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Abstract 

Landslides are ubiquitous in any terrestrial environment area with slopes, driven by tectonic, climate and/or 

human activities. Related to other natural disasters, the International Disaster Database (EM-DAT) suggests that 

landslides account for 4.9% of all-natural disaster events and 1.3% of all nature hazard fatalities between 1990 

and 2015, and the fatalities caused by landslides might be underestimated in EM-DAT demonstrated by scholars. 

Every year, there are amount of human loss and economic cost, and safe estimated the average number of 

fatalities as 4300 per year worldwide. The United Nations International Strategy for Disaster Reduce addressed 

ŜŀǊƭȅ ǿŀǊƴƛƴƎ ǎȅǎǘŜƳǎ ŀǎ ŀ ǇƻǿŜǊŦǳƭ ǘƻƻƭ ǘƻ ǊŜŘǳŎŜ Ǌƛǎƪ ƛƴ ŀ Ǿŀǎǘ ǊŀƴƎŜ ƻŦ ŬŜƭŘǎΣ ƛƴŎƭǳŘƛƴƎ ƭŀƴŘǎƭƛŘŜǎΦ  

There are many established instruments applied in slope hazard early warning monitoring system, such as 

borehole-based measures (inclinometer, extensometer, etc.), image-based mapping, airborne and terrestrial 

laser scanning (TLS) and ground based interferometric synthetic aperture radar (GB-InSAR). Each technique has 

its own drawbacks. Borehole-based measurements provide a precise point sample useful for deep-seated 

continuous monitoring but not appropriate for wide area monitoring and for landslides that do not show ductile 

failure; on the other hand, image-based techniques, like TSL and GB-InSAR, provide constraints on the surface 

changes but have limitations concerning the subsurface changes, time lapse between surveys, and slope failure 

process mechanism. Seismic monitoring offers a unique measurement for brittle rock slope hazard study, the 

seismic signals emitted by slope dynamic activities from surface to subsurface, such as debris, rockfall, cracks, 

etc. are continuously reflecting the dynamic state of monitoring objective, that provides a complementary 

solution to these shortcomings from estimated instruments. 

For the purpose of this research motivation, a long-period seismic monitoring case was carried in a limestone 

quarry in Umbria Region (Italy) to verifying the performance of a small-scale seismic network as a part of an early-

warning system dedicated to an unstable rock mass monitoring, and in that monitoring period, an artificial 

released rockfall in-situ test was performed to study the seismic features of rockfall. Accordingly, in this thesis: 

a) the seismic features of artificial rockfall are studied, and show a qualitative relationship between seismic 

features (frequency content, amplitude, waveform, and duration) and local characteristics (geological material, 

geomorphology, topography). b) In order to achieve seismic event automatic detection and classification, a 

program DESTRO (DEtection and STorage of Rockfall Occurrence) is specially designed for rockfall hazard 

monitoring and also combined with earthquake detection. The performance of DESTRO are evaluated within the 

monitoring data in Torgiovannetto quarry. A program for seismic event automatic detection and classification is 

a kind of foundational and useful way for rock masses dynamic monitoring, even for slope instability forecasting 

and risk evaluation in earthquake prone areas. c) At last, an improved polarization-bearing method is proposed 

for rockfall localization in seismic monitoring and a seismic monitoring early warning method in rock slope is 

proposed, that provides an interesting way to track rockfall trajectory and slope susceptible area mapping. 

This thesis, aims to provide a state-of-the-art review about micro-seismic monitoring, and improve an algorithm 

for seismic event automatic detection and classification, finally, provide a novel solution for slope susceptible 

area mapping and risk early warning in rockfall occurrence with micro-seismic monitoring. The proposed 

methodology could be helpful for slope hazard early warning and instant mitigation and evacuation, especially 

applied in inaccessible mountainous area and earthquake prone area where transportation lines are at risk. 
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(The Earth always be there and naturally, doesƴΩt need to be saved.  

What need to be saved is human beings themselves.)έ 
 

 (Ding Zhongli)  
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1. Introduction 

Rockfalls, or rock fall according to Hungr et al. (2014), are instability processes consisting of the intermittent 

and rapid mobilization of various sizes, types, and volumes of rock, that consists of the free fall, rebounding, 

rolling and sliding of a block that can fragmentate or impact with each other, which are difficult to observe 

directly and pose significant risk for human habitation, security and transportation. ¢ƘŀǘΩǎ a ubiquitous 

geomorphic process that shapes steep slopes and landforms constituting significant portions of mountainous 

areas (Dietze et al. 2017a). The economic and population development, increasing access and construction in 

mountainous area bring people and infrastructures to a greater exposure to slope hazards (Dammeier et al. 

2011; Fiorcucci et al. 2015; Fan et al. 2018; Fuchs et al. 2018). Many Italian valley slopes are affected by 

unstable rock masses as a consequence of bedrock and soil properties, steep slopes, and high seismic activity 

(Atkinson and Massari 1998; Romeo et al. 2017). There are many already established image-based methods for 

geohazard monitoring (McCarroll et al. 1998; Gigli et al. 2014a; Dietze et al. 2017a), while the temporal 

information on the occurrence of events delivered by these methods is very limited as it is bound to the survey 

lapse times, and which are typically on the order of days to months. Moreover, these techniques are also 

subjected to constraints such as vegetative cover and instrument resolution (Dietze et al. 2017a).  

On the other hand, recently, geo-hazard characterization and monitoring have been carried out by passive 

seismic techniques thanks to the abovementioned advantages of the technique (La Rocca et al. 2004; Roux et al. 

2008; Lin et al. 2010; Hibert et al. 2011; Feng et al. 2011; Yamada et al. 2013; Hibert et al. 2014a; Van Herwijnen 

et al. 2016; Dammeier et al. 2016; Coviello et al. 2019; Guinau et al. 2019; Li et al. 2019; Matsuoka 2019; Zhang 

et al. 2019). Seismic monitoring networks provide a complementary solution to these shortcomings bring by 

image-based methods (Lotti et al. 2015; Dietze et al. 2017a). Seismic signals generated by geomorphic processes 

(i.e., tectonic, climatic and anthropogenic activities) propagate from source through earth (Burtin et al. 2014). 

The seismic signal emitted carries abundant information of the event that generated it and allows researchers to 

reconstruct the event process (e.g. Manconi et al. 2016; Hibert et al. 2017; Arosio et al. 2018; Gracchi et al. 2017). 

According to the application cases of seismic monitoring performed (e.g. Ohnaka et al. 1982; Mykkeltveit et al. 

1984; Norris et al. 1994;  Tang et al. 1998; Guéguen et al. 2007; Moran et al. 2008; Mendecki et al. 2010; Hibert 

et al. 2011; 2014b; 2017a; Lacroix, et al. 2011, 2012; Curilem et al. 2014; Yamada et al. 2016; Manconi et al. 2016; 

Dietze et al. 2017a; Hammer et al. 2017; Del Gaudio et al. 2018; Glasgow et al. 2018; Bai et al. 2019), the analysis 

of seismic signals can provide useful information about the movement onset time within a few milliseconds, the 

location, the volume, the kinetic energy, and the kinematic mechanics of the detached rock mass. Some 

researchers applied seismic monitoring network to predict rock collapses through analyzing and identifying the 

features of seismic signals created by cracks developing processes, or study the evolution of recording seismic 

events (Amitrano et al. 2005; Arosio et al. 2009, 2018; Senfaute et al. 2009; Lenti et al. 2012; Walter et al. 2012a, 

2012b; Zobin et al. 2016, 2018); Some scholars analyzed the correlation between physical characteristics of 

rockfalls and the features of seismic signal traces, generated by rockfalls, performing an events classification 

through measures as Hidden Markov Model, Artificial Neural Network, Random Forest algorithm (Sasaki et al. 

1998; Suriñach et al. 2005; Beyreuther et al. 2008a, 2008b, 2011, 2012; Diersen et al. 2011; Hibert et al. 2011; 

Farin et al. 2015; Levy et al. 2015; Wyss et al. 2016; Hibert et al. 2017c; Provost et al. 2017; Weber et al. 2018; 

Bagheri et al. 2019). Hibert et al. (2011) studied rockfall characteristics from seismic signals, and made automatic 

identification, location and volume estimation of rockfalls, and performed a long period monitoring of 
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spatiotemporal evolution of rockfall activity from 2007 to 2011 at the Piton de la Fournaise volcano inferred from 

seismic data and organized an experiment consisting of the controlled release of 28 rock blocks (Hibert et al. 

2011, 2014a, 2014b, 2017a, 2017b, 2017c). Arosio et al. performed a long-period seismic monitoring in Italian 

Prealps, and tried to make rock collapse forecasting through observing slope deformations with remote sensing 

techniques and combining seismic signals classification and correlation with methodology (Arosio et al. 2009, 

2018); Dietze et al. validated the precision and limitation of seismic monitoring by terrestrial laser scanner 

measurements analyzing the spatiotemporal patterns and triggers of rockfalls through seismic signal analysis 

(Dietze et al. 2017a, 2017b). Burtin et al. and Coviello et al. studied the seismic features of debris fluvial processes 

and analyzed the correlation between geomorphic process with debris flow and meteorological condition (Burtin 

et al. 2009, 2013, 2014, 2016; Coviello et al. 2019). Farin et al. insight from the laboratory experiment to set the 

link between the dynamics of granular flow and seismic signals (Farin et al. 2015, 2016, 2018); Pazzi et al. studied 

the seismic noise to characterize the landslide in terms of volumes and physical properties of the involved 

materials and to assess the site seismic response (Pazzi et al. 2017a; Lotti et al. 2015, 2018). Moreover, there are 

many researchers who payed attention to the technics of seismic data analytic, like seismic events classification, 

try to automatically classify volcanoes, earthquakes, explosions or rockfalls from raw signals using neural 

networks or fuzzy expert system method giving different weights to several parameters of seismic signal (Joswig 

1995; Kim et al. 1998; Langer et al. 2006; Benitez et al. 2007; Allmann et al. 2008; Carniel et al. 2013; Chouet et 

al. 2013; Laasri et al. 2015; Lara-Cueva et al. 2016; Beccar-Varela et al. 2016; Bhatti et al. 2016; Schimmel et al. 

2018; Schöpa et al. 2018; Soto et al. 2018; Kleibrod et al. 2019). 

Concerning the advantages and innovation of seismic monitoring in geohazard, the project of seismic monitoring 

was performed in Torgiovannetto Quarry on December 2012. This thesis is performed based on the seven-month 

long-period monitoring data, and one in-situ artificial rockfall released test and some other image-based 

monitoring technics in Torgiovannetto Quarry, the thesis would like to reach four targets that faced in seismic 

monitoring applied in rockfall:  

Á Understanding the seismic features of rockfall activity; 

Á Recognizing and classifying the correct signals of rockfall, earthquake, cracks or noise from huge seismic 

events detected automatically and extracting their seismic features; 

Á Localizing rockfall events, and try to track the moving trajectory; 

Á Try to map the rock slope susceptible area and to comply with risk early warning. 

Two basic algorithms are generally used in seismic event detection: (1) the most popular and widely used was 

proposed by Allen (1978, 1982) and Trnkoczy (1998), which computes the ratio of short time energy average over 

ƭƻƴƎ ǘƛƳŜ ŜƴŜǊƎȅ ŀǾŜǊŀƎŜ ό{¢!κ[¢!ύΤ ŀƴŘ ǘƘŀǘΩǎ ǳǎŜŘ ǘƻ ŀŘŀǇǘ ŦǊƻƳ ǇǊŜǾƛƻǳǎ Ǌŀǿ ǎŜƛǎƳƛŎ Řŀǘŀ ƻǊ ŜȄǇŜǊience. This 

algorithm is applied in Kinemetric K2 firmware and Geopsy software (Tornkoczy 1998; Picotti et al. 2017). (2) The 

second algorithm is cross-correlation as widely used in similarity analysis in a dataset between two signals, 

images, sounds and so on to recognize specific patterns. It calculates the covariance between two traces to detect 

events (since it is a measurement of similarity as a function of the lag of one relative to the other). The final value 

of cross-correlation falls between -1 and +1. Within real-world data, the values = ±1 can never be achieved, and 

the absolute value will fall somewhere in between, with a high value indicating a high degree of signal similarity 

and a low value indicating low similarity (Bendat and Piersol 2000; Akhouayri et al. 2014; Kortstrom et al. 2016). 

In addition, some algorithms are used with combined denoise filters (Panagiotakis et al. 2008; Küperkoch et al. 

2010; Rodriguez 2011; Gibbons et al. 2012; Akram and Eaton 2016), such as wavelet transforms (Hafez et al. 2009, 
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2010, 2013; Rodriguez, 2011a, 2011b, 2012a, 2012b; Wu et al. 2016), that can remove useless noise from the 

original signal to obtain a stationary and clean signal for subsequent research; While notably, we should pay 

attention to apply denoise filters to avoid removed important information, before seismic features be fully 

understood. 

Concerning seismic event classification, there are now wealth of new approaches (HMM, neural network, SVM, 

classification trees, fuzzy logic, clustering, etc.) that have been tested and work well on seismic data for multiple 

purposes. For example, Hidden Markov Model (HMM) was initially introduced and studied since the late 1960s 

and early 1970s for speech recognition (Rabiner 1989). HMM recognition is based on the spectral properties of 

signals and a transformation of the raw data into a parametric representation as other methods. Benítez et al. 

(2007) applied HMM in seismic-event classification for a volcano. For the HMM architecture, they designed 39 

features relative to the energies in given frequency bands of the seismic signal, and they also performed a training 

in a standard database of each event category. Heck et al. (2018) applied HMM for snow avalanche precursors 

detection and classification, they defined 6 features (central frequency, dominate frequency, instantaneous 

bandwidth, instantaneous frequency, cepstral coefficients, and half-octave bands), and then trained one model 

for detection. HMM is an efficient method for seismic event classification in real-time with a high accuracy, but 

ǘƘŀǘΩǎ ǎƛƎƴƛŦƛŎŀƴǘƭȅ depends on training data set and seismic features defined, and in this case, there is only one 

seismic component applied in HMM training. The HMM accuracy could be improved with more station-combined 

features, such as the ratio of frequency and/or amplitude between two different seismic stations, the energy 

variation between different frequency bands, etc., that proposed before in context. Neural network through 

defining many key seismic features, creates a neural network model and trains it in a standard database to obtain 

a weight for each feature or an empirical function to describe these features (Romeo et al. 1994; Curilem et al. 

2009; Scarpetta et al. 2005; Akhouayri et al. 2015; Provost et al. 2017). Provost et al. (2017) constituted a random 

tree defined by 71 features that include seismic signal waveform, spectrum, spectrogram, network geometry, 

and polarity. They also analyzed the importance of each feature. Vallejios et al. (2013) defined 29 features for 

event classification, such as seismic energy, frequency, magnitude and some mechanical parameters estimated 

in the event motion process.  

For successful detection and classification, the most important issues are how to build a good training database 

and how to define several suitable seismic features and training without any confusion and confliction 

generated. This not only includes the characteristics of signal time-series but also the combination of signal 

features recorded by multiple stations, and efficiently takes full advantage of monitoring array. 

Seismic localization is commonly used in earthquake localization as a dispensable part of a seismic monitoring 

system and has also been developed for volcanic, bombing and geohazard non-tectonic events (Bataille et al. 

1991; Kao et al. 2004; Gibbons et al. 2007; Vilajosana et al. 2008; Guinau et al. 2019). Studying from literatures, 

two main methods are utilized for seismic localization. One method uses arrival times (time-bearing, T-B in the 

following) based on the shortest-path method that minimizes the differences among seismic signal first-arrival 

times recorded by multiple stations and gridded topographic map searching (Moser et al. 1992; Rodi et al. 2000; 

Jolly et al. 2002; Kao et al. 2004; Dammeier et al. 2011; Lacroix and Helmstetter 2011; Xu et al. 2011; Lacroix et 

al. 2012; Grigoli et al. 2013; Gracchi et al. 2017. The second method utilizes seismic polarization (polarization-

bearing, P-B in the following), commonly used in earthquake localization, that deals with seismic source back-

azimuth calculations by means of the analysis of the seismic polarization of the signals recorded by three-axis 

geophones (Flinn 1965; Samson and Olson 1980; Magotra et al. 1987; Jurkevics 1988). At present, Vilajosana et 
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al. (2008) extended the P-B technique to an artificially triggered rockfall by using two three-component seismic 

stations located at the foot of the Montserrat massif approximately 200 m from the rockfall explosion point. 

They calculated the seismic polarization of the trace of the first block that fell onto the terrace, and the 

propagation velocity estimated was in a good agreement with the measured P-wave velocity. There are also 

many other methods that result from T-B optimization, such as those discussed by Almendros et al. (1999) or by 

Myers et al. (2007). One approach uses the ZL-CC (zero-lag cross-correlation) technique with a circular sensor 

array for nearby seismic source localization, while another method formulates a Bayesian hierarchical statistical 

model to describe the seismic localization problem of multiple events; to determine the hypocenter of the 

multiple events, three distinct components of the model are estimated, including i) arrival-time measurements, 

ii) travel-time predictions, and iii) an a priori statistical model. 

Each method has advantages and drawbacks. In T-B, the method is easily understood and widely applied, but the 

localization precision is heavily dependent on the accuracy of picking the first-arrival times, especially for near-

field microseismic monitoring, such as geohazard monitoring. Moreover, the seismic wave attenuation and 

propagation velocities are influenced by topography, lithology, and geological formations that strongly influence 

high-accuracy picking of the first-arrival times (Kao et al. 2004). In fact, in the T-B method, because of the seismic 

propagation attenuation a) it is easy to obtain the first-arrival time from a powerful signal from a nearby station, 

but it is difficult to determine the correct first-arrival time from a distant station, and b) the first ground motion 

can be similar to seismic noise at the far station, and it is difficult to distinguish the two after a heavy attenuation, 

c) in near-field monitoring, given the small network scale and the small source-station distances, small 

differences in the first-arrival times result in a large errors if the ground has a high seismic wave velocity (i.e., an 

arrival time error of 0.1 s causes a 200 m location error if the wave velocity is 2,000 m/s); and d) the strict high 

accuracy requirement for arrival time picking would be a barrier to automatic processing. In P-B, as previously 

stated, the localization is carried by using the seismic signal polarization, so the accuracy requirement for picking 

arrival times is not as strict as it is for the T-B method. The main problem of the P-B method is determining the 

P-wave phases and the correct frequency bands for polarization and back-azimuth calculations from the recorded 

time series. 

Starting with the P-B method drawbacks mentioned above (e.g., frequency band selection and multi-station joint 

localization), we decided to use these data to attempt to define marker parameters that would indicate the most 

appropriate frequency bands for calculations of seismic polarization and back azimuths. Moreover, to use the 

signals recorded by all geophones deployed in the network, an overdetermined matrix was proposed for joint 

localization based on signal record quality and energy. This methodology would be helpful for slope susceptible 

area mapping and risk early warning. 

In rock slope hazard early warning, a reliable prediction is still a difficult task, due to the lack of noticeable 

forerunners preceding abrupt failures as well as to complex mechanisms not fully understood yet (Intrieri et al. 

2019; Carlà et al., 2017). There are several ways to perform landslide monitoring and early warning.  

One way is to monitor displacements (Iovine et al., 2006; Blikra, 2012; Kristensen et al., 2013; Lombardi et al., 

2017; Intrieri et al., 2019), which are a direct indicator of slope instability. Although future developments in the 

exploitation of interferometric satellites might lead to a bloom of regional-scale early warning systems (Raspini 

et al., 2018), displacement is normally exploited at slope-scale. The reasons why displacement monitoring is not 

suitable for rockfalls is that rockfall usually lack long-term pre-failure deformations compatible with the 

acquisition frequency of even the most modern displacement monitoring systems; furthermore, the typically 
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small dimensions of detaching blocks are often beyond the spatial resolution capabilities of imaging instruments 

or even single points networks, which would require to be installed at every single block that is potentially 

unstable. 

Another, more common, approach to perform landslide early warning is based on rainfall monitoring. Through 

defining a duration-intensity threshold of rainfall, and considering the susceptible map and catalogues of 

landslide, a spatiotemporal forecasting of landslides can be achieved. Rainfall is mostly used for regional-scale 

systems (Rosi et al. 2012; Segoni et al. 2015, 2018); furthermore, the relation between rockfall occurrence and 

rainfall is not very clear, since many other factors are involved, such as rock temperature, rock moisture, wind 

intensity and air temperature (Matsuoka 2019). For these reasons, rainfall is not optimal for a rockfall early 

warning system. 

On the other hand, rockfalls generate ground vibrations during crack nucleation, crack propagation and 

eventually with the collapse and subsequent movement along the slope and to the ground. These can be 

recorded by a geophone network, and important information on the characteristics of the seismic source could 

be derived from a three-axis seismogram (e.g. the event type, energy, duration, location, back-azimuth and 

developing process) that not only occurred on the surface but also in the subsurface (Deparis et al., 2007; 

Vilajosana et al., 2008; Helmstetter and Garambois, 2010; Hibert et al., 2011 and Coviello et al., 2019). Therefore, 

an early warning system can be set up by monitoring the seismic signals emitted by surface and subsurface slope 

dynamics (Amitrano et al. 2005; Lacroix et al. 2011; Lenti et al. 2012; Walter et al. 2012b; Van Herwijnen et al. 

2016; Schöpa et al. 2018). Seismic monitoring offers a unique measurement for rockfall study and provides a 

complementary solution to displacement-based early warning systems since they can give information also about 

sub-surficial processes. The micro-seismic monitoring can be applied: 

ω in a short time inversion analysis for an individual landslide: the seismograms and spectrograms are 

consistent with the dynamic processes (location, trajectory, volume, energy and mechanism evolution) of the 

landslide, i.e. different waveform peaks recorded in the seismogram correspond to the collapsed material 

impacting and rebounding on the ground; the onset time, duration and speed of a landslide can also be 

interpreted from the seismogram and the spectrogram (Hibert et al. 2017a; Yamada et al. 2013; Burtin et al. 

2014; Fan et al. 2017; Hibert et al. 2017a; Li et al. 2019; Hu et al. 2018; Zhang et al. 2019); 

ω in a long-period unmanned slope dynamics monitoring: micro-seismic monitoring could help to develop 

an early warning by observing the parameters variation in both waveform and seismic events detected; in 

addition, by estimating the hypocenters of the seismic sources, it could help to identify the most dangerous zones 

in the monitored area and analyze the correlation with tectonics, climate, etc., to design effective mitigation 

measures accordingly (Satriano et al. 2011; Kao et al. 2012; Coviello et al. 2015; Manconi et at. 2018; Hibert et 

al. 2017b; Hibert et al. 2017c; Arosio et al. 2018; Ma et al. 2019). 

Based on the observation that the number of rockfalls increases before a larger rockslide (Suwa 1991; Suwa et 

al. 1991; Amitrano et al. 2005; Huggel et al. 2005; Rosser et al. 2007; Szwedzicki 2003; Hibert et al. 2017a) and 

the fundamental law for failure material proposed by Voight (1988) after Fukuzono (1985), here we propose a 

framework for a rockfall spatiotemporal early warning using micro-seismic monitoring. This framework is 

complemented with two algorithms for rockfall detection and classification and for seismic event localization as 

discussed above. However, the algorithms used here can also be replaced in the proposed methodology with any 

suitable alternative. 



 

6 
 

According to the four targets, there are seven chapters performed in this thesis.  

In Section 1, state of the art on seismic monitoring in geohazard is studied, and scheduled four interest study 

points in seismic monitoring applied in rockfall; In the Section 2,  we introduced the geology setting of study area 

and monitoring instruments deployed in Torgiovannetto Quarry, and also made detail geological surveys in 

Torgiovannetto Quarry and a potential landslide developed in that slope. 

In Section 3, we introduced the basic theory of frequency transform and compared the difference of signal 

amplitude between pre-transformed and transformed in MATLAB; and compared the seismic detection methods: 

STA/LTA method and cross-correlation method, to find the fittest one that could apply in this case; we also 

compared two localization methods: time-bearing and polarization-bearing, and made an improvement in the 

method of polarization analysis. 

Section 4 deals with the basic part of this study that focus on seismic features analysis of rockfall, such as 

frequency, energy, seismic waveform and duration. Although many researchers use frequency as the main 

parameter for seismic events classification, the frequency content and other seismic features of rockfall (like 

duration or amplitude) are still not completely understood (Boore et al. 2014; Colombero et al. 2018). 

Understanding the ǊƻŎƪŦŀƭƭ ŦŜŀǘǳǊŜǎ ƛǎ ƻŦ ƎǊŜŀǘ ƛƳǇƻǊǘŀƴŎŜ ŀƴŘ ǘƘŀǘΩǎ ŀ ŦǳƴŘŀƳŜƴǘŀƭ ǎǘŜǇ ŦƻǊ ǘƘŜ ǎǳōǎŜǉǳŜƴǘ 

rockfall seismic detection and the physic-mechanical characterization in seismic monitoring. Therefore, this 

Section analyzed six typical artificial released rockfall cases that selected from the whole dataset, and presented 

statistics on the signals recorded by four seismometers in a quarry site during an artificial rockfall test, and the 

correlation of rockfall seismic feature with geomorphological and geological setting (Gracchi et al. 2017; Feng et 

al. 2019; Lotti et al. 2015, 2018). 

In Section 5, an ad hoc classification model, DESTRO (DEtection and STorage of ROckfall), is proposed for rockfall 

and earthquake detection and classification, that takes full use of the monitoring array and specially designed a 

three-step classifier that consists of three classifiers. The algorithm of DESTRO could be segmented in three 

phases: 1) define seismic features; 2) then manually sets weight from a training set; 3) finally input the features 

in a three-step classifier. The presented application of DESTRO is based on a small-scale station network that 

monitored an unstable rock slope in a former limestone quarry at Torgiovannetto (near Assisi town, Central Italy) 

for seven months (Gracchi et al. 2017; Lotti et al. 2015, 2018). To calibrate the system, 95 rock blocks were 

manually released from the benches of the former cave to simulate the occurrence of rockfalls, of which 90 were 

used for validation (Gracchi et al. 2017; Feng et al. 2019). The occurrence of earthquakes was cross-checked on 

the Italian National Institute of Geophysics and Volcanology (INGV) earthquake database (http://cnt.rm.ingv.it/). 

At the end of this section, the performance of seismic event detection and classification are discussed. 

In Section 6, a methodology of slope risk early warning is introduced, and applied in Torgiovannetto quarry. 

Finally, the susceptible areas in monitoring slope of Torgiovannetto quarry are mapped, and validated with LiDAR 

scanning image, according to the localization. 

In the final section, Section 7, we made a conclusion about this thesis and explored the possible research points 

in the future. 
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2. Study area and instrumentations 

2.1 Geographical, Geomorphological and Geological Setting 

The study area, Torgiovannetto Quarry, is a former quarry located in the northward facing slope of Mount 

Subasio, 2 km NE from the city of Assisi (Perugia, Umbria Region, Central Italy, Figure 1). The landscape of 

investigated area is hilly or mountainous that covers 8456 km2 in Central Italy, with open valleys and intra-

mountain basins, and the elevation range from 50 m to 2436 m a.s.l., the drainage in the area is led by the Tiber 

River, a tributary of the Tyrrenian Sea. The rain season mainly occurs from October to February, with cumulative 

values ranging from 700 mm to 2000 mm. 

 
Figure 1. The outline of study area, about 2km northeast of Assisi (Balducci 2011). 
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Figure 2. The geological setting in study area (from IRPI, 2006). 
 

Mount Subasio (1109 m a.s.l.) is a part of the Umbria-Marche Apennines, a complex fold and thrust arcuate belt 

which occupies the outer zones of the Northern Apennines of Italy. The belt developed during the Neogene as a 

result of the closure of the Ligurian Ocean followed by the continental collision between the European Corsica-

Sardinia Margin and the African Adria Promontory (Boccaletti et al. 1971): a northeast-directed compressional 

tectonic phase started during the middle Miocene and is still active near the Adriatic coast (Barchi et al. 1998). 

During the upper Pliocene started an extensional phase with a principal stress oriented about NE-SW which 

resulted in the dissection of the Umbria-Marche Apennines and the opening of a NW-SE-trending set of 

continental basins (Figure 2 and Figure 3). 








































































































































































































