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ASYMPTOTICS FOR THE RESOLVENT EQUATION

ASSOCIATED TO THE GAME-THEORETIC p-LAPLACIAN

DIEGO BERTI AND ROLANDO MAGNANINI

Abstract. We consider the (viscosity) solution uε of the elliptic equa-
tion ε2∆G

p u = u in a domain (not necessarily bounded), satisfying

u = 1 on its boundary. Here, ∆G
p is the game-theoretic or normal-

ized p-laplacian. We derive asymptotic formulas for ε → 0+ involving
the values of uε, in the spirit of Varadhan’s work [Va], and its q-mean on
balls touching the boundary, thus generalizing that obtained in [MS1]
for p = q = 2. As in a related parabolic problem, investigated in [BM],
we link the relevant asymptotic behavior to the geometry of the domain.

1. Introduction

In this paper we consider (viscosity) solutions uε of the following one-
parameter family of problems:

u− ε2∆G
p u = 0 in Ω,(1.1)

u = 1 on Γ,(1.2)

where Ω is a domain in RN , N ≥ 2, Γ is its boundary and ε > 0. The
operator ∆G

p in (1.1) is the game-theoretic (or normalized or homogeneous)
p-laplacian, that is formally defined by

(1.3) ∆G
p u =

1

p
|∇u|2−p div

{
|∇u|p−2∇u

}
if p ∈ [1,∞), and by its limit as p→∞,

(1.4) ∆G
∞u =

〈
∇2u∇u,∇u

〉
|∇u|2

,

in the extremal case p = ∞. Note that ∆G
2 = 1

2∆, where ∆ is the classical

(linear) Laplace operator. Otherwise, ∆G
p is a non-linear operator in non-

divergence form, with possibly discontinuos coefficients at points in which
the gradient ∇u is zero. Nevertheless, differently from the case of the vari-
ational p-laplacian ∆pu = div

{
|∇u|p−2∇u

}
, ∆G

p inherits from ∆, for any
p ∈ (1,∞], its 1-homogeneity and structure of second-order uniformly ellip-
tic operator. The lack of continuity of the coefficients at the critical points of
u and the non-divergence form of ∆G

p make the use of the theory of viscosity
solutions prefereable to that of weak (variational) solutions. On this issue,
besides the classical treatises [CGG] and [CIL], we mention a list of more
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2 DIEGO BERTI AND ROLANDO MAGNANINI

recent references that specifically concern ∆G
p : [AP], [APR], [BG1], [BG2],

[Do], [JK], [KH], [KKK], [MPR] and [MPR2].
Problems involving ∆G

p appear in a variety of applications. First of all, as
the name evokes, the solution has a natural game-theoretic interpretation:
the solution of problem (1.1)-(1.2) represents the limiting value of a two-
player, zero-sum game, called tug-of-war (for p = ∞) or tug-of-war with
noise (for 1 < p <∞), see for instance [PS],[PSSW], [MPR] and [MPR2].

In recent years there has been a growing interest for equations involving
∆G
p in relation to numerical methods for image enhancement or restoration

(see [Do] and [BSA]). Typically, for a possibly corrupted image represented
by a function u0, it is considered an evolutionary process based on ∆G

p

with initial data u0 and homogeneous Neumann boundary conditions. As
explained in [Do], the different choice of p affects in which direction the
brightness evolves; the 1-homogeneity of ∆G

p ensures that such an evolution
does not depend on the brightness of the image. The relation between
the solution of the parabolic problem and the parametrized elliptic equation
(1.1) is examined in [BSA] (where the backward version of the same problem
is considered) for the classical p-laplacian, and can be extended to the case
of ∆G

p in hand.
More classical applications were considered in the linear case (p = 2).

Indeed, in the context of large deviations theory (see [FW], [Va], [EI]), ran-
dom differential equations with small noise intensities are considered and
the profile for small values of ε of the solutions of (1.1)-(1.2) is related to
the behaviour of the exit time of a certain stochastic process. In geometrical
terms, that behavior is encoded in the following formula:

(1.5) lim
ε→0+

ε log uε(x) = −dΓ(x),

uniformly on a bounded domain Ω, where dΓ(x) denotes the distance of a
point x ∈ Ω to Γ.

Further evidence of the influence of geometry on the asymptotic behavior
of solutions of elliptic and parabolic equations for small values of the rele-
vant parameter was given by the second author of this note and S. Sakaguchi
in a series of papers both in the linear case ([MS1], [MS3], [MS5], [MS7],
[MM]) and in certain non-linear contexts ([MS2], [MS4], [MS6], [Sa1]), con-
cerning both initial-boundary value problems ([MS1], [MS2], [MS4]) and
initial-value problems ([MPeS], [MPrS]), and even for two-phase problems
([Sa2], [Sa3], [CMS]). For instance, in [MS1, Theorem 2.3], in the case p = 2
for problem (1.1)-(1.2), the following formula involving the mean value of
uε was established:

(1.6) lim
ε→0+

(
R

ε

)N−1
2

−
∫
∂BR(x)

uε(y) dSy =
cN√

ΠΓ(yx)
;

cN is a constant that can be derived from [MS1, Theorem 2.3]. Here, for a
given x ∈ Ω with dΓ(x) = R, BR(x) is assumed to be a ball contained in Ω
and such that (RN \Ω)∩ ∂BR(x) = {yx}, κ1, . . . , κN−1 denote the principal
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curvatures (with respect to the inward normal) of Γ at points of Γ, and

(1.7) ΠΓ(yx) =
N−1∏
j=1

[
1−Rκj(yx)

]
.

In this paper, we shall derive asymptotic formulas similar to (1.5) and
(1.6) for the solution uε of (1.1)-(1.2), when p 6= 2.

First of all, in Section 2 we shall prove for p ∈ (1,∞] the validity of the
following analog of (1.5):

(1.8) lim
ε→0+

ε log [uε(x)] = −
√
p′ dΓ(x), for any x ∈ Ω.

Here p′ denotes the conjugate exponent to p (i.e. 1/p + 1/p′ = 1) and Ω is
required to merely satisfy the regularity assumption: Γ = ∂

(
RN \ Ω

)
.

Asymptotics (1.8) is obtained, first, by considering the solutions of (1.1)-
(1.2) in the two basic radial cases in which Ω is either a ball or the exterior of
its closure (see Subsection 2.1) and, secondly, by employing them as barriers,
by virtue of the comparison principle and taking advantage of the fact that
in the radial cases the solutions of (1.1)-(1.2) are obtained explicitly. In
fact, equation (1.1) can be reduced to a linear ordinary differential equation
when uε is radially symmetric. The use of radial barriers, that is natural in
the case of a C2 domain, will also be adapted to a quite general case.

In Section 2 we shall also investigate uniform estimates related to (1.8).
An interesting feature of such estimates is that their quality seems to depend
on the parameter p. In fact, while for a quite large class of regular domains
(that we call C0,ω domains and these include the scale of those with Hölder
regularity) the following formula always holds uniformly on any compact
subset of Ω

(1.9) ε log (uε) +
√
p′ dΓ = O (ε| logψ(ε)|) as ε→ 0+

(here ψ(ε) = ψω(ε) vanishes with ε depending on the modulus of continuity
ω), we see that, the right-hand side of (1.9) improves to O(ε log | logψ(ε)|)
if p = N , O(ε log ε) for p ∈ (N,∞), and O(ε) if p =∞ (see Theorem 2.6).

In Section 3, we shall derive a formula that greatly generalizes (1.6): in
fact, in Theorem 3.5 it is shown that for 1 < p ≤ ∞ and 1 < q <∞ it holds
that

(1.10) lim
ε→0+

(
R

ε

) N+1
2(q−1)

µq,ε(x) =
cN,q{

(p′)
N+1

2 ΠΓ(yx)
} 1

2(q−1)

(the exact value of the constant cN,q is given in Theorem 3.5). Here, µq,ε(x)
is the q-mean of uε on a ball BR(x) touching Γ at only one point yx; µq,ε(x)
is the unique µ ∈ R such that

(1.11) ‖uε − µ‖Lq(BR(x)) ≤ ‖uε − λ‖Lq(BR(x)) for all λ ∈ R;

this can be defined for every q ∈ [1,∞] (see [IMW]). Notice that µ2,ε(x) is
the standard mean value of uε on BR(x).

If q = ∞ we simply have that µ∞,ε(x) → 1/2, which does not give any
geometrical information.
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Also to obtain (1.10), we first show that an appropriate formula holds for
suitable spherical barriers for uε and hence we use the fact that q-means are
monotonic with respect to (almost everywhere) partial order of functions on
BR(x).

Formulas (1.8) and (1.10) are elliptic versions of similar formulas obtained
in [BM] for the viscosity solution u = u(x, t) of the parabolic equation

ut −∆G
p u = 0 in Ω× (0,∞),

subject to the boundary-initial data:

u = 0 on Ω× {0} and u = 1 on Γ× (0,∞).

Indeed, in [BM] we obtained:

lim
t→0+

4t log u(x, t) = −p′ dΓ(x)2,

and

lim
t→0+

(
R2

t

) N+1
4(q−1)

µq,t(x) =
CN,q{

(p′)
N+1

2 ΠΓ(yx)
} 1

2(q−1)

,

for some explicit constant CN,q, where µq,t(x) is the q-mean of u(·, t) on
BR(x). It should be noticed that in the case p = 2, due to the linearity
of ∆, the last formula and (1.10) can be obtained from one another, since
uε(x) and u(x, t) are related by a Laplace transformation. When p 6= 2, this
is no longer possible and the elliptic and parabolic cases must be treated
separately. Moreover, in the elliptic case, due to the availability of explicit
barriers, we obtain the more accurate uniform estimate (1.9) (compare with
[BM, Eq. (2.18)]).

We conclude this introduction by mentioning that the linearity of ∆ was
used in [MS1] to derive radial symmetry of the so-called stationary isother-
mic surfaces, that is those level surfaces of the temperature which are invari-
ant in time. In fact, it was shown that the mean value µq,t(x) or µq,ε(x) does
not depend on x if this lies on a stationary isothermic surface, and hence,
for instance, (1.6) gives that ΠΓ must be constant on Γ, so that radial sym-
metry then ensues from Alexandrov’s Soap Bubble Theorem for Weingarten
surfaces (see [Al]). For p 6= 2, this approach is no longer possible. However,
an approach based on the method of moving planes, as considered in [MS4]
and [CiMS], may still be possible.

2. Large-deviations asymptotics

The proof of the asymptotic formulas (1.8) and (1.9) will be carried out
in two steps.

2.1. Asymptotics in the radial cases. In this subsection we collect the
relevant properties of the explicit solutions for problem (1.1)-(1.2) when Ω
is a ball or the complement of a ball. We shall denote by BR the ball with
radius R centered at the origin.
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In [BM] we have shown that the (viscosity) solution of (1.1)-(1.2) in BR
is given by

(2.1) uε(x) =



∫ π
0 e
√
p′ |x|

ε
cos θ(sin θ)α dθ∫ π

0 e
√
p′ R

ε
cos θ(sin θ)α dθ

if 1 < p <∞,

cosh(|x|/ε)
cosh(R/ε)

if p =∞,

for x ∈ BR; here

(2.2) α =
N − p
p− 1

= −1 +
N − 1

p− 1

Moreover, formula (1.8) holds with Ω = BR and the next lemma gives a
quantitative estimate of the convergence in (1.8).

Lemma 2.1 (Uniform asymptotics in a ball). Let 1 < p ≤ ∞ and let uε be
the solution of (1.1)-(1.2) in BR.

Then

(2.3) ε log uε + dΓ =

{
O(ε | log ε|) if 1 < p <∞,
O(ε) if p =∞,

uniformly on BR as ε→ 0+.

Proof. The case p =∞ follows at once, since (2.1) gives:

ε log {uε(x)}+ dΓ(x) = ε log

[
1 + e−2

|x|
ε

1 + e−2R
ε

]
.

If 1 < p <∞, by (2.1) we have that

ε log {uε(x)}+
√
p′ dΓ(x) = ε log

∫ π0 e−
√
p′(1−cos θ)

|x|
ε (sin θ)α dθ∫ π

0 e−
√
p′(1−cos θ) R

ε (sin θ)α dθ


and the right-hand side is decreasing in |x|, so that

0 ≤ ε log {uε(x)}+
√
p′ dΓ(x) ≤ ε log

[ ∫ π
0 (sin θ)α dθ∫ π

0 e−
√
p′ (1−cos θ) R

ε (sin θ)α dθ

]
.

This formula gives (2.3), since we have that∫ π

0
e−
√
p′ (1−cos θ)R

ε (sin θ)α dθ =

2
α−1

2 Γ

(
α+ 1

2

)(
R
√
p′

ε

)−α+1
2

[1 +O(ε)]

as ε→ 0+, by using Lemma A.1. �

Next, we consider the complement of a ball.
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Lemma 2.2 (Uniform asymptotics in the complement of a ball). Set 1 <
p ≤ ∞, Ω = RN \BR, and let uε be the bounded solution of (1.1)-(1.2).

Then we have that

(2.4) uε(x) =


∫∞

0 e−
√
p′ cosh θ

|x|
ε (sinh θ)α dθ∫∞

0 e−
√
p′ cosh θR

ε (sinh θ)α dθ
if 1 < p <∞,

e−
|x|−R
ε if p =∞.

In particular,

(2.5) ε log {uε(x)}+
√
p′ dΓ(x) = O(ε) as ε→ 0+,

uniformly on every compact subset of Ω.

Proof. It is immediate to verify that (1.2) is satisfied. Moreover, it is a
straightforward computation to show that uε satisfies (1.1) in the classical
sense, once we observe that it is of class C2 for |x| > R. This is enough to
conclude that uε is the unique viscosity solution of (1.1)-(1.2).

First, notice that dΓ(x) = |x| − R for |x| ≥ R. If p = ∞, (2.5) holds
exactly as

ε log {uε(x)}+ dΓ(x) ≡ 0.

If 1 < p <∞, we write that

ε log {uε(x)}+
√
p′ dΓ(x) =

∫∞
0 e−

√
p′ |x|

ε
(cosh θ−1)(sinh θ)α dθ∫∞

0 e−
√
p′ R
ε

(cosh θ−1)(sinh θ)α dθ

and hence, by monotonicity, we have that

ε log


∫∞

0 e−
√
p′ R
′
ε

(cosh θ−1)(sinh θ)α dθ∫∞
0 e−

√
p′ R
ε

(cosh θ−1)(sinh θ)α dθ

 ≤ ε log {uε(x)}+
√
p′ dΓ(x) ≤ 0,

for every x such that R ≤ |x| ≤ R′, with R′ > R. Our claim then follows
by an inspection on the left-hand side, after applications for σ =

√
p′R′ and

σ =
√
p′R of Lemma A.1. �

2.2. Asymptotics in a general domain. We begin by recalling that for
equation (1.1) the comparison principle holds, as noted in [CGG, Remark
4.6] or in [AP, Appendix D] and as shown in [Sat, Theorem 2.1] in the
general case of bounded solutions on unbounded domains, that is if u and v
are viscosity solutions of (1.1) in Ω such that u ≤ v on Γ, then u ≤ v on Ω.

The next two lemmas give explicit barriers for the solution in a general
domain Ω. We observe that no regularity assumption on Ω is needed.

Lemma 2.3 (Control from above). Let 1 < p ≤ ∞ and uε be the bounded
(viscosity) solution of (1.1)-(1.2).

Then, we have that

ε log {uε(x)}+
√
p′ dΓ(x) ≤ ε logEεp(dΓ(x)),
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for every x ∈ Ω, where

(2.6) Eεp(σ) =



∫ π
0 (sin θ)α dθ∫ π

0 e−
√
p′ 1−cos θ

ε
σ(sin θ)α dθ

if 1 < p <∞,

2

1 + e−
2σ
ε

if p =∞.

In particular, it holds that

ε logEεp(dΓ) =

{
O(ε log ε) if 1 < p <∞,
O(ε) if p =∞,

as ε→ 0+, on every subset of Ω in which dΓ is bounded.

Proof. For a fixed x ∈ Ω, we consider the ball Bx = BR(x) with R = dΓ(x)
and denote by uεBx the solution of (1.1)-(1.2) with Ω = Bx. The comparison
principle gives that

uε ≤ uεBx on Bx

and, in particular,

(2.7) uε(x) ≤ uεBx(x).

Observe that the uniqueness of the solution of (1.1)-(1.2) and the scaling
properties of ∆G

p imply that

uεBx(x) = u
ε/R
B (0),

where uεB is the solution of (1.1)-(1.2) with Ω = B, the unit ball. The explicit
expression in (2.1) and (2.7) then yield the desired claim, since R = dΓ(x).

The last claim follows from Lemma 2.1. �

Lemma 2.4 (Control from below). Let 1 < p ≤ ∞ and uε be the bounded
(viscosity) solution of (1.1)-(1.2). Pick z ∈ RN \ Ω.

Then, we have that

ε log {uε(x)}+
√
p′ {|x− z| − dΓ(z)} ≥ ε log eεp,z(x) for any x ∈ Ω,

where

(2.8) eεp,z(x) =


∫∞

0 e−
√
p′ cosh θ−1

ε
|x−z| (sinh θ)α dθ∫∞

0 e−
√
p′ cosh θ−1

ε
dΓ(z) (sinh θ)α dθ

if 1 < p <∞,

1 if p =∞.

Proof. We consider the ball B = BR(z) with radius R = dΓ(z) and let vε be
the bounded solution of (1.1)-(1.2) relative to RN \ B ⊃ Ω. From the fact
that z ∈ RN \ Ω, we have that Γ ⊂ RN \B, which implies that

vε ≤ 1 on Γ,

by the explicit expression of vε given in (2.4). Thus, by the comparison
principle, we infer that vε ≤ uε on Ω. The desired claim then follows by
easy manipulations on (2.4). �
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Theorem 2.5 (Pointwise convergence). Let 1 < p ≤ ∞ and Ω be a domain
satisfying Γ = ∂

(
RN \ Ω

)
; assume that uε is the bounded (viscosity) solution

of (1.1)-(1.2).
Then, it holds that

(2.9) lim
ε→0+

ε log
{
uεp(x)

}
= −

√
p′ dΓ(x) for any x ∈ Ω.

Proof. Given z ∈ RN \Ω and ε > 0, combining Lemmas 2.3 and 2.4 gives at
x ∈ Ω that

(2.10)
√
p′ {−|x− z|+ dΓ(x) + dΓ(z)}+ ε log eεp,z(x) ≤

ε log{uε(x)}+
√
p′ dΓ(x) ≤ ε logEεp(dΓ(x)).

Letting ε→ 0+ then gives that√
p′ {−|x− z|+ dΓ(x) + dΓ(z)} ≤

lim inf
ε→0+

[
ε log{uε(x)}+

√
p′ dΓ(x)

]
≤

lim sup
ε→0+

[
ε log{uε(x)}+

√
p′ dΓ(x)

]
≤ 0,

where we have used Lemma 2.3 and the fact that ε log eεp,z(x) vanishes, as

ε→ 0+, by applying Lemma A.1 to (2.8).
Now, since z is arbitrary in RN \ Ω, we obtain (2.9), by taking the limit

for z → y, where y ∈ Γ is a point realizing |x− y| = dΓ(x). �

2.3. Uniform asymptotics. For a domain of class C0, we mean that its
boundary is locally the graph of a continuous function. For the sequel, it is
convenient to specify the modulus of continuity, by the following definition
(introduced in [BM]). Let ω : (0,∞) → (0,∞) be a strictly increasing
continuous function such that ω(τ) → 0 as τ → 0+. We say that a domain
Ω is of class C0,ω, if there exists a number r > 0 such that, for every point
x0 ∈ Γ, there is a coordinate system (y′, yN ) ∈ RN−1 × R, and a function
φ : RN−1 → R such that

(i) Br(x0) ∩ Ω = {(y′, yN ) ∈ Br(x0) : yN < φ(y′)};
(ii) Br(x0) ∩ Γ = {(y′, yN ) ∈ Br(x0) : yN = φ(y′)}

(iii) |φ(y′)− φ(z′)| ≤ ω(|y′ − z′|) for all (y′, φ(y′)), (z′, φ(z′)) ∈ Br(x0) ∩ Γ.

In the sequel, it will be useful the function defined for ε > 0 by

ψ(ε) = min
0≤s≤r

√
s2 + [ω(s)− ε]2

— this is the distance of the point zε = (0′, ε) ∈ RN−1×R from the graph of
the function ω. Notice that ψ(ε) = ε if φ ∈ Ck with k ≥ 2 and, otherwise,
ψ(ε) ∼ C ω−1(ε), for some positive constant C, where ω−1 is the inverse
function of ω.

Theorem 2.6 (Uniform convergence). Let 1 < p ≤ ∞ and Ω be a domain of
class C0. Suppose that uε is the bounded (viscosity) solution of (1.1)-(1.2).

Then, as ε→ 0+, we have that

(2.11) ε log {uε(x)}+ dΓ(x) =

{
O(ε) if p =∞,
O(ε log ε) if p > N.
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Figure 1. The geometric description of the approximating
scheme in the proof of Theorem 2.6.

Moreover, if Ω is a C0,ω domain, it holds that

(2.12) ε log {uε(x)}+
√
p′ dΓ(x) =

{
O(ε log | logψ(ε)|) if N = p,

O(ε logψ(ε)) if 1 < p < N.

The formulas (2.11) and (2.12) hold uniformly on the compact subsets of Ω.
In particular, if ε logψ(ε) → 0 as ε → 0+, then the convergence in (2.9)

is uniform on every compact subset of Ω.

Proof. For any fixed compact subset K of Ω we let d be the positive number,
defined as

d = max
x′∈K
{dΓ(x′), |x′|}.

To obtain the uniform convergence in (2.9) we will choose z = zε indepen-
dently on x ∈ K, as follows.

If Ω is a C0,ω domain, fix x ∈ K, take y ∈ Γ minimizing the distance to
x, and consider a coordinate system in RN−1 × R such that y = (0′, 0). If
we take zε = (0′, ε), then zε ∈ RN \Ω when ε is sufficiently small. With this
choice, (2.10) reads as√

p′ {−|x− zε|+ dΓ(x) + dΓ(zε)}+ ε log eεp,zε(x) ≤

ε log uεp(x) +
√
p′ dΓ(x) ≤ ε logEεp(dΓ(x)).

Hence, we get:

(2.13) −
√
p′ ε+ ε log eεp,zε(x) ≤ ε log uεp(x) +

√
p′ dΓ(x) ≤ ε logEεp(dΓ(x)),

since dΓ(zε) ≥ 0 and |x− zε| ≤ dΓ(x) + ε.
Thus, if p =∞, Lemmas 2.3 and (2.4) give that

−ε ≤ ε log {uε(x)}+ dΓ(x) ≤ ε log

{
2

1 + e−
d
ε

}
,

being dΓ(x) ≤ d, and (2.11) follows at once.
Next, if 1 < p < ∞, we recall that ε logEεp(dΓ) = O(ε log ε) on K as

ε→ 0+, by Lemma 2.3. On the other hand, by observing that dΓ(zε) ≥ ψ(ε),
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by our assumption on Ω, and that also |x − zε| ≤ 2d for ε ≤ d, (2.8) gives
on K that

eεp,zε ≥
∫∞

0 e−
2d
√
p′

ε
(cosh θ−1) (sinh θ)α dθ∫∞

0 e−
√
p′ψ(ε)
ε

(cosh θ−1) (sinh θ)α dθ

.

Now, to this formula we apply Lemma A.1 with σ = 2d
√
p′/ε at the

numerator and σ =
√
p′ψ(ε)/ε at the denominator. Thus, since by (2.2) the

sign of α is that of N − p, on K we have as ε→ 0 that

ε log
(
eεp,zε

)
≥ α ε logψ(ε)− α− 1

2
ε log ε+O(ε) =

αε logψ(ε) +O(ε log ε),

if p < N ,
ε log

(
eεp,zε

)
≥ −ε log | logψ(ε)|+O(ε log ε),

if p = N , and

ε log
(
eεp,zε

)
≥ α+ 1

2
ε log ε+O(ε),

if p > N . �

3. Asymptotics for the q-means of a ball

Throughout this subsection we assume that Ω is a (not necessarily bounded)
domain that satisfies both the uniform exterior and interior ball conditions,
i.e. there exist ri, re > 0 such that every y ∈ Γ has the property that there
exist zi ∈ Ω and ze ∈ RN \ Ω for which

(3.1) Bri(zi) ⊂ Ω ⊂ RN \Bre(ze) and Bri(zi) ∩Bre(ze) = {y}.

3.1. Enhanced barriers. We begin by refining the barriers given in Lemma
2.3 and 2.4, at least in a strip near the boundary Γ. To this aim, we will
use the notation:

Ωρ = {y ∈ Ω : dΓ(y) ≤ ρ}, ρ > 0.

We will also use the two families of probability measures on the intervals
[0,∞) and [0, π] with densities defined, respectively, by

dνσ(θ) =
e−σ (cosh θ−1)(sinh θ)α∫∞

0 e−σ(cosh θ−1)(sinh θ)α dθ
dθ,

dµσ(θ) =
e−σ (1−cos θ)(sin θ)α∫ π

0 e−σ(1−cos θ)(sin θ)α dθ
dθ.

Lemma 3.1. Let uε be the bounded (viscosity) solution of (1.1)-(1.2).
If p ∈ (1,∞), we set for σε =

√
p′re/ε:

U ε(τ) =

∫ ∞
0

e−τ cosh θdνσε(θ), τ ≥ 0,

and

V ε(τ) =


∫ π

0
e−τ cos θdµσε(θ) if 0 ≤ τ < σε,{∫ π

0
e−τ cos θdµ0(θ)

}−1

if τ ≥ σε.
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If p =∞, we set U ε(τ) = e−τ and

V ε(τ) =


cosh(σε − τ)

coshσε
if 0 ≤ τ < σε,

1/ cosh τ if τ ≥ σε.
Then, we have that

(3.2) U ε
(
dΓ(x)

ε/
√
p′

)
≤ uε(x) ≤ V ε

(
dΓ(x)

ε/
√
p′

)
,

for any x ∈ Ω.

Proof. Let p ∈ (1,∞). For any x ∈ Ω we can consider y ∈ Γ such that
|x− y| = dΓ(x). From the assumptions on Ω there exists ze ∈ RN \ Ω such
that (3.1) holds for y. As seen in the proof of Lemma 2.4, by using the
comparison principle and the explicit expression (2.4), we obtain

uε(x) ≥
∫∞

0 e−
√
p′|x−ze|/ε cosh θ(sinh θ)α dθ∫∞

0 e−
√
p′re/ε cosh θ(sinh θ)α dθ

.

Thus, the fact that |x − ze| = dΓ(x) + re gives the first inequality in (3.2),
by recalling the definiton of U ε.

To obtain the second inequality in (3.2) we proceed differently whether
x ∈ Ωri or not. Indeed, if x ∈ Ωri , there exists zi ∈ Ω such that (3.1) holds
for some y ∈ Γ and x ∈ Bri(zi); moreover, since ∂BdΓ(x)(x)∩∂Bri(zi) = {y},
we observe that x lies in the segment joining y to zi, and hence |x − zi| =
ri − dΓ(x). Again, by using the comparison principle and the expression in
(2.1), we get that

uε(x) ≤
∫ π

0 e
√
p′ cos θ

|x−zi|
ε (sin θ)α dθ∫ π

0 e
√
p′ cos θ

ri
ε (sin θ)α dθ

,

that, by using the definition of V ε and the fact that |x − zi| = ri − dΓ(x),
leads to the second inequality in (3.2).

If x ∈ Ω\Ωri , we just note that the expression of V ε was already obtained
in Lemma 2.3.

The case p =∞ can be treated with similar arguments. �

3.2. Asymptotics for q-means. From now on, in order to use the function
ΠΓ defined in (1.7), we assume that Ω is a domain of class C2 (not necessarily
bounded).

First, we recall from [MS2, Lemma 2.1] the following geometrical lemma.

Lemma 3.2. Let x ∈ Ω and assume that, for R > 0, there exists yx ∈ Γ such
that BR(x) ∩ (RN \ Ω) = {yx} and that κj(yx) < 1/R for j = 1, . . . , N − 1.

Then, it holds that

lim
s→0+

HN−1(Γs ∩BR(x))

s
N−1

2

=
ωN−1 (2R)

N−1
2

(N − 1)
[ΠΓ(yx)]−

1
2 ,

where HN−1 denotes (N − 1)-dimensional Hausdorff measure and ωN−1 is
the surface area of a unit sphere in RN−1.
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The next lemma gives the asymptotic formula for ε→ 0+ for the q-mean
on BR(x) of a quite general class of functions, which includes both the
barriers U ε and V ε.

Lemma 3.3. Set 1 < q <∞,.Let x ∈ Ω and assume that, for R > 0, there
exists yx ∈ Γ such that BR(x)∩ (RN \Ω) = {yx} and that κj(yx) < 1/R for
j = 1, . . . , N − 1.

Let {ξn}n∈N and {fn}n∈N be sequences such that

(i) ξn > 0 and ξn → 0 as n→∞;
(ii) fn : [0,∞)→ [0,∞) are decreasing functions;

(iii) fn converges to a function f almost everywhere as n→∞;
(iv) it holds that

(3.3) lim
n→∞

∫ ∞
0

fn(τ)q−1 τ
N−1

2 dτ =

∫ ∞
0

f(τ)q−1 τ
N−1

2 dτ,

and the last integral converges.

For some 1 < q <∞, let µq,n(x) be the q-mean of fn(dΓ/ξn) on BR(x).
Then we have:

(3.4) lim
n→∞

(
R

ξn

) N+1
2(q−1)

µq,n(x) ={
2−

N+1
2 N !

Γ
(
N+1

2

)2 ∫ ∞
0

f(τ)q−1τ
N−1

2 dτ

} 1
q−1

[ΠΓ(yx)]
− 1

2(q−1) .

Proof. From [IMW], we know that µn = µq,n(x) is the only root of the
equation

(3.5)

∫
BR(x)

[fn(dΓ/ξn)− µn]q−1
+ dy =

∫
BR(x)

[µn − fn(dΓ/ξn)]q−1
+ dy,

where we mean [t]+ = max(0, t).
Thus, if we set

Γσ = {y ∈ BR : dΓ(y) = σ},
by the co-area formula we get that∫

BR(x)
[fn(dΓ/ξn)− µn]q−1

+ dy =

∫ 2R

0
[fn(σ/ξn)− µn]q−1

+ HN−1 (Γσ) dσ,

that, after the change of variable σ = ξnτ and easy manipulations, leads to
the formula:∫

BR(x)
[fn(dΓ/ξn)− µn]q−1

+ dy =

ξ
N+1

2
n

∫ 2R/ξn

0
[fn(τ)− µn]q−1

+ τ
N−1

2

[
HN−1 (Γξnτ )

(ξnτ)
N−1

2

]
dτ.

Therefore, since µn → 0 as n → ∞, an inspection of the integrand at
the right-hand side, assumptions (i)-(iv), and Lemma 3.2 make it clear that
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we can apply the generalized dominated convergence theorem (see [LL]) to
infer that

(3.6) lim
n→∞

ξ
−N+1

2
n

∫
BR(x)

[fn(dΓ/ξn)− µn]q−1
+ dy =

(2R)
N−1

2 ωN−1

(N − 1)
√

ΠΓ(yx)

∫ ∞
0

f(τ)q−1τ
N−1

2 dτ.

Next, by employing again the co-area formula, the right-hand side of (3.5)
can be re-arranged as∫

BR(x)
[µn−fn(dΓ/ξn)]q−1

+ dy = µq−1
n

∫ 2R

0

[
1− fn(σ/ξn)

µn

]q−1

+

HN−1 (Γσ) dσ,

that leads to the formula

(3.7) lim
ε→0+

µ1−q
ε

∫
BR(x)

[µn − fn(dΓ/ξn)]q−1
+ dy = |BR|,

by dominated convergence theorem, if we can prove that

(3.8)
fn(σ/ξn)

µn
→ 0 as n→∞,

for almost every σ ≥ 0. Then, after straightforward computations, (3.4) will
follow by putting together (3.5), (3.6) and (3.7).

We now complete the proof by proving that (3.8) holds. From (3.5), (3.6),
and the fact that∫

BR(x)
[µn − fn(dΓ/ξn)]q−1

+ dy ≤ µq−1
n |BR|,

we have that there is a positive constant c such that

µ1−q
n ≤ c ξ−

N+1
2

n .

Also, for every σ > 0 we have that∫ ∞
σ/2ξn

fn(τ)q−1 τ
N−1

2 dτ ≥
∫ σ/ξn

σ/2ξn

fn(τ)q−1 τ
N−1

2 dτ ≥

2(1− 2−
N+1

2 )

N + 1
fn(σ/ξn)q−1

(
σ

ξn

)N+1
2

≥

2(1− 2−
N+1

2 )

c (N + 1)
σ
N+1

2

{
fn(σ/ξn)

µn

}q−1

.

Thus, (3.8) follows, since the first term of this chain of inequalities converges
to zero as n → ∞, under our assumptions on fn and ξn, in virtue of the
generalized dominated convergence theorem. �
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Remark 3.4. The case q = ∞ is simpler. From [IMW] and then the
monotonicity of fn we obtain that:

µ∞,n(x) =
1

2

{
min
BR(x)

fn (dΓ/ξn) + max
BR(x)

fn (dΓ/ξn)

}
=

1

2
{fn (2R/ξn) + fn(0)} .

Thus, if we replace the assumptions (iii) and (iv) by fn(0)→ f(0) as n→∞,
we conclude that µ∞,n(x)→ f(0)/2, since fn (2R/ξn)→ 0 as n→∞.

Theorem 3.5. Set 1 < p ≤ ∞. Let x ∈ Ω be such that BR(x) ⊂ Ω and

BR(x)∩(RN\Ω) = {yx}; suppose that kj(yx) < 1
R , for every j = 1, . . . , N−1.

Let uε be the bounded (viscosity) solution of (1.1)-(1.2) and, for 1 < q ≤
∞, let µq,ε(x) be the q-mean of uε on BR(x).

Then, if 1 < q <∞, we have that (1.10) holds, that is

lim
ε→0+

( ε
R

)− N+1
2(q−1)

µq,ε(x) =
cN,q{

(p′)
N+1

2 ΠΓ(yx)
} 1

2(q−1)

,

where

cN,q =

{
2−

N+1
2 N !

(q − 1)
N+1

2 Γ
(
N+1

2

)
} 1

q−1

.

If q =∞, we simply have that µ∞,ε(x)→ 1/2 as ε→ 0.

Proof. We have that µU
ε

q,ε(x) ≤ µq,ε(x) ≤ µV
ε

q,ε(x) by the monotonicity prop-

erties of the q-means, where with µUεq,ε and µV
ε

q,ε we denote the q-mean of
U ε(d/ε) and V ε(d/ε) on BR(x). Hence, in order to prove (1.10), we only

need to apply Lemma 3.3 to fn = U εn and fn = V ε′n , where the van-
ishing sequences εn and ε′n are chosen so that the lim inf and lim sup of

(ε/R)
− N+1

2(q−1) µq,ε(x) as ε→ 0 are attained along them, respectively.

By an inspection, it is not difficult to check that fn = U εn and fn = V ε′n ,
with ξε = ε/

√
p′ and f(τ) = e−τ , satisfy the relevant assumptions of Lemma

3.3, by applying, in particular, Lemma A.2 for (iii) and the dominated con-
vergence theorem for (iv). �

Appendix A. Technical lemmas

Here, we collect two useful lemmas.

Lemma A.1 (One-dimensional asymptotics). For α > −1 and σ > 0, let

f(σ) =

∫ ∞
0

e−σ(cosh θ−1)(sinh θ)αdθ.

Then, f is continuous in (0,∞) and

f(σ) = 2
α−1

2 Γ

(
α+ 1

2

)
σ−

α+1
2
{

1 +O(1/σ)
}

as σ →∞.
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Moreover, if σ → 0, we have that

f(σ) =


σ−α Γ (α)

{
1 + o(1)

}
if α > 0,

log(1/σ) +O(1) if α = 0,
√
π

2 sin(απ/2)

Γ(α+1
2 )

Γ(α2 +1)
+ o(1) if − 1 < α < 0.

Proof. By the change of variable τ = σ (cosh θ − 1) we get:

f(σ) =
1

σ

∫ ∞
0

e−τ
(

2τ

σ
+
τ2

σ2

)α−1
2

dτ.

When σ →∞, our claim follows by writing

f(σ) = 2
α−1

2 σ−
α+1

2

∫ ∞
0

e−τ
(
τ +

τ2

2σ

)α−1
2

dτ.

When σ → 0 and α > 0, our claim follows by writing

f(σ) = σ−α
∫ ∞

0
e−τ

(
τ2 + 2σ τ

)α−1
2 dτ,

since in this case the (limiting) integral converges near zero.
For −1 < α ≤ 0, we use the formula

f(σ) =
1√
π

Γ

(
α+ 1

2

)(σ
2

)−α
2
eσKα/2(σ),

where Kα/2(σ) is the modified Bessel’s function of the second kind of order
α/2 (see [AS, Formula 9.6.23]). Then, [AS, Formula 9.6.9] and [AS, Formula
9.6.13] give our claims for α = 0 and −1 < α < 0, respectively. �

Lemma A.2 (Mollifier). Let g : R → R be a bounded and continuous
function.

Then, we have that

lim
σ→∞

∫ ∞
0

g(θ)

[
e−σ(cosh θ−1)(sinh θ)α∫∞

0 e−σ(cosh θ−1)(sinh θ)α

]
dθ = g(0)

and

lim
σ→∞

∫ π

0
g(θ)

[
e−σ(1−cos θ)(sin θ)α∫ π

0 e−σ(1−cos θ)(sin θ)α dθ

]
dθ = g(0).

Proof. The two formulas in the statement follow by observing that in both
cases the relevant integral can be written as∫ ∞

0
jσ(θ) g(θ) dθ,

where jσ is a mollifier, that has the salient properties:

jθ ≥ 0,

∫ ∞
0

jσ(θ) dθ = 1 for any σ > 0 and

lim
σ→∞

∫ ∞
δ

jσ(θ) dθ = 0 for any δ > 0.

The last property easily follows from the substitution τ = σ (cosh θ − 1) or
τ = σ (1− cos θ). �
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[AP] A. Attouchi, M. Parviainen, Hölder regularity for the gradient of the inhomoge-
neous parabolic normalized p-Laplacian, to appear in Commun. Contemp. Math.,
preprint arxiv 1610.04987.

[APR] A. Attouchi, M. Parviainen, E. Ruosteenoja, C1,αregularity for the normalized
p-Poisson problem, J. Math. Pures Appl. (9) 108 (2017), 553-591.

[BG1] A. Banerjee, N. Garofalo, Gradient bounds and monotonicity of the energy for
some nonlinear singular diffusion equations, Indiana Univ. Math. J. 62 (2013),
699–736.

[BG2] A. Banerjee, N. Garofalo, On the Dirichlet boundary value problem for the nor-
malized p-Laplacian evolution, Commun. Pure Appl. Anal. 14 (2015), 1–21.
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surface, Ann. Inst. Henri Poincaré Anal. Nonlin. 27 (2010), 937–952.

[MS5] R. Magnanini, S. Sakaguchi, Stationary isothermic surfaces and some character-
izations of the hyperplane in the N-dimensional Euclidean space, J. Differential
Eqs. 248 (2010), 1112–1119.

[MS6] R. Magnanini, S. Sakaguchi, Interaction between nonlinear diffusion and geometry
of domain, J. Differential Eqs. 252 (2012), 236–257.

[MS7] R. Magnanini, S. Sakaguchi, Matzoh ball soup revisited: the boundary regularity
issue, Math. Meth. Appl. Sci. 36 (2013), 2023–2032.

[MPR] J. J. Manfredi, M. Parviainen, J. D. Rossi, An asymptotic mean value character-
ization for a class of nonlinear parabolic equations related to tug-of-war games,
SIAM J. Math. Anal. 42 (2010), 2058–2081.

[MPR2] J. J. Manfredi, M. Parviainen, J. D. Rossi, An asymptotic mean value character-
ization for p-harmonic functions, Proc. Amer. Math. Soc. 138 (2010), 881–889.

[PSSW] Y. Peres, O. Schramm, S. Sheffield, D. B. Wilson, Tug-of-war and the infinity
Laplacian, J. Amer. Math. Soc. 22 (2009), 167–210.

[PS] Y. Peres, S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-
Laplacian, Duke Math. J. 145 (2008), 91–120.

[Sa1] S. Sakaguchi, Interaction between fast diffusion and geometry of domain, Kodai
Math. J. 37 (2014), 680-701.

[Sa2] S. Sakaguchi, Two-phase heat conductors with a stationary isothermic surface,
Rend. Ist. Mat. Univ. Trieste, 48 (2016), 167–187.

[Sa3] S. Sakaguchi, Two-phase heat conductors with a stationary isothermic sur-
face and their related elliptic overdetermined problems, preprint (2017),
arXiv:1705.10628v1.

[Sat] M.-H. Sato, Comparison principle for singular degenerate elliptic equations on
unbounded domains, Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), 252-256.

[Va] S. R. S. Varadhan, On the behavior of the fundamental solution of the heat equa-
tion with variable coefficients, Comm. Pure Appl. Math. 20 (1967), 431–455.

Dipartimento di Matematica ed Informatica “U. Dini”, Università di Firenze,
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