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We present the phase diagram, in both the microcanonical and the canonical ensemble, of the
Self-Gravitating-Ring (SGR) model, which describes the motion of equal point masses constrained
on a ring and subject to 3D gravitational attraction. If the interaction is regularized at short
distances by the introduction of a softening parameter, a global entropy maximum always exists,
and thermodynamics is well defined in the mean-field limit. However, ensembles are not equivalent

and a phase of negative specific heat in the microcanonical ensemble appears in a wide intermediate
energy region, if the softening parameter is small enough. The phase transition changes from second
to first order at a tricritical point, whose location is not the same in the two ensembles. All these
features make of the SGR model the best prototype of a self-gravitating system in one dimension.
In order to obtain the stable stationary mass distribution, we apply a new iterative method, inspired
by a previous one used in 2D turbulence, which ensures entropy increase and, hence, convergence
towards an equilibrium state.

I. INTRODUCTION

There are many objects in our universe whose behavior can be understood considering only the gravitational
interaction. Examples are globular clusters, galaxies, clusters of galaxies, molecular clouds [1]. Different theoretical
approaches have been proposed to explain the peculiar statistical properties of self-gravitating systems. The main
difficulty is that these systems cannot approach statistical equilibrium because of the short-distance divergence of the
potential and of the evaporation at the boundaries. Even if one puts the system in a box with adiabatic walls, thus
eliminating evaporation, still gravity causes the well-known phenomenon of gravothermal catastrophe [2, 3, 4]. The
introduction of a small-scale softening of the interaction potential avoids such a catastrophe, so that self-gravitating
systems can approach the final (thermal) equilibrium state. However, such a state may have a negative specific heat.
Moreover, a first-order phase transition from the high energy gas phase to the low energy clustered phase appears [3].
Direct studies of the full three-dimensional N -body gravitational dynamics are particularly heavy [5] and even

special purpose machines have been built to this aim [6]. Therefore, lower dimensional models have been introduced
to describe gravitational systems with additional symmetries. For instance, the gravitational sheet model describing
the motion of infinite planar mass distributions perpendicularly to their surface has been considered [7]. Although
this model shows interesting behaviors [8, 9], the specific heat is always positive and no phase transition is present.
Recently, another one-dimensional model has been introduced [10] where particle motion is confined on a ring, but

the interaction is the true Newtonian 3D one. At short distances, the potential is regularized, so that the particles
do not interact. This model has been called the Self-Gravitating Ring model (SGR) and will be the subject of the
study discussed in this paper. It has been shown in numerical simulations [10], that this model maintains the peculiar
features of the 3D Newtonian potential, showing a negative specific heat phase and a phase transition if the softening
parameter is small enough. Moreover, for large softening, this model reduces to the Hamiltonian Mean-Field model
(HMF) [11], which has been recently extensively studied as a prototype system with long-range interactions. This
latter model, however, although it displays a second order phase transition, does not have a negative specific heat
phase at equilibrium.
In this paper, we derive the equilibrium thermodynamics of the SGR model both in the canonical and in the

microcanonical ensemble. For all non vanishing softening parameter values, this model has a thermal equilibrium
state. If the softening parameter is small enough, the model shows ensemble inequivalence [12, 13] with a negative
specific heat phase in the microcanonical ensemble and a first order phase transition. Therefore, the SGR model
displays several features of the true 3D Newtonian interaction, and can serve as a better prototype of self-gravitating
systems in one dimension than all previously introduced models.
The paper is organized as follows. In Sec. II, we briefly introduce the SGR model and we discuss the essential

features of previous numerical simulations [10]. In Sec. III, we show the general scheme for deriving all stationary
density distributions which maximize Boltzmann-Gibbs entropy at fixed total energy and mass. Section IV presents
a new iterative method which ensures entropy increase and leads in a unique way towards the stable equilibrium
single particle distribution function. The method is inspired by a similar one used to compute entropy maxima in 2D
turbulence [14]. In Sec. V, we describe in full detail how to implement the iterative algorithm in a numerical scheme.

http://arxiv.org/abs/cond-mat/0501583v1
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Figure 1: Self-Gravitating Ring model with a fixed unitary radius. Particles are constrained to move on a ring and therefore
their location is specified by the angles measured with respect to a fixed direction. Each pair of particles at θi and θj interacts
through the inverse-square three-dimensional gravitational force. The distance is measured by the chord, as shown in the figure.

In Sec. VI, we calculate the thermodynamic quantities of the SGR model using the iterative method. We also show
how, reducing the softening parameter, one enters into a region of ensemble inequivalence, where a tricritical point
exists which is not the same in the two ensembles [15]. Finally, in Sec. VII, we discuss the dynamical evolution of the
SGR model, emphasizing the properties of relaxation to equilibrium.

II. SELF-GRAVITATING RING MODEL

In this section, we briefly present the Self-Gravitating Ring (SGR) model [10]. In this model, particle motion is
constrained on a ring and particles interact via a true 3D Newtonian potential (Fig. 1).
The Hamiltonian of the SGR model is

H =
1

2

N∑

i=1

p2i +
1

2N

∑

i,j

Vε(θi − θj) , (1)

Vε(θi − θj) = − 1√
2

1√
1− cos(θi − θj) + ε

, (2)

where ε is the softening parameter, which is introduced, as usual, in order to avoid the divergence of the potential at
short distances.
Taking the large ε limit, the potential becomes

Vε =
1√
2ε

[
1− cos (θi − θj)

2ε
− 1

]
+O(ε−2) , (3)

which is the one of the Hamiltonian Mean-Field (HMF) model [11]. It is well known that the HMF model [11] has a
second order phase transition, separating a low energy phase, where the particles form a single cluster, from a high
energy gas phase where kinetic energy dominates and the particles are homogeneously distributed on the circle. One
usually draws the so-called caloric curve, where temperature, given by twice the averaged kinetic energy per particle
T ≡ β−1 = 2 〈K〉/N , is plotted against the total energy per particle U ≡ H/N . In a situation close to that of the
HMF model, e.g. for ε = 10, the caloric curve determined from microcanonical numerical simulations is reported
in Fig. 2(a). In the homogeneous phase U > Uc(ε), the caloric curve is almost linear, while in the clustered phase
U < Uc(ε), it is bent downward. Nonetheless, temperature always grows with energy and one does not observe any
negative specific heat energy range. However, as it happens for 3D Newtonian gravity simulations [5], when one
reduces the softening parameter, a negative specific heat phase develops. For instance, in Fig. 2(b), we show two cases
at small ε where three phases can be identified [10]:

• a low-energy clustered phase for U < Utop(ε), where Utop is defined as the energy at which ∂T/∂U = 0.

• an intermediate-energy phase, Utop(ε) < U < Uc(ε), with negative specific heat.
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Figure 2: Caloric curves of the Self Gravitating Ring (SGR) model obtained from numerical simulations of Hamiltonian 1. Panel
(a) refers to the softening parameter value ε = 10, for which a second order phase transition appears at Uc. No backbending of
the caloric curve, indicating a negative specific heat, is present. Simulations were performed for N = 100. Panel (b) shows the
caloric curves for two different values of the softening parameter, ε1 = 1.010−6 and ε2 = 2.510−7, and N = 100. The transition
is here first order in the microcanonical ensemble (see Sec. VI for a discussion). The two transition energies Uc(ε1) and Uc(ε2)
are pretty close, suggesting a slow variation of the critical energy with the softening parameter ε. On the contrary, Utop(ε1) is
significantly smaller than Utop(ε2), indicating that this characteristic energy value diminishes with ε. A negative specific heat
phase appears for Utop < U < Uc, and expands as the softening parameter is reduced.

• a high-energy gaseous phase for Uc(ε) < U .

The clustered phase is created by the presence of softening ε, without which the particles would fall into the zero
distance singularity. In the gas phase, the particles are hardly affected by the potential and behave as almost free
particles. The intermediate phase is expected to show the characters of gravity, persisting and even widening in the
ε → 0 limit.
In the following, several of these features will be given a theoretical explanation and we will detail the analysis of

the nature of the phase transition (first or second order) when ε is varied.
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III. STATIONARY DENSITY DISTRIBUTION

In the mean-field limit (N → ∞ with fixed length [16]), one can introduce the single particle distribution function
f(p, θ) such that f(p, θ)dpdθ is the fraction of particles in the domain [θ, θ+dθ][p, p+dp]. In terms of f , the potential
energy can be written as

EP [f ] =
1

2

∫
dθ dφ dp dp′ f(p, θ)Vε(θ − φ)f(p′, φ) (4)

=
1

2

∫
dφ dθ ρ(θ)ρ(φ)Vε(θ − φ) (5)

where

ρ(θ) =

∫
dp f(p, θ) (6)

is the mass density. The kinetic energy is

EK [f ] =
1

2

∫
dθ dp p2f(p, θ) (7)

and the total energy

E[f ] = EK [f ] + EP [f ]. (8)

The equilibrium distribution in the microcanonical ensemble is determined by maximizing entropy

S[f ] = −
∫

dθ dp f log f (9)

under the constraints of fixed total energy, momentum and mass. In the following, we fix the total energy E[f ] = U ,
the total mass

M [f ] =

∫
ρ dθ = 1 (10)

and the total momentum

p[f ] =

∫
pf(p, θ)dθ dp = 0. (11)

A necessary condition to get an entropy maximum is to require that the free energy

F [f ] ≡ S[f ]− βE[f ]− α

∫
f dp dθ − γp[f ], (12)

where α, β and γ are Lagrange multipliers, is stationary

δF [f ]

δf
= − log f − 1− β

(
p2

2
+W (θ)

)
− α− γp = 0, (13)

where W (θ) is defined as

W (θ) ≡
∫ +π

−π

ρ(φ)Vε(θ − φ)dφ. (14)

Since p[f ] = 0, the Lagrange multiplier γ vanishes. From Eq. (13), the normalized stationary distribution function
can be written as

f(p, θ) = A exp

[
−β

(
p2

2
+W (θ)

)]
, (15)
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where A = exp(−1− α) is the normalization constant and the mass density is given by

ρ(θ) = Ã e−βW (θ), (16)

where Ã = A
√
2π/β. When Eq. (14) and (16) are combined, we obtain the consistency equations

W (θ) = Ã

∫ +π

−π

e−βW (φ)Vε(θ − φ)dφ, (17)

and the equilibrium density equation

ρ(θ) = Ã exp

[
−βÃ

∫ +π

−π

ρ(φ)Vε(θ − φ)dφ

]
, (18)

which are solved numerically in the following. Once the stationary mass distributions ρ and the function W are
obtained for each value of ε, the full single particle distribution function f(θ, p) is derived from Eq. (15). The
potential energy and the kinetic energy are determined by Eq. (5) and Eq. (7) respectively, allowing to draw the
caloric curve by plotting T ≡ β−1 = 2EK against the total energy U = EK + EP .

IV. AN ITERATIVE METHOD TO SOLVE THE EQUILIBRIUM DENSITY EQUATION

The inverse temperature β can be expressed in terms of the energy

β =

{
2U −

∫ +π

−π

∫ +π

−π

ρ(θ)ρ(φ)Vε(θ − φ)dθdφ

}−1

. (19)

Once an initial density distribution ρ0(θ) is chosen, one can determine an initial inverse temperature β0 using Eq. (19),
and then solve the consistency equation (18) iteratively (as done for instance in Ref. [17]). However, we will follow here
a different iterative method, which ensures entropy increase and, hence, convergence of the algorithm. The method
is inspired by a similar one used by Turkington and Whittaker [14] to compute entropy maxima for two dimensional
turbulence.
The functional to maximize S[f ] is strictly concave and we must fix both a linear constraint M [f ] = 1 and a

nonlinear one E[f ] = U . It is this latter nonlinear constraint which makes the variational problem more difficult than
usual. The trick to solve this nonlinear problem consists in considering a linearization of the energy constraint around
the distribution function resulting from the previous step in the iterative process.
One begins with the normalized distribution fk obtained at the kth step of the algorithm. From that, one can

compute the mass density ρk and the average potential Wk.

ρk(θ) =

∫
d p fk(p, θ) (20)

Wk(θ) =

∫ +π

−π

dφρk(φ)Vε(θ − φ). (21)

The distribution at the next step fk+1 will be then determined by solving the following variational problem

max

{
S[f ] | M [f ] = 1, E[fk] +

∫
δE

δf

∣∣∣∣
fk

(f − fk) dpdθ ≤ U

}
, (22)

where the functional derivative of the energy is

δE

δf

∣∣∣∣
fk

=
p2

2
+Wk (θ) . (23)

This variational problem has a unique solution fk+1, since it corresponds to the maximization of a strictly concave
functional with linear constraints.
This iterative process ensures convergence of the entropy. Let us prove it. By using a generalization of the Lagrange

multiplier rule for our inequality constrained variational problem [18, 19]

δS

δf

∣∣∣∣
fk+1

= αk+1 + βk+1
δE

δf

∣∣∣∣
fk

(24)
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with the additional requirement

βk+1

[
E
[
fk

]
+

∫
δE

δf

∣∣∣∣
fk

(fk+1 − fk) dpdθ − U

]
= 0, (25)

where βk+1 ≥ 0 is the multiplier associated with the energy constraint and αk+1, the one associated with mass
conservation. When solving Eq. (25), we have either βk+1 = 0, which removes the energy constraint, or βk+1 > 0,
and an equality for the linearized energy constraint.
In order to prove convergence of the entropy, let us first prove that the energy functional E [f ] is concave. Since

the kinetic part is linear in f , the second variation of E[f ] is

δ2E =

∫
dφdθ δρ(θ) δρ(φ)Vε(θ − φ) (26)

=
∑

k

Vε,k |δρk|2 , (27)

where the second equality is obtained using the Fourier series expansion for both the mass density variation δρ and
the potential Vε

δρk =
1

2π

∫ +π

−π

dϕ exp (ikϕ) δρ (ϕ) (28)

Vε,k =
1

2π

∫ +π

−π

dϕ exp (ikϕ)Vε (ϕ) . (29)

Since Vε is even in the argument φ, Vε,k is a real number. Moreover, since Vε ≤ 0 and Vε (ϕ) is strictly increasing for
0 ≤ ϕ ≤ π, it is easy to prove that for any k, Vε,k is strictly negative. Hence, from formula (27) the second variation
of the energy functional is negative and this functional is strictly concave.
On the other hand, the entropy is strictly concave. We have

S[f + δf ] ≤ S[f ] +

∫
dθdp

δS

δf

∣∣∣∣
f

δf − 1

2

∫
dθdp

(δf)2

f
, (30)

where in the derivation we have used ln(1 + x) ≥ x− x2/2 for x > −1. Applying this latter inequality with f = fk+1

and δf = fk − fk+1, and using both condition (24) and (25), we obtain

S [fk+1]− S [fk] ≥ βk+1 (U − E [fk]) +
1

2

∫
dθdp

(fk+1 − fk)
2

fk
, (31)

where the term proportional to αk+1 vanishes because of mass conservation.
We will now use the concavity of the energy functional E [f ]. For k > 1,

E [fk] ≤ E [fk−1] +

∫
δE

δf

∣∣∣∣
fk−1

(fk − fk−1) dpdθ. (32)

As βk+1 ≥ 0 and E [fk] ≤ U , directly from the variational problem (22), Eq. (31) implies that

S [fk+1]− S [fk] ≥
1

2

∫
(fk+1 − fk)

2

fk
dθdp ≥ 0. (33)

Hence, the entropy has to increase for all iterates after the second. Since the entropy is bounded from above, it has to
converge. Using Eqs. (31) and (33), one derives that the energy E [fk] converges to U from below. Moreover, assuming
that fk converges toward f , one can prove the convergence of the multipliers to limit values α and β ≥ 0, which implies
that f verifies Eq. (24) for equilibrium states. Although mathematically one cannot prove the convergence of f , in
all practical cases we will analyze, it appears to be verified. For a more thorough discussion of the convergence in the
similar case of the Euler equation, see Sec. IV in Ref. [14].



7

V. IMPLEMENTATION OF THE ALGORITHM

We describe in this section the practical implementation of an algorithm which allows the calculation of the stable
distribution, using the method described in the previous section.
From (24), we obtain

fk+1 = Ak+1 exp

(
−βk+1

(
p2

2
+Wk (θ)

))
, (34)

where Ak+1 = exp(−αk+1 − 1) and βk+1 are unknown at this stage. Using (20), we get

ρk+1(θ) = Ãk+1 e
−βk+1Wk(θ) . (35)

where Ãk+1 = Ak+1

√
2π/βk+1. This equation allows to compute Wk+1(θ) from Eq. (21) and

Ek+1 ≡ E [fk+1] =
1

2βk+1
+

1

2

∫ +π

−π

ρk+1(θ)Wk+1(θ)dθ. (36)

Then the multipliers αk+1 and βk+1 must be computed from Eqs (10) and (25) and, from these, one gets Ãk+1. In
order to compute numerically these Lagrange parameters, let us define the Lagrangian [19]

Lk[f ](β, α) = −S[f ] + β

[
Ek +

∫
δE

δf

∣∣∣∣
fk

(f − fk) dpdθ − U

]
+ α(M [f ]− 1). (37)

From this, one further defines

L⋆
k(β, α) = inf

f
{Lk[f ](β, α)} . (38)

One can prove on a general ground [19] that L⋆
k is concave and that αk+1 and βk+1 are the unique maxima of L⋆

k.
Using condition (34) for the extrema of Lk[f ](β, α), we can compute L⋆

k. We obtain, using for practical reasons the

variable Ã instead of α,

L⋆
k(β, Ã) = log Ã+

1

2
log β − β

(
U + Ek − 1

2βk

)
− Ã

∫ +π

−π

dθ e−βWk(θ), (39)

Necessary conditions for the concave function L⋆
k to be maximal are

∂L⋆
k

∂Ã
=

1

Ã
−
∫ +π

−π

dθ e−βWk(θ) = 0 , (40)

∂L⋆
k

∂β
=

1

2β
+

1

2βk
− U − Ek + Ã

∫ +π

−π

dθWk(θ) e
−βWk(θ) = 0 . (41)

Substituting Eq. (40) into Eq. (41), one gets the condition

− 1

2βk+1
− 1

2βk
+ U + Ek −

∫ +π

−π

dθ Wk(θ) e
−βk+1Wk(θ)

∫ +π

−π

dθ e−βk+1Wk(θ)

= 0, (42)

which, since L⋆
k is concave, has a unique solution. Numerically, the solution βk+1 is found by using a Newton algorithm

for Eq. (42). Then, from Eq. (40), we get Ãk+1. Finally, we can calculate the new density distribution from Eq. (35).

VI. DISCUSSION OF THE RESULTS

Using the iterative method described in the previous section, we are able to derive the stable mass density ρ(θ)
solution of Eq. (18) and, from that, all thermodynamic functions in the microcanonical ensemble. In the first part of
this section, we will show the numerical solution obtained for ρ(θ), and its dependence on energy for a small value
of the softening parameter ε. In the second part, we will discuss the phase diagram of the SGR model, both in the
microcanonical and in the canonical ensemble, when ε is varied.
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A. Mass density, entropy and caloric curves

For energies above a certain critical value Uc(ε), the stable mass density solution is uniform. In this case, one can
compute the entropy from Eq. (9)

S =
1

2
(3 log(2π) + 1− log β) , (43)

and the inverse temperature from Eq. (19)

β =
(
2U − 2Ep

)−1
, (44)

where

Ep =
1

2

1

(2π)2

∫ +π

−π

∫ +π

−π

dθdφVε(θ − φ) (45)

= − 1

π
√
2

1√
2 + ε

K
(

2

ε+ 2

)
, (46)

where K is the complete elliptic integral of the first kind K(x) ≡
∫ π/2

0
dθ/

√
1− x sin2 θ.

Remark that Eq. (44) implies that the homogenous state cannot be continued below Uhom = Ep, because this latter
energy corresponds to zero temperature.
For U < Uc(ε), the stable mass distribution must be determined numerically. We have checked in this case, that a

direct iterative method of solution of the consistency Eqs (17) and (18) does not always converge. On the contrary,
the novel algorithm presented in Sec. V ensures convergence as shown in Fig. 3 for the entropy.

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 0  10  20  30  40  50  60  70  80  90  100

S

k

Figure 3: Convergence of the entropy using the algorithm of Sec. V for ε = 10−5, U = −1.

In Fig. 4 we show both entropy and temperature T = β−1 as a function of energy U . The most striking feature
is the presence of a negative specific heat region for Utop ≤ U ≤ Uc. For Ulow ≤ U ≤ Uhigh, the entropy does not
coincide with its convex envelope. Hence, microcanonical and canonical ensemble do not give the same predictions.
Indeed, the main peculiarity of the microcanonical ensemble is that macroscopic states within this interval are stable,
while they would be either metastable or unstable in the canonical ensemble. The mass density is uniform above
Uc, while, below this value, it is localized. The appropriate order parameter to characterize this localization is the
“magnetization”

B =

∫ +π

−π

dθ eiθ ρ(θ), (47)

which vanishes if the mass distribution is uniform while it reaches the value B = 1 when the mass is concentrated in
only one point. Intermediate degrees of localization give intermediate values of B. The “magnetization” is plotted in
Fig. 5 as a function of U . It is a decreasing function of U , up to Uc, where it has a jump to the limiting value 0. Hence,
we have here a first order microcanonical phase transition. The first order nature of the phase transition is confirmed
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Figure 4: Temperature (panel (a)) and entropy (panel (b)) versus energy U for the softening parameter value ε = 10−5. Four
values of the energy, indicated by the short-dashed vertical lines, can be identified from this picture: Ulow ≃ −93 and Uhigh ≃ 6
bound from below and above the region of inequivalence of ensembles. Uc ≃ 0 is the transition energy in the microcanonical
ensemble. Utop ≃ −66 limits from below the negative specific heat region, where temperature decreases as energy increases.
Tcan ≃ 15, represented with a dashed line in panel (a), is the canonical transition temperature and corresponds to the inverse
slope of the entropy, both at Ulow and Uhigh, as represented by the straight dashed line in panel (b). The full lines represent
the analytical solutions of the temperature and of entropy in the uniform case (see formulas (43) and (44)). They are extended
slightly below Uc, in the metastable phase, in order to identify them. The insets in panels (a) and (b) show a zoom of the
temperature and of the entropy around Uc, revealing a temperature jump at Uc and different slopes of the entropy above and
below Uc, which emphasizes the first order nature of the phase transition.

zooming the entropy around Uc (see the inset in panel (b) of Fig. 4). This reveals that this first order phase transition
is of the convex-concave type (see Ref. [13]). The canonical ensemble is obtained by taking the convex envelope of the
microcanonical entropy. The transition is first order in the canonical ensemble and the transition temperature Tcan is
given by the inverse slope of the entropy at Ulow and Uhigh. No canonical macrostate is present in the energy range
[Ulow, Uhigh].
A typical localized mass density distribution is shown in Fig. 6. It corresponds to an energy where the specific heat
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Figure 5: “Magnetization” B versus energy U for ε = 10−5, which emphasizes the microcanonical first order phase transition
at Uc ≃ 0 by showing a jump in the order parameter.

is negative.

 0.01

 0.1

 1

 10

 100

0

Figure 6: A typical mass density distribution ρ(θ) for ε = 10−5 and U = −20.0, in the negative specific heat region.

The first order phase transition is associated with the existence of metastable states. Using a continuation method,
we have been able to compute them. Their entropy is represented in Fig. 7 around the transition energy Uc for the
specific case ε = 10−5. The inhomogeneous metastable state turns out to exist for Uc ≤ U ≤ Uin with Uin ≃ 0.16,
while the homogeneous metastable state exists for Uhom ≤ U ≤ Uc, with Uhom = Ep

(
ε = 10−5

)
≃ −1.19.

B. Behaviour as the softening parameter ε is varied

Let us first examine a situation where the softening parameter is much larger than previously, ε = 10−2. In
the microcanonical ensemble, Fig. 8 shows that a concavity change still occurs at Utop ≃ −0.8, and that a phase
transition exists at U = Uc ≃ −0.3. However, the temperature being now a continuous function of the energy but
with discontinuous derivative at Uc, the phase transition is of second order, and is associated with the symmetry
breaking of the order parameter. The caloric curve shows that this second order phase transition is of the convex-
concave type. As it is necessary for this type of microcanonical second order phase transition [13], we observe a
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Figure 7: Both the high energy branch of the entropy versus energy curve, corresponding to the homogeneous solution (solid
line) and the low energy branch of the inhomogeneous solution (dashed line) are represented in this plot for ε = 10−5. The two
branches cross at Uc ≃ 0. The continuation of the homogeneous branch into the low energy region is bounded from below by
Uhom ≃ −1.19, indicated by a vertical dashed line. The inhomogeneous branch continues into the high energy phase and ends
at Uin ≃ 0.16, again indicated by a vertical dashed line.

positive specific heat jump at the transition point.
What we find suggests that between ε = 10−5 and ε = 10−2, there is an intermediate value of ε where a micro-

canonical tricritical point is present. This point is signalled by two properties:

• The caloric curve assumes a negative infinite slope as U tends to Uc from below.

• The upper energy of the metastable inhomogeneous phase Uin collapses onto Uc from above, while still a
continuation of the homogeneous phase below Uc exists as an unstable phase.

In Fig. 10, we have represented the ε-dependence of the critical energy Uc and of the energy bounds Uin and Uhom.
At the microcanonical tricritical point, εµT ≃ 10−4, the end point for the existence of the inhomogeneous metastable
phase joins the critical line. This is a generic feature of tricritical points with symmetry breaking (see Fig. 6 of
Ref. [13]).
To locate the tricritical point in the canonical ensemble, one has to look for the ε-value at which the two curves Ulow

and Uhigh merge (see Fig. 11). An approximate estimate of this value is εcT ≃ 10−1. At the canonical tricritical point,
also Utop merges with the above curves, indicating the disappearance of the negative specific heat region. We thus
note that ensemble inequivalence disappears at the canonical tricritical point by the disappearance of the inflexion
point at Utop in the entropy curve. As it may be checked in Table I of Ref. [13], this is the only way in which ensemble
inequivalence can disappear when associated with a tricritical point.
Summarizing, the important changes of the phase diagram of the SGR model when ε is varied are due to the

existence of microcanonical and canonical tricritical points. For ε ≤ εcT , there is an energy range with ensemble
inequivalence. These features were already observed in Refs. [15, 20].

VII. RELAXATION TO EQUILIBRIUM

We have first checked numerically if the equilibrium density profile is ever attained in direct N -body simulations
of Hamiltonian (1). In Fig. 12, we compare the result of a numerical simulation with the equilibrium density profile
obtained by the iterative method. The agreement is good in the center of the mass distribution, while the tails are
still affected by strong finite N fluctuations. In this case, the total energy U = −20 is in the region of negative
specific heat and is well conserved using a sixth order symplectic integrator [21]. Simulations were performed using
GRAPE-5, a special purpose computer for gravitational force [6].
However, it is well known that systems with long-range interactions display a very slow relaxation to equilibrium [22].

Hence, we expect that similar features will be also exhibited by the SGR model. For instance, we can consider a
“cold start”, where the particles are initially homogeneously distributed on an arch (θ ∈ [θmin, θmax]) with zero
kinetic energy. Usually, in gravitational simulations, one looks at the evolution of the virial ratio |2K/V |, which is
here initially zero. The plot of the time-dependence of this parameter is shown in Fig. 13 for the same parameter
values used previously. One clearly observes that the system relaxes to a “quasi-equilibrium” state, where the virial
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Figure 8: Panel (a): The caloric curve (triangles) for ε = 10−2. The dashed vertical lines indicate, from left to right,
Ulow ≃ −1.98, Utop ≃ −1.3, Uc ≃ −0.32 and Uhigh ≃ −0.225. The homogeneous phase curve, known analytically, is shown by
the continuous line. The main difference with respect to Fig. 4 is that now there is not a temperature jump at Uc. The phase
transition is second order in the microcanonical ensemble, while it is still first order in the canonical ensemble, at Tcan ≃ 0.8.
Panel (b): Entropy versus energy (triangles) for ε = 10−2. The entropy curve corresponding to the inhomogeneous distribution
smoothly connects with the one of the homogeneous distribution (solid line). The oblique straight dashed line is tangent to the
entropy at Ulow and Uhigh, which delimit the energy region of ensemble inequivalence.

ratio fluctuates around a value which differs from the equilibrium one, computed analytically. While previously, for
the mass positions (see Fig. 12), the relaxation was observed on a short time scale, we show here that a quantity
related also to velocities does not display a relaxation on the same timescale. From previous experiences with similar
cases [22], one expects that the relaxation should occur on a time scale of the order of a power of N .
Even slower is the relaxation when local maxima of the entropy exist. This happens around the critical energy

Uc in the case of a first order phase transition, e.g. for ε = 10−5. Figs 14 show the relaxation to different values
of two relevant quantities, the temperature and the “magnetization”, when the system is initialized either with the
particles concentrated on a small arch, or on a larger one. When the system is “close” to the local entropy maximum
corresponding to the clustered state, it converges to it pretty fast. The contrary happens when the particles are more
homogeneously distributed, and then the system converges to the homogenous state. Indeed, between the two states
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Figure 9: “Magnetization” B versus energy U for ε = 10−2 which emphasizes the microcanonical second order phase transition
at Uc, because the order parameter vanishes continuously.
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Figure 10: The dash-dotted line represents Uin(ε), the dashed line Uhom = Ep(ε), the filled circles the first order microcanonical
phase transition energy and the open circles the second order one. At the microcanonical tricritical point εµT ≃ 10−4, the phase
transition changes from first order to second order and, at the same time, the inhomogeneous metastable solution disappears.

there is an entropy barrier which has been found to grow as exp (N) for systems with long-range interactions [23, 24].

VIII. CONCLUSIONS AND PERSPECTIVES

We have fully characterized from the thermodynamic point of view a one-dimensional model of self-gravitating
particles moving on a ring [10], which is the simplest prototype of the full 3D self-gravitating system. Solving the
equilibrium density equation by a new iterative method, whose convergence is assured by entropy increase, allows
to derive the full phase diagram of the model both in the microcanonical and the canonical ensemble. When the
softening parameter is sufficiently small, a negative specific heat region appears in the microcanonical ensemble, in
coincidence with the phase transition becoming first order in the canonical ensemble. Further lowering the softening
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Figure 11: ε-dependence of Ulow (dashed line), Uhigh (solid line) and Utop (dash-dotted line).The canonical tricritical point is
located at εcT ≃ 10−1 where the three curves merge. At this softening parameter value also the negative specific heat disappears
in the microcanonical ensemble, while the transition becomes second order in the canonical ensemble. In the figure, we also
show, with a long-dashed line, the theoretical estimate of U th

top ≃ −1/(4
√
2ε) obtained in Ref. [10].

Figure 12: Comparison of the mass density profile obtained by the iterative method (solid line) with the result of numerical
simulations (plus signs) with N = 4000 and ε = 10−5. Parameter values are the same of Fig 6. The inset is a zoom of the
center of the profile.

parameter, the transition becomes first order in the microcanonical ensemble and a temperature jump appears at the
transition energy. The microcanonical and canonical tricritical points do not coincide [15].
Dynamically, we have performed numerical experiments which show that relaxation to equilibrium can be extremely

slow. They reveal also the presence of quasi-equilibrium states, which are ubiquitous in systems with long-range
interactions [12]. These states could be further characterized considering a Vlasov equation approach as done for the
HMF model in Ref. [22]. Moreover, in the first order microcanonical transition region a strong metastability appears
and, at a given energy, the system can relax towards different thermodynamic states.
Preliminary studies of velocity probability distributions in this model have been performed in Ref. [10]. A similar

analysis has been more recently done for the full 3D self-gravitating system [25]. In both models,non gaussians tails
show up in several energy regions. Among future directions of study of the SGR model, we think that deriving a
theoretical framework to undertand these large tails would be of particular interest. To this aim, especially useful
could be the methods developed to understand single particle diffusion in the HMF model [26, 27].
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Figure 13: Time evolution of the virial ratio |2K/V | of the SGR model for ε = 10−5 and N = 4000. Initially, the particles are
homogeneously distributed in the interval [0, 2π/75] with zero kinetic energy. The virial ratio oscillates asymptotically around
the value 0.49, which differs significantly from the equilibrium value 0.55 indicated by the dashed horizontal line. The initial
virial ratio is zero, although this time region is not visible in the figure.

Figure 14: Relaxation to different maximum entropy states in the SGR model for U ≃ 0, ε = 10−5 and N = 103. Panel (a)
shows the relaxation of the temperature either to the inhomogeneous state value (horizontal dotted line), or to the homogeneous
one (horizontal dash-dotted line), depending whether the particles are initially distributed on a smaller arch θ ∈ [0, π/50] (solid
line) or a larger arch θ ∈ [0, π/5] (dashed line). In both cases, the velocity distribution is initially a “water bag”. Panel (b)
shows the same for the “magnetization”.
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