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Abstract

Landslides are ubiquitous in any terrestrial environment area with slopes, driven by tectonic, climate and/or
human activities. Related to other natural disasters, the International Disaster DatabadeAEMuggests that
landslides account for 4.9% of-ahtural disaster events and 1.3% of all nature hazard fatalities between 1990
and 2015, and the fatalities caused by landslides might be underestimated-D¥aMiemonstrated by scholars.
Every year, there are amount of human loss and economic costsafiedestimated the average number of
fatalities as 4300 per year worldwide. The United Nations International Strategy for Disaster Reduce addressec
SINI & gIFNYyAy3 aeaitsSvya Fta || LRoSNFdxZ (22t G2 NBRAzO:

Thee are many established instruments applied in slope hazadly warningmonitoring system such as
boreholebased measures (inclinometer, extensometer, etc.), irAageed mapping, airborne and terrestrial
laser scanning (TLS) and ground based interfetdmsynthetic aperture radar (GBSAR). Each technique has

its own drawbacks. Borehcleased measurements provide a precise point sample useful for-deated
continuous monitoring but not appropriate for wide area monitoring and for landslides thabtlshow ductile

failure; on the other hand, imageased techniques, like TSL andIB8BAR, provide constraints on the surface
changes but have limitations concerning the subsurface changes, time lapse between surveys, and slope failure
process mechanisngeismic monitoring offers a uniqgue measurement for brittle rock slope hazard, shely
seismic signals emitted by slope dynamic activities from surface to subsurface, such as debris, rockfall, crack:
etc. are continuously refleihg the dynamic state omonitoring objective that provides a complementary
solution to these shortcomings from estimated instruments

For the purpose of this researchotivation, a longperiod seismic monitoring case was carriedhifimestone
qguarry in Umbria Regiqftaly)to verifying the performance of a smaitale seismic network as a part of an early
warning system dedicated to an unstable rock mass monitoramgl in that monitoring period, an artificial
released rockfall isitu test was performed to study the seisnfiéatures of rockfallAccordinglyin this thesis:

a) the seismic features of artificial rockfall are studied, asitbw a qualitative relationship between seismic
features (frequency content, amplitude, waveform, and duration) and local characterigic®dical material,
geomorphology, topography)) In order to achieve seismic event automatic detection and classification, a
program DESTR@DEtection and STorage obdkfall Occurrence is specially designed for rockfall hazard
monitoringandalsocombied with earthquake detectiorithe performance of DESTR@ evaluated within the
monitoring data in Torgiovannettquarry. A program for seismic event automatic detection and classification is
a kind offoundational anduseful wayfor rock massedynamic monitoringeven for slope instability forecasting
and risk evaluation in earthquak®one areas.c) At last,an improved polarizatiotbearing methods proposed

for rockfall localization in seismic monitorilmgd aseismic monitoring early warngnmethod in rock slope is
proposed that provides an interesting way to track rockfall trajectory and slope susceptible area mapping.

This thesisaimsto provide a stateof-the-art review about micreseismic monitoringandimprove an algorithm
for seism¢ eventautomaticdetection and classificatiorfinally, provide a novel solution falope susceptible
area mapping and risk early warnimg rockfall occurrencewith micro-seismicmonitoring The proposed
methodology could be helpful for slope hazardlgawarning and instant mitigation and evacuation, especially
applied ininaccessiblenountainous areand earthquake prone areahere transportation lines are at risk.



a /
(The Earth alwaybethere andnaturally, doey/ tireed to be saved.

What need to be saved is human beings themsel&es

(Ding Zhong)i
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1. Introduction

Rockfalls, or rock fall according to Hungr et al. (2014)irstability processes consisting of the intermittent

and rapid mobilization of various sizes, types, and volumes of rock, that consists of the free fall, rebounding,
rolling and sliding of block that can fragmentate or impact with each other, which are difficutitiserve

directly and pose significant risk for human habitation, security and transportati¢t - auiguitous

geomorphic process that shapes steep slopes and landforms constituting significant portions of mountainous
areas (Dietze et al. 20178)he eonomic and population development, increasing access and construction in
mountainous area bring people and infrastructures to a greater exposure to slope hazards (Dammeier et al.
2011;Fiorcucci et al. 2015; Fan et al. 2018; Fuchs et al.)2BpERy Italian valley slopes are affected by

unstable rock masses as a consequence of bedrock and soil properties, steep slopes, and high seismic activity
(Atkinson and Massari 199Bomeo et al. 20)7There are manglready established imagdéased methods for
geohazad monitoring (McCarroll et al. 199&igli et al. 2014a; Dietze et al. 2017a), wiiike temporal

information on the occurrence of events delivered by these methods is very limited as it is bound to the survey
lapse timesandwhich are typically on therder of days to months. Moreover, these techniques are also
subjected to constraints such as vegetative cover and instrument resolution (Dietze et al. 2017a).

On the other handrecently, gec-hazardcharacterization and monitoring have been carried oyt passive
seismic techniquethanks to the abovementioned advantages of the technifueeRocca et al. 200Rpux et al.
2008;Lin et al. 2010; Hibert et al. 2011; Feng et al. 2011; Yamada et al. 2013; Hibert et al. 2014a; Van Herwijne
et al. 2016; Damnier et al. 2016; Coviello et al. 2019; Guinau et al. 2019; Li et al. 2019; Matsuoka 2019; Zhang
et al. 2019).Sismic monitoring networks provide a complementary solution to these shortcontirigg by
imagebased methodgLotti et al. 205; Dietze et al2017a).Seismic signals generated by geomorphic processes
(i.e., tectonic, climatic and anthropogenic activities) propagate from source through earth (Burtin et al. 2014).
The seismic signal emitted carries abundant information of the event that geneitated allows researchers to
reconstructthe eventprocess (e.g. Manconi et al. 2016; Hibert et al. 2017; Arosio et al. 2018; Gracchi et al. 2017).
According tahe applicationcasesof seismic monitoring performe(e.g.Ohnaka et al. 1982; Mykkeltveit at.
1984; Norris et al. 1994Tang et al. 19985uéguen et al. 2007; Moran et al. 2008; Mendecki et al. 2010; Hibert
etal. 2011; 2014b; 2017hacroix, et al. 2012012;Curilem et al. 2014yamada et al. 20164Janconi et al. 2016;
Dietze et al. 2017d&iammer et al. 201 Del Gaudio et al. 201&lasgow et al. 201&ai et al. 201p the analysis
of seismic signals can provide useful information about the movement onset time within a few milliseconds, the
location, the volume, the kinetic energy, and thkanematic mechanics of the detached rock mass. Some
researchers applied seismic monitoring network to predict rock collapses through analyzing and identifying the
features of seismic signals created by cracks developing pro¢ess&tsidy the evolution recording seismic
events(Amitrano et al. 2005; Arosio et al. 2009, 2018; Senfaute et al. 2009; Lenti et al. 2012; Walter et al. 2012a,
2012y Zobin et al. 2016, 20)}8Some scholars analyzed the correlation between physical characteristics of
rockfalls and the features of seismic signal traces, generated by rockfalls, performing an events classificatior
through measures as Hidden Markov Modgltificial Neural NetworkRandom Forest algorithndésaki et al.
1998; Surifiach et al. 200Beyreuther et al. 2008a, 2008b, 2011, 20D&rsen et al. 2011Hibert et al. 2011,
Farin et al. 2015; Levy et al. 2018yss et al. 20184ibert et al. 2017c; Provost et al. 20Meberet al. 2018;
Bagheri et al. 200)9Hibert et al.(2011)studiedrockfall characteristics from seismic signals, and made automatic
identification, location and volume estimation of rockfalls, and performed a long period monitafing
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spatiotemporal evolutin of rockfall activity from 2007 to 2011 at the Piton de la Fournaise volcano inferred from
seismic data and organized an experiment consisting of the controlled release of 28 rock blocks (Hibert et al.
2011, 2014a, 201412017a, 2017p2017¢. Arosio etal. performed a longperiod seismic monitoring in Italian
Prealps, and tedto make rock collapse forecasting through obsenslape ddéormationswith remote sensing
techniquesand combiningseismic signalslassification and correlation with methodologrosio et al. 2009,

2018); Dietze et al. validated the precision and limitation of seismic monitoring by terrestrial laser scanner
measurements analyzing the spatiotemporal patterns and triggers of rockfalls through seismic signal analysis
(Dietze et al2017a, 2017b)Burtin et aland Coviello et aktudied the seismic features of debris fluvial processes
and analyzed the correlation between geomorphic process with debris flow and meteorological condition (Burtin
et al. 2009, 2013, 2014, 2016oviellcet al. 2019. Farin et al. insight from the laboratory experiment to set the

link between the dynamics of granular flow and seismic signals (Farin et al. 2015, 2016P2@18)al. studied

the seismic noise to characterize the landslide in terms of volumes and physical properties of the involved
materials and to assess the site seismic response (Pazzi et a; ROftvet al.2015,2018). Moreover, there are

many researcheswho payed attention tathe technics oseismic data analytic, likseismic events classification,

try to automatically classify volcanoes, earthquakes, explosions or rockfalls from raw signals using neural
networks or fuzzy expert system method givinfjedient weights to several parameters of seismic signal (Joswig
1995; Kim et al. 1998; Langer et al. 2006; Benitez et al. 2007; Allmann et alC200&] et al. 2013; Chouet et

al. 2013;Laasri et al. 2013;araCueva et al. 2016; Becedarela et al. @16, Bhatti et al. 2016; Schimmel et al.
2018;Schopeet al. 2018; Soto et al. 2018; Kleibrod et al. 2019

Concerning the advantages and innovation of seismic monitoring in geohazard, the project of seismic monitoring
was performed in Torgiovannetto Qugron December 2012. This thesis is performed based on the sawgath
long-period monitoring data, and one -situ artificial rockfall released test and some other imdgsed
monitoring technics in Torgiovannetto Quarry, the thesis would like to reachtéwgets that faced in seismic
monitoring applied in rockfall:

A Understanding the seismic features of rockgativity;

A Recognizingand classifying the correct signals of rockfall, earthquake, cracks or noise from huge seismic
events detectechutomaticaly andextractingtheir seismic features;

A Localizing rockfall eventand try to track the moving trajectary

A Try to map theockslope susceptible area arid comply withrisk early warning.

Two basic algorithms are generally used in seismic event detedfl) the most popular and widely uses

proposed by Allen (1978, 1982) and Trnkoczy (1998), which computes the ratio of short time energy average over
f2y3 GAYS SySNH@& | gSNIFX3IS 6{¢! k[¢!OT FyR HkhcdDis dza SR
algorithm is applied in Kinemetric K2 firmware and Geodvare (Tornkoczy 1998; Picotti et al. 2017). (2) The
second algorithm is crosrrelation as widely used in similarity analysis in a dataset between two signals,
images, sounds an@®n to recognize specific patterns. It calculates the covariance between two traces to detect
events (since it is a measurement of similarity as a function of the lag of one relative to the other). The final value

of crosscorrelation falls betweenl and+1. Within realworld data, the values = +1 can never be achieved, and

the absolute value will fall somewhere in between, with a high value indicating a high degree of signal similarity
and a low value indicating low similarity (Bendat and Piersol 20d@uayri et al. 2014; Kortstrom et al. 2016).

In addition, some algorithms are used with combined denoise filters (Panagiotakis et al. 2008; Kiperkoch et al.
2010; Rodriguez 2011; Gibbons et al. 2012; Akram and Eaton 2016), such as wavelet transfomas dHaf&09,

2
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2010, 2013; Rodriguez, 2011a, 2011b, 2012a, 2012b; Wu et al. 2016), that can remove useless noise from th
original signal to obtain a stationary and clean signal for subsequent reséaffule notably, we should pay
attention to apply dendie filters to avoid removed important informatiobgfore seismic features be fully
understood.

Concerning seismic event classification, there are now wealth of new approaches (HMM, neural network, SVM,
classification trees, fuzzy logic, clustering, etc.) that have been tested and work well on seismic data for multiple
purposes. For example, Hidderalkov Model (HMM) was initially introduced and studied since the late 1960s
and early 1970s for speechcognition (Rabiner 1989). HMM recognition is based on the spectral properties of
signals and a transformation of the raw datéo a parametric represgation as other methods. Bentez et al.
(2007) applied HMM in seism@vent classification for a volcano. For the HMM architecture, they designed 39
features relative to the energies in given frequency bands of the seismic signal, and they also peaftrairedg

in a standard database of each event category. Heck et al. (2018) applied HMM for snow avalanche precursor
detection and classificatiorthey defined 6 features (central frequency, dominate frequency, instantaneous
bandwidth, instantaneous fragency, cepstral coefficients, and halftave bands), and then trained one model

for detection. HMM is an efficient method for seismic event classification irtireal with a high accuracy, but

0KIF GQa adegenta ohkrdninglaiafsétand seismideatures definedand in this case, there @nly one
seismic componerdapplied in HMMraining. The HMM accuracy could be improved with more stattombined
features, such as the ratio of frequency and/or amplitude between two different seismic sdathom energy
variation between different frequency bands, etthat proposedbefore in context Neural network through
defining many key seismic features, creates a neural network model and trains it in a standard database to obtair
a weight for each featre or an empirical function to describe thefsatures (Romeo et al. 1994; Curilem et al.
2009; Scarpetta et al. 2005; Akhouayri et al. 2015; Provost et al. 2017)sPebeh (2017) constituted a random

tree defined by 71 features that include seismignal waveform, spectrum, spectrogram, network geometry,

and polarity. They also anaBd the importance of each feature. Vallejios et al. (2013) defined 29 features for
event classification, such as seismic energy, frequency, magnitude and some macharsimeters estimated

in the event motion process.

Forsucceshil detection and classification, the most importassuesare how to build a good training database
and how to defineseveralsuitable seismic featuresndtraining withoutanyconfusion ax confliction

generaed. Thisnot only includathe characteristics of signal tinseries but also the combination of signal
features recorded by multiple stations, and efficiently takdl advantage of monitoring array.

Seismic localization is commonlged in earthquake localization as a dispensable part of a seismic monitoring
system and has also been developed for volcanic, bombing and geohazatectmmic eventgBataille et al.
1991; Kao et al. 2004; Gibbons et al. 2007; Vilajosana et al. 200@uGat al. 2019)Studying fromiiteratures,
two main methods are utilized for seismic localization. One method uses arrival timesb@aniag, 1B in the
following) based on the shortegtath method that minimizes the differences among seismic sigrslafrrival
times recorded by multiple stations and gridded topographic map sear¢kloger et al. 1992; Rodi et al. 2000;
Jolly et al. 2002; Kao et al. 2004; Dammeier et al. 2011; Lacroix and Helmstetter 2011; Xu et al. 2011; Lacroix
al. 2012; Grigolet al. 2013; Gracchi et al. 20I"he second method utilizes seismic polarization (polarization
bearing, PB in the following), commonly used in earthquake localization, that deals with seismic souree back
azimuth calculations by means of the analysishef seismic polarization of the signals recorded by tha®is
geophonegFlinn 1965; Samson and Olson 1980; Magotra et al. 1987; JurkevicsA98&sent, Vilajosana et

3



al. (2008) extended the-B technique to an artificially triggered rockfall byngstwo threecomponent seismic
stations located at the foot of the Montserrat massif approximately 200 m from the rockfall explosion point.
They calculated the seismic polarization of the trace of the first block that fell onto the terrace, and the
propagdion velocity estimated was in a good agreement with the measuredh¥® velocity. There are also
many other methods that result from-B optimization, such as those discussed by Almendros et al. (1999) or by
Myers et al. (2007). One approach uses thé€dZL(zerdag crosscorrelation) technique with a circular sensor
array for nearby seismic source localization, while another method formulates a Bayesian hierarchical statistical
model to describe the seismic localization problem of multiple events; tordete the hypocenterof the
multiple events, three distinct components of the model are estimated, including i) atinvalmeasurements,

i) travektime predictions, and iii) an a priori statistical model.

Each method has advantages and drawbacks:Brtfie method is easily understood and widely applied, but the
localization precision is heavily dependent on the accuracy of picking tharirgal times, especially for near

field microseismic monitoring, such as geohazard monitoring. Moreover, tlsengeiwave attenuation and
propagation velocities are influenced by topography, lithology, and geological formations that strongly influence
high-accuracy picking of the firstrrival times (Kao et al. 2004). In fact, in thB Thethod, because of the seigm
propagation attenuation a) it is easy to obtain the fiestival time from a powerful signal from a nearby station,

but it is difficult to determine the correct firsarrival time from a distant station, and b) the first ground motion

can be similar teeismic noise at the far station, and it is difficult to distinguish the two after a heavy attenuation,
¢) in neaffield monitoring, given the small network scale and the small sostaton distances, small
differences in the firsarrival times resulin a large errors if the ground has a high seismic wave velocity (i.e., an
arrival time error of 0.1 s causes a 200 m location error if the wave velocity is 2,000 m/s); and d) the strict high
accuracy requirement for arrival time picking would be a bamdeautomatic processing. In-®, as previously
stated, the localization is carried by using the seismic signal polarization, so the accuracy requirement for picking
arrival times is not as strict as it is for tha8Tmethod. The main problem of theB?’mehod is determining the
P-wave phases and the correct frequency bands for polarization anddmagiuth calculations from the recorded

time series.

Starting with the FB method drawbacks mentioned above (e.g., frequency band selectiomaltidstation joint
localization), we decided to use these data to attempt to define marker parameters that would indicate the most
appropriate frequency bands for calculations of seismic polarization and back azimuths. Moreover, to use the
signals recorde by all geophones deployed in the network, an overdetermined matrix was proposed for joint
localization based on signal record quality and enefiys methodology would be helpful for slope susceptible
area mapping and risk early warning.

In rock slope &zard early warning, a reliable prediction is still a difficult task, due to the lack of noticeable
forerunners preceding abrupt failures as well as to complex mechanisms not fully undeysto@dtrieri et al.
2019 Carla et al., 2007 There are sevetavays to perform landslide monitoring and early warning.

One way is to monitor displacements (lovine et al., 2006; Blikra, 2012; Kristensen et al., 2013; Lombardi et al.,
2017; Intrieri et al., 2019), which are a direct indicator of slope instabilitjgoddh future developments in the
exploitation of interferometric satellites might lead to a bloom of regiesedle early warning systems (Raspini

et al., 2018), displacement is normally exploited at stepale. The reasons why displacement monitoringpts
suitable for rockfalls is that rockfall usually lack kbegn prefailure deformations compatible with the
acquisition frequency of even the most modern displacement monitoring systems; furthermore, the typically
4
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small dimensions of detaching block® often beyond the spatial resolution capabilities of imaging instruments
or even single points networks, which would require to be installed at every single block that is potentially
unstable.

Another, more common, approach to perform landslide earlyniray is based on rainfall monitoring. Through
defining a duratioAntensity threshold of rainfall, and considering the susceptible map and catalogues of
landslide, a spatiotemporal forecasting of landslides can be achieved. Rainfall is mostly usebfiat-segle
systems (Rosi et al. 2012; Segoni et al. 2015, 2018); furthermore, the relation between rockfall occurrence anc
rainfall is not very clear, since many other factors are involved, such as rock temperature, rock moisture, wind
intensity and air émperature (Matsuoka 2019). For these reasons, rainfall is not optimal for a rockfall early
warning system.

On the other hand, rockfalls generate ground vibrations during crack nucleation, crack propagation and
eventually with the collapse and subsequenbvament along the slope and to the ground. These can be
recorded by a geophone network, and important information on the characteristics of the seismic source could
be derived from a thre@xis seismogram (e.g. the event type, energy, duration, locatiadkdzimuth and
developing process) that not only occurred on the surface but also in the subsurface (Deparis et al., 2007;
Vilajosana et al., 2008; Helmstetter and Garambois, 2010; Hibert et al., 2011 and Coviello et al., 2019). Therefore
an early warnig system can be set up by monitoring the seismic signals emitted by surface and subsurface slope
dynamics (Amitrano et al. 2005; Lacroix et al. 2011; Lenti et al. 2012; Walter et al. 2012b; Van Herwijnen et al
2016; Schopa et al. 2018). Seismic monitoadffgrs a unique measurement for rockfall study and provides a
complementary solution to displacemebtsed early warning systems since they can give information also about
sub-surficial processes. The mieseismic monitoring can be applied:

w in a shorttime inversion analysis for an individual landslide: the seismograms and spectrograms are
consistent with the dynamic processes (location, trajectory, volume, energy and mechanism evolution) of the
landslide, i.e. different waveform peaks recorded in tlessiogram correspond to the collapsed material
impacting and rebounding on the ground; the onset time, duration and speed of a landslide can also be
interpreted from the seismogram and the spectrogrdhtibert et al. 2017a; Yamada et al. 2013; Burtin et al.
2014; Fan et al. 2017; Hibert et al. 2017a; Li et al. 2019; Hu et al. 2018; Zhang et al. 2019);

W in a longperiod unmanned slope dynamics monitoring: misgismic monitoring could help to develop

an early warning by observing the parameteiation in both waveform and seismic events detected; in
addition, by estimating the hypocenters of the seismic sources, it could help to identify the most dangerous zones
in the monitored area and analyze the correlation with tectonics, climate, eiadesign effective mitigation
measures accordinglisatriano et al. 2011; Kao et al. 2012; Coviello et al. 2015; Manconi et at. 2018; Hibert et
al.2017b; Hibert et al. 2017c; Arosio et al. 2018; Ma et al. 2019).

Based on the observation that the numberrotkfalls increases before a larger rockslide (Suwa 1991; Suwa et
al. 1991; Amitrano et al. 2005; Huggel et al. 2005; Rosser et al. 2007; Szwedzicki 2003; Hibert ed)edn?d017
the fundamental law for failure material proposed by Voight (1988) aftéuFono (1985), here we propose a
framework for a rockfall spatiotemporal early warning using mEsmic monitoring. This framework is
complemented with two algorithms for rockfall detection and classification and for seismic event localasation
discused aboveHowever the algorithms used here caisobe replaced in the proposed methodology with any
suitable alternative.



According tahe four targets, there aresevenchapters performed in this thesis.

In Sectionl, state of the art on seismic monitmg in geohazard is studied, asdheduledfour interest study

points inseismic monitoring applied in rockfdlh the Section 2ye introduced the geology setting of study area

and monitoring instruments deployed in Torgiovannetto Quarry, and also made detail geological surveys in
Torgiovannetto Quarry and a potential landslide developed in that slope.

In Section3, we introduced tle basic theory of frequency transform and compared the difference of signal
amplitude betweerpre-transformedand transformed in MATLABndcomparedhe seismic detection methods:
STA/LTA method and cressrrelation method, to find the fittest on¢hat could apply in this case; we also
compared two localization method$ime-bearing and polarizatichearing,and made an improvement in the
method of polarization analysis.

Section4 deals withthe basic part of this studyhat focus on seismic features agals of rockfall, such as

frequency, energy, seismic waveform and duratidfthough many researchers use frequency as the main
parameter for seismic events classification, the frequency content and other seismic features of rockfall (like
duration or ampikude) are still not completely understood (Boore et al. 2014; Colombero et al. 2018).
Understandinghe N2 O1 FF € f FSIF G4dzZNBa Aa 2F 3INBFG AYLRNIIFyYyOS Iy
rockfall seismic detection and the physiechanical charactezation in seismic monitoring. Thereford)ig
Sectionanalyzed six typical artificial released rockfall cases that selézietthe whole dataset, angresented

statisticson the signals recorded by four seismometers in a quarry site during an artificial rockfadingshe

correlation ofrockfall seismic featureiith geomorphological and geological setting (Gracchi et al. 2017; Feng et

al. 2019; Lotti et al. 2015, 2018).

In Sectionb, an ad hoc classification model, DESTRO (DEtection and STorag&fafl), is proposedor rockfall

and earthquake detection and classificatitimat takes full use ofthe monitoring array angpecially designed
three-step classifiethat consists of three classifierhe algorithmof DESTRQ@ould be segmemd in three
phases 1) define seismic features; 2) then manually sets weight from a training set; 3) finally input the features
in a threestep classifierThe presented application @ESTRO is based on a sfeedlle station network that
monitored an unstable rock slope in a former limestapmrryat Torgiovannetto (near Assisi town, Central Italy)

for seven months (Gracchi et al. 2017; Lotti et al. 2015, 2018). To calibrate thens@&eaock blocks were
manually released from the benches of the former cave to simulate the occurrence of rockfalls, of which 90 were
used for validation (Gracchi et al. 2017; Feng et al. 2019). The occurrence of earthquakes wetseckass on

the Italian National Institute of Geophysics and Volcanology (INGV) earthquake database (http://cnt.rm.ingv.it/).
At the end othis section the performance of seismic event detection and classification are discussed.

In Section6, a methodology of slope ris&arly warning is introducedand applied in Torgiovannetiguarry.
Finally the susceptible aresan monitoring slope of Torgiovannetto quarry are mappaul] validated with LIDAR
scanning imagegccording to the localization.

In thefinal section Section7, wemadea conclusion about this thesis asslplored the possible research points
in the future.
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2. Study area and instrumentatios

2.1 Geographical, Geomorphological and Geological Setting

The study area TorgiovannettoQuarry, is a former quarry located in the northward facing slope of Mount
Subasio, 2 km NE from the city of Assisi (Perugia, Umbria Region, Centr&idiaig1). The landcape of
investigated area is hilly or mountainous that covers 8456 knCentral Italy, with open valleys and intra
mountain basins, and the elevation range from 50 m to 2436 m a.s.l., the drainage in the area is led by the Tibel
River, a tributary of th Tyrrenian Sea. The rain season mainly occurs from October to February, with cumulative
values ranging from 700 mm to 2000 mm.
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Figurel. Theoutline of study areaabout 2km northeast of Assi@alducci 2011)




Figure2. The geologalsetting in study areffrom IRP12006).

Mount Subasio (1109 m a.s.l.@ipart of the UmbriaMarche Apennines, a complex fold and thrust arcuate belt
which occupies the outer zones of the Northern Apennines of Italy. The belt developed during the Neogene as a
result of the closure of the Ligurian Ocefatiowed by the continentbcollision between the European Corsica
Sardinia Margin and the African Adria Promontory (Boccaletti et al. 1971): a nortlieasted compressional
tectonic phase started during the middle Miocene and is still active near the Adriatic coast (Balcthb&8a

During the upper Pliocene started an extensional phase with a principal stress oriented ab8W MBich
resulted in the dissection of the Umb#arche Apennines anthe opening of a NW5Etrending set of
continental basinsKigure2 and Figure3).












































































































































































































































































































