest t for which this fact holds
is called the (nilpotency) class of G.



Another interesting series that we can define is the following: ζ1(G) = Z(G)
the centre of G, and for n ≥ 2, ζn(G) is defined by

ζn(G)/ζn−1(G) = Z(G/ζn−1(G))

It is important to recall that for n ≥ 1, we get that G = ζn(G) if and only if
γn+1(G) = 1.

Given a group G and two subgroups H and K such that H � K we will say
that the factor K/H is a central section if [K,G] ≤ H or equivalently if H � G
and K/H ≤ Z(G/H). Given G a group a series of G

1 = G0 ≤ G1 ≤ . . . ≤ Gn−1 ≤ Gn

is said to be central if for all i : 1, . . . , n, [Gi, G] ≤ Gi−1. In particular we get this
result:

Lemma 1.1.3. Let 1 = G0 ≤ G1 ≤ . . . ≤ Gn−1 ≤ Gn be a central series of the
group G; then for all 0 ≤ i ≤ n,

γn−i+1(G) ≤ Gi ≤ ζi(G).

1.2 Classes of groups

A group theoretical class, or a class of groups, X is a class whose members are
groups that satisfy the following properties:

1) The trivial group is in X;

2) If H ' G and G ∈ X, then H ∈ X.

We will adopt A, N , S, to denote respectively the class of abelian, the class of
nilpotent and the class of solvable groups.

If X and Y are classes of groups, XY denotes the class of groups G that contains
a normal subgroup N � G such that N ∈ X and G/N ∈ Y. The class XY is the
class X-by-Y, e.g. NA is the class of nilpotent-by-abelian groups, equivalently the
groups with nilpotent derived group.

We will say that a class of groups X is subgroups closed if for all G ∈ X and
H ≤ G, then H ∈ X. Analogously, a class of groups X is closed by homomorphic
images or quotients if for all G ∈ X and N � G, then G/N ∈ X. Moreover we
will say that X is extension closed if given a group G and a normal subgroup N ,
if N ∈ X and G/N ∈ X, then G ∈ X.

Let X be a class of groups, we say that a group G is locally-X if every finite
subset of G is contained in a subgroup H ≤ G such that H ∈ X. In particular,
we would like to stress the fact that, if X is subgroups closed, then G is locally-X
if and only if every finitely generated subgroup of G is in X. This is the case of
locally nilpotent group, a class that is central in this work.



1.3 Finiteness conditions

A finiteness condition is a property that is satisfied by all finite groups. For
instance the most important finiteness conditions are the property of being peri-
odic, locally finite and finitely generated. A periodic group is a group in which
there are no elements of infinite order. A locally finite group is a group in which
every finitely generated subgroup is finite. In particular every locally finite group
is periodic; the inverse is not true (see for example, the Grigorchuk group [29]).

Among the most important finiteness conditions there are Max and Min, that
are the maximal condition on subgroups and the minimal condition on subgroups.

Definition 1.3.1. A group G is said to satisfy Max, the maximal condition on
subgroups if for all

H0 ≤ H1 ≤ H2 ≤ . . .

there exists n ∈ N such that Hn = Hn+1 = . . . or in other words every ascending
chain of subgroups is finite.

Analogously, a group G is said to satisfy Min, the minimal condition on sub-
groups if for all

H0 ≥ H1 ≥ H2 ≥ . . .

there exists n ∈ N such that Hn = Hn+1 = . . . or in other words every descending
chain of subgroups is finite.

In general, if P is a family of subgroups of the group G, then G is said to satisfy
the maximal (minimal) condition on P-subgroup if every ascending (descending)
chain of P-subgroups of G is finite.

Another couple of finiteness conditions that are less common are the weak
minimal and maximal conditions on subgroups.

Definition 1.3.2. A group G is said to satisfy the weak maximal condition, wmax,
if there are no infinite ascending chains of subgroups

H0 ≤ H1 ≤ . . .

in which each index |Gi+1 : Gi| is infinite. Replacing ascending with descending
we obtain the weak minimal condition, wmin.

These chain conditions are strictly connected with some classes of groups that
will be essential in the rest of the work. For this reason we decide to introduce
them, stating the main definitions and results. We start with the groups that
satisfy Min.



1.3.1 Min condition

Dealing with Min, it is natural to encounter Černikov groups. A group is a
Černikov group if it is an extension of a direct product of a finite number of Prüfer
groups by a finite group. They form a relevant class of groups that satisfy Min, but
they are not the only ones, if we consider, for instance, Tarsky p-group. However
for the solvable case this characterization holds (see [46, §5, p. 151]):

Theorem 1.3.3. A solvable group satisfies Min if and only if it is a solvable
Černikov group.

A subgroup that is central in the study of groups with Min is the finite residual.
So, given a class of groups X, we define what is the X-residual

Definition 1.3.4. Let G be a group and X a class of groups. The X-residual of G
is the intersection of all normal subgroups whose factor groups in G belong to the
class X. Needless to say, the finite residual is when X is the class of finite groups.

In the case of Černikov groups the finite residual itself has finite index. In fact:

Proposition 1.3.5. Let the group G satisfy the minimal condition on normal
subgroups. Then G admits a unique minimal subgroup of finite index, the finite
residual, and it is characteristic.

Sometimes it could be useful to deal with nilpotent Černikov groups or with
Černikov p-groups. It is possible to prove that the former are central-by-finite and
for the latter the following proposition holds.

Proposition 1.3.6. Let p be a prime and G be a Černikov p-group. Then G is
isomorphic to a subgroup of the wreath product Cp∞ oP , where P is a suitable finite
p-group.

1.3.2 Max condition

A polycyclic group is a group that admits a finite series with cyclic factors.
They are central concerning Max condition because of this theorem

Theorem 1.3.7. A group is a solvable group satisfying Max if and only if it is
polycyclic.

A very important tool dealing with polycyclic groups is the following:

Definition 1.3.8. In a polycyclic group G the number of infinite factors in a cyclic
series is independent of the series and hence is an invariant, known as h(G) the
Hirsch length of G.



Let us call a group poly-infinite cyclic if it has a finite series with infinite cyclic
factors. These groups are polycyclic and torsion-free, but the converse is not true
see example [46, §5, p. 152].

Proposition 1.3.9. Every polycyclic group has a normal poly-infinite cyclic sub-
group of finite index. Moreover, an infinite polycyclic group admits a non trivial
torsion free abelian normal subgroup.

When the group is nilpotent we can say more

Proposition 1.3.10. Let G be a nilpotent group. The following conditions are
equivalent:

1) G is finitely generated;

2) G/G′ is finitely generated;

3) G is polycyclic;

4) G satisfies Max.

Other two useful lemmas about finitely generated nilpotent groups are:

Lemma 1.3.11. Let G be a group and X a system of generators. Then for all
n ≥ 1:

γn(G) = 〈[x1, . . . , xi] | i ≥ n, x1, . . . , xi ∈ X〉

For the proof of this latter lemma see [19, §5, p. 118].

Lemma 1.3.12. Let G be a finitely generated nilpotent group, H a subgroup of G
and π a set of primes. Let x1, . . . , xn be a set of generator of G and suppose that
xrii ∈ H, for some positive π-number ri, and i : 1, . . . , n. Then each element of G
has a positive π-power in H and |G : H| is a finite π-number.

For this lemma we refer to [40, §2, p. 39].
Another class of groups with Max that is intermediate between finitely gener-

ated nilpotent and polycyclic is the class of supersolvable groups. A group is said
to be supersolvable if it has a finite normal series whose factors are cyclic. This
class will have a key role in one of the final theorems; for that reason we will state
some of the principal results, that involve it. The statements and the proofs, we
refer to, are in [46, §5, p. 145-146]. We start with a theorem of Zappa:

Theorem 1.3.13. If G is a supersolvable group, there exists a normal series

1 = G0 ≤ G1 ≤ . . . ≤ Gn = G

in which each factor is cyclic of prime order or infinite order. Moreover the order
of the factors from the left is this: odd factors in descending order of magnitude,
infinite factors, factors of order two.



Corollary 1.3.14. The elements of odd order in a supersolvable group form a
characteristic subgroup.

Another fundamental theorem is the following

Theorem 1.3.15. Let G be a supersolvable group. Then Fit(G) is nilpotent and
G/Fit(G) is a finite abelian group.

A useful lemma we will refer to is:

Lemma 1.3.16. If G is supersolvable then 1 6= N � G implies 1 6= 〈x〉 � G for
some x ∈ N .

Now we state two theorems on polycyclic groups that give conditions to obtain
in the first case nilpotency (see [46, §5, p. 149]), in the second case supersolvability
[49].

Theorem 1.3.17. (Hirsch) Let G be a polycyclic group. Then G is nilpotent if
and only if every finite quotient of G is nilpotent.

Theorem 1.3.18. Let G be a polycyclic group. Then G is supersolvable if and
only if every finite quotient of G is supersolvable.

Although the structure of the statements of this two theorems is the same, it is
necessary to stress the fact that the first has a fully group theory proof, the second
needs some prerequisites in number theory.

1.4 Rank and Minimax groups

1.4.1 Rank in solvable groups

The term rank in algebra has many connotations. In solvable group theory it
refers to the cardinality of a maximal linearly independent subset of some kind.
The foundations of the theory of soluble groups of finite rank is to confer to [43].

We start with the abelian case:

Definition 1.4.1. Let A be an abelian group. Then r0(A) is the cardinality of
any maximal linearly independent subset of element of infinite order, and if p is
a prime, rp(A) is the cardinality of any maximal linearly independent subset of
elements of order p.

From this definition it is easy to prove the following result.

Proposition 1.4.2. Let A be an abelian group and T its torsion subgroup. Then:



1) r0(A) is finite if and only if A/T is isomorphic with a subgroup of the additive
group of a finite dimensional rational vector space.

2) If p is a prime, rp(A) is finite if and only if the p-component Ap is the direct
sum of finitely many cyclic or quasicyclic groups, i.e. Ap satisfies Min.

For abelian groups we can define two further invariants:

the total rank

r(A) = r0(A) +
∑

p prime

rp(A)

and the reduced rank

r̃(A) = r0(A) + Max
p prime

{rp(A)}

From these definitions and keeping in mind that a solvable group admits a
finite series with abelian factors, it is possible to define several classes of (solvable)
groups with finite rank, in some sense. For a precise survey of the main classes see
[40].

1.4.2 Minimax groups

The class we are interested in is the class of solvable minimax groups.

Definition 1.4.3. A group is said to be minimax if it has a series of finite length
for which each factor satisfies Max or Min.

One of the main tools, we are going to use in the final part of this work, is the
following

Definition 1.4.4. Let G be a solvable minimax group. We know that there exists
a series 1 = G0 � G1 � . . . � Gn = G in which each factor satisfies max or min.
Clearly it is possible to refine this series and obtain a series with cyclic factors
(finite or infinite) and quasicyclic factors. By a routine application of Schreier
refinement theorem it is possible to show that the number of infinite factors of that
series is an invariant and we call it minimax length or minimality of G, m(G). It
can be thought as a generalization of Hirsch length for polycyclic groups.

It is possible to prove the following lemma. We refer to [57].

Lemma 1.4.5. Let G be a solvable minimax group and H ≤ G. Then m(H) ≤
m(G) and the equality holds if and only if |G : H| <∞.



Let G be a solvable minimax group; for all H ≤ G we define

m(G : H) = m(G)−m(H)

So, m(G : H) = 0 if and only if |G : H| <∞; moreover if K ≤ H ≤ G we get by
definition that

m(G : K) = m(G : H) +m(H : K).

Abelian minimax groups can be simply described (see [40, §5, p. 86]), in fact:

Proposition 1.4.6. An abelian group A is minimax if and only if it has a finitely
generated subgroup X such that A/X satisfies Min.

A natural generalization can be stated for nilpotent minimax groups (see [47,
§10, p. 168]).

Proposition 1.4.7. Let G be a nilpotent minimax group with class c. Then there
exists a series

X = G0 �G1 � . . .�Gc = G

where X is finitely generated and Gi+1/Gi is an abelian group with Min for i :
0, . . . , c− 1.

Another interesting property is that the finite residual has a simple structure.
To be more precise we state this theorem, admitting that for simplicity, we do not
state it in the absolute generality. For the general statement see [47, §10, p. 169]

Theorem 1.4.8. Let G be a solvable minimax group, let R be the subgroup gener-
ated by all the quasicyclic subgroups of G. Then R is the direct product of finitely
many quasicyclic subgroups of G. Moreover R is the finite residual of G.

Solvable minimax groups can be characterized in terms of the weak maximal
and minimal conditions on subgroups, we introduced before. Baer in [10] estab-
lished the following theorem:

Theorem 1.4.9. Let G be a solvable group. the the following properties are equiv-
alent:

1) G is a minimax group;

2) G satisfies wmax;

3) G satisfies wmin.



1.5 Locally nilpotent groups

In this section we introduce a very important class of generalized nilpotent
groups. This is an eloquent example of how some properties play a crucial role
in finite group theory, but they are much weaker when applied to infinite groups.
In view of the definition of locally-X groups, it is straightforward to deduce the
following:

Definition 1.5.1. A locally nilpotent group is a group in which every finitely
generated subgroup is nilpotent.

We start this short presentation introducing the torsion subgroup. Given a
locally nilpotent group G, the elements of finite order form a fully-invariant sub-
group, that in general is indicated with T (G), called the torsion subgroup of G.
This group is the direct product of p-groups and the quotient G/T is torsion-free.

Now, we introduce the first important result about locally nilpotent groups.

Theorem 1.5.2. (Hirsch-Plotkin) The product of a family of normal locally nilpo-
tent subgroups of a group G is normal and locally nilpotent.

The importance of this theorem resides in the fact that it gives rise to the
following definition

Definition 1.5.3. Given a group G, there is a unique maximal normal locally
nilpotent subgroup containing all normal locally nilpotent subgroups of G. This
group is called Hirsch-Plotkin radical.

Another fundamental definition is that of ascendant subgroup. To give this
definition it is probably necessary to introduce the concept of ascending series.

Definition 1.5.4. Given a group G, we will call ascending series a set of subgroups
{Hα | α ≤ β } indexed by ordinals less or equal to β, such that the following
conditions hold:

1) Hα1 ≤ Hα2, if α1 ≤ α2;

2) H0 = 1 and Hβ = G;

3) Hα �Hα+1;

4) Hλ =
⋃
α<λ

Hα if λ is a limit ordinal.

Moreover the Hα are the terms, Hα+1/Hα are the factors and β is the length or
the ordinal type of the series.



With the previous definition we are ready to give also this:

Definition 1.5.5. Given a group G, a subgroup that occurs in some ascending
series of G is called ascendant subgroup.

The first result about ascendant subgroups (see [46, §12, p. 344]) is the follow-
ing:

Proposition 1.5.6. Given G a group, the Hirsch-Plotkin radical contains all the
ascendant locally nilpotent subgroups.

Another important property of ascendant groups is related with ascendant
abelian divisible subgroups (see [18, §1, p. 19]).

Proposition 1.5.7. Let A be a periodic abelian divisible subgroup of the group G.
If A is ascendant, then AG is abelian divisible.

Now we will give a concise presentation of the main subclasses of locally nilpo-
tent groups that generalize nilpotency. The first class we introduce is the class of
groups that satisfies the normalizer condition or, in other words, the class in which
every proper subgroup is smaller than its normalizer. We know that in the finite
group theory this condition is equivalent to the nilpotency of the group, but this
is not the case. We now give a useful

Definition 1.5.8. Let G be a group and H a subgroup. We define the series of
successive normalizer Hα of H by the following rules:

H0 = H

Hα+1 = NG(Hα)

Hβ =
⋃
λ<β

Hλ

for any successor ordinal α and limit ordinal β.

Having in mind this definition it is straightforward to deduce that in a group
that satisfies the normalizer condition, there exists an ordinal α such that Hα = G,
and then by proposition 1.5.6, we conclude that those groups are locally nilpotent.

The second subclass of locally nilpotent groups we will present is the class of
hypercentral groups. An ascending series

1 = G0 �G1 � . . . Gβ = G



is said to be central if Gα �G and the factor Gα+1/Gα lies in Z(G/Gα) for every
ordinal α < β. A group is called hypercentral if it admits a central ascending
series.

Given a group G, it is possible to define the upper central ascending series in
this way: ζ0(G) = 1, ζα(G)/ζα−1(G) = ζ(G/ζα−1(G)) if α is a successor ordinal
and

ζλ(G) =
⋃
α<λ

ζα(G)

if λ is a limit ordinal. The terminal group of such a series is called the hypercentre
of G. It is easy to understand that a group is hypercentral if and only if it coincides
with its hypercentre. Moreover it is not difficult to deduce that given a central
ascending series {Gα} of G, a subgroup H and observing that HGα � HGα+1

we get that H is ascendant in G and hence the class of hypercentral groups is
contained in the class of groups that satisfies the normalizer conditions. So, we
resume these results with this scheme

nilpotent ⊂ hypercentral ⊂ normalizer condition ⊂ locally nilpotent

We now introduce other subclasses of locally nilpotent groups, without giving any
detail.

Definition 1.5.9. A group is said to be a Gruenberg group if every cyclic subgroup
is ascendant, and a Baer group if every cyclic subgroup is subnormal. In addition
a group is said to be a Fitting group if every element is contained in a normal
nilpotent subgroup. Finally the last class we define is the class N1 of groups in
which every subgroup is subnormal.

Most of the inclusions we are going to show with the next schemes are straight-
forward

nilpotent ⊂ N1 ⊂ normalizer condition ⊂ Gruenberg ⊂ locally nilpotent

nilpotent ⊂ N1 ⊂ Fitting ⊂ Baer ⊂ Gruenberg ⊂ locally nilpotent

with the non-negligible exception of the inclusion N1 ⊂ Fitting (see [17]) that is
deeper to prove and beyond the objective of this short presentation.

Coming back to the class of hypercentral groups, which is the class we will
examine more in depth among the classes of locally nilpotent groups, we will
present other properties that are really typifying those groups. We will summarize
them in a unique proposition

Proposition 1.5.10. Let G be a group:

1) If G is hypercentral and 1 6= N �G, then N ∩ ζ(G) 6= 1;



2) (Baer) G is hypercentral if and only if every non trivial quotient of G has
non trivial centre;

3) (Černikov) G is hypercentral if and only if for every countable sequence
g1, g2, . . . of elements of G, there exists k ∈ N such that [g1, g2, . . . , gk] = 1

Other fundamental remarks we need to recall, dealing with locally nilpotent
groups are about the already introduced chain conditions. In general, if we consider
locally nilpotent groups with a finiteness condition it might be forced to become
nilpotent. Here is a non trivial example that we will use (see [46, §12, p. 346-347]).

Theorem 1.5.11. (McLain) Let G be a locally nilpotent group that satisfies the
maximal condition on normal subgroups. Then G is a finitely generated nilpotent
group.

In other words this theorem affirms that Max and Max-n are the same for
locally nilpotent groups. One may expect an analogue with Min-n, but we do not
obtain nilpotency. Anyway we get a precise description:

Theorem 1.5.12. (McLain) Let G be a locally nilpotent group. It satisfies the
minimal condition on normal subgroups if and only if it is a direct product of
finitely many Černikov p-groups, for various primes p. Moreover a locally nilpotent
group that satisfies the minimal condition on normal subgroups is hypercentral.

Gathering these two results we deduce this easy corollary:

Corollary 1.5.13. Let G a locally nilpotent minimax group, then it is solvable.

Another theorem we will use related to this topic is the following by Mal’cev
(see [43]).

Theorem 1.5.14. Let G be a locally nilpotent group. Then the abelian subgroup
of G have finite torsion-free rank r0(G) if and only if G/T (G) is a finite rank
(torsion-free) nilpotent group.

An immediate corollary is

Corollary 1.5.15. Let G be a locally nilpotent minimax torsion-free group. Then
it is nilpotent.

1.6 Isolators

Going deeper in the study of locally nilpotent groups, in particular torsion-free
locally nilpotent, a very effective concept is that of isolator of a subgroup. It has
been introduced by Philip Hall in [31] and we suggest for a concise account [18].



Definition 1.6.1. Given a group G, a subgroup H ∈ G and a set of primes π.
The π-isolator of H in G is the set:

IπG(H) = {g ∈ G | gn ∈ H for some π − number n ≥ 1}.

If π is the set of all primes, we can speak about the isolator of H in G; thus

IG(H) = {g ∈ G | gn ∈ H for some 1 ≤ n ∈ N}

From now on, we will refer to isolators considering, in general, the set of all
primes (our second definition). Nevertheless almost all the results we are going to
state admit a local version by specializing some proofs.

In general (it is easy to find examples) isolators are subsets and non necessarily
subgroups (e.g. the isolator of {1} in D∞). They gain the property to be subgroups
in a wide family of groups: the family of locally nilpotent groups. In fact:

Proposition 1.6.2. Let G be a locally nilpotent group. Then, for all H ≤ G,
IG(H) is a subgroup of G.

Consider G a locally nilpotent group and H a subgroup. It is straightforward
that IG(IG(H)) = IG(H) and that if H � G then IG(H) � G. Other important
properties that are less obvious and they involve derived and central series are
resumed in the next proposition.

Proposition 1.6.3. Let G be a locally nilpotent group and let H,K ≤ G. Then
for every 1 ≤ n ∈ N,

1) [G, IG(H)] ≤ IG([G,H]), thus if U/V is a central factor of G, then also
IG(U)/IG(V ) is a central factor;

2) γn(IG(H)) ≤ IG(γn(H));

3) IG(H)(n) ≤ IG(H(n)).

This result is an instance of a more general result proved by P. Hall in [31],
that is the following

Theorem 1.6.4. (P. Hall) Let G be a locally nilpotent group, θ(x1, . . . , xn) be a
word in the n variables x1, . . . , xn, let π be a set of primes and H1, . . . , Hn ≤ G,
then

θ(IπG(H1), . . . , I
π
G(Hn)) ≤ IπG(θ(H1, . . . , Hn)).

A corollary that is often useful is:



Corollary 1.6.5. Let H,K subgroups of the locally nilpotent group G. Then

[IG(H), IG(K)] ≤ IG([H,K]).

In particular IG(NG(H)) ≤ NG(IG(H)).

For torsion-free locally nilpotent groups we have this stronger result:

Proposition 1.6.6. Let G be a locally nilpotent torsion-free group and H ≤ G.
Then for every ordinal α

ζα(IG(H)) = IG(ζα(H))

1.7 Engel groups

We conclude this part about generalized nilpotent groups presenting a class
that is not locally nilpotent, that of Engel groups. We will state only the main
definitions and results, for a detailed survey we suggest [54] of Traustason.

Definition 1.7.1. Given a group G and an element g ∈ G, g is called a right Engel
element if for each x ∈ G there exists n = n(g, x) ∈ N such that [g,n x] = 1. If n
can be chosen independently of x, then g is a right n-Engel element or a bounded
right element. The set of right Engel elements and the set of bounded right Engel
elements are usually indicated respectively with

R(G) and R̄(G)

Similarly, given a group G and an element g ∈ G, g is called a left Engel
element if for each x ∈ G there exists n = n(g, x) ∈ N such that [x,n g] = 1. If n
can be chosen independently of x, then g is a left n-Engel element or a bounded left
element. The set of left Engel elements and the set of bounded left Engel elements
are indicated respectively with

L(G) and L̄(G)

For any group G the equalities G = L(G) and G = R(G) are equivalent and
a group with this property is called Engel group. As we are going to show in the
next proposition, there is a strong link between, for example, L(G) and the Hirsch-
Plotkin radical of G, but anyway a famous example of Golod (see [28]) shows that
there exist Engel groups that are not locally nilpotent.

We gather the main properties of those sets, derived from several theorems.

Proposition 1.7.2. Let G be a group.



1) (Heineken) R(G)−1 ⊆ L(G) and R̄(G)−1 ⊆ L̄(G);

2) L(G) contains the Hirsch-Plotkin radical of G;

3) R(G) contains the hypercentre of G;

4) (Zorn) If G is finite and Engel then it is nilpotent.

A theorem that deserves to be mentioned is the following due to Gruenberg
[30], that shows us how the assumption of solvability simplifies the structure of an
Engel Group.

Theorem 1.7.3. (Gruenberg) Let G be a solvable group. The set of left Engel
elements L(G) coincides with the Hirsch-Plotkin radical of G. Then a solvable
Engel group is a Gruenberg group.

1.8 FC-groups

The last section of this introductive chapter is a very short presentation of
FC-groups, a class of groups that generalizes both the class of finite groups and
the class of abelian groups. For this class of groups we refer to [8] and [46, §14,
p. 424-426]. Given a group G, an element g ∈ G is said to be an FC-element if it
has only a finite number of conjugates in G, or, in other words, if |G : CG(g)| is
finite. The observation that gives these elements a special role is the following:

Proposition 1.8.1. (Baer) In any group G the FC-elements form a characteristic
subgroup.

An FC-element can be thought as a generalization of an element of the centre
that is, needless to say, an element with just a conjugate. For this reason the name
of the subgroup of all the FC-elements is FC-centre. A group is said to be an
FC-group if it equals its FC-centre.

For the sake of completeness we state a couple of important results.

Theorem 1.8.2. (Baer) If G is an FC-group, then G/ζ(G) is a residually finite
torsion group.

Concerning torsion FC-groups we have:

Proposition 1.8.3. A torsion group G is an FC-group if and only if each finite
subset is contained in a finite normal subgroup.



Chapter 2

Products of groups

The product of two subsets of a group is a topic that every student that attends
a basic course of group theory has to deal with, even without full awareness of it.
In fact, given a group G and a subgroup H, a coset xH is nothing else that the
product of {x} and H.

Besides the cosets, the other meaningful examples concern essentially the prod-
ucts of subgroups. A group G is said to be the product of its subgroups A and B,
i. e. G = AB, if and only if

G = {ab | a ∈ A, b ∈ B}

We also say that G is factorized by A and B.
Given a group G and two subgroups A and B, a necessary and sufficient con-

dition to have that AB is a subgroup as well is the following

Proposition 2.0.4. Let G be a group and A and B two subgroups. Then AB is
a subgroup of G if and only if AB = BA.

To reaffirm the fact that the product of groups is in some sense more common
and more natural than what in general one may imagine, it is sufficient to think
of the well-known Dedekind modular law, that it is based on factorization of
subgroups. Another more than obvious fact that should be sufficient to motivate
this study is that the product we defined generalize, for instance, the direct product
and the semidirect product, two fundamental concepts of group theory.

Anyway the literature of general groups product theory is not too extensive
and regarding books to do a systematic study of that topic we suggest [1] for a
general introduction and a more detailed attention to the infinite case and [12] for
the finite case.

This chapter is a brief introduction to the groups product theory. Notation
and results are mainly taken from [1].
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2.1 Elementary properties

From the definition we have given of groups product, it is easy to see that every
homomorphic image factorizes as follows

G

N
=
AN

N

BN

N

Considering subgroups of factorized groups, they are not necessarily factorized.
Anyway we can use this lemma

Lemma 2.1.1. (Wielandt, 1958) Let the group G = AB be the product of two
subgroups A and B. For a subgroup S of G the following conditions are equivalent:

1) If ab ∈ S, with a ∈ A and b ∈ B, then a ∈ S;

2) S = (A ∩ S)(B ∩ S) and A ∩B ≤ S.

A subgroup S of a factorized group G is said to be factorized if it satisfies one
of the equivalent conditions of the previous lemma.

We now state some lemmas to show the basic properties of product theory. We
start with

Lemma 2.1.2. Let the group G = AB the product of two subgroups A and B.
Then the following hold:

1) the intersection of arbitrarily many factorized subgroups of G is factorized;

2) the subgroup generated by arbitrarily many factorized normal subgroup of G
is factorized;

3) if N is a normal subgroup of the group G, a subgroup S/N of G/N is fac-
torized if and only in S factorized in G.

According with this lemma the intersection X(S) of all factorized subgroups
of G = AB containing the subgroup S, is the smallest factorized subgroup of G
containing S. The subgroup X(S) is called the factorizer of S in G = AB. The
factorizer obtains an important role when the subgroup is normal. In fact we get
an interesting and useful triple factorization.

Lemma 2.1.3. Let the group G = AB the product of two subgroups A and B, and
let N be a normal subgroup of G. Then:

1) X(N) = AN ∩BN ;

2) X(N) = (A ∩BN)N = (B ∩ AN)N = (A ∩BN)(B ∩ AN)



As we have already said, subgroups of factorized groups are not necessarily fac-
torized. This easy lemma, which we will use often, gives some sufficient conditions
to factorize certain subgroups.

Lemma 2.1.4. (Wielandt, 1958) Let the group G = AB be the product of two
subgroups A and B, and let A0 and B0 be normal subgroup respectively of A and
B. Then, called H = 〈A0, B0〉 and L = A0 ∩B0, the following hold:

1) if one of the factor groups A/A0 and B/B0 is periodic, then

NG(H) = NA(H)NB(H);

2) if one of the subgroups A and B is periodic, then

NG(L) = NA(L)NB(L).

This lemma inspired us for a slight modification, that we proved mainly retrac-
ing the original proof.

Lemma 2.1.5. Let the group G = AB be the product of two subgroups A and
B, and let A0 and B0 be normal subgroup respectively of A and B. Called H =
〈A0, B0〉, if the condition IG(A ∩B) = G holds, then

NG(H) = NA(H)NB(H).

Proof. Let g ∈ NG(H); G = AB so by definition g = ab, where a ∈ A and b ∈ B.
Clearly Hg = H and Ha = Hb−1

. By the normality of A0 and B0, we have that
A0 ≤ Ha and B0 ≤ Hb−1

. This implies H ≤ Ha = Hb−1
. Since IG(A ∩ B) = G,

we get that there exists m ∈ N such that am ∈ A ∩B, so for this reason

H ≤ Ha ≤ Ha2 ≤ . . . ≤ Ham = H

that means Ha = H or, in other words, a ∈ NA(H), our thesis.

At this point it should be clear that normalizers of certain subgroups gained
a crucial role in this field, because under not too restrictive hypotheses, they
factorize. For instance, they provide examples of factorizers of subgroups, that
often in literature permit to reduce to easier issues, e.g. to have a normal subgroup
with perhaps a desired property.

In our case we use normalizers to build series of factorized subgroups, as those
we are going to define in the next two lemmas



Lemma 2.1.6. Let G be a group and A,B ≤ G such that G = AB. If A locally
satisfies Max, then, called M0 = A ∩ B, M1 = NB(M0), . . ., Mi+1 = NB(Mi),we
have that for all i ≥ 0

NG(Mi) = NA(Mi)Mi+1

Proof. We proceed by induction on i. If i = 0 we have that given g ∈ NG(M0),
there exist a ∈ A and b ∈ B such that g = ab and then Mab = M , from which
Ma = M b−1 ≤ A ∩ B = M . Now we have to prove the other inclusion, namely
M ≤ Ma. Consider m ∈ M ; we know that 〈m, a〉 satisfy Max by hypothesis. So
we are able to define

H = 〈m,ma, . . . ,mat , . . .〉.

The sequence
H ≤ Ha−1 ≤ . . . ≤ Ha−s ≤ . . .

is an ascendant chain of subgroup of 〈m, a〉, thus there exists t integer such that
Ha−t = Ha−t−1

, i.e. H = Ha that implies m ∈ Ma and then Ma = M . So,
a ∈ NA(M) and we obtained the desired factorization NG(M) = NA(M)NB(M).

Now, let i ≥ 1, consider g = ab ∈ NG(Mi). So,

Ma
i = M b−1

i ≤ B

from which, in particular

Ma ≤Ma
i ∩ A ≤ B ∩ A = M

that means, using the same techniques as before, a ∈ NA(M).
Let 0 ≤ j ≤ i be the greatest integer such that a ∈ NA(Mj). Suppose that

j < i. We know that 〈a,Mj+1〉 ≤ NG(Mj), hence, by inductive hypothesis,

Ma
j+1 ≤ NG(Mj) = NA(Mj)Mj+1

Keeping in mind that Ma
j+1 ≤Ma

i = M b−1

i ≤ B, we obtain

Ma
j+1 ≤ NA(Mj)Mj+1 ∩B = Mj+1(NA(Mj) ∩B) = Mj+1M = Mj+1

from which Ma
j+1 ≤Mj+1.

Therefore,
Mj+1 ≤Ma−1

j+1 ≤ NG(Mj)

and thus

Ma−1

j+1 = Ma−1

j+1 ∩Mj+1NA(Mj) = (Ma−1

j+1 ∩NA(Mj))Mj+1 ≤ (Ma−1

j+1 ∩ A)Mj+1 =



= (Mj+1 ∩ A)a
−1

Mj+1 = Ma−1

Mj+1 = Mj+1

from which Ma−1

j+1 = Mj+1 and then a ∈ NA(Mj+1), a contradiction. So j = i, then
a ∈ NA(Mi) and consequently our thesis.

Remark 2.1.7. In this latter lemma we proved, en passant, also the following
inclusions NA(M0) ≥ NA(M1) ≥ . . . ≥ NA(Mj) ≥ . . .

The following lemma is just an extension of the previous, using this time the
ordinal numbers.

Lemma 2.1.8. Let G be a group and A,B ≤ G such that G = AB. If A locally
satisfies Max, M0 := A∩B and (Mα) is the series of successive normalizers of M0

in B, then called:
Y1 := NG(M0)

Yα := NG(Mα−1)

if α is not a limit ordinal and

Yβ :=

(⋂
λ<β

NA(Mλ)

)
Mβ

if β is a limit ordinal, we have that (Yα) is a series of factorized subgroups of G
and (Yα ∩ A) is a decreasing series of subgroup of A.

Proof. We proceed by transfinite induction. For α = 1 is true for the previous
lemma. If α is a limit ordinal we have only to prove that

Yα :=

(⋂
λ<α

NA(Mλ)

)
Mα

is a subgroup. To do that, we need only to observe that⋂
λ<α

NA(Mλ) ≤ NA(Mα)

Suppose that α ≥ 2 is a successor ordinal. Consider g ∈ NG(Mα−1). By
definition there exist a ∈ A and b ∈ B such that g = ab. So,

Ma
α−1 = M b−1

α−1 ≤ B

from which, in particular

Ma
0 ≤Ma

α−1 ∩ A ≤ B ∩ A = M0



that means, a ∈ NA(M0).
Consider ρ such that 1 ≤ ρ ≤ α and such that it is the smallest ordinal such

that a /∈ NA(Mρ). If ρ is a successor ordinal, proceeding as in the previous lemma
we get a contradiction. Otherwise, ρ is a limit ordinal. Then for all λ < ρ,
a ∈ NA(Mλ), or, in other words

a ∈
⋂
λ<ρ

NA(Mλ) ≤ NA(Mρ)

a contradiction. So ρ does not exist and we get our thesis.

To conclude this introductive part, we state three more useful lemmas.

Lemma 2.1.9. Let the group G = AB be factorized by A,B ≤ G. Let the group
D be such that B ≤ D ≤ G, and let a subgroup Y ≤ G be factorized in AD. Then
it is factorized also in AB.

Proof. By definition (see lemma 2.1.1), Y = (A ∩ Y )(D ∩ Y ) and Y ≥ A ∩ D.
Applying twice Dedekind modular law, we get

D ∩ Y = AB ∩D ∩ Y = (A ∩D)B ∩ Y = (A ∩D)(B ∩ Y )

and for that

Y = (A ∩ Y )(D ∩ Y ) = (A ∩ Y )(A ∩D)(B ∩ Y ) = (A ∩ Y )(B ∩ Y )

Lemma 2.1.10. (Amberg, 1973) Let the group G = AB be the product of two
subgroups A and B, and let A0 and B0 be two finite index subgroups of A and
B respectively. Then, called |A : A0| = n and |B : B0| = m, we have that
|G : 〈A0, B0〉| ≤ nm.

Lemma 2.1.11. Let the group G = AB be the product of two subgroups A and B.
If x, y ∈ G, then G = AxBy. Moreover, there exists an element z ∈ G such that
Ax = Az and By = Bz.

2.2 Chain conditions in factorized groups

In the first chapter we introduced some basic notions about chain conditions.
Amberg in 1973 proved a lemma to show how the structure of a factorized group
G in which the factors satisfy Max (Min) is influenced.



Lemma 2.2.1. Let G be a group A,B ≤ G = AB. If A,B satisfy the Max (Min),
then G satisfies Max-n (Min-n).

Using a similar strategy of that followed by Amberg, it is possible to prove an
analogous lemma concerning the weak chain conditions on subgroups.

Lemma 2.2.2. (Zaitsev) Let G be a group A,B ≤ G = AB. If A,B satisfy the
wmax (wmin), then G satisfies wmax-n (wmin-n).

Essentially the first lemma affirms that the product of two subgroups that
satisfy Max (Min) satisfies Max-n (Min-n). For what we saw reducing to locally
nilpotent groups we get that Max-n (Min-n) gives us Max (Min). So, if the entire
group is locally nilpotent, these properties, when owned by the factors, are owned
by the whole group.

The second lemma affirms an analogous property related to wmax and wmin,
but in this case if we reduce ourselves to the case of locally nilpotent we do not
get the transmission of those properties from the factors to the entire group. For
an example of this fact see [37] and [38]. In the same papers Kurdachenko proved
the properties that can be deduced in locally nilpotent groups satisfying wmin-n.
We will use them frequently in the final chapter to improve our results. For this
reason a selection of those properties are summarized in the following:

Theorem 2.2.3. (Kurdachenko) Let G be a locally nilpotent group. If it satisfies
wmin-n, then the following hold:

1) G is hypercentral and solvable;

2) F(G) is periodic divisible and abelian;

3) G/T (G) is minimax.

If it satisfies wmax-n, then

4) G is hypercentral if and only if it is solvable;

5) F(G) is Černikov.

Here F(G) is the F-perfect part of G. A group is said to be F-perfect if it has no
proper normal subgroups of finite index (see for details [48, §9, p. 123]). Another

important theorem, which we will use frequently in the final chapter to improve
our results, is the theorem of Wilson (see [57]).

Theorem 2.2.4. Let G be a solvable group, A,B ≤ G two minimax subgroups
such that G = AB. Then G is minimax.



2.3 Structure problem

It is quite natural to imagine that the structure of a factorized group G = AB
is influenced by the properties of its subgroups A and B. The point is how deep
this influence is. There are trivial examples in which that influence is strong, for
instance, if A and B are finite then G is finite; other examples that are not so
straightforward, are, for instance, those considered in the previous section about
Max, Min, wmax and wmin. Nevertheless this neat transmission of properties is
not very common and it is actually a field of study in group product theory. On
the other hand, it is also interesting to find a property P and a factorized group
G = AB such that the factors A and B satisfy P and G does not.

To give a couple of important examples, there exists G = AB such that G is
the product of two FC-groups, but it is not FC, see [47, §4, p. 125]; the second
example is by Suchkov and is the following theorem (for the details see [1, §3,
p. 42-46] or [52])

Theorem 2.3.1. There exists a countable non-periodic group G = AB that is
factorized by two locally finite subgroups A and B.

Returning to the main problem, we need to point out the most important
results. The first is a true milestone in this theory. It is a result due to Itô [33],
that making use of easy commutator calculation, proved:

Theorem 2.3.2. (Itô, 1955) Let the group G = AB the product of two abelian
subgroups A and B. Then G is metabelian.

In the same period, another relevant problem that drew the attention of many
mathematicians (Huppert, Szép, Wielandt and others) was the product of finite
nilpotent groups, that was first conjectured and then proved to be solvable.

Theorem 2.3.3. (Kegel, Wielandt) Let the finite group G = AB be the product
of two nilpotent subgroups A and B. Then G is solvable.

For the details of the proof we suggest [1, §2, p. 27-32]. We state also this

Corollary 2.3.4. Let the finite group G = G1G2 . . . Gr the product of pairwise
permutable nilpotent subgroups, G1, . . . , Gr. Then G is solvable.

A very rich field of investigation is that of the abelian factorizations. In fact,
the Itô theorem gives an important incentive guaranteeing solvability, and, as a
matter of fact, Sesekin in [50] and [51] proved that if the factors are abelian with
Min, so is the whole group; moreover if the factors satisfy max, the entire group is
polycyclic. Investigating further the abelian factorization, Zaitsev obtained con-
siderable results assuming finite rank conditions. In [58] he found for example,



assuming finite r0(A) and r0(B), that r0(G) = r0(A) + r0(A)− r0(A ∩ B). In the
same paper he proved an analogous result about finite minimax rank.

Another noteworthy field of investigation is factorization with finiteness con-
ditions, in particular the so-called chain conditions. As we already mentioned,
Amberg in [3] proved that the product of two groups that satisfy Max (Min), sat-
isfies Max-n (Min-n). Zaitsev in [59] proved an analogous result about wmax and
wmin. The most important result concerning groups factorized by two Černikov
groups was proved by Černikov. The precise statement is the following:

Let G = AB be a locally graded group where A and B are Černikov. Then G
is Černikov.

This statement is really important also because it does not contain any a priori
solvability condition, something that in most of the other demonstrations is neces-
sary. To give some examples, Zaitsev in [60] and Lennox Rosebald in [41] proved
that given a solvable group G factorized by its subgroups A and B, G is polycyclic
if and only if A and B are polycyclic. An analogous result has been proved for
solvable factorized groups if one of the two factors is nilpotent by Amberg and
Robinson in [6], and if both the factors are locally nilpotent by Zaitsev in [59].

To complete this short overview, we cite an open question.

Problem 2.3.5. Let the group G = AB be the product of the abelian-by-finite
subgroups A and B. Is it solvable-by-finite?

We still do not know if this statement is true or not, but it was proved in
several particular cases. For a precise summary of those cases see [4]. We recall
only one instance among the other, proved by Černikov (1981).

Theorem 2.3.6. Let the group G = AB be the product of two central-by-finite
subgroups A and B. Then G is solvable-by-finite.





Chapter 3

C-connection between subgroups

Let C be a class of groups, let G be a group and consider A,B ≤ G two
subgroups. We will say that the subgroups A and B are C-connected if for all
a ∈ A and b ∈ B the subgroup 〈a, b〉 belongs to C. This definition, that is central
in this work, was formulated for the first time by Carocca in [14].

Although this definition is clear and immediately comprehensible, it is not easy
to make any remarks without choosing any specific class of groups. So far, the
literature about C-connection shows us some results regarding these specific classes
of groups:

1) the class N of nilpotent groups and, given k ∈ N, the class Nk of groups
with nilpotency class at most k;

and a bit more marginally

2) the class S of solvable groups;

3) the class U of supersolvable groups;

4) the class NA of nilpotent-by-abelian groups;

5) the class N 2 of metanilpotent groups.

3.1 Total permutability and Carocca’s theorems

To trace the origin of the definition of C-connection, it is probably necessary
to state the following theorem by Asaad and Shaalan [7]

Theorem 3.1.1. Let G = AB be a finite group, such that A and B are totally
permutable supersolvable groups. Then G is supersolvable.
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And the generalization Carocca gave in [14],

Theorem 3.1.2. Let G = G1G2 . . . Gr be a finite group such that G1, G2, . . . , Gr

are pairwise totally permutable subgroups of G. Let F be a saturated formation
which contains the class of supersolvable groups. If for all i : 1, . . . , r the subgroups
Gi are in F , then G ∈ F .

Where given a group G = AB we say that A and B are totally permutable if
and only if every subgroup of A is permutable with every subgroup of B.

To better understand the reason why these two results gave rise to idea of the
C-connection, we need to stress the fact that if G = AB and A, B are totally
permutable, then for all a ∈ A and b ∈ B we get

〈a, b〉 = 〈a〉〈b〉 = 〈b〉〈a〉

and a well known result by Douglas [22] and Itô [34] says that the product of
two cyclic groups is supersolvable and abelian-by-finite, i.e. total permutability
implies U -connection. Observe that the other implication is not true: for example
the dihedral group D8 is nilpotent (and then supersolvable), but is not hard to
find two non totally permutable subgroups.

Anyway, it is not possible to generalize theorem 3.1.2 with the weaker condition
of U -connection instead of total permutability. In fact

Example 3.1.3. (Peterson, 1973) Consider H := C5 × C5 and call x, y two gen-
erators of those cyclic groups; let a, b be the following automorphisms

xa = x2, ya = y3, xb = y, yb = x

Call A := 〈a, b〉, that is isomorphic to D8, and G := H o A. This group G is
an example of a finite group that is a product of two supersolvable, U-connected
subgroups, but it is not supersolvable. In fact it is not difficult to show that for
every element c ∈ A, the subgroups 〈c,H〉 are all supersolvable, fact that guarantees
the U-connection, while G′ is not nilpotent and then G is not supersolvable.

Even though in this case U -connection does not work very well, Carocca suc-
ceeded in proving in [14]

Theorem 3.1.4. Let G = G1G2 . . . Gr be a finite group such that G1, . . . , Gr are
pairwise permutable subgroups of G. Let F be a saturated formation such that
N ⊆ F . If for every pair i, j ∈ {1, . . . , r}, i 6= j, the subgroups Gi and Gj are
N -connected F-groups, then G ∈ F .

Some years later in [15], he proved, using the classification theorems of finite
simple groups, the following:



Theorem 3.1.5. Let G = G1G2 . . . Gr be a finite group such that G1, . . . , Gr

are solvable subgroups of G. If they are pairwise permutable and S-connected
subgroups, then G is solvable.

Considering once again example 3.1.3, we can remark that is not even possible
to generalize theorem 3.1.4, with U -connection.

In conclusion we would like to underline a fact concerning the U -connection.
Although apparently there is no literature about it, the fact that the total per-
mutability implies U -connection allows us to include the literature about total
permutability in the U -connection literature. Nevertheless, we will not examine it
in depth, but we cite, for instance, [12] for interested readers.

3.2 Cosubnormality and N -connection

After we mentioned the relationship that holds between U -connection and total
permutability, it may be interesting to show the relationships that occur between
cosubnormality and N -connection. Given a finite group G, we say that A,B ≤ G
are cosubnormal, and we write AcsB, if A,B are subnormal in their joint 〈A,B〉.
Moreover we say that A,B ≤ G are strongly cosubnormal, AscsB if every subgroup
of A is cosubnormal with every subgroup of B.

Remark 3.2.1. If G is finite, A and B are N -connected is equivalent to say that
every cyclic subgroup of A is cosubnormal with every cyclic subgroup of B. In
other words in finite groups strong cosubnormality implies N -connection.

This property has been deeply discussed in [11], where the authors proved the
following characterization theorem:

Theorem 3.2.2. Let G a finite group and A,B ≤ G = 〈A,B〉. The following
statements are equivalent:

1) AscsB;

2) AcsB and A, B are N -connected;

3) [A,B] ≤ Z∞(G).

Corollary 3.2.3. Let G be a finite group and A, B two N -connected subgroups of
G. Then [A,B] is nilpotent if and only if A and B are subnormal in 〈A,B〉.

This theorem shows us that cosubnormality and N -connection are closely re-
lated concepts, even though they are not equivalent. In fact: consider a non
nilpotent group G. If we put G = A = B, then A and B are trivially cosubnor-
mal, but they are not N -connected. For the vice versa, the authors construct an
example in [11] or alternatively we propose the following example in [24]



Example 3.2.4. (Fumagalli) Let G be the symmetric group of degree 8. Consider

h := (12)(34)(56)(78), a := (23)(45)(67), b := (24)(35)(67)

Called H := 〈h〉 and A := 〈a, b〉, it is possible to show that G = 〈A,H〉 and A and
H are N3-connected subgroups, but for example H is not subnormal in G.

In the important case of products the authors proved that N -connection and
strong cosubnormality coincide.

Theorem 3.2.5. Let G be a finite group and let A,B ≤ G = AB. If A and B are
N -connected, the they are strongly cosubnormal.

3.3 Generalizing Carocca theorems

The work of Carocca on N -connection of products of groups was taken further
first in the finite solvable universe in [13], for products of two N -connected groups
with a particular accent on the formation theory; after it was extended in the
finite universe and to the products of finitely many factors in [32]. The results
we are going to state are proved in these two articles. We start by showing a
proposition that collects the basic properties of a product of pairwise N -connected
and permutable groups.

Proposition 3.3.1. Let the finite group G = G1 . . . Gr be the product of the pair-
wise permutable N -connected subgroups G1, . . . , Gr. Then the following properties
holds:

1) [GNi , Gj] = 1 for all i, j : 1, . . . , r. In particular GNi �G for all i : 1, . . . , r;

2) Gi ��G for all i : 1, . . . , r;

3) If (Gi)p ∈ Sylp(Gi) for each i : 1, . . . , r and prime p, then (Gi)p(Gj)p =
(Gj)p(Gi)p ∈ Sylp(GiGj);

4) If Xi is a p-subgroup of Gi for each i : 1, . . . , r and prime p, then 〈X1, . . . , Xr〉
is a p-subgroup of G;

5) If Xi is a nilpotent subgroup of Gi for each i : 1, . . . , r, then 〈X1, . . . , Xr〉 is
a nilpotent subgroup of G;

6) GN = GN1 . . . GNr ;

7) If I, J ⊆ {1, . . . , r} and I ∩ J = ∅, then
∏

i∈I Gi and
∏

j∈J Gj are N -
connected;



8) If I, J ⊆ {1, . . . , r} and I ∩ J = ∅, then

[
∏
i∈I

Gi,
∏
j∈J

Gj] ≤ Z∞(G)

are N -connected; Moreover∏
i∈I

Gi ∩
∏
j∈J

Gj ≤ Z∞(G);

9) If Xi is a π-subgroup of Gi for each i : 1, . . . , r and set of primes π, then
〈X1, . . . , Xr〉 is a π-subgroup of G.

Now we report some generalizations of Theorem 3.1.4. The first one is more
a consideration about the fact that the hypothesis are not sharp. In fact in the
Carocca’s original statement the saturated formation F is assumed to contain N ,
but the same proof shows that this hypothesis is not necessary. For this reason in
[32] we have the following restatement

Theorem 3.3.2. Let G = G1G2 . . . Gr be a finite group such that G1, . . . , Gr are
pairwise permutable subgroups of G. Let F be a saturated formation. If for every
pair i, j ∈ {1, . . . , r}, i 6= j, the subgroups Gi and Gj are N -connected F-groups,
then G ∈ F .

The second generalization has been proved in [13] for solvable groups and then
extended in [32] to a more general result that is the following

Lemma 3.3.3. Let G = G1G2 . . . Gr be a finite group such that G1, . . . , Gr are
pairwise permutable subgroups of G. Let F be a formation such that N ⊆ F . If
for every pair i, j ∈ {1, . . . , r}, i 6= j, the subgroups Gi and Gj are N -connected
F-groups, then G ∈ F .

The authors noticed that in the case of general formation the hypothesisN ⊆ F
is required.

Example 3.3.4. Consider the formation F of all elementary abelian p-groups,
for p prime. Let G = Zp o Zp = B o Zp, where B is the base group following the
standard notations. Obviously B,Zp ∈ F and they are N -connected, but G /∈ F .

Another interesting result is the following

Proposition 3.3.5. Let G = G1G2 . . . Gr be a finite group such that G1, . . . , Gr

are pairwise permutable N -connected subgroups of G. Then

Z∞(G) = Z∞(G1) . . . Z∞(Gr)



Among other results presented, we will cite one about F -projector and another
one about F -residual, where F is, as usual, a formation.

Theorem 3.3.6. Let F be a saturated formation and let G = G1 . . . Gr be the
product of pairwise N -connected and permutable subgroups G1, . . . , Gr. If Xi ∈
ProjF(Gi), far every i : 1, . . . , r then X1 . . . Xr is a pairwise permutable product
of the subgroups X1, . . . , Xr and X1 . . . Xr ∈ ProjF . Moreover, if G has a unique
conjugacy class of F-projectors,then every F-projector of G has this form.

Proposition 3.3.7. Let F be a formation and let the group G = G1 . . . Gr be
the product of the pairwise N -connected and permutable subgroups G1, . . . , Gr. If
either F is saturated or N ⊆ F ⊆ S, then

GF = GF1 . . . G
F
r

In particular, if G ∈ F , then Gi ∈ F , for all i : 1, . . . , r.

3.4 C-connection with C ∈ {N 2,NA,N2}
More recently M. P. Gállego, P. Hauck, M. D. Pérez-Ramos introduced the

study of three different kinds of C-connection. The first one is the connection where
C = N 2 the class of metanilpotent groups, the second is the connection where
C = NA the class of nilpotent-by-abelian groups and the third is the connection
with C = N2 the class of nilpotent groups with nilpotency class at most 2.

3.4.1 N 2-connection

We start with the case of metanilpotent connection. All the results we are
going to mention are in [25]. The main result is the following

Theorem 3.4.1. Let G be a finite solvable group, A,B ≤ G = AB and suppose
that A and B are N 2-connected. Then

G

F (G)
=
AF (G)

F (G)

BF (G)

F (G)

is an N -connected product of the two factors.

Although the statement of this theorem is very simple, the demonstration is
rather complex and a bit technical. We will only comment on some remarks the
authors make.



Remark 3.4.2. It is not possible to generalize theorem 3.4.1 to the case of a
product of more then two factors. For instance, let G be the symmetric group of
degree 4. Choose

A := 〈(12)〉 B := 〈(123)〉 C := 〈(12)(34), (13)(24)〉

Then G = ABC is the product of these pairwise permutable N 2-connected sub-
groups, but AF (G)/F (G) and BF (G)/F (G) are not N -connected.

Remark 3.4.3. It is not even possible to remove the hypothesis for G to be the
product of A and B. In fact, considering the group G := A4 oC2, called A := A4×1
and B := C2 we get G = 〈A,B〉 with A and B N 2-connected subgroups, but
AF (G)/F (G) and BF (G)/F (G) are not N -connected.

3.4.2 NA-connection

The second connection we are going to present in this section is the F -connection
with respect to all saturated formations F ⊆ NA. We will cite only a few of the
results that can be found in [26]. The main theorem contains some statements both
for F -connected subset and subgroups. We resume it stating only the subgroups
instances.

Theorem 3.4.4. Let F a saturated formation such that F ⊆ NA. Let A and
B two subgroups of the finite group G = 〈A,B〉. The following condition are
equivalent:

1) A and B are F-connected and [A,B] ≤ F (G);

2) A and Bg are F-connected for all g ∈ G, and [A,B] ≤ F (G);

3) [A,B]〈g〉 ∈ F for all g ∈ G, and [A,B] ≤ F (G);

4) AG and BG are F-connected.

Another interesting result the authors proved, recall the one on N 2-connection.

Theorem 3.4.5. Let G be a finite group, G = AB where A and B are subgroups.
Then A and B are NA-connected if and only if [A,B] ≤ F (G) or equivalently
AF (G)/F (G) and BF (G)/F (G) are A-connected.

For this theorem we can deduce a nice corollary, that has been already proved
in [16]. It is the following:

Corollary 3.4.6. Any saturated formation F ⊆ NA is 2-recognizable.



Among the other results we cite the following characterization:

Proposition 3.4.7. Let F be a saturated formation such that F ⊆ NA. The
following conditions are equivalent:

1) F ⊆ NE2, where E2 is the class of elementary abelian 2-groups;

2) If a product G = AB is the product of F-connected subgroups A and B, then
A,B ∈ F implies G ∈ F .

3.4.3 N2-connection

As far as the N2-connection is concerned, the main results are to be found in
[27]. This connection is in some sense the strongest we have seen until now and
one of the few in literature that is treated without assuming the finiteness of the
involved groups. With a little calculation the authors proved the following:

Proposition 3.4.8. Let G be a group and A and B two N2-connected subgroups
of G. Then:

1) 〈aB〉 and 〈bA〉 are abelian for all a ∈ A and b ∈ B;

2) [A,B] centralizes A′ and B′;

3) 〈aB〉 and B are N2-connected.

This proposition calls to mind the results obtained by Levi in [42] about 2-Engel
groups; in fact it is the case if we assume G = A = B.

Some other properties that are investigated are those of the subgroup [A,B]
and those related to elements of order 2 which assume an important role. To give
an example it is proved that the group [A,B]′ can be generated by elements of
order two. There are however lots of results to show the structure of those groups
and examples to underline that these results are sharp. We state only one theorem
among the others:

Theorem 3.4.9. Let A and B be N2-connected subgroups of G = 〈A,B〉. Then:

1) A2 is subnormal in G of defect at most 3;

2) A′ is subnormal in G of defect at most 2;

3) γn(A) and A(m) are normal in G for all n ≥ 3 and m ≥ 2.



3.5 Nk-connection and FEk-property

The most recent development ascribable to the theory of C-connection is in
the universe of infinite groups and regards the FEk-property. If k is a positive
integer, a group G is said to have the FEk-property if for every element g ∈ G
there exists a normal subgroup Xg such that |G : Xg| is finite and the subgroup
〈x, g〉 is nilpotent of class at most k for all x ∈ Xg. Clearly this is equivalent to
saying that every cyclic subgroup of G is Nk-connected with a (normal) subgroup
of finite index. The aim of theory of FEk-groups is to extend the properties of
FC-groups, as we will see. All the results we are going to show appear in [21].

Here is a selection of the main results provided by the authors. We start with
a lemma

Lemma 3.5.1. Let G be a locally graded FEk-group, where k is a positive integer.
Then the finite residual of G is locally nilpotent.

Now, we present the main theorem

Theorem 3.5.2. Let G be a group. Let H and F be respectively the Hirsch-Plotkin
radical and the Fitting subgroup.

1) If G is a solvable-by-finite FEk-group, for some 1 ≤ k ∈ N, then H is a Bear
group and G/H is a periodic FC-group.

2) If G is an FE2-group, then G/F is a FC-group and G/H is periodic.

And in conclusion here is another theorem.

Theorem 3.5.3. Let G be a finitely generated solvable-by-finite group and let k be
a positive integer . If G is an FEk-group then there exists m ∈ N depending only
on k, such that the group G/ζm(G) is finite.





Chapter 4

N -connection

As we saw in the previous chapter, C-connection in product gained, little by lit-
tle, the interest of many authors. However the results that come from the literature
are essentially in the universe of finite groups and this fact could be a boundary
to the development of that theory. One of the purposes, maybe secondary, of
this work is to include also infinite groups and to show some properties in which
C-connection and, in particular, N -connection are in some sense decisive. In the
following pages we try to show some cases in which N -connection is determinating
in the factorization of certain subgroups or in proving some specific properties.

4.1 Torsion subgroups and N -connection

The set of the elements of finite order of a group G is often indicated with
T (G) and in general it is not a subgroup (think for instance of the infinite dihedral
group). Nevertheless, for some classes of groups, this is true.

So, probably, it could be interesting to show how the N -connection contributes
to facilitate the factorization of the torsion group in a product of groups.

Lemma 4.1.1. Let G = 〈a, b〉 be a two generated nilpotent group. If |a| =∞ and
|b| <∞ then there exists n ∈ N such that 〈an〉 = Z(G) and, in other words, G is
central-by-finite.

Proof. Called T := T (G), it is not difficult to prove that |T (G)| < ∞ and G =
〈a〉T . So, there exists n ∈ N such that an ∈ CG(T ), and then 〈an〉 = Z(G)

Proposition 4.1.2. Let G = AB be the product of the N -connected subgroups A
and B. If T (A) and T (B) are subgroups and A ∩ B is periodic then T (G) is a
subgroup of G and T (G) = T (A)T (B).
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Proof. By definition andN -connection we have T (A)T (B) ⊆ T (G) and T (B)T (A) ⊆
T (G). Consider g ∈ T (G). There exist a ∈ A and b ∈ B such that g = ab. Con-
cerning the order of a and b, we can divide the problem into 3 cases:

1) |a|,|b| <∞;

2) |a| =∞, |b| <∞ (or |a| <∞, |b| =∞);

3) |a| =∞, |b| =∞.

Case 2) is not possible, in fact 〈a, b〉 is nilpotent and clearly

〈a, b〉 = 〈ab, b〉 ≤ T (〈a, b〉)

that is a finite group, but |a| =∞, a contradiction.
Case 3) is not possible too. In fact, stressing the fact that

〈a, b〉 = 〈ab, b〉 = 〈a, ab〉

by lemma 4.1.1, we have that there exist n,m ∈ N such that 〈an〉 = Z(〈a, b〉) and
〈bm〉 = Z(〈a, b〉), i.e. 〈an〉 = 〈bm〉. Thus, A ∩ B contains an element of infinite
order, a contradiction.

So, the only possibility is case 1) that means T (G) ⊆ T (A)T (B) and T (G) ⊆
T (B)T (A). That leads us to affirm:

T (G) = T (A)T (B) = T (B)T (A),

our thesis.

Let us point out by an example the reason why the hypothesis of periodicity
of the group A ∩B is essential.

Example 4.1.3. Consider A = 〈a〉 where |a| =∞ and X = 〈x〉 with |x| = n <∞.
Consider now G = A×X. We call b = a−1x and B = 〈b〉. Then G = AB, A and
B are trivially N -connected and

bn = (a−1x)n = (a−1)nxn = (a−1)n

i.e. T (A) = 1, T (B) = 1, but T (G) = X 6= 1

On the other hand it is possible to prove that also by removing theN -connection
proposition 4.1.2 is no longer true. For an example see the theorem of Suchkov
2.3.1.



4.2 Isolators and N -connection

In chapter 1, we introduced a very useful tool in the theory of locally nilpotent
groups: the isolator of a subgroup. We only recall the fact that given a locally
nilpotent group G, for every subgroup H ≤ G, the isolator IG(H) is a subgroup
of G.

It is easy to show that, ifG is a factorized group, H ≤ G and we consider IG(H),
that the isolator is not necessarily factorized (see for instance the previous example
4.1.3). This fact should not be surprising because the factorization of a subgroup,
as we already observed, is not common. However, in the following Proposition we
show that adding a few hypotheses, we easily get some factorizations.

Proposition 4.2.1. Let G be a group and A,B ≤ G = AB such that they are
N -connected. Suppose that for all C ≤ A and D ≤ B, IA(C) and IB(D) are
subgroups (e.g. A and B are locally nilpotent). If S, T ≤ G are such that A ≤ S
and B ≤ T , then

1) IG(S) = AIB(S ∩B) and IG(T ) = IA(A ∩ T )B;

2) IG(S) ∩ IG(T ) = IG(S ∩ T ).

Moreover if we have H,K ≤ G such that A ∩ B ≤ H ≤ A and A ∩ B ≤ K ≤ B,
then:

3) IG(H) = IA(H)IB(A ∩B) and IG(K) = IA(A ∩B)IB(K).

Proof. 1) Consider g ∈ IG(S). By definition there exists t ∈ N such that gt ∈ S.
By hypothesis there exist a ∈ A and b ∈ B such that g = ab and for the N -
connection 〈a, b〉 is nilpotent; hence by lemma 1.3.12, |〈a, g〉 : 〈a, gt〉| <∞ so there
exists m ∈ N such that bm ∈ 〈a, gt〉 ≤ S, in other words b ∈ IB(S ∩ B). For this
reason

IG(S) ⊆ AIB(S ∩B)

Analogously this IG(S) ⊆ IB(S ∩ B)A holds, and observing the obvious inclusion
A, IB(S ∩ B) ⊆ IG(S) we have that IG(S) is a group and that the required fac-
torization holds.

2) Holds by definition.

3) Consider g ∈ IG(H). By definition there exists t ∈ N such that gt ∈ H.
By hypothesis there exist a ∈ A and b ∈ B such that g = ab and for the N -
connection 〈a, b〉 is nilpotent; hence by lemma 1.3.12, |〈a, g〉 : 〈a, gt〉| <∞ so there
exists m ∈ N such that bm ∈ 〈a, gt〉 ≤ A, in other words b ∈ IB(A ∩ B). Similarly



〈gt, bm〉 has finite index in 〈g, b〉, so there exists n ∈ N such that an ∈ 〈gt, bm〉 ≤ H,
i.e. a ∈ IA(H). For IG(K) = IA(A ∩B)IB(K) we can apply the same method.

Even in this case N -connection plays a crucial role, and also in this situation
Theorem 2.3.1 provides an example in which by removing that hypothesis, the
proposition is no longer true.

4.3 Hypercentre and FC-hypercentre

In this paragraph, given the factorized group G = AB where A and B are
locally nilpotent N -connected subgroups, we will see a strong link between the
hypercentre and the FC-hypercentre of G.

What we are going to present is a slight generalization of the result of McLain
about the hypercentre and FC-hypercentre of a locally nilpotent group G, for
details see [47, §4, p. 130]. In fact, assuming in our case A = B = G, we get
trivially the local nilpotence of G.

The statements and the observations we are going to present are essentially
analogous to those of McLain, but the main demonstration is different and deserves
to be proved. We start with a lemma:

Lemma 4.3.1. Let G = AB be a group factorized by two locally nilpotent subgroups
A and B. Let N be a normal subgroup of G. If |G : CG(N)| < ∞, then the
following hold:

1) the subgroup N is solvable;

Moreover if A and B are N -connected

2) the subgroup N is nilpotent.

Proof. 1) Consider CG(N), which is a normal subgroup of finite index in G. The
factor group G/CG(N) is the product of two finite nilpotent subgroups, hence for
2.3.3 it is solvable. Thus also the subgroup NCG(N)/CG(N) is solvable, and since

NCG(N)

CG(N)
' N

CG(N) ∩N
' N

Z(N)
,

that implies that N is solvable.
2) In this case G/CG(N) is nilpotent for 3.1.4 and then also N/Z(N) is nilpo-

tent.



Now we need to introduce some definitions and notations. In any group it is
possible to form the upper FC-central series

Definition 4.3.2. The upper FC-central series is the series {Fα} defined by the
following rules F0 = 1, Fα+1/Fα = FC-centre of G/Fα and if λ is a limit ordinal

Fλ =
⋃
β<λ

Fβ

The limit of the upper FC-central series is the FC-hypercentre. A group G is
said to be FC-hypercentral if it coincides with its FC-hypercentre. For the rest
of the section we will use Zα and Fα respectively for the αth term of the upper
central series and of the upper FC-central series of the involved group. We are
now ready for the following:

Proposition 4.3.3. Let G = AB be a group factorized by A and B that are two
locally nilpotent N -connected subgroups. Then

FC(G) ≤ Zω(G)

Proof. Let x ∈ FC(G). We divide the proof in two cases:
Case 1) |x| < ∞. Without loss of generality we can assume that x is a p-

element, for a prime p. By Dicman lemma, 〈x〉G is finite. By the previous lemma,
we get that 〈x〉G is nilpotent. If we consider P the Sylow p-group, we get that
x ∈ Pchar〈x〉G �G, i.e. P = 〈x〉G. Now,

AP = AP ∩ AB = (AP ∩B)A

is a product of locally nilpotent N -connected subgroups. This implies that every
finite homomorphic image is nilpotent. We deduce that A/CA(P ) is a finite p-
group. Analogously B/CB(P ) is a finite p-group and by N -connection and lemma
2.1.10, we get that G/CG(P ) is a finite p-group, then P ≤ Zn(G) for some 1 ≤
n ∈ N.

Case 2) |x| =∞. Let K = 〈x〉G; notice that G/CG(K) is a finite group. Now,
for the previous lemma K is a nilpotent, centre-by-finite subgroup. Thus K ′ is
finite for a known theorem. Clearly K ′ � G then, using case 1), we can reduce
ourselves to K ′ = 1. So, we have that K is a finitely generated abelian group.
By case 1) we can reduce to the torsion free case. Let p be a prime such that it
does not divide |G/CG(K)|. By case 1) K/Kp is contained in the hypercentre of
G/Kp; however, stressing the fact that G/CG(K) is a p′-group, we conclude that
K/Kp ≤ Z(G/Kp), that is [K,G] ≤ Kp. This fact holds for an infinite number of
primes p and then we get [K,G] = 1 or in other words K ≤ Z(G).



Remark 4.3.4. Following the same strategy of McLain in [45], it is possible to
extend 4.3.3 and prove the following fact:

Let G = AB be a group factorized by A and B that are two locally nilpotent
N -connected subgroups. Then Zα ≤ Fα ≤ Zωα, for each ordinal α.

Corollary 4.3.5. Let G = AB be a group factorized by A and B that are two lo-
cally nilpotent N -connected subgroups. Then the hypercentre and the FC-hypercentre
coincide.

4.4 Examples of N -connected subgroups

In this last section we present some examples of N -connected subgroups of a
group.

Example 4.4.1. The first examples that come to mind are the locally nilpotent
groups. In fact, if G is a locally nilpotent group, for all couples of subgroups A
and B, they are N -connected. Anyway, it is clear that there is, at least, a wider
class of groups that contains locally nilpotent groups and in which all couples of
subgroups are N -connected: the class of weakly nilpotent groups.

A group G is said to be weakly nilpotent if and only if each couple of elements
x, y ∈ G generates a nilpotent group, i.e. 〈x, y〉 ∈ N . Keeping in mind the
definition of N -connection, it is possible to say that a group is weakly nilpotent
if and only if it is N -connected with itself. Nevertheless we have few important
examples of groups that are weakly nilpotent but not locally nilpotent. Essentially
they are represented by the Golod groups [28]. The construction of these groups,
although very interesting, is beyond the scope of this work. So we only state the
following

Theorem 4.4.2. (Golod) Let p be a prime, and d ≥ 2. then there exists a d-
generated infinite p-group such that every its (d− 1)-generated subgroup is finite.

Assuming d ≥ 3, we get this

Corollary 4.4.3. For every prime p there exists a finitely generated weakly nilpo-
tent p-group which is not nilpotent.

Another example of a group in which it is possible to select two N -connected
subgroups is the first Grigorchuk group. This group was constructed by Grigorchuk
in [29] in 1980, and it represents a counterexample in many interesting cases.
Among the various items, we cite the fact that it is a finitely generated periodic
and infinite group, it has an intermediate growth and it is amenable, but not
elementary amenable. Now we give a concise presentation, for obvious reason,
focused on the N -connection.



Example 4.4.4. The first Grigorchuk group is defined as a subgroup of the au-
tomorphisms group of a binary rooted tree, T2. In particular given I = {0, 1} an
alphabet, the root will be the empty word, and the other vertices will be finite length
words in the alphabet and the adjacency relations are represented by the addition
(or the subtraction) of a letter on the right-hand side. Let us define the automor-
phism τ like the automorphism that inverts the first letter of all the vertices of
the tree T2, roughly speaking it inverts the two main branches. For the other three
automorphisms we need, we will give recurrence definitions.

To be more precise, given an automorphism x = (y, z), it is defined in this way:
it fixes the first letter of the word that represents a vertex, and it will play the role
of the automorphism y on the second letter, if the first one was 0, otherwise it
will play the role of z. So now we are ready to define the other automorphisms we
need, which are

a = (b, τ) b = (c, τ) c = (a, id)

where id is the trivial automorphism.
Now we are able to define the first Grigorchuk group G, that is

G = 〈a, b, c, τ〉

To understand which are the subgroups that are N -connected we state a lemma
with the basic properties.

Lemma 4.4.5. Let G be the first Grigorchuk group, with the notation above the
following hold:

1) |a| = |b| = |c| = |τ | = 2 and ab = c, i.e. 〈a, b〉 ' C2 × C2;

2) 〈c, τ〉 ' D8, 〈b, τ〉 ' D16 and 〈a, τ〉 ' D32;

3) every element of G has order a power of 2, but G has infinite exponent.

From this lemma it is straightforward to deduce this corollary

Corollary 4.4.6. The group A = 〈a, b〉 and the group T = 〈τ〉 are N4-connected.

The last example of this section belongs to the finite universe. We have just
seen that given a group G that is generated by two N -connected subgroups, we
can not hope for, in some senses, interesting properties. So, if one imposes the
finiteness of G, hoping for a stronger result (compared with the infinite case), one
is disappointed. To be more precise we show

Example 4.4.7. Consider G to be the symmetric group on a set of 8 elements S8.
As we already mentioned Fumagalli, in [24], observed that considering

h := (12)(34)(56)(78), a := (23)(45)(67), b := (24)(35)(67)



and calling H := 〈h〉 and A := 〈a, b〉, we obtain that G = 〈A,H〉. With a little
calculation we proved that A and H are N3-connected subgroups, i.e. we found an
example of non solvable group that is generated by two abelian subgroups satisfying
N3-connection.



Chapter 5

N -connection in products of

groups

This chapter is the central core of the work. We will try to give some answers
to the already mentioned structure problem adding the N -connection, that is:

Given G = AB a factorized group where A and B are N -connected subgroups;
suppose that A and B satisfies a certain property P, what can be said about the
whole structure of the group G?

Needless to say, this problem is broad, so we do not have any intention of
completeness, but we have tried to present a neat exposition and to give some
non-trivial results. The properties that, in our case, turned out to be effective and
fruitful are the chain conditions, which we introduced in the preliminaries.

The first section is about two results where G is solvable. In the first case we
do not assume solvability but we get it by the theorem of Itô. In the second case
we assume it in the hypotheses, but anyway the result we proved turned out to be
fundamental in some of the successive demonstrations.

The second section concerns products of supersolvableN -connected subgroups.
The class of supersolvable groups is a wide subclass of the class of polycyclic groups,
or in other terms the class of solvable groups that satisfies Max. We will prove
that the product of supersolvable N -connected subgroups is supersolvable.

The third section concerns products of Černikov subgroups. This class arises in
the framework of groups that satisfies Min. For a long time they were considered
the only examples of those groups and however they are the only examples if we
assume solvability. We will give a proof of the fact that the product of Černikov
N -connected subgroups is Černikov.

The fourth section treats the case of minimax subgroups. We will prove that the
product of minimax hypercentralN -connected subgroups is minimax hypercentral.
To prove this statement, we will use both the result on solvable subgroups and the
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result on Černikov subgroups.
In the last section we present a proposition that is to be considered more like

an example or an exercise in which we show what can be said about the product of
e nilpotent periodic group and a nilpotent group with Max. We report it because
the proof is short and it also covers a product of subgroups that does not belong
to any of the previous cases. After that, we give two examples of products of
N -connected subgroups to conclude.

5.1 The solvable case

As we mentioned before, one of the most investigated problems in groups prod-
uct theory is the one we called the structure problem. An interesting problem that
is possible to examine in depth is the product of abelian groups, even though the
theorem of Itô narrowed down the research area. Beyond other results we have, for
example, the fact that all the elements of the upper central series factorize (see [1,
§2]); the fact that we have some links with the ring theory and in particular with
the class of radical rings is interesting. This class of rings permits the construction
of a certain number of examples (and counterexamples). We will not analyze these
links in depth, but we refer to the results of Sysak (see for instance [1, §6, p. 137]
or [53] ), who constructed examples of countable torsion-free groups with a triple
abelian factorization and that are not locally polycyclic. This is to motivate the
following easy proposition about the product of N -connected abelian subgroups,
that is always locally nilpotent, without the addition of any further hypotheses on
the factors.

Proposition 5.1.1. Let G be group and let A,B ≤ G = AB where A and B are
N -connected abelian subgroups, then G is a Gruenberg group.

Proof. The proof consists essentially in proving, with a little calculation, that
A,B ⊆ L(G). Let g ∈ G, since G = AB is a product we know that there exist
α ∈ A and β ∈ B such that g = αβ. For all a ∈ A and n ≥ 1, we get:

[g,n a] = [αβ,n a] = [αβ, a,n−1 a] = [[α, a]β[β, a],n−1 a] = [β,n a]

So, choosing n equal to the nilpotency class of the group 〈a, β〉, we have that
[g,n a] = 1 and A ⊆ L(G). Similarly B ⊆ L(G).

Now, G is solvable (metabelian) by Itô theorem 2.3.2, then by Gruenberg the-
orem, called H the Hirsch-Plotkin radical of G, we get G = L(G) = H, the thesis.

A natural question that arises after this proposition is how to generalize it to
nilpotent, hypercentral or other classes strictly connected with abelianity. But



we get immediately two limitations. First of all, we have to underline that the
thesis of the previous proposition cannot be easily improved, in fact we have the
following

Example 5.1.2. Let H be a Prüfer 2-group and τ the inversion automorphism on
H. Then G = H o 〈τ〉 is a product of two abelian groups, that are N -connected
(for instance it is not difficult to prove that G is hypercentral), but G is not a Baer
group.

Example 5.1.3. Let Cp be a cyclic group of order p, and P an infinite elementary
abelian p-group. Consider G = Cp o P . Clearly G is a product of the base group,
that is abelian, and P . It is easy to prove that G it is a solvable (p + 1)-Engel
group, so it is Gruenberg, but it does not satisfy the normalizer condition.

Secondly, a problem that arises is that we lose the solvability of G, because the
theorem of Itô may not hold anymore. However, if we assume solvability among
the hypotheses, we get a non-trivial result that will be an essential tool for most
of the following demonstrations.

Proposition 5.1.4. Let G be a solvable group and let A,B ≤ G such that G = AB,
where A,B are N -connected subgroups. Suppose that A is hypercentral and B
locally nilpotent; then B is contained in HP (G), the Hirsch-Plotkin radical of G.

Proof. Write H := HP (G), the Hirsch-Plotkin radical of G.
Let g ∈ G; since G = AB is a product, we know that there exist α ∈ A and

β ∈ B such that g = αβ. For each a ∈ Z(A), by N -connection, there exists n ≥ 1
such that [β,n a] = 1, whence,

[g,n a] = [αβ,n a] = [αβ, a,n−1 a] = [[α, a]β[β, a],n−1 a] = [β,n a] = 1.

Thus, Z(A) ⊆ L(G) and, since G is solvable, Z(A) ≤ H by Gruenberg Theorem.
Let the ordinal λ be the hypercentral length of A and, for every ordinal σ ≤ λ,

let
Kσ = Zσ(A)G = Zσ(A)B = 〈ab | a ∈ Zσ(A), b ∈ B〉.

Fix b ∈ B. We prove, by induction on σ that b ∈ L(Kσ〈b〉).
For the first step, observe that K := K1 = Z(A)B is contained in H. Now,

every g ∈ K can be written as a finite product of elements of Z(A) conjugated
by elements of B, so there exist a1, . . . , ak ∈ Z(A) and b1, . . . , bk ∈ B such that
g ∈ S := 〈ab11 , . . . , a

bk
k 〉. Thus, S is finitely generated and nilpotent, since it is

contained in H. By N -connection the groups 〈abii , b〉 are nilpotent and finitely
generated, for all i ∈ {1, . . . , k}, and clearly the same holds for the groups 〈abii 〉〈b〉.
Hence

R := S〈b〉 = 〈〈ab11 〉〈b〉, . . . , 〈a
bk
k 〉
〈b〉〉



is finitely generated; more specifically, there exists t ≥ 1 such that

X = {abibji | 1 ≤ i ≤ k, 0 ≤ j ≤ t}

is a set of generators of R. By lemma 1.3.11, we have

R′ = 〈[x1, x2, . . . , xi] | i ≥ 2, xj ∈ X for all 1 ≤ j ≤, i〉.

In particular for every xu, xv ∈ X,

[xuxv, b]R
′ = [xu, b][xv, b][xu, b, xv]R

′ = [xu, b][xv, b]R
′.

Repeated use of this last observation let us conclude that there exists n ∈ N
such that [R,n b] ≤ R′. Hence, both R〈b〉/R′ and R are nilpotent, and so, by a
well known nilpotency criterion of Philip Hall (see [46, §5, p. 129-130]), R〈b〉 is
nilpotent. In particular there exists t ∈ N such that [g,t b] = 1, thus proving that
b is a left Engel element of K〈b〉 = K1〈b〉.

Now, suppose we have shown that b is a left Engel element of Kτ 〈b〉 for every
ordinal τ , with τ < σ ≤ λ. If σ is a limit ordinal, then clearly b is left Engel in
Kσ〈b〉. Thus, assume σ = τ + 1 is a successor ordinal. Since Kτ is normal in G,

Kτ+1

Kτ

≤ Z

(
G

Kτ

)G/Kτ
,

and
G

Kτ

=
AMτ

Mτ

BMτ

Mτ

(where the two factors are N -connected), the same argument of the previous step
yields that bKτ is left Engel in Kτ+1〈b〉/Kτ . Hence, for every g ∈ Kτ+1〈b〉 there
exists s ≥ 1 such that

[g,s b] ∈ Kτ .

On the other hand, by inductive assumption there exists r ≥ 1 such that

[g,s+r b] = [g,s b,r b] = 1,

thus proving that b is a left Engel element in Kτ+1〈b〉. This completes our inductive
argument, and finally proves that b is left Engel in Zλ〈b〉 = AG〈b〉.
To conclude, let, as before, b ∈ B and let g ∈ G. Since,

G

AG
' B

B ∩ AG



is locally nilpotent, there exists n ≥ 1 such that [g,n b] ∈ AG. By what we have
shown, there also exists m ≥ 1 such that

[g,n+m b] = [[g,n b],m b] = 1.

Hence b is a left Engel element of G. Therefore, B ⊆ L(G), and so, by Gruenberg
Theorem B ≤ H = HP (G).

Corollary 5.1.5. Let G be a solvable group and let A,B ≤ G such that G = AB.
If A,B are hypercentral and N -connected, then G is locally nilpotent.

5.2 Product of supersolvable subgroups

The class of supersolvable groups is one of the most interesting among the
classes of groups that satisfy Max. The literature about the product of supersolv-
able subgroups counts several results. We already cited that the product of two
cyclic groups is supersolvable (see [34] and [22]), and there are many results in
particular dealing with triple factorizations, by de Giovanni and others (see for
instance [1, §6, p. 158-168], [5] and [23]).

Here we prove that the product of supersolvable N -connected subgroups is
supersolvable. To reach this result we use some fundamental ingredients. The
first one is an invariant inherited by polycyclic group, the Hirsch length which
is introduced in the preliminaries and we use to make induction. The others are
specific properties that are inherent to supersolvable groups. For instance, we
use the fact that if a polycyclic group has all finite homomorphic images that
are supersolvable, then it is supersolvable; moreover we use the property that
every infinite supersolvable group admits a normal infinite cyclic subgroup, or, for
example, the fact that it is virtually nilpotent.

Lemma 5.2.1. Let G be a group A,B ≤ G such that G = AB and A,B are
N -connected. If A and B are supersolvable (f.g. nilpotent) then G is polycyclic if
and only if it is supersolvable (f.g. nilpotent).

Proof. If G is supersolvable (f.g nilpotent) the result is clear. Suppose that G is
polycyclic and A and B supersolvable. Consider a normal subgroup of finite index
in G. We have

G

N
=
AN

N

BN

N

that is a product of finite supersolvable N -connected subgroups. The class of
finite supersolvable groups is a saturated formation that contains the class of finite
nilpotent groups. So, we can apply Carocca’s theorem 3.1.4 and we get that G/N is



supersolvable. Thus, we have a polycyclic group in which every finite homomorphic
image is supersolvable. Applying 1.3.18, G is supersolvable. The same holds when
A and B are finitely generated nilpotent subgroups, using, in this case, theorem
1.3.17.

Before the statement of the main theorem of this section, we need to point out
some technical properties we will use in the inductive process.

Lemma 5.2.2. Let G be a group and H,K ≤ G such that G = 〈H,K〉. If
|G : K| <∞, then |H : H ∩K| <∞

Lemma 5.2.3. Let G be a finitely generated nilpotent group and H ≤ G such that
NG(H)/H is a finite group. Then we have |G : H| <∞

Corollary 5.2.4. Let G be a supersolvable group, F = Fit(G) and H ≤ F such
that NG(H)/H is a finite group. Then we have |G : H| <∞

Proof. Consider G and H as in the hypotheses. Clearly |NF (H) : H| < ∞.
Applying 5.2.3, we have |F : H| <∞ and together with the fact that |G : F | <∞
by theorem 1.3.15, we have the thesis.

Lemma 5.2.5. Let G be a group, A,B ≤ G such that G = AB. If A satisfies
Max, then G satisfies the maximal condition on the subgroups that contain B.

Proof. Consider S1 ≤ S2 ≤ . . . an ascending chain of subgroups that contain B.
Each Si is factorized, with the following factorization

Si = (Si ∩ A)B.

The chain S1 ∩A ≤ S2 ∩A ≤ . . . is an ascending chain in A, which is a group that
satisfies Max. Thus, there exists t ∈ N such that St = St+j, for all j ≥ 0. Hence

St = (St ∩ A)B = (St+j ∩ A)B = St+j

for all j ≥ 0, that is the thesis.

Theorem 5.2.6. Let G be a group and A,B ≤ G = AB where A and B are
supersolvable N -connected subgroups. Then G is supersolvable.



Proof. We proceed by induction on h := h(A) + h(B) where h(X) is the Hirsch
length of the group X. If A and B are finite the result holds by 3.1.4. If A
(or B) is finite, then B is a subgroup of finite index in G, hence, being BG a
normal supersolvable subgroup and the factor G/BG a supersolvable finite group,
we conclude using lemma 5.2.1. Thus, we can assume that both h(A), h(B) ≥ 1.
We define these two sets:

A = {S | A ≤ S ≤ G, S supersolvable, h(S ∩B) ≥ 1}

B = {T | B ≤ T ≤ G, T supersolvable, h(T ∩ A) ≥ 1}
We prove that either A or B is non empty. In fact, if h(A ∩ B) ≥ 1, both A and
B are non empty. Suppose that h(A ∩ B) = 0, i.e. A ∩ B is a finite group; by
Lemma 1.3.16 we can choose a ∈ A, b ∈ B such that |a| = ∞ = |b| and 〈a〉 � A,
〈b〉� B. By N -connection, we know that 〈a, b〉 is an infinite nilpotent group and
for this reason we have that

Z(〈a, b〉) ≤ CG(a) ∩ CG(b) ≤ NG(〈a〉) ∩NG(〈b〉).

Thus, it is easy to prove that one among NA(〈b〉) and NB(〈a〉) is infinite. Suppose
that NA(〈b〉) is infinite and call T = NG(〈b〉), that contains B.

Now, if |A : NA(〈b〉)| = ∞, then T is supersolvable by inductive hypothesis,
and B 6= ∅. Otherwise, |A : NA(〈b〉)| <∞, then consider

T

〈b〉
=
NA(〈b〉)〈b〉
〈b〉

B

〈b〉
.

Observing that h(〈b〉) ≥ 1, by inductive hypothesis we have that T/〈b〉 is super-
solvable, and, by Lemma 5.2.1, T is supersolvable. Hence, B 6= ∅.
Clearly, by Lemma 5.2.5, B admits a maximal element D.

Now, D factorizes: in factD = (D∩A)B. If h(A∩D) = h(A), then |G : D| <∞
and DG is a supersolvable normal subgroup of G. By the Theorem of Carocca
3.1.4 G/DG is supersolvable and, by Lemma 5.2.1, G is supersolvable. Otherwise,
|A : D ∩ A| =∞. In this case we call FA = Fit(A) and FD = Fit(D).

We define the following chain of subgroups

M0 = FA ∩ FD, M1 = NFD(M0), . . . Mi = NFD(Mi−1)

We know that FD is nilpotent and normal in D, so we can deduce that there
exists t ∈ N such that Mt = NFD(Mt−1) = FD. Thus, we show that the following
factorization holds:

NG(Mi) = NA(Mi)ND(Mi)

for all i : 1 . . . t. We proceed by induction on i. If i = 0, consider g ∈ NG(M0);
then, g = ab for certain a ∈ A and b ∈ D, and from M g

0 = M0, we deduce



Ma
0 = M b−1

0 ≤ FA ∩ FD = M0 and, by the nilpotency of M0, a ∈ NA(M0) that is
the thesis.

Suppose that i ≥ 1 and consider, g ∈ NG(Mi). As before, we can affirm that
g = ab and Ma

i = M b−1

i . It is clear that

Ma
0 ≤ FA ∩Ma

i = FA ∩M b−1

i ≤ FA ∩ FD,

that is Ma
0 ≤ M0, i.e. a ∈ NA(M0). Suppose that 0 ≤ j ≤ i is the greatest index

such that a ∈ NA(Mj), and suppose that j ≤ i− 1. Knowing that

Ma
j+1 ≤Ma

i ≤M b−1

i ≤ FD

and 〈a,Mj+1〉 ≤ NG(Mj), we deduce

Ma
j+1 ≤ NG(Mj) ∩ FD = NFD(Mj) = Mj+1

that is, Ma
j+1 ≤ Mj+1. For inductive hypothesis NG(Mj) = NA(Mj)ND(Mj) and,

by lemma 2.1.9, NG(Mj) = NA(Mj)NB(Mj). Passing to the quotient

NG(Mj)

Mj

=
NA(Mj)Mj

Mj

NB(Mj)Mj

Mj

These two last factors are N -connected supersolvable and, using the properties
of Hirsch length and the fact that h(Mj) ≥ h(M0) ≥ 1, we can affirm that
NG(Mj)/Mj is supersolvable and hence, by lemma 5.2.1, NG(Mj) is supersolvable.
So, 〈a,Mj+1〉 ≤ NG(Mj) satisfies Max and then Ma

j+1 = Mj+1. This contradicts
the assumption on j. Thus i = j, and the statement is proved. Moreover we
observe that NG(FD) = NA(FD)ND(FD) = NA(FD)D holds as well.

Now, we prove that NG(FD) is supersolvable. In fact, we know that NG(FD) =
NA(FD)ND(FD) holds; by Lemma 2.1.9 we have NG(FD) = NA(FD)NB(FD). Pass-
ing to the quotient

NG(FD)

FD
=
NA(FD)FD

FD

NB(FD)FD
FD

,

that is a product of supersolvable N -connected subgroups and h(FD) ≥ 1, so we
can apply the inductive hypothesis and conclude by Lemma 5.2.1, that NG(FD) is
supersolvable.

The last fact we have to prove is that NG(FD) > D. We prove a stronger fact,
that is

|NG(Mi) : Mi+1| =∞

for all i : 0, . . . , t − 1. Proceed by induction on i. If i = 0, we know by corollary
5.2.4 that |NA(M0) : M0| = ∞. By lemma 5.2.2, |NG(M0) : ND(M0)| = ∞ and



then |NG(M0) : M1| =∞. Suppose that i ≥ 1. By inductive hypothesis we know
that

|NG(Mi−1) : Mi| =∞

Keeping in mind that Mi is nilpotent, we want to prove that

|NNG(Mi−1)(Mi) : Mi| =∞.

Call W = NG(Mi−1), FW = Fit(W ) and K = FW ∩ FD. Clearly K ≤ Mi. If
K = Mi, then, by corollary 5.2.4, we get the thesis. Otherwise, consider NW (K).
By corollary 5.2.4, we have that |NW (K) : K| = ∞. Being K � ND(Mi−1), we
have that NW (K) ≥ ND(Mi−1). So, for this reason, this factorization

NW (K) = NA(K)ND(Mi−1)

holds. Consider R = NA(K)K, S = RNW (K) (the core of R in NW (K)) and
T = S ∩ FW . By construction, K ≤ T � NW (K). Define L = TND(Mi−1).
Considering the quotient

L

K
=
T

K

ND(Mi−1)

K
,

we have that T/K is nilpotent and by Theorem 1.3.15, ND(Mi−1)/K is abelian.
In particular L/K is supersolvable and it is the product of two nilpotent N -

connected subgroups, hence, by Lemma 5.2.1, L/K is nilpotent. We know that
|L/K : Mi/K| =∞, so, by lemma 5.2.3, we get

|NL/K(Mi/K) : Mi/K| =∞,

that implies
|NL(Mi) : Mi| =∞,

and then
|NNG(Mi)(Mi) : Mi| =∞.

Thus, by lemma 5.2.2,
|NG(Mi) : ND(Mi)| =∞

and then the thesis |NG(Mi) : Mi+1| =∞.
In particular NG(FD) is a supersolvable group, NG(FD) > D and this fact

contradicts the maximality of D. So, |G : D| <∞ and then G is supersolvable.

Corollary 5.2.7. Let G be a group and A,B ≤ G = AB where A and B are
finitely generated nilpotent N -connected subgroups. Then G is a finitely generated
nilpotent group.



Proof. The result is an easy application of theorem 5.2.6 and theorem 1.3.17

Corollary 5.2.8. Let G be a group, G = G1G2 . . . Gn where G1, G2, . . . , Gn are
pairwise permutable supersolvable (finitely generated nilpotent) subgroups of G. If
for all i, j : 1, . . . , n such that i 6= j we have that Gi and Gj are N -connected, then
G is supersolvable (finitely generated nilpotent).

Dealing with products of groups with Max, we can state an open problem:

Problem 5.2.9. Let G be a group and A,B ≤ G = AB where A and B are
polycyclic N -connected subgroups. Is it true that G is a polycyclic group?

5.3 Product of Černikov subgroups

For a long time, the only known examples of groups satisfying Min on subgroups
were the Černikov groups. In 1979 Ol’shanskii proved the existence of Tarski
groups, which are infinite groups in which all proper non-trivial subgroups have
prime order p, with p a sufficiently large prime. It is clear that the existence
of Tarski groups excludes the coincidence between Černikov groups and groups
with Min. However the class of Černikov groups is quite important and it has
been proved that in the solvable case it corresponds with the family of groups
with Min. As we have already mentioned in the introduction, Černikov groups are
extensions of a direct product of a finite number of quasi cyclic groups by a finite
group, for this reason the product of groups of this kind is an issue of the open
problem of the product of abelian-by-finite subgroups. In literature there are some
partial results about those products. The most important is by Černikov (see [20])
and it regards locally graded groups. This should confirm that our investigation
adding the N -connection is reasonably justified.

Now, we introduce some technical lemmas that are necessary for the stated
theorem.

Considering a product of Černikov groups, it is possible to describe somehow
the finite residual in terms of the finite residuals of the factors, in other words we
are able to state the following:

Lemma 5.3.1. Let G = AB be a Černikov group; then if we call A0, B0 and G0

the finite residuals of, respectively, A, B and G, the following holds:

G0 = 〈A0, B0〉.

Proof. By a lemma of Amberg [2] or 2.1.10, the group 〈A0, B0〉 has finite index in
G and therefore by definition we know that G0 ≤ 〈A0, B0〉. The other inclusion is
obvious considering the definition of finite residual.



Before going further, we need a technical lemma.

Lemma 5.3.2. Let G be a periodic group and 1 6= A ≤ G a divisible abelian
subgroup. Let a ∈ A and u ∈ CG(x) for all x ∈ A such that a ∈ 〈x〉. Then
u ∈ CG(A).

Proof. Let h ∈ A and let |h| = m. Consider a1 ∈ A such that am1 = a. Therefore
(a1h)m = am1 = a. Hence the following holds

u ∈ CG(a1) ∩ CG(a1h) ≤ CG(h).

Notation 5.3.3. Given a group G such that G = AB, where A,B ≤ G and an
element g ∈ G, we call:

ΠA(g) = { a ∈ A | there exists b ∈ B s.t. ab = g }

and for the subset X of G, we call:

ΠA(X) =
⋃
x∈X

ΠA(x).

Now, we are ready to state and prove the main theorem of this section. The
proof is divided in two cases to simplify the reading: firstly the case in which we
assume that A and B are p-groups and then the general case.

Theorem 5.3.4. Let G be a group and let A,B be two subgroups of G such that
G = AB. Assume that A and B are N -connected and Černikov p-groups, where p
is a prime number. Then G is a Černikov p-group.

Proof. Since A e B are Černikov p-groups, we know that there exist A0 � A and
B0 �B normal subgroups with finite index respectively in A and B both of those
are a direct product of a finite number of copies of the Prüfer p-group. From now
on, we divide the proof in 4 steps. In the first three we assume, in addition, that
A0 ∩B0 = 1. The fourth step is without this assumption.

Step 1.

Consider a ∈ A0 and b ∈ B0 and call H = 〈a, b〉, which we know to be nilpotent by
theN -connection. We have that if CG(H) is infinite, then the set CA0(H)∪CB0(H)
is infinite. We prove this fact. Using the notation introduced above, we call A∗ =



ΠA(CG(H)) and B∗ = ΠB(CG(H)) that are subset of G. Since CG(H) ⊆ A∗B∗, we
have that A∗ ∪ B∗ is infinite. Without loss of generality, we can suppose that A∗

is infinite. For all x ∈ A∗ there exist a y ∈ B such that xy ∈ CG(H). In particular
bxy = b, from which,

bx = by
−1 ∈ bB

where bB is a conjugacy class in B. Since b ∈ B0, we have that bB is finite, thus
there exists an infinite subset X ⊆ A∗ such that, fixed x0 ∈ X, it holds bx = bx0

for all x ∈ X. Consequently {x0x−1|x ∈ X} ⊆ CA(b) is infinite. Therefore CA0(b)
is infinite too and since a ∈ A0 is abelian we can conclude, by observing that

CA0(b) = CA0(〈a, b〉) = CA0(H).

Step 2.

Suppose that Z(G) = 1: we claim that there exist a ∈ A0 and b ∈ B0 such
that CB0(a) = 1 = CA0(b).
In fact, consider the set {CB0(a) | a ∈ A0}; it, clearly, admits a minimal element.
Let C = CB0(a) be such minimal element. If C 6= 1, thus by divisibility and
minimality, we have that for all x such that a ∈ 〈x〉, then CB0(〈x〉) = CB0(〈a〉).
Therefore, we can apply 5.3.2 and conclude that CB0(a) = CB0(A0). So, CG(C) ≥
〈A0, B0〉 and hence it has finite index. Since G is a p-group, this implies that
Z(G) 6= 1. Thus, if Z(G) = 1, the minimal element of the set {CB0(a) | a ∈ A0}
is exactly {1}. The same holds for {CA0(b) | b ∈ B0}.

Step 3.

Now our objective is to prove that Z(G) 6= 1.
Suppose that Z(G) = 1. Then, by step 2, there exist a ∈ A0 and b ∈ B0 such that
CB0(a) = 1 = CA0(b). By step 1, CG(〈a, b〉) is finite. Moreover by N -connection
we can deduce that

1 6= Z(〈a, b〉) ≤ CG(〈a, b〉)

namely CG(〈a, b〉) is nontrivial and finite. We can choose a and b such that
|CG(〈a, b〉)| is minimal. Let 1 6= u ∈ CG(〈a, b〉) and let x ∈ A0 where a ∈ 〈x〉;
thus CG(〈x, b〉) ≤ CG(〈a, b〉) and hence the equality holds and, in particular,
u ∈ CG(〈x, b〉) ≤ CG(〈x〉). By 5.3.2 u ∈ CG(A0). Analogously, we can demon-
strate that u ∈ CG(B0) and then CG(u) ≥ 〈A0, B0〉, letting us deduce, as before,
Z(G) 6= 1, .

Step 4



We claim that G is a Černikov group. First of all, we want to demonstrate that G
is hypercentral proving the fact that every nontrivial quotient group of G has non
trivial centre (proposition 1.5.10). In fact, since all the hypotheses we assumed hold
for all quotient groups, it is sufficient to show that Z(G) 6= 1. So, if A0 ∩ B0 = 1
then we obtain our thesis by step 3. Otherwise, called K := A0 ∩B0 6= 1 it is true
that CG(K) ≥ 〈A0, B0〉 has finite index. Hence, as we observed in the previous
steps, Z(G) 6= 1. In conclusion, since a hypercentral p-group with Min-n, is a
Černikov p-group by 1.5.12, we reached our objective.

Now, using N -connection and proceeding by induction, we are ready to prove
the general case that is the following:

Theorem 5.3.5. Let G be a group and let A,B be two subgroups of G such that
G = AB. Assume that A and B are N -connected and Černikov groups. Then G
is a Černikov group.

Proof. Since A and B are Černikov groups, we know that there exist A0 � A and
B0 � B subgroups of finite index, respectively, in A and B, with the following
structure

A0 =
s
×
i=1
Pi B0 =

t
×
j=1
Qj

where in A0 each Pi is a direct product of hi copies of Prüfer pi-groups, in which pi
are distinct primes for i : 1, . . . s; analogously in B0 each Qj is the direct product
of kj copies of Prüfer qj-groups, in which qj are distinct primes for j : 1, . . . t.

In terms of minimality, this means hi = m(Pi) and kj = m(Qj). So, we have

m(A) +m(B) = m(A0) +m(B0) =
s∑
i=1

m(Pi) +
t∑

j=1

m(Qj)

We proceed by induction on m(A) + m(B). If m(A) = 0 (or m(B) = 0), then
B is a subgroup of finite index in G, hence BG is a Černikov normal subgroup of
finite index in G; but clearly a vitually Černikov group is a Černikov group, so we
have the thesis. Otherwise, we can assume that m(A) ≥ 1 e m(B) ≥ 1. For the
previous theorem, we can suppose that A0 and B0 are not both p-groups. Hence,
without loss of generality we can also assume that h1, h2 ≥ 1 and k1 ≥ 1. If pi 6= qj
for all i and j, then 〈A0, B0〉 is abelian by N -connection, so nothing is lost if we
assume p1 = q1.

Call P := P1. Since PcharA0, we have that P � A. Consider NG(P ). By
Wielandt lemma 2.1.4, we know that the following factorization holds

NG(P ) = NA(P )NB(P ) = ANB(P )



Moreover we know:

Q2 × . . .×Qt ≤ CB(P ) ≤ NB(P )

Now, we can split in two different cases:

Case 1)

If also Q1 ≤ NB(P ), then |G : NG(P )| < ∞, so we can reduce ourselves to
prove that NG(P ) is Černikov. Now, P is Černikov, NG(P )/P is Černikov by
inductive hypothesis, hence, by extension, NG(P ) is Černikov.

Case 2)

Suppose that Q1 6≤ NB(P ), then called B∗ := NB(P ) we have that B0 ∩ B∗ < B0

and |B∗ : B0 ∩B∗| <∞, so, called B∗0 the finite residual of B∗, we deduce that:

B∗0 ≤ B0 ∩B∗ < B0.

Hence, B∗0 and B0 are both direct products of a finite number of Prüfer groups
and B∗0 < B0, B0 has no proper subgroups of finite index, then this fact allow us
to apply the inductive hypothesis on NG(P ) and to affirm that it is Černikov. By
5.3.1 we deduce that the finite residual of NG(P ) is exactly 〈A0, B

∗
0〉 from which

we have [Pi, Qj] = 1 for all i : 1, . . . , s and for all j : 2, . . . , t. Now, considering
P2 and repeating the same argument, if case 1 holds the proof is done, otherwise
[Pi, Qj] = 1 must hold for all i : 1, . . . , s and for all j : 1, 3, . . . , t. Gathering
all these informations, we conclude [A0, B0] = 1, from which 〈A0, B0〉 is abelian.
Finally knowing that product of groups with Min satisfy Min-n 2.2.1 or [2] and
knowing that if a group satisfy Min-n each finite index subgroup does [46, §3,
p. 64] or [56], we conclude that G is Černikov.

We know state two easy corollaries of the latter theorem.

Corollary 5.3.6. Let G be a group and let A,B be two subgroups of G such that
G = AB. Assume that A and B are N -connected solvable groups with Min. Then
G is a solvable group with Min.

Proof. By theorem 1.3.3, A and B are Černikov groups and by theorem 5.3.5 also
G is Černikov. We need only to prove the solvability of G, but this follows from
the fact that, if G0 is the finite residual of G, G0 is abelian and G/G0 is solvable
by 3.1.4.



Corollary 5.3.7. Let G be a group, G = G1G2 . . . Gn where G1, G2, . . . , Gn are
pairwise permutable Černikov (solvable with Min) subgroups of G. If for all i, j :
1, . . . , n such that i 6= j we have that Gi and Gj are N -connected, then G is
Chernikov (solvable with Min).

5.4 Product of minimax hypercentral subgroups

Minimax groups are those groups that admit a series of finite length for which
each factor satisfies Max or Min. The result we are going to show is that the
product of hypercentral minimaxN -connected subgroups is hypercentral minimax.
In literature, the product of minimax subgroups or, more in general, the product
of finite rank subgroups is a topic that has attracted many authors. Anyway, the
most interesting results are often obtained assuming a solvability condition on the
whole group. Wilson proved, in [57], that the solvable product of two minimax
subgroups is minimax. In our case instead of the solvability requirements (such
as for instance the whole group is locally solvable or solvable-by-finite), we add a
nilpotence relation between the factor, i.e. the N -connection.

This result on the product of minimax subgroups is the most relevant result of
this work, and to prove it we employ different ingredients that are, in some sense,
particular to the product of N -connected subgroups. We will use the results on
the factorization of certain torsion subgroups and on certain isolator subgroups
without the a priori assumption of local nilpotence.

The proof we are going to show is divided in two main parts. The first part
concerns the case in which we assume that the set of elements of finite order is
the trivial group. Before starting, we need a preliminary lemma. This preliminary
lemma is an improvement of Corollary 5.1.5 in the case of a (solvable) product of
two minimax hypercentral group, using the theorem of Kurdachenko. In fact we
get:

Lemma 5.4.1. Let G be a solvable group and let A,B ≤ G such that G = AB
and A,B are N -connected hypercentral minimax subgroups, then G is minimax
hypercentral; moreover, if G is torsion-free, then G is nilpotent.

Proof. G is minimax by the theorem 2.2.4. Using Corollary 5.1.5 we get that G
is locally nilpotent. By 1.4.9 A and B satisfy both wmax and wmin; by 2.2.1 G
satisfies both wmin-n and wmax-n, and by the theorem of Kurdachenko 2.2.3, G
is hypercentral.

Moreover if G is torsion-free by the corollary 1.5.15, G is nilpotent.



Proposition 5.4.2. Let the group G = AB, where A and B are N -connected,
minimax, nilpotent subgroups. Assume further that T (G) = 1, then G is a minimax
nilpotent group.

Proof. We proceed by induction on m := m(A) +m(B). If m(A) = 0 (or m(B) =
0), then A = 1 (or B = 1) and the proposition is trivially true. Thus, we can
assume that both m(A) and m(B) ≥ 1. We define these two sets:

A = {S | A ≤ S ≤ G, S minimax nilpotent, m(S ∩B) ≥ 1}

B = {T | B ≤ T ≤ G, T minimax nilpotent, m(T ∩ A) ≥ 1}

We prove that either A or B is non empty. In fact, if h(A ∩ B) ≥ 1, both A
and B are non empty. Suppose that h(A ∩ B) = 0, i.e. A ∩ B = 1, so choosing
1 6= a ∈ Z(A), 1 6= b ∈ Z(B) we get, by N -connection, that 〈a, b〉 is an infinite
nilpotent group and, for this reason, we have that

Z(〈a, b〉) ≤ CG(a) ∩ CG(b).

Thus, it is easy to prove that one among CA(b) and CB(a) is infinite. Suppose
that CA(b) is infinite and call T = CG(b); clearly T ⊇ B.

Now, if |A : CA(b)| =∞, then T is nilpotent minimax by inductive hypothesis,
and B 6= ∅. Otherwise, |A : CA(b)| <∞, then consider

T

〈b〉
=
CA(b)〈b〉
〈b〉

B

〈b〉
.

Observing that m(〈b〉) ≥ 1, by inductive hypothesis we have that T/〈b〉 nilpotent
minimax, and, by Lemma 5.4.1, T is nilpotent minimax. Hence, B 6= ∅.

Clearly, B is a partially ordered set by inclusion; we would like to prove that it
is inductive, i.e. every totally ordered subset of B has an upper bound in B. Thus,
consider (Si)i∈I a chain in B. We need to prove that the upper bound U =

⋃
i∈I Si

belongs to B. Each Si is nilpotent minimax, then the union U is locally nilpotent.
But U = (U ∩ A)B is a product of nilpotent minimax groups, then it satisfies
wmin-n by 2.2.2 and, by the Kurdachenko theorem 2.2.3, it is hypercentral and
solvable. Furthermore, by 2.2.4, U is minimax and by 1.5.15 nilpotent, that is
our thesis. Thus, we can apply Zorn Lemma and affirm that B admits a maximal
element. We call this maximal element D.
If D = G, we are done. Otherwise |A : A ∩D| > 1.

We define the following sequence N0 = A∩D and Nj = ND(Nj−1) for all j ≥ 1.
D is nilpotent, thus there exists t ∈ N such that D = ND(Nt−1). By lemma 2.1.6
the factorizations

NG(Nj) = NA(Nj)ND(Nj)



hold for all j : 0, . . . , t− 1. Moreover, by Lemma 2.1.9, also

NG(Nj) = NA(Nj)NB(Nj)

hold for all j : 0, . . . , t− 1. Passing to the quotient we get

G∗ :=
NG(Nj)

Nj

=
NA(Nj)Nj

Nj

NB(Nj)Nj

Nj

=: A∗B∗

Now, A∗ ∩ B∗ = 1, then by Lemma 4.1.2, T (G∗) = T (A∗)T (B∗), so, by Theorem
5.3.5, T (G∗) is a solvable Černikov group. Moreover, knowing that
1 ≤ m(N0) ≤ m(Nj) and considering G∗/T (G∗), we can affirm that it is nilpotent
minimax by inductive hypothesis. So, by Lemma 5.4.1, NG(Nj) is nilpotent for all
j : 1, . . . , t− 1. In particular NG(Nt−1) = NA(Nt−1)D is nilpotent.
Finally, we prove that |NG(Nt−1) : D| > 1. To do that, we prove that

|NA(Nj) : N0| > 1

proceeding by induction on j. If j = 0, we have that |NA(N0) : N0| > 1, since A
is nilpotent. Suppose it is true for j − 1, then

|NA(Nj−1) : N0| > 1

that implies
|NG(Nj−1) : Nj| > 1

and, for the nilpotency of NG(Nj−1), we get

|NNG(Nj−1)(Nj) : Nj| > 1

and then
|NG(Nj) : Nj+1| > 1,

that means
|NA(Nj) : N0| > 1.

So, NG(Nt−1) is nilpotent minimax and includes properly D, contradicting the
maximality of D.

The second part, on the other hand, is the case in which we assume that the
isolator of the intersection A ∩B is the whole group. The demonstration is based
on a simple observation, that is: assuming G = IG(A ∩ B), both A and B have
to satisfy the minimal condition on the subgroups that contain A ∩ B, that is
essentially what we prove in our preliminary results. After that we are able to
conclude.



Lemma 5.4.3. Let G be a group and H,K and N such that H ≤ K ≤ G and
N �G. If HN = KN and H ∩N = K ∩N , then H = K.

Proposition 5.4.4. Let G be a solvable minimax group and H ≤ G a subgroup
such that IG(H) = G. Then G satisfies the minimal condition on the subgroups
that contain H.

Proof. We proceed by induction on the derived length N of G. If n = 1 then G is
abelian andH�G. ConsiderG/H, it is periodic minimax, in other words it satisfies
Min. Suppose that n ≥ 2. Then consider A = G(n−1). Clearly IA(A∩H) = A and
IG/A(HA/A) = G/A. Consider

M0 ≥M1 ≥M2 ≥ . . .

a descending chain of subgroups containing H. Consider also

M0 ∩ A ≥M1 ∩ A ≥M2 ∩ A ≥ . . .

that is a descending chain in A containing H ∩ A, and

M0A/A ≥M1A/A ≥M2A/A ≥ . . .

a descending chain in G/A containing HA/A. By inductive hypothesis there exist
r, s ∈ N such that

Mr ∩ A = Mr+1 ∩ A = Mr+2 ∩ A . . .

and
MsA/A = Ms+1A/A = Ms+2A/A = . . .

i.e. MsA = Ms+1A = Ms+2A = . . ..
Choosing t = max{r, s} and applying the previous lemma we get the thesis.

Proposition 5.4.5. Let G be a group A,B ≤ G = AB such that A and B are
hypercentral minimax N -connected subgroups. If G = IG(A∩B), then G is hyper-
central minimax.

Proof. Consider the set A = {S | B ≤ S ≤ G, S minimax and hypercentral}.
Clearly B ∈ A, so A is not empty. The set A is clearly a partially ordered set
by inclusion; we would like to prove that it is inductive, i.e. every totally ordered
subset of A has an upper bound in A. Thus, consider (Si)i∈I a chain in A. We need
to prove that the upper bound U =

⋃
i∈I Si belongs to A. Each Si is hypercentral,

then the union U is locally nilpotent. But U = (U ∩A)B is a product of (solvable)
minimax groups, then it satisfies wmin-n by 2.2.2 and by the Kurdachenko theorem
2.2.3, it is hypercentral and solvable. Furthermore by 2.2.4 it is minimax, that is



our thesis. Thus, we can apply Zorn Lemma and affirm that A admits a maximal
element, and we call it D.

If D ≥ A, i.e. D = G we are done. Otherwise, let M0 = A∩D, clearly M0 < A
and call (Mα) the series of successive normalizers of M0 in D. Then called:

Y1 := NG(M0);

Yα := NG(Mα−1)

if α is a successor ordinal, and

Yβ :=

(⋂
λ<β

NA(Mλ)

)
Mβ

if β is a a limit ordinal, we have by lemma 2.1.8, that (Yα) is a series of factorized
subgroups of G and (Yα∩A) is a decreasing series of subgroup of A. By proposition
5.4.4, A satisfies Min on the subgroups that contain A∩B. So in particular, if we
consider the series (Yα ∩ A), there exists t ∈ N such that Yt ∩ A = Yλ ∩ A for all
ordinals λ ≥ t.

We now prove that each Yα is hypercentral. Proceed by induction on α. If
α = 1, we consider NG(M0) = NA(M0)ND(M0) = NA(M0)NB(M0) by lemma
2.1.9; passing to the quotient we get

NG(M0)

M0

=
NA(M0)

M0

NB(M0)

M0

that is a product ofN -connected Chernikov groups, then by theorem 5.3.5NG(M0)/M0

is Chernikov. Then NG(M0) is solvable and using 5.4.1, we get the desired hyper-
centrality. Moreover by 2.2.4 NG(M0) is minimax.

So let α ≥ 2, then if α is a successor ordinal, we have

NG(Mα−1) = NA(Mα−1)ND(Mα−1) = NA(Mα−1)NB(Mα−1)

passing to the quotient

NG(Mα−1)

Mα−1
=
NA(Mα−1)Mα−1

Mα−1

NB(Mα−1)Mα−1

Mα−1
,

that is a product of N -connected Chernikov groups and, as we did before, we
conclude that Yα is hypercentral minimax. Suppose now that α is a limit ordinal.
We just proved that NA(Mt) = NA(Mλ) =: A∗ for all λ ≥ t. It is needless to say
that α ≥ t, hence by definition we have that



Yα :=

(⋂
λ<α

NA(Mλ)

)
Mα = A∗Mα

Now, keeping in mind the definition of Mα, we obtain that

Yα = A∗

(⋃
λ<α

Mλ

)
=

(⋃
λ<α

A∗Mλ

)
=
⋃
λ<α

Yλ

Each Yλ is locally nilpotent for this reason the union Yα is locally nilpotent. By
the theorem of Kurdachenko 2.2.3 Yα is solvable and hypercentral and, by theorem
2.2.4, it is minimax.

The final step is to prove that |Yα∩A : D∩A| > 1, for all α. By the observation
we did before, we have only to prove that |Yt ∩ A : D ∩ A| > 1. We proceed by
induction on j : 1, . . . , t. If j = 1 we have Y1 = NG(M0) and then knowing that
A is hypercentral, we get |NA(M0) : M0| > 1. Suppose that j ≥ 2. By inductive
hypothesis, we have

|NA(Mj−1) : D ∩ A| > 1;

that implies |NG(Mj−1) : Mj| > 1. Then stressing the fact that Yj = NG(Mj−1) is
hypercentral, we have that

|NNG(Mj−1)(Mj) : Mj| > 1,

and then
|NG(Mj) : Mj+1| > 1,

that means
|NA(Mj) : D ∩ A| > 1.

Now, D is hypercentral, so there exists an ordinal ρ such that Mρ = D and then
Yρ = (Yρ ∩ A)D. Moreover Yρ is hypercentral, minimax and it includes properly
D, contradicting the maximality of D.

Theorem 5.4.6. Let G = AB where A and B are hypercentral minimax N -
connected subgroups, then G is hypercentral minimax.

Proof. Let H = A∩B. Observe that IA(H) and IB(H) are subgroups, so by 4.2.1,
IG(H) is a subgroup and it satisfies the hypothesis of lemma 5.4.5. For this reason
we can affirm that IG(H) is hypercentral minimax. Now, by definition

T (G) ⊆ IG(H) = IA(H)IB(H)

Thus T (G) is a subgroup, it is normal in G and satisfies Min. The group G/T (G)
satisfies proposition 5.4.2 and we get the thesis from lemma 5.4.1.



Corollary 5.4.7. Let G be a group, G = G1G2 . . . Gn where G1, G2, . . . , Gn are
pairwise permutable hypercentral minimax subgroups of G. If for all i, j : 1, . . . , n
such that i 6= j, we have that Gi and Gj are N -connected, then G is hypercentral
minimax.

5.5 Examples

This last section starts with a result that should be considered just like an
example or an exercise. We include it mainly for the sake of completeness and
because it covers a marginal case that is not proved in the previous sections: the
product of a factor that is a nilpotent periodic group (without assumption of Min
condition) and the other that is nilpotent and satisfies Max. The proof is easy and
it is based on the following observation that we state as a lemma:

Lemma 5.5.1. Let G be a group and A,B ≤ G = 〈A,B〉 such that A and B are
N -connected . Suppose that there exist A0 ≤ A and B0 ≤ B such that:

(1) A0 admits a system of generators a1, . . . , an such that |ai| < ∞ for all i :
1, . . . , n;

(2) B0 is finitely generated nilpotent group.

Then there exists BM ≤ B0 with finite index in B0 such that

[A0, BM ] = 1.

Proof. We know that every finitely generated nilpotent group contains a torsion-
free (finitely generated nilpotent) subgroup of finite index, so nothing is lost if we
assume that B0 is torsion-free. Consider A0 = 〈a1, . . . , an〉, where |ai| <∞ for all
i : 1, . . . , n and B0 = 〈b1, . . . , bm〉. Consider the groups 〈ai, bj〉 with i : 1, . . . , n
and j : 1, . . . ,m. They are nilpotent by N -connection. By lemma 4.1.1 there exist
mij ∈ N such that b

mij
j ∈ Z(〈ai, bj〉), for all i, j. Considering

Mj = l.c.m.
i:1,...,n

{mij},

we obtain that b
Mj

j ∈ CG(A0), so, called

BM = 〈bM1
1 , bM2

2 , . . . , bMd
d 〉

we have that BM has finite index in B0 by 1.3.12 and BM ≤ CG(A0) that means
[A0, BM ] = 1.



Proposition 5.5.2. Let G be a group A,B ≤ G = AB where A and B are N -
connected, A is a periodic nilpotent subgroup and B is a finitely generated nilpotent
subgroup. Then G is locally nilpotent.

Proof. Consider g1, . . . , gn ∈ G. We know that for each gi there exist ai ∈ A
and bi ∈ B such that gi = aibi. So we will prove that there exists a solvable
subgroup that contains 〈g1, . . . , gn〉. Consider A0 = 〈a1, . . . , an〉. By the previous
lemma there exists BM ≤ B with finite index such that [A0, BM ] = 1. Nothing is
lost if we assume that BM � B, otherwise it is sufficient to take the core. Thus
NG(BM) = NA(BM)B ≥ 〈A0, B〉. Now,

NG(BM)

BM

=
NA(BM)BM

BM

B

BM

where the second factor is finite nilpotent, while the first

NA(BM)BM

BM

=
NA(BM)

NA(BM) ∩BM

' NA(BM)

is nilpotent and it has finite index in NG(BM)/BM . This implies that NG(BM) is
(metanilpotent) solvable as desired. Consider

〈g1, . . . , gn〉 ≤ 〈a1, . . . , an, B〉 ≤ NG(BM) = NA(BM)B.

The group S = 〈a1, . . . , an, B〉 contains B, so S = (S ∩ A)B. Applying Corollary
5.1.5 we obtain that S is locally nilpotent. But it is finitely generated, hence it is
nilpotent. This fact means that G is locally nilpotent.

We, now, show a couple of examples of factorized groups by N -connected
subgroups.

Example 5.5.3. Let p be a prime and A = Cp∞ the Prüfer p-group. Consider the
endomorphism x defined by

ax = a1+p+p
2+...

for all a ∈ A. It is not difficult to show that it is an automorphism of A and that
|x| is infinite. Let G = Ao 〈x〉 and call 〈x〉 = B.

A is abelian and satisfies Min, B is abelian and satisfies Max. We prove that
A and B are N -connected, in fact for all a ∈ A, [a, x] = ap, thus, by induction,
if |a| = pk then 〈a, x〉 is nilpotent of class at most k. Applying the theorem G is
hypercentral minimax.

Clearly, in this case, it could have been easier to check directly the hypercentral-
ity, anyway in this context it could make sense also proceeding with N -connection.



Example 5.5.4. This example taken from the Marconi example [1, §7, p. 208-
209], [44], that constructed a group satisfying the following:

Theorem 5.5.5. (Marconi) There exists a periodic unsolvable group G = ABC
which is the product of three pairwise permutable abelian subgroups A,B and C
with Prüfer rank 1.

We will not do a detailed discussion of the construction the author gave, we
would only like to underline certain properties. Call BC = H; by the theorem of
Itô H is metabelian. However it is possible to prove:

Proposition 5.5.6. Let G the group constructed in the previous theorem. Then
the following hold:

1) G is hypercentral;

2) the Prüfer rank r̃(H) is finite;

So we have that G = AH is a product of two N -connected subgroups, A is
abelian and H is hypercentral metabelian, both have finite Prüfer rank, but the
group is unsolvable. So weakening the hypothesis on the rank, i.e. passing from
finite minimax rank to finite Prüfer rank, we lose the solvability.
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[25] M. P. Gállego, P. Hauck, M. D. Pérez-Ramos, Soluble products of connected
subgroups, Rev. Mat. Iberoam. 24, (2008) 433-461.

[26] M. P. Gállego, P. Hauck, M. D. Pérez-Ramos, On 2-generated subgroups and
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