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Abstract

We introduce two notions of algebraic entropy for actions of cancellative right amenable semigroups S on discrete
abelian groups A by endomorphisms; these extend the classical algebraic entropy for endomorphisms of abelian groups,
corresponding to the case S = N. We investigate the fundamental properties of the algebraic entropy and compute it
in several examples, paying special attention to the case when S is an amenable group.

For actions of cancellative right amenable monoids on torsion abelian groups, we prove the so called Addition Theo-
rem. In the same setting, we see that a Bridge Theorem connects the algebraic entropy with the topological entropy of
the dual action by means of the Pontryagin duality, so that we derive an Addition Theorem for the topological entropy
of actions of cancellative left amenable monoids on totally disconnected compact abelian groups.
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1 Introduction

The notion of entropy was largely studied for discrete dynamical systems since the mid fifties, when Kolmogorov and
Sinai defined the measure entropy in ergodic theory. Inspired by their work, Adler, Konheim, and McAndrew [I]
introduced the topological entropy for continuous selfmaps of compact topological spaces, while a different notion of
topological entropy for uniformly continuous selfmaps of metric spaces was given by Bowen [7] and Dinaburg [34]
independently.

Yuzvinski [78] computed the topological entropy of continuous endomorphisms of compact metrizable groups, in-
cluding the celebrated formula (carrying now his name, that is, Yuzvinski Formula) establishing that the topological
entropy of a continuous endomorphism of a finite-dimensional universal solenoid coincides with the Mahler measure of
their characteristic polynomial over Z. Yuzvinski proved also the so-called Addition Theorem (usually called Yuzvin-
ski’s addition formula) for the topological entropy of continuous endomorphisms of compact metrizable groups, that
was recently extended to all compact groups in [31]. Later on, Stoyanov [70] established uniqueness of the topological
entropy of continuous endomorphisms of compact groups, imposing several natural axioms, in the so-called Uniqueness
Theorem. As a by-product, this entails the coincidence of the topological and the measure entropy in the category of
compact groups and surjective continuous endomorphisms (see [7] for the metrizable case, [3] for the abelian case).

After a very brief and schematic introduction in the very end of [I], the algebraic entropy for endomorphisms of
abelian groups was gradually developed by Weiss [77] and Peters [64} [65]. The interest in this direction increased after
[30], where a rather complete description in the case of torsion abelian groups was obtained, including an Addition
Theorem and a Uniqueness Theorem. These were generalized to all abelian groups in [23]. Details and results can be
found in [2] [4] 23] 29, 38| [42, [43], in [40, [41] for the non-abelian case, in [66, [67] for the algebraic entropy for modules;
see also the surveys [26] 28] [33], [44], 45].

As far as non-discrete dynamical systems are concerned, the measure entropy for actions of finitely generated groups
on probability spaces by measure preserving transformations was defined by Kirillov [49]; the case of abelian group
actions was studied by Conze [14], and by Katznelson and Weiss [47]. Lind, Schmidt, and Ward [58] gave reference to
Conze for the measure entropy of Z%-actions, while for Z%actions on compact metrizable groups they generalized to
this setting both the definition of topological entropy by Bowen, as well as that by Adler, Konheim, and McAndrew,
showing that they coincide. They proved the Addition Theorem for Z?-actions on compact metrizable groups, and
analogues of the Yuzvinski Formula (involving multidimensional Mahler measure).

The measure entropy for amenable group actions was introduced by Kieffer [53], while the topological entropy
for amenable group actions on compact metric spaces by Stepin and Tagi-Zade [69], and Ollagnier [61] defined the
topological entropy for amenable group actions on compact spaces using open covers as in [I]. A cornerstone in
the theory of entropy of amenable group actions is the work by Ornstein and Weiss [62], where in particular they
proved the celebrated Ornstein-Weiss Lemma. Apparently, not much was done for actions of genuine non-abelian
amenable groups until Deninger’s paper [20], followed by Chung and Thom [I5], and Li [56]. These authors established
appropriate analogues of the Yuzvinski Formula in terms of the Fuglede-Kadison determinant in place of the Mahler
measure, and analogues of the Addition Theorem. In particular, Li [56] proved the Addition Theorem for actions of
countable amenable groups on compact metrizable abelian groups.
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The algebraic and the topological entropy were extended by Virili [74] to actions on locally compact abelian groups.
Another paper by Virili [T3] concerns the algebraic entropy of amenable group actions on modules; there he proved
also an Addition Theorem and finds applications to the Stable Finiteness Conjecture and the Zero Divisors Conjecture,
originally stated by Kaplansky. These ideas were pushed further by Li and Liang [57]. Various extensions of these
entropies to the case of actions of sofic groups can be found, for example, in [8, [0, (48], and the survey [76].

Recently, Ceccherini-Silberstein, Coornaert, and Krieger [II] extended Ornstein-Weiss Lemma to cancellative
amenable semigroups (see Theorem Bl below). Using this result, they introduced the measure entropy and the
topological entropy for actions of cancellative amenable semigroups. In particular, a notion of topological entropy h:op
was defined for left actions of cancellative left amenable semigroups on compact topological spaces (see §7.1] below)
extending the one in [IJ.

Following this approach, we consider left actions

[e3

S~ A

of cancellative right amenable semigroups S on abelian groups A by group endomorphisms (i.e., a(s) : A — A is a
group endomorphism for every s € S). For such actions we define and investigate two variants of the algebraic entropy,
denoted by ent and hgg, that coincide when A is torsion. In case § = N, these notions of algebraic entropy coincide
with those mentioned above for discrete dynamical systems. Details and basic properties of the algebraic entropies can
be found in §l

Before that, in §2] we provide the necessary background on amenable semigroups and their Fglner nets, in particular
we introduce the canonical Fglner nets. These tools are used in §3] to build a kind of integration theory for a class
of real valued functions defined on the finite subsets of an amenable cancellative monoid. We show that this integral
satisfies an appropriate version of Fubini’s Theorem (see Theorem B.10]).

This theory allows us to introduce the algebraic entropy in §4] as an integral of a suitable function. Moreover, our
counterpart of Fubini’s Theorem applies several times in §5] where we compute the algebraic entropy of restriction and
quotient actions. More precisely, for a left action G A A of a cacellative right amenable monoid G on an abelian group
A, denote by

NK A
the restriction action of o with respect to a submonoid N of G. If G is a an amenable group and N is a normal
subgroup of G trivially acting on A, then the quotient G/N of G acts on A and we denote by

G/N K A
this quotient action of . We show that, in case IV is a normal subgroup of the amenable group G, the algebraic entropy
of a [y is always a greater than the algebraic entropy of «, and the same applies to &g,y when N acts trivially on A
(see Theorems and [.24)).

Several corollaries of the theorems on restriction and quotient actions are given, showing that the algebraic entropy
vanishes very often. In particular, many actions of N% and Z¢, for d > 1 (see Corollary [5.5 and Corollary [5.16)), as well
as the natural action of various amenable subgroups of GL,,(K) on K™ for an infinite field K (see Corollary E.I8]) have
zero algebraic entropy. The counterparts of this frequent vanishing of the algebraic entropy seem to be known for the
topological entropy and the measure entropy (see [46]). They represent a motivation to study an alternative kind of
entropy, called measure receptive entropy and topological receptive entropy in [6] (see also [5]), for actions of finitely
generated, not necessarily amenable monoids.

We dedicate the whole 6] to the following Addition Theorem for actions on torsion abelian groups A with respect
to an invariant subgroup B:

Theorem 1.1 (Addition Theorem). Let S A Abea left action of a cancellative Tight amenable monoid S on a torsion
abelian group A. Let B be an a-invariant subgroup of A, and denote by ap and a4 p the induced actions of S on B
and on A/ B, respectively. Then

ent(a) = ent(ap) +ent(ay/p).

As recalled above, this theorem was proved for N-actions in [30], and its counterpart for N-actions on arbitrary
abelian groups in [28]. In both cases the proof was quite long, making heavy use of the algebraic structure of A. Our
proof avoids any recourse to the structure of A. In [22] we consider a particular case of the Addition Theorem for
monoids S admitting tiling Fglner sequences, which largely covers the case of N%-actions (and in particular, the case
of N-actions from [30]), with a notably simplified proof.

The action « of a cancellative right amenable monoid S on an abelian group A provides a left Z[S]-module structure
on A. By Proposition LTIl we have that h,yy is an invariant of the category Modyg) of left Z[S]-modules, and by
Proposition I8 hqyy is upper-continuous, that is, continuous with respect to direct limits. If we restrict to the
subcategory T of Modys) consisting of left Z[S]-modules that are torsion as abelian groups, analogously we have that
ent is an uppercontinuous invariant of T. Moreover, Theorem [[LT] shows that ent is also additive, and so it is a length
function of ¥ in the sense of Northcott and Reufel [60] and Vamos [71].
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In the case of discrete dynamical systems there is a remarkable connection, usually named Bridge Theorem, between
the topological entropy and the algebraic entropy discovered by Weiss [77] and Peters [64], and proved in general in
[25]. More precisely, the topological entropy of a continuous endomorphism ¢ of a compact abelian group K coincides
with the algebraic entropy of its dual endomorphism $ of the Pontryagin dual K of K , which is a discrete abelian
group. This connection was extended to totally disconnected locally compact abelian groups in [27].

The Bridge Theorem from [64] was recently extended by Virili [74] to the case of actions of amenable groups on
locally compact abelian groups, while the one from [27] was extended in [39] to semigroup actions on totally disconnected
locally compact abelian groups. In {7 generalizing the main result of [(7], we prove a Bridge Theorem for left actions
of cancellative left amenable monoids on totally disconnected compact abelian groups (their Pontryagin dual groups
are precisely the torsion abelian groups).

Theorem 1.2 (Bridge Theorem). Let S A K bea left action of a cancellative left amenable monoid on a totally
disconnected compact abelian group K, which induces a dual right action 5 of S on the Pontryagin dual of A. Then
the topological entropy of v coincides with the algebraic entropy of 5.

Combining Theorem [[LT] and Theorem 2] one obtains an Addition Theorem for the topological entropy of left
actions of cancellative left amenable monoids on totally disconnected compact abelian groups.

What we said above about the vanishing of the algebraic entropy may leave the wrong feeling that there are no
significant instances of cancellative right amenable semigroups S, distinct from N and Z, acting with positive algebraic
entropy on discrete abelian groups. This is not the case; indeed, in a preliminary version of this manuscript we dedicated
special attention to the computation of the algebraic entropy of the shifts, that is, standard actions S N AG) of a
cancellative right amenable semigroup S on the direct sum A = @ g A of |S| copies of an abelian group A. The
shifts, except trivial cases, have always positive algebraic entropy. Moreover, one can define and study the generalized

shifts S £3 AX) associated to actions S A X of S on a set X. The algebraic entropy of « is related to the set-theoretic
entropy of A, introduced in [4] in the case of N-actions. Gradually the material on generalized shifts and set-theoretic
entropy grew more and more, so it will be published separately in [21].

Acknowledgments

It is a pleasure to thank Benjamin Weiss for the numerous useful suggestions and advise, and for the fruitful discussions
with the second named author. We would like to thank also Luigi Salce, who suggested us to work together on this
topic.

This work was partially supported by Programma SIR 2014 by MIUR, (Project GADYGR, Number RBSI14V2LI,
cup G22115000160008), and partially also by the “National Group for Algebraic and Geometric Structures, and their
Applications” (GNSAGA - INdAM).

Notation and terminology

For a subset X, we let
((X) = log| X,
using the convention that ¢(X) = oo if the set X is infinite. Moreover, we denote by P(X) the family of all subsets of
X and by Pyin(X) its subfamily consisting of all non-empty finite subsets of X.
For a monoid S, let P, (S) = {Y € Pyin(S) : 1 € Y}. Clearly, P9, (S) C Prin(S) S P(S).
If A is an abelian group, let F(A) denote the family of all finite subgroups of A.
For a subset W of A and m € N, let

Wy =W+W+...+W.

m

Let S be a semigroup. For F, F’ € P(S), we denote

FF'={gh:ge F,he F'}.
A left semigroup action S A X of S on a set X is defined by a map
a:SxX =X, (s,z)— a(s)(z) =s-z,
such that a(st) = a(s) o a(t) for every s,t € S (i.e., (st)-x = s-(t-x) for every s,t € S and every x € X). Given
se€ S, xe X,and Y C X, we denote
s-Y ={a(s)(y) :y €Y}
Similarly, a right action X v S can be defined.
In case S is a monoid with neutral element 1, a left semigroup action S AXisa left monoid action of S on X if
a(l)(z) =z for all x € X, i.e., a(l) is the identity map idx. If S is a group, then this condition implies that a(s) is

a bijection for every s € S. Unless otherwise stated, all the actions of monoids considered in this paper are monoid
actions (see also Remark [[4)).



Remark 1.3. (a) In order to avoid reformulating everything for both left and right actions, it is convenient to
consider the opposite semigroup (S°?,-°P) of the semigroup (.5, -) defined as follows:

S°P = S and z -P y =y - x for every x,y € S.

This allows one to associate to every left action S A~ X a right action X “ S°P by simply putting a°P(s) = a(s)
for every s € S.

(b) For a non-empty set Y we denote by Gym(Y’) the monoid of all selfmaps Y — Y with operation f-g = fog and
identity idy. Note that one has a left action Sym(Y) A Y given by 7(0)(y) = o(y) for every o € Sym(Y).

If S is a semigroup and S AY is a left semigroup action, then equivalently there is a semigroup homomorphism
v : S — Sym(Y). Analogously, a right semigroup action Y A S s given by a semigroup homomorphism
v : 8% = Gym(Y).

In case S is a monoid and S A Y is a left monoid action, vy : S — Sym(Y) is a monoid homomorphism, i.e.,
~(1) = idy. The same holds for right monoid actions.

Remark 1.4. Let G be a group, A an abelian group, and consider the left monoid action G A A. Then G acts on A
by automorphisms, that is, @ takes G into the group Aut(A).

If « is a left semigroup action (i.e., the condition «(1) = id4 need not be verifed), then « simply takes G into
some subsemigroup of the multiplicative semigroup of the unitary endomorphism ring End(A) that is a group but not
necessarily contained in Aut(A); so 1 may end up just in some idempotent element of End(A), not necessarily id 4
(e.g., a(G) can simply be the singleton {0} in End(A)).

Let S be semigroup, A an abelian group, and consider the left action S A A. We say that a subset B of A is
a-invariant if a(s)(B) C B for every s € S. Moreover, if T' is a subsemigroup of S, we say that B is T-invariant if
a(t)(B) C B for every t € T, that is, B is « |p-invariant.

(0%
If B is an a-invariant subgroup of A, then « induces in a natural way an action S #% B and an action S ~<° A /B.

2 Background on amenable semigroups and Fglner nets

2.1 Amenable semigroups

Let S be a semigroup. For every s € S denote by L, : S — S the left multiplication x + sx and by Rs : S — S the
right multiplication = + xs. The semigroup S is left cancellative (respectively, right cancellative) if Ly (respectively,
Ry) is injective for every s € S. Every finite semigroup which is left cancellative and right cancellative is a group.

The semigroup S is left amenable if there exists a left subinvariant finitely additive probability measure on S, that
is, a function p : P(S) — [0, 1] such that:

(L1) (8) = 1
(L2) u(FUE) = pu(F)+ p(E) for every F, E € P(S) with FNE = {;
(L3) w(L7Y(F)) = u(F) for every s € S and every F € P(S).

The semigroup S is right amenable if S°P is left amenable, and S is amenable if it is both left amenable and right
amenable (see [16, [17, [19]). Every commutative semigroup is amenable [16].

Remark 2.1. The condition in (L3) is in general weaker than requiring p to be left invariant (i.e., p(sX) = p(X) for
every s € S and every X € P(S5)). In fact, assume that p is left invariant and let s € S and X € P(S). Denoting
f=1Ls:S5 — S, our hypothesis yields

w(f(Z2)) = u(Z) for every Z C S. (2.1)

Let Y = f(f~%X)). Then Y = X N f(S) C X and u(f~1(X)) = u(Y) by Equation @&I)). As u(S) = u(f(S)) =1 by
Equation (1)), we deduce that

pX\Y) = u(X\ f(S)) <u(S\ f(S5)) =0.
Hence, pu(Y) = u(X), and so pu(f~1(X)) = u(Y) = u(X).

In [50] the semigroups admitting a left invariant finitely additive probability measure are called left measurable. If
S is cancellative, then the two conditions are equivalent, that is, S is left amenable if and only if S is left measurable.
Indeed, let s € S and F € P(S); since S is cancellative, L7 (sF) = F, so if (L1) holds for , then u(F) = p(L;1(sF)) =
w(sF).

While left amenability and right amenability are equivalent for groups, and every finite group is amenable, there
exist finite semigroups that are left amenable but not right amenable as the next example shows. An example of a
cancellative right amenable semigroup which is not left amenable can be found in [55].
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Example 2.2. Let S be a semigroup and let p be a left subinvariant finitely additive probability measure on S.
Assume that z € S is a left zero element of S (i.e., zz = z for every # € S). Then (L1) implies that p({z}) = 1, so
w(S\{z}) =0 by (L2). Hence, a left amenable semigroup cannot admit more than one left zero element.

Let S = {p1,p2}, with multiplication p;x = p;, i = 1,2. Then p; and py are left zero elements of the semigroup
S, so S is not left amenable. On the other hand, S is right amenable with the measure p : S — [0,1] defined by
p({p1}) = a1 and p({p2}) = aq, where ay,as € [0,1] and a3 + az = 1.

An example of an amenable group containing a copy of the free semigroup in two generators (which is not right
amenable) can be found in [52]. In particular, not every submonoid of an amenable group is amenable.

We say that a semigroup S satisfies the left Folner condition (briefly, IFC) if for every K € Py, (S) and every € > 0
there exists F' € Py, (S) such that
|kF\ F| < ¢|F| for every k € K.

We say that S satisfies the right Folner condition (briefly, rFC) if S°P satisfies the IFC.
Clearly every finite semigroup S satisfies both 1IFC and rFC.

A left Folner net of a semigroup S is a net (F;);cr in Pyin(5) such that for every s € S

Fi\ F;
fim PP

0.
el |F

Analogously, a right Fglner net is a left Fglner net of SP.

Example 2.3. If S is a semigroup such that S is increasing union of a sequence (F,)nen of its finite subsemigroups,
then (F},)nen is both a left Fglner sequence and a right Folner sequence of S. This condition is satisfied for example
by all countable torsion abelian groups, and more in general by all countable locally finite groups.

A semigroup S satisfies IFC (respectively, rFC) if and only if there exists a left Fglner net (respectively, a right
Foluner net) of S (see [11] and [I0, Proposition 4.7.1]). On the other hand, every left amenable semigroup satisfies IFC
(respectively, every right amenable semigroup satisfies rFC) (see [37] and [59, Theorem 3.5]).

By Fglner Theorem [36], a group G is amenable if and only if G satisfies IFC (respectively, rFC), but this cannot
be extended to semigroups, since there exist non left amenable semigroups S satisfying 1FC; indeed, a finite semigroup
S satisfies IFC, so it suffices to take a finite semigroup which is not left amenable as in Example The equivalence
holds again if we suppose that the semigroup is left cancellative:

Theorem 2.4 (see [59, Corollary 4.3]). Let S be a left cancellative semigroup. Then the following conditions are
equivalent:

(a) S is left amenable;
(b) S satisfies IFC;
(c) S admits a left Folner net.

Clearly, the counterpart of this result holds also for right cancellative semigroups and right amenability.

2.2 Folner nets

Remark 2.5. Let S be a right amenable semigroup. If S is infinite and (F;);e; is a right Felner net of S, then
lim;er |F;| = oo. On the other hand, (F;);c; need not be strictly increasing. For example, in N or Z consider
F,, = [n,n!] for every n € N, or F, = [n,2n] for every n € N.

The following known equivalent description of right Fglner nets is a consequence of the definition.

Lemma 2.6. Let S be a cancellative right amenable semigroup. Then (F;)icr is a right Folner net of S if and only if,
for every s € S, \Fis A B
i o =0
Proof. It suffices to note that, for F' € Py;,(S) and s € S, we have
|[Fs AF|=2|Fs\ F|.

Indeed, |F| + |Fs\ F| = |[FUFs| = |Fs| + |F\ Fs|. Since S is cancellative, |F's| = |F| is finite, and therefore
|[Fs\ F|=|F\Fs]|. O
Lemma 2.7. Let S be a cancellative right amenable monoid and (F;)icr a net in Pyin(S). Then:

(a) (F)ier is a right Folner net of S if and only if for every E € Pgin(S),

lim |F;EAF;|
iel |Fz| o

5
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(b) if (Fi)ier is a right Folner net of S and E € Pyin(S), then

lim |FiE|
el |Fz|

=1 (2.3)

and (F;E)cr is also a right Folner net of S.

Proof. (a) The sufficiency of the condition (Z2)) (when applied to singletons) is obvious.
Conversely, assume that (F;);cr is a right Fgolner net and let E € Py, (S). Fix € > 0. By Lemma [20] for every
s € F there exists is € I such that, for every j € I with j > i,

|Fjs A B
| £

Pick an ¢ € I such that + > is for every s € E (such an 1 € T exists since F is finite and T is a directed set).
Let j > 2. Then
F,EAF; C | FjsAF,
sekE

and so
|FEAF| Z|FSAF|

elE].
Bl

seE | j|

Thus, (Z2]) holds.
(b) The equality lim;ey % = 1 can be easily deduced from (a), since it implies that lim;e; |Fi|%| il = 0. Let
s € S; by Lemma [2.6] we have to show that

. |FiEs AFE|
The inclusion F;Es A F;E C (F;Es A F;)U (F,E A F;), gives
FiESAFi F1EAF1
[FEs ARE| _ |FEsAF|+|REAF| _ S + S5
|FE)| - |FLE)| B [P B
[F
Item (a) yields lim;e % =0 and lim;¢; % = 0, while lim;¢y ‘fFﬁ‘ = 1 by Equation (23]). This proves the
equality in Equation (24). O

Remark 2.8. One may get the wrong impression that if (F;);cs is a right Fglner net of a semigroup S, then the
family {F; : i € I} generates a “big” subsemigroup of S (actually, the whole S). To see that this is wrong consider two
examples.

(a) Suppose that S has a right absorbing element a (i.e., such that as = a for all s € S). Now the singleton {a} is a
subsemigroup of S and forms a stationary right Fglner net of S.

(b) Consider now the abelian group S = Z. The Fglner sequence ([0, n])nen is contained in the subsemigroup N of S.
Yet, it is true that the subgroup generated by any right Fglner net of a group S coincides with S.

The following well-known fact concerns right Fglner nets in direct products. We omit its standard proof, since we
prove a much more general result below in Theorem [2.27]

Lemma 2.9. Let G = H x K be an amenable group, let (H;);cr be a right Folner net of H and let (K;),cs be a right
Folner net of K. Then (H; X K;) @ jyerx is a right Falner net of G.

In Example 2228 we show that the naive generalization of this lemma for semidirect products fails, while Theo-
rem [2.27] gives the correct generalization.

Recall that a semigroup S is called Ore semigroup (or right reversible semigroup as in [63]) if it satisfies the left
Ore condition, that is,

for every a,b € S there exist f,g € S such that fa = gb.

It is a well-known fact (see [63] Proposition 1.23]) that a right amenable semigroup S satisfies the left Ore condition,
and that the group generated by S is of the form S~—1S.
We use the following consequence of this property.

Corollary 2.10. Let S be a right amenable semigroup, and s1,...,s; € S. Then there exist t,r1,...,m; € S such that
t =18 for every i € {1,...,k}.

We conclude with the following relation between amenable monoids and amenable groups.
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Lemma 2.11. Let G be a group and S a submonoid of G that generates G as a group.
(a) If S is right amenable, then G is amenable.
(b) If (F})icr is a right Folner net of S, then (F;);ecr is a right Folner net of G.

Proof. (a) Let g € G. Then, there exist ay,...,a, € S such that g = by ...b,, where b; € {ai,ajl}. Let F € Psin(S),
such that, for every i <n, |Fa; A F| < ¢|F|. For every m < n, let g,, = b1...b,, € G. Then we prove that

|Fgm A F| < me|F|. (2.5)

Then, taking m = n we get the Fglner condition for G.
Thus, we are left with the proof of Equation (Z3). If m = 1, then g; = by = aF'. If b; = ay, then |Fa; A F| < ¢ |F|
by definition of F. If by = a; ', then

|[Fby AF|=|FAFb'|=|FAFa|<elF|,

also by definition of F.
Assume, by inductive hypothesis, that we have proved the claim for m; we want to prove it also for m + 1. In view
of the inclusion
Fgmbm+1 AF - (Fgmberl A Fbm+l) U (Fberl A F)

we have that

|[Fgm+1 A F| = [Fgmbpi1 A F|
<|Fgmbms1 A Fbpp| + [Fbmi1 A F|
=|Fgm A F|+ |Fby11 A F|
<me|F|+¢|F|
= (m+1)e|F],
where we have used the inductive hypothesis and the case m = 1. AR

(b) Let (F});er be a right Fglner net of S. Then, for every s € S, lim;¢; = 0. Let g € G. As above, there

exist a1,...,a, € S such that ¢ = by...b,, where b; € {ai,afl}. Moreover, for € > 0, there exists a cofinal subset
J C I such that, for every i € J and for every [ € {i,...,n},

|F;s; A F
7|F7,| <¢g;
by @3, for every i € J,
|F;g A Fy|
| F]
Hence lim;e; % =0, and so (F;)es is a right Fglner net of G. ([

Corollary 2.12. If S is a cancellative right amenable monoid, then it embeds in an amenable group.

2.3 Canonically indexed Fglner nets

Fixed € € (0, 1], we introduce the relation

~e

for finite subsets of a set S, although we use it in the sequel when S is a monoid. For F, F" € P (S), let
F ~. F'if and only if |F|=|F'| and |F A F'|<e|F|.
The relation ~. is reflexive and symmetric; we see that in some sense it is also transitive:
Lemma 2.13. Let S be a set, F,F',F" € Py, (S) and e,&" € (0, 1].
(a) F~. F;
(b) F ~. F' implies F' ~_ F;
(¢) Fr~F and F' ~o F" imply F ~o F".

Proof. (a) is obvious, (b) follows from the fact that |F| = |F’| when F ~. F’, and (c¢) follows from the inclusion
FAF'C(FAF)U(F AF"). O

We see other useful properties of the relation ~..
Lemma 2.14. Let S be a set, F,F',F" E,E" € Ptin(S) and € € (0,1]. If F ~. F' and E ~. E’, then:
7



(a) FUE ~. F'UE/;
(b)) FxXE~, F' xXE;
(¢c) FXE~y F' X E';

(d) when S is a right cancellative semigroup, Fs ~. F's for every s € S.
Proof. The inclusions
(FUE)A(F'UE)C(FAF)U(EAE) and (FxE)A(F xE)C(FAF)xE
imply (a) and (b) respectively, while (c¢) follows from the inclusion
(FxEYA(FFxEYC(FAF)XxE)U(FAF)YXxEYU(Fx(EAE))U(F' x(EAE").
The equality Fs A F's = (F A F')s = Rs(F A F') for s € S, and the injectivity of R, give (d). O
Let S be a monoid, and let
(8) = P?m(s) x Ny,
endowed with the partial order defined as follows. For every E, E’ € P})m(G) and n,n’ € N,

(E,n) < (E',n') if and only if E C E' and n < n/.
Definition 2.15. Let S be a cancellative monoid. A right Folner net a (F});cz(s) of S is canonically indexed if
Fgnys ~1 Flpn) (2.6)

for every (E,n) € Z(S) and every s € E.
We see several useful properties of the canonically indexed right Fglner nets.

Lemma 2.16. Let S be a cancellative right amenable monoid and (F;);cz(s) a canonically indexed right Folner net of
S. Then:

(a) (Fi)icz(s) is a right Folner net of S;
(b) for every E € PY,,(S) and every s € E,

o FEmS A Few| _
n=oo | Fig )

Proof. (a) Let s € S and n € Ny. We have to find 7 € Z(S) such that, for every j € Z(S) with j > 1,

[Fs AR 1
F5l T n

Take i = ({e,s},n) and j = (X, m) € Z(S) with j > ¢; this means that s € X and m > n. Thus, Equation (Z6) yields

Fis AR |Fxms AFxm| _ 1 _ 1
|F]| ‘F(X,m)| Tm T n
(b) Follows directly from Equation (Z8]). O

Canonically indexed right Fglner nets are always available in cancellative right amenable monoids:

Proposition 2.17. Let S be a cancellative right amenable monoid. Then S admits a canonically indezed right Folner
net.

Proof. Let (E,n) € Z(S). By Lemma [27|a), there exists F' € Py, (S) such that

|[FE A F|

<
|E|

1
n

Let Fig ) = F. Then (F(g,))(En)ez(s) is a canonically indexed right Fglner net of S. O



2.4 Good sections and canonical Fglner nets

Let S be a cancellative monoid, C' a monoid, and 7 : S — C a surjective homomorphism. For s,s" € S let
s~ s if w(s)=mn(s).

It is well-known that ~ is a congruence, that is, an equivalence relation compatible with the semigroup operation of
S. In particular,
N=[l].=7"11)

is a submonoid of S. Obviously, every fibre
[s]~ = 77" ((s))
satisfies
Ns C [s]~ 2 sN;
nevertheless, these inclusions need not (simultaneously) become equalities.
Definition 2.18. Let S be a cancellative monoid, C' a monoid, and 7 : S — C a surjective homomorphism.
(a) An element s € S is good (respectively, semi-good) if Ns = [s]. = sN (respectively, Ns = sN).
(b) A fibre [s]~ is good (respectively, semi-good) if it admits a good (respectively, semi-good) representative.
The existence of good elements of a specific fibre [s].. does not mean that all elements of [s].. are good. Indeed,

N is a good fiber as 1 is a good element, and the set of all good elements of N coincides with the group U(N) of all
invertible elements of V.

Lemma 2.19. Let S be a cancellative monoid, C' a monoid, and w : S — C a surjective homomorphism. If s € S is
semi-good, then for every n € N there exists a unique element hs(n) € N such that

ns = shg(n).
Then hy : N — N, n— hg(n), is an automorphism of N.

Proof. Obviously, h(n) exists by definition, and it is unique because S is cancellative.
Consider h : N — N, n+ hg(n). Then h is bijective since it has an inverse, defined by associating to every m € N
the (unique) n € N such that ns = sm. Moreover, for n,n’ € N, we have that

shs(n)hs(n') = nshs(n’) = nn's = shs(nn’);
since S is cancellative, we conclude that hs(nn') = hs(n)hs(n'), and therefore hy is an automorphism of N. O

Now we face the situation when all fibers are good. Recall that, if 7 : S — C' a surjective monoid homomorphism,
a section for w is a map o : C' — S such that

m(o(c)) =c¢ for every c € C.

Definition 2.20. Let S be a cancellative monoid, C' a monoid, and 7 : S — C a surjective homomorphism. A section
o for m is good if o(c) is good for every ¢ € C.

Clearly, o is a good section for 7 if and only if
77 (c) = No(c) = o(c)N for every c € C. (2.7)

Moreover, m has a good section if and only if all fibers of 7 are good; the section is defined, for every ¢ € C, by
o(c) = s., where s, is any of the good elements of 7~ *(c).

Several possibilities can occur; indeed, it may happen that all sections are good, some sections are good, or no
section is good. First, if S and C are groups and 7 : .S — C is a surjective homomorphism, then every section for 7 is
good.

Examples 2.21. (a) If S = N x C for some cancellative monoids N and C, and = : S — C is the canonical
projection, then the canonical section o : ¢ — (1, ¢) is good.

(b) Let N and C be cancellative monoids, and let ¢ : C — Aut(N) be a homomorphism of monoids. Let S be the
semidirect product of N and C with respect to ¢ and 7w : S — C be the canonical projection. Then, the canonical
section o : ¢ — (1,¢) is good.

(¢) Let S = (N,+). Fix n > 1 and let C' = Z/nZ with the usual addition. Let 7 : N — C be the canonical projection.
Then, 7 has a unique good section.

(d) Fix n € Nand let S = {0,1,...,n—1} U [n,+00) C R. Then S is a submonoid of (R,+). Let C = R/Z and
7 : S — C be the restriction of the canonical projection R — C. Then 7 has a unique good section.

9



(e) Let S =(N,+). Let C = {0,1,2} with commutative monoid operation @& given by x & y = min(2,z + y) (notice
that 0 is the neutral element of C). Let 7 : N — C be the homomorphism defined by = + min(2,z). Then no
section for 7 is good.

(f) A variant of the above example is the following. Let S = Rxg, and C = ([0, 1],®) be the standard MV-algebra:
@y :=min(l,x +y). Let 7 : S — C be the homomorphism 7(z) = min(1, z). Then, no section for 7 is good.

(g) Let S = (Rxo,+), C =R/Q, and let 7 : S — C be the restriction of the canonical projection R — C. Even if §
is cancellative and C' is a group, there is no good section for 7.

Lemma 2.22. Let S be a cancellative monoid, C' a monoid, and m : S — C a surjective homomorphism admitting a
good section o. Then every section for w is good if and only if N = w=*(1) is a group.

Proof. Suppose that N is a group and let ¢’ be another section for 7. Fix ¢ € C and let s € 771(c). Then, there exist
m,n € N such that s = no(c) and o'(¢) = mo(c). Therefore, s = nm~'o’(c) € No’(c). Similarly one proves that
s€o'(c)N.

Suppose that every section for 7 is good. Let n € N and define a new section ¢’ for = by putting ¢’(¢) = o(c) for
all c € C'\ {1} and 0/(1) = n. Equation (21 applied to ¢ = 1 and the good section ¢’ gives N = Nn = nN, which
yields that n is an invertible element of N. O

Item (b) of the next lemma makes use of the assumption that S is cancellative.

Lemma 2.23. Let S be a cancellative monoid, C' a monoid, and m : S — C a surjective homomorphism admitting a
good section o. Then:

(a) o(x)o(y)N C o(xy)N = 7~ (zy) for every x,y € C;
(b) the map f: N xC — S, (n,c) — no(c) is a bijection.

Proof. (a) The equality is immediate by the assumption that o is good. To verify the (first) inclusion, let n € N. Then

m(o(z)o(y)n)) = w(o(z))m(o(y))m(n) = =y,

and hence
o(z)o(y)n € m(zy) = o(zy)N.
(b) To see that f is injective assume that f(n,c) = f(n’, ') for some (n,c), (n’,¢’) € N x C. Then no(c) = n'o(c’),

and so

c=mn(no(c)) =n(n'o(d)) =¢.

Since S is cancellative, we conclude that n = n’.
To check that f is surjective take s € S; as o is good, we have that s € No(n(s)) C f(N x C). O

The following technical lemma applies in the next section.

Lemma 2.24. Let S be a cancellative monoid, C' a monoid, and m : S — C a surjective homomorphism admitting a
good section o. Assume that N = 7= 1(1) is right amenable. If C € Pt (C) and y € C, there exist Z € Py (N) and
u € N such that

uo(yC) € Zo(y)a(C).

Proof. Let C = {c1,...,cx}. Since o is a good section, for every i € {1,...,k} there exists t; € N such that
o(y)o(e) = tio(ye;).
By Corollary 2-I0] there exist u € N and z1,..., 2, € N such that
u=zt; foreveryie{l,....k}.

Let Z ={z,...,2,}. Therefore,

uo(yei) = zitio(yei) = zio(y)o(ci) € Zo(y)o(C)
for every i € {1,...,n}. O

We see now that it may occur that S is a non cancellative monoid even if C' is a cancellative monoid and 7 : S — C
is a surjective homomorphism admitting a good section and such that N = 7=*(1) is a subgroup of S.
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Example 2.25. Let S = (Z x {0}) U ({0} x N ), with the operation

(x4+y,0) ifn=m=0

(0,m +mn) otherwise.

($,7’L> + (yam) = {

Then (S, +) is a commutative non-cancellative monoid. Let C = N and let 7 : S — C, (a,b) — b, notice that 7 is a
surjective homomorphism of monoids. Let ¢ : N — S, o(n) = (0,n). Then C is cancellative, o is a good section and
N = 771(0) is a group.

We show that in presence of a good section for the surjective monoid homomorphism 7 : S — C, with S cancellative,
the amenability of S implies the amenability also of C' and N = 7~1(1).

Lemma 2.26. Let S be a cancellative monoid, C a monoid, w : S — C a surjective homomorphism, and let N =
7=1(1). If S is right amenable, then:

(a) C is right amenable;
(b) in case ™ admits a good section o, N = n~1(1) is right amenable as well.
Proof. Remember that the right amenability of S is equivalent to the existence of a right invariant finitely additive
probability measure on S (see Remark 2.T]). Let p be a right invariant finitely additive probability measure on S.
(a) That C is right amenable is a known fact (see [I9] — the (short) proof is to define a right invariant finitely
additive probability measure A on C by A(Y) = u(7~1(Y)), as Y varies among subsets of C').
(b) Let T = o(C), which is a transversal of N in S. Let X C N, and define v(X) = p(TX). It is easy to see that

v is a right invariant finitely additive probability measure on N. The only place where we need that o is good is in
proving that v(N) = pu(TN) = u(S) = 1. 0

We cannot drop the assumption that 7 has a good section in the above lemma; indeed, in [52] one can find an
example of a solvable amenable group containing a submonoid which is not right amenable.

The following technical result is a kind of converse of Lemma 228 illustrating the impressing utility of the canonically
indexed right Fglner nets. Given cancellative monoids S and C, a surjective homomorphism 7 : S — C and a good
section o : C — S for m, we prove that S is right amenable whenever N = 7~!(1) and C are right amenable. More
precisely, starting from canonically indexed right Fglner nets of N and C, we provide a canonically indexed right Fglner
net of S.

Theorem 2.27. Let S and C be cancellative monoids, w : S — C' be a surjective homomorphism admitting a good
section o, and N = 7~ 1(1). Let (N;);ez(n) and (Ci)iez(c) be canonically indexed right Folner nets of N and C,
respectively. Then there exists a map ¢ : Z(C) — ’PJQM (N) such that

(a) for every (X,m) € Z(N) and (Y,n) € Z(C) with m > n, letting
Fxmy. (v = Ncwimux,mya (Cryim),
we have that, for every x € X andy €Y,
Fixm),(vm) o (y) ~3 Fixm),(vin))- (2.8)

(b) Hence, the net
(F((x,m),(v,n))) (X,m)ET(N),(¥,n)€T(C),m>n
s a right Folner net of S such that

[F((x,m), (v = INcvmyux,m)l - [Cvm)l-

Proof. (a) Let (Y,n) € Z(C) and denote C' = C(y,,). We have to produce Z = ((Y,n) € ’P})m(N) such that Equa-
tion ([Z8) holds, for every (X, m) € Z(N) with m > n, and for every € X and y € Y; that is, denoting

N = Nizux,m)s (2.9)

for every z € X and y € Y we have to verify that
No(C)xo(y) ~a No(C). (2.10)
In view of Lemma [2.23] for every c € C and every x € X, there exists z., € N such that

o(c)x = zcz0(c).

Moreover, for every ¢ € C' and every y € Y, there exists z., € N such that
o(c)o(y) = zeyo(cy)
11



by the same lemma. Let - -
Z=Hzcp:ceCxeXtU{zy:ceC,yeY}.

First we see that for every x € X and every m > n,

No(C)z ~1 No(C). (2.11)

To this end, fix # € X and m > n. Then, using the notation in (Z3), since N C N,
No(C)ax = | | No(c)z = | | Nzcao(c).
ceC ceC

According to Equation ([Z8), since m > n, we have that Nz., ~1 N for every ¢ € C; therefore, by Lemma 2.14(a,d)

No(C)z = | | Nzeao(c) ~1 | | No(e) = No(C).
ceC ceC

This settles Equation (ZIT]).
Now we verify that for every y € Y and every m > n.

No(C)o(y) ~2 No(C). (2.12)

To this end, fix y € Y and m > n. Then, according to Equation (Z6]) and Lemma ZT4(a,d), since m > n,
No(Clo(y) = | | No(e)o(y) = | | Nzeyoley) ~1 || No(ey) = No(Cy).
ceC ceC ceC
To complete the proof of Equation (Z12]), we see now that
No(Cy) ~1 No(C).

Indeed, Cy ~1 C by Equation (Z6), so o(Cy) ~1 o(C) since o is injective. Hence,

N xa(Cy) ~1 N x o(C)

by Lemma [ZT4(b). Since the map N x C' — S defined by (z,y) — zo(y) is a bijection by Lemma 2.23(b), we conclude
that
No(Cy) ~1 No(C),

as required. In view of Lemma [2I3|(c), this settles Equation (ZI2).
Equation (ZII) and (2I2), in view of Lemma 2T3(c), imply Equation (2I0), and so the thesis.

(b) Let
I(N,C) ={((X,m),(Y,n)) € Z(N) x Z(C) : m = n},

with the partial order induced by the partial orders of Z(N) and Z(C).
Let g € S and € > 0. We have to find « € Z(N, C) such that, for every j = ((X, m), (Y,n)) € Z(N,C) with j > 1,

[F9 ARl
P31

Let n € Ny such that 2 < e and write g = zo(y) for some z € N and y € C. Define

t= (({e,x} 7n)a ({evy}vn)) € I(Na O)

and let j = ((X,m), (Y, k)) € Z(N, C) with j > 1; this means that x € X, y € Y and m > k > n. Thus, by item (a),

as required. [l

The map (X,Y) — Xo(Y) in the above theorem gives a cofinal embedding, as partially ordered sets, of P?m (N) x

We show an explicit example of the above construction.
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Example 2.28. Let A and C be groups, ¢ an action of C' on A, and G = A x, C be their semidirect product. That
is, as a set G = A x C, and the product of elements is given by

(a1,c1) * (az,c2) = (a1 - a5, c1 - c2),

where a® = ¢(c)(a). Then (under the identifications a — (a,e) and ¢ — (e,¢)), A and C are subgroups of G, with
A normal in G and C isomorphic to G/A. The map o : C — G given by ¢ — (e, c¢) is a section of the quotient map
G — O, and, as said before, we identify ¢ with o(c).

Let (A;)ier and (Cj) e be right Fglner nets of A and C respectively; define G; ; = A; * C;. We show that (G, ;)i ;
need not be a right Fglner net in general.

Let © € A and y € C. Notice that z xy = (z,y) and y x x = (z¥,y). We have that

Gijxy={(a,c)x(e,y):a€ Aj,ce Cj}={(a,c-y):acAj,ceC;} =A% (C;-y)

Thus,
Gij xy\Gijl _ |Ci-y\Cj
|Gl G5l

which converges to 0 as j goes to infinity, uniformly in ¢. However,

Gij*xx={(a,c)*(z,e):acAj,ceC;} ={(a-2°¢c):a€Aj,ce C;} = |_| (A; - z¢) *{c}.

ceC;

Thus,
|Gj*$\GfLJ| 1 Z|A xC\A|
TGl Clal& 14l
which in general does not converge to 0 as 7, j go to infinity.

The following example was suggested to us by B. Weiss. Let A = Z2, C = Z, and, for every n € Z and (v, vp) € Z2,
o(n)(v1,v2) = (v1 + nvg, v).

Take x = (0,1), Cp, = [0,n — 1], and A,, = [0,m — 1]>. Then

|G * 2\ G| 1 ”il | A + 2\ Ap|

In,m(x) = 5
|Gm,n| —0 m
We have that
1 = nn /4
S () >—Z|A + (e, 1)\ Ay| > =1/4.
c=n/2

Therefore, (G ;)i ; is not a right Fglner net.
On the other hand, for every e > 0, n € N and = € Z?, if we take m large enough (depending on n, x, and ¢), we

have that
| Am + 2%\ Ap|

[Am|

for every c € C,, and therefore 9, ,,,(x) < €. Thus, for a function f(n) growing fast enough, the sequence (G ¢(n),n)nen
is a right Fglner sequence of G.
For a similar example see [63] Example 0.5].

3 An integral for subadditive functions

3.1 Definition of the integral

Let S be a semigroup and let f : Ps;n(S) — R be a function. Following [I1], we say that f is:
(1) subadditive if f(Fy U Fy) < f(F1) + f(F») for every Fi, Fy € Prin(S);

(2) right subinvariant (respectively, left subinvariant) if f(Fs) < f(F) (respectively, if f(sF) < f(F)) for every s € S
and every F € Py (S);

(3) right invariant (respectively, left invariant) if f(F's) = f(F) (respectively, if f(sF') = f(F')) for every s € S and
every F' € Pyin(S);

(4) uniformly bounded on singletons if there exists a real number M > 0 with f({s}) < M for every s € S.
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A subadditive function is automatically non-negative; in fact, if f : Py (S) — R is subadditive, then f(F) =
F(FUF) < f(F)+ f(F) for every F € Pgin(S).

If S is a monoid, then from the fact that f is right subinvariant, it follows that f({s}) < f({e}) for every s € S,
that is, f is uniformly bounded on singletons. If S is a group, then from the fact that f is right subinvariant, it follows
that f is right invariant, that is, f(F's) = f(F) for every s € S and every F' € Py, (5).

The obvious counterparts for left subinvariance and left invariance hold true.

The following is the counterpart of Ornstein-Weiss Lemma for cancellative left amenable semigroups.

Theorem 3.1 (see [II, Theorem 1.1]). Let S be a cancellative left amenable semigroup and let f : Pgin(S) — R be
a subadditive right subinvariant function uniformly bounded on singletons. Then there exists A € R>q such that, for
every left Folner net (F;);er of S,

_f(F)

1 =

el |F]

By applying Theorem Bl to S°P, one has the following “dual” version that we formulate here for reader’s conve-

nience.

A

Corollary 3.2. Let S be a cancellative right amenable semigroup and let f : Ppin(S) — R be a subadditive left
subinvariant function uniformly bounded on singletons. Then there exists A € R>q such that, for every right Folner
net (Fy)ier of S,

f(F)
g5 |Fil

Let S be a cancellative right amenable semigroup and let

S(5)

A

be the family of all functions f : Py, (S) — Ry that are increasing (i.e., such that f(F) < f(F’') whenever F' C F'),
subadditive, left subinvariant, and uniformly bounded on singletons.

By Corollary [3:2] the limit in the following definition exists and it does not depend on the choice of the right Fglner
net. The mere existence of the limit defining Hg(f) does not require that the function in S(5) is increasing. Yet this
very mild property is always present in all cases of interest, so it is harmless to impose it as a blanket condition in the
definition of S(.9), since it is needed in some proofs in the sequel (e.g., Lemma 3.9, Theorem BI0] etc.).

If N is a right amenable subsemigroup of a cancellative right amenable semigroup S and f € S(S), then f [p,, (v)€
S(N).

Definition 3.3. Let S be a cancellative right amenable semigroup and f € S(S). Define

. f(F)
Hs(f) = lim TR

where (F;)ics is a right Felner net of S.
If N is a right amenable subsemigroup of S, let

HN(f) =HN(S [P v))-

The following results follow directly from the definition.
Lemma 3.4. Let S be a cancellative right amenable semigroup and f € S(S5).
(a) If f is the constant function f =a € Ry, then

0 if S is infinite,
7 W S is finite (and hence a group).

Hs(f):{

(b) If f is bounded and S is infinite, then Hg(f) = 0.

For the remainder of this section S is a cancellative right amenable monoid, so every f € S(S) is automatically
bounded on singletons as observed above.

Lemma 3.5. Let S be a cancellative right amenable monoid and f € S(S). Then

Hs(f) < fF({1}).
Proof. For every F € Py, (S), we have that

J(F) _ 2ser FU9Y) _ 2ser FHLY)
\Fl |F| - |F|

hence the thesis. O
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For a cancellative right amenable monoid S, S(S) with the pointwise addition is a submonoid of the partially
ordered vector space RP7in(9) 5o §(S) is a commutative cancellative monoid.

Let S (S) be the subgroup of RP#(5) generated by S(S). Obviously, S (S) is a vector space over R (actually, a
subspace of RP#i»(9)) and Hg extends uniquely to a linear functional on S(S), by imposing Hs(f1 — f2) = Hs(f1) —
Hs(f2) (this definition does not depend on the choice of f; and f5 representing f1 — f2).

Moreover, S(S) is a partially ordered vector space with the partial order given by

F<f i f(F) < f/(F) for every F € Psin(S),

and 8(S) is also endowed with the seminorm

| J(F
1l = timeup LE.
FePsin(s) ]

clearly, Hs(f) <||f| for every f € S(S). For example, the function card : F — |F| is in S(S5), and Hg(card) =| f|| = 1.

Furthermore, Hs(f) behaves like an average for f and its extension to S(S) is a positive linear functional on the
partially ordered vector space S(S). Next, we show that this average is invariant under the right action f ~ ff of
Prin(S) on S(S), where for every f € S(S) and every F' € Py (5),

FEPpin(8) = Ry, X = f(XF);

clearly, ff € S(S). (This should be compared to the well-known fact that there is a right invariant mean on the set of
all bounded real-valued functions of an amenable group G.)

Lemma 3.6. Let S be a cancellative right amenable monoid, f € S(S), and F € Pyin(S). Then

Hs(f) =Hs(f5).

Proof. Let (F;);er be a right Felner net of S. By Lemma 27(b) (F;F);er is a right Fglner net of S, too. Then the
assertion follows from Lemma 2X7(b). O

The next lemma shows that this average is invariant also under the obvious action of Aut(S) on S(5).

Lemma 3.7. Let S be a cancellative right amenable monoid, ¢ : S — S an automorphism, and f € S(S). Then
: F;
Hs(F) =tm LI gy (7o)

for any right Falner net (F;);cr of S.

Proof. The second equality is by definition of Hg.
Since (¢(F;))er is a right Fglner net of S and |¢(F;)| = |F;| for every i € I, we have that

Ho) =t g~ et e
hence the first equality in the thesis holds. [l
Remark 3.8. Let S be a cancellative right amenable monoid, let f € S(S) and C' € Py, (S), and denote

Pc(S) ={X € Prn(5) : C € X}

(a) Assume that f is bounded on Pc(S), namely f[p.(g) < 7 € R. If S is infinite, then Hgs(f) = 0. Indeed, there
exists a right Folner net (F;);e; of S such that C' C F; for every ¢ € I. Then

= < = .
Hs(f) =lim T < lm e =0

(b) If f is constant on Pc(S), namely flp,(s) =1 € R, then

0 if S is infinite,

Hs(f) = {W if S is finite.

Indeed, if S is finite, then Hg(f) = £&) = = If § is infinite, then item (a) applics.
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Fix a surjective homomorphism 7 : S — C of cancellative monoids, let N = kerm, and fix a good section ¢ for m
with o(1) = 1. Define the map
O, : S(5) = S(C)

by setting, for f € S(9),
O, (f)(X) =Hn(f7X)) for all X € Ppin(C).

In the next lemma we show that indeed ©,(f) € S(C) and ©, does not depend on the choice of the good section
o. This is why most often we write simply © in place of ©,, and 6 in place of ©,(f) when the function f is clear from
the context.

Lemma 3.9. Let S and C be cancellative monoids, m: S — C' a surjective homomorphism with a good section o, and
assume that C and N = 7~Y(1) are right amenable. Then ©, does not depend on the choice of o, and O, (f) € S(C)
for every f € §(S).

Proof. First we see that ©, does not depend on the choice of . Assume that o' : C — @G is another good section; we
have to prove that, for every C € Py, (C),

Hy(f7() = Hn (7).

For a fixed C' € Py, (C), we verify that HN(f”:(C)) < Hn(f7D); the converse inequality can be proved similarly
exchanging the roles of o and o’. For every ¢ € C' let 2z, € N such that ¢'(c) = z.0(c), and let Z = {z. : ¢ € C'}; then

o' (C) C Zo(C). Let (N;)ier be a right Folner net of N. Then, applying Lemma [3.6] in the last equality,

v FNG(C) . F(NiZo(C))
v (f7 D) =l T < lim S

=Hn ((f7)7) = Hn (f7D).

Let f € S(S) and put 8 = O,(f). We prove that § € S(C). First, 6 is increasing, since, if X, X’ € Py;,(C) and
X C X', then

0(X) = lim frON) _ lim

=0(X").
el |Nz| icl ( )

f(WNio(X))
|

o(X) _ o SNo(X) o0
N; i

icl | V; ]| i€l na

Analogously, one proves that 6 is subadditive. To verify that 6 is left subinvariant, we need to prove that for y € C
and C € Pysin(C), B B
0(C) < 0(yC). (3.1)

Let (N;);er be a right Fglner net of N. By definition,
6(yC) = Hn (f*°) = lim
By Lemma [2.24] there exist u € N and Z € Py, (N) such that
uo(yC) € Za(y)o(C).

Let h = hy(y) : N — N be the automorphism of N from Lemma ZT9 Let also f' = f79 € 8(S). Therefore,

T 0\
6(C) lim N y Lemma [3.6]
! .
= llirrll % = by Lemmas and B
1€ i
! X U )
= lim M = lim M > since f’ is left subinvariant
i€l | V; ] i€l | V; ]
! .
> Jimg LCWHNZ)) _ by definition of h
i€l |Nl|
1N ) 0 _ _
= lim f(NiZo(y)) = lim f(NiZoly)o(C)) > since Zo(y)o(C) 2 uo(yC)
i€l | V] i€l na
- f(Niuo(yC)) . T (Nyu)
> = = by L 9.0l
=l == I = y Lemma .8
=0(yC)
Therefore, 6 is left subinvariant, hence 6 € S(C). O

Clearly, in the above notation, the obvious extension © : S(S) — S(C) of the map © is a vector space homomor-
phism.
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3.2 Fubini’s Theorem for monoids
Considering Hgs introduced in the previous subsection as an integral, the next theorem reminds Fubini’s Theorem.
For r, s € R, denote
r=cs if [r—s|<e
r<.,s ifr<s+e.

Theorem 3.10. Let S and C be cancellative right amenable monoids, w: S — C a surjective homomorphism admitting
a good section o, and let N = w=1(1). Then, for every f € S(S),

Hs(f) = Ho(Oa(f))- (3:2)

Proof. Fix f € §(S) and put 6 = ©,(f) for brevity. Let (N;);cz(n) and (Cj) ez(cy be canonically indexed right Fglner
nets of N and C respectively (they exist in view of Proposition [ZIT). Given i € Z(N) and j € Z(C'), define

f(Nio(Cy))

p(i,j) = NG

By definition,

He(f) = lim 6(C;))

jez(o) |Gyl
a(Cy)
~ fim He(f )
jezc) |Gyl
o L f(Ne(C)
jez(c) |Cj| iez(N) | V]

i o i
jaim e, )

Fix € > 0. Then there exists i € Z(IN) such that, for every i > i there exists j(i) € Z(C) such that, for every j > j(i),
He(0) =< p(i, ). (33)
Let ¢:Z(C) — P}Jm(N) and
I(N,C) ={((X,m),(Y,n)) € I(N) x Z(C) : m = n} CI(N) x Z(C)
be as in the proof of Theorem 2271 Let also
p:I(N,C) = Z(N), (X, m),(Y,n)) — (C(Y,n)UX,m),

and note that, for every (i,7) € Z(N, C),
(i, j) > i. (3.4)
By Theorem 227, (N, jy0(C;)) . j)ez(n,c) is a right Fglner net of S, so we have that

Hs(f) =

—  lim i 7), 7).
i oy Pl ), 5)
Thus, there exists (ig,jo) € Z(N,C) such that iq > i, jo > j(io), and for every (i, ) € Z(N,C) with (i, ;) > (io, jo),
Since u(io,jo) > jo by B4), in view of (B3] we have that
Hs(f) =e p(u(io, jo), jo) == Hc(6).
Since € > 0 is arbitrary, this gives Equation (3:2). O

Corollary 3.11. Let S and C be cancellative right amenable monoids, let m: S — C be a surjective homomorphism
admitting a good section o, and let N = 7w~ 1(1). If f € S(S), then

Hs(f) < HN(S)-
Proof. By Theorem B.10, we have Hs(f) = Hc(0), where = O,(f) € S(C). Therefore, by Lemma [3.5 we have that
Hs(f) = He(9) < 6({1}) = Ha(f1) = Hu(f),
hence the required inequality. O
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As mentioned in Definition B3] the limit defining Hg(f) does not depend on the choice of the right Fglner net
(F})ier of the cancellative right amenable monoid S, so we can assume when necessary that all members F; contain
the neutral element 1 of S.

Proposition 3.12. Let S and C be cancellative right amenable monoids, w : S — C a surjective homomorphism
admitting a good section o, and let N = 7= 1(1). Given f € S(C), define
fx i Prin(S) = R, X — f(m(X)).

Then fr € S(S) and

Proof. Let us first note that N is amenable by Lemma [Z28] therefore Hy(fr) is well-defined. It is easy to check that
fr € S(S).
Let § = O, (fr). Given X € Py;,(C), we have that

0(X) = Hn (7).
By definition, for every Y C N,
FFOY) = f(r(0(X)Y)) = f(x(a(X)m(Y)) = f(n(o(X))) = f(X)
does not depend on Y. Thus,

0(X) = ox)y _ FX)
() = n (7 = L5
and, by Theorem [3.10]
He(f)
Hs(fr) =Hco(0) = ———,
as required. O

Corollary 3.13. Let S and C be cancellative right amenable monoids, let m : S — C be a surjective homomorphism
admitting a good section o, and consider the function

cardy : Prin(S) = Ry, F — |n(F)].

Then card, € S(S) and

Hs(card,) = |7T_i(1)|.

Proof. Apply Proposition BIZ] to the function card € S(C). O

4 Algebraic entropy for amenable semigroup actions

We define two notions of algebraic entropy for left actions of cancellative right amenable semigroups on discrete abelian
groups. They extend respectively the algebraic entropy ent introduced by Weiss [77] for endomorphisms of torsion
abelian groups and the algebraic entropy hqq introduced in [28] following the work of Peters [64] for endomorphisms
of abelian groups.

For amenable group actions on discrete abelian groups our definition of algebraic entropy coincides with that given
in [74] for locally compact abelian groups.

4.1 Definitions

Let S be a cancellative right amenable semigroup, A an abelian group, and consider the left action S A A. For a
non-empty subset X of A and for every F' € Py;(5), let

Tr(e, X)=> a(s)(X)=> s X
seF seF

be the a-trajectory of X with respect to F. Note that Tr(c, X) is finite, whenever X is finite.
When there is no danger of confusion we simply write Tr(X) in place of Tr(a, X).

For X € Pyin(A), consider the function
fx i Ppin(S) = R, F = U(Tr(a, X)).

Note that fx(F) =0 for all F' € Py, (S) whenever X C A is a singleton (as Tr (o, X) is a singleton as well).
In the next lemma we see, in particular, that fx is subadditive for every X € Py, (A).
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Lemma 4.1. Let S be a cancellative right amenable semigroup, A an abelian group, S A Aa left action, and
X € Psin(A). Then fx € S(S).

Proof. First we verify that fx is increasing. Let F, F' € Py, (S) with ¥ C F' and F # F'. Since L := Tpn p(a, X) # 0,
we have that
Tr(a, X)| = [Tr(o, X) + 1] < [Tr(o, X) + L| = [Tr (o, X))
for every l € L, as Tp(a, X) +1 C Tr(a, X) + L.
Let F1, F> € Pyin(S). In case F1 N Fy =0,

Trum(X)= Y als)X) =) als)X)+ Y als)(X) = Tr (X) + Tr(X).

sEFMUF, seF seFy

In the general case, let Fy = Fy \ F1, so that Fy and F5 are disjoint, yet we have the same union F; U F;. By the first
case,
Trur, (X) = Trur; (X) = Tr (X) + Trp (X).

Therefore,
fx(F1U ) = UTrury (X)) = UTr (X) + Tr; (X)) < UTr (X)) + UTr; (X)) = fx (F1) + fx (FY).
As the function fyx is increasing, we have that fx (Fy) < fx(Fz). This proves the desired inequality

Ix(F1UFy) < fx(F1) + fx(F2),

i.e., fx is subadditive.
Let now F € Py (S) and s € S. Then

Top(X) =) a(sf)(X) = als) | D alf)(X) ] = al(s)(Tr(X)),

fer feF
and so
fx(sF) = {(Tsp (X)) = Ua(s)(Tr(X))) < U(Tr(X)) = fx(F).
Therefore, fx is left subinvariant.
Finally, for every s € S,
fx({s}) = log|a(s)(X)| < log|X],

so fx is uniformly bounded on singletons. O

In view of Lemma [£.1] by applying Corollary [3.2] we can give the following definition.

Definition 4.2. Let S be a cancellative right amenable semigroup, A an abelian group, and S A A a left action. For
X € Pyin(A), the algebraic entropy of o with respect to X is

Hag(a, X) = Hs(fx).

UTr; (a0, X))

(In other words, Hug(ar, X) = lim;er A , where (F});es is a right Fglner net of S.)

The algebraic entropy of « is
haig() = sup{Haig(co, X) : X € Prin(A)}.
Let also
ent(a) = sup{Haig(a, X) : X € F(A)}.
The definition of Hyi4(a, X) does not depend on the choice of the right Fglner net (F;);cr in view of Corollary B2
Moreover, for every X € Pyin(A), Hag(a, X) < £(X) is bounded, according to Lemma

Remark 4.3. One can introduce the algebraic entropy also for right actions of cancellative left amenable semigroups
on abelian groups. (see also Remark [ZI6] for the case of right actions of amenable groups). Namely, consider a right
action

AAS
of a cancellative left amenable semigroup S on an abelian group A. To define the algebraic entropy of 3, consider the
left action 5°P of the cancellative right amenable semigroup S°P on A (see Remark [[13]) and let

Zlg (6) = halg (601))-
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Now we see that the function Hyiq(cr, —) is monotone increasing. As a consequence of this fact, it is possible to
restrict the family of finite subsets of A on which we compute the algebraic entropy. In particular, we can always
assume that X € P9, (A).

Lemma 4.4. Let S be a cancellative right amenable semigroup, A an abelian group, and S AAda left action.
(a) If XY € Ppin(A) and X CY, then Hyg(a, X) < Hyg(o,Y).
(b) If F C Psin(A) is cofinal with respect to C, then hqig(a) = sup{Hagq(ce, X) : X € F}.

Proof. (a) is clear from the definition and (b) follows from (a). O

Since the torsion part ¢(A) of an abelian group A is a fully invariant subgroup of A, and so in particular t(A) is
a-invariant, it clearly follows from the definition that

ent(a) = ent(ag(a)). (4.1)
In view of Lemma [£.4] we clarify the relation between hq;y and ent.

Proposition 4.5. Let S be a cancellative right amenable semigroup, A an abelian group, and S AAa left action.
Then

ent(a) = ent(ay(a)) = hag(aeca))-

Proof. In view of Equation (£1), it suffices to prove that, if A is torsion, then ent(a) = hqig(c). This is true since in
this case F(A) is cofinal in P?in(A), and so Lemma [£4] applies. O

In the next remark we see that for S = N we find the classical case of the algebraic entropy of a single endomorphism.
This is why we keep the same notation.

Remark 4.6. Assume that A is an abelian group and fix an endomorphism ¢ : A — A. Then ¢ induces the action a4
of N on A defined by ay(n) = ¢™ for every n € N. In [28], the algebraic entropy of ¢ is defined exactly as

hatg(6) = haig(ag),

using the special right Fglner sequence (Fy,)nen, of N with F,, = [0,n — 1] for every n € N, and consequently the
n-th ¢-trajectories
To(9, X) = Tr, (g, X)

for every X € Prin(A).

On the other hand, there is a relevant difference with respect to the case of a single endomorphism when the acting
semigroup S is cyclic and finite. In fact, if A is an abelian group and ¢ : A — A is an endomorphism such that ¢™ = ¢™
for some distinct n,m € N, then hqiq(¢) = 0 (see [23, 28]). This is no more true in general for the algebraic entropy
defined in this paper, as we see in item (a) of the next example.

Example 4.7. Let S be a cancellative right amenable monoid, A an abelian group, and S A A a left action.
(a) If S is finite, then
£(t(A))

(4 .
Bl

5]
in particular, hqg(a) = 0o and ent(a) = co whenever ¢(A) is infinite.

Indeed, take the constant right Fglner sequence (S),en of S. If A is finite, since Ts(a, A) = A, by Lemma [£4}a)
and Proposition [£.5] we get that

haig(a) = and ent(a) =

hatg(@) = Haig(a, A) = é(Tng" 4) = €|(;,4|) and ent(a) = 76(72?))

If A is infinite, for every X € P?ML(A), since X C Tg(w, X), we have that

UTs(0,X)) . UX)
s s

Halg(a,X) =

Then hqq(a) > sup {% X € P?m (A)} is infinite since A is infinite. Similarly, ent(«) is infinite whenever ¢(A)
is infinite.

In particular, if S = {e}, then Hyy(, X) = £(X) for every X € P, (A).
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(b) Consider the trivial left monoid action S A A, defined by 7(s) = ida for every s € S. If S is infinite, then
haig(T) = 0.
Indeed, for a right Fglner net (F;);cr of S and X € Py, (A), one has

Tp(r,X)=X+...+ X.

So,
fx(Fi) < |X|log(1 + |F3).
This yields

X|log(1 + |F;
Hop (1) < tim XL 10BCLE 12D

= 0’
el |Fz|

as A is infinite and so lim;eg | F;| = oo.

In item (a) of the above example, we assume S to be a finite monoid and S A A a left monoid action, otherwise the
conclusion could be false. Indeed, consider the action such that a(s) = 04 for every s € S, which is a left semigroup
action but not a left monoid action. Then, Ts(a, X) = {0} for every X € P, (A), 50 harg(a) = sup{Hazg(c, X) : X €
Phin(A)} =0.

Remark 4.8. Let G be a group and S a cancellative right amenable submonoid of G that generates G as a group; by

Lemma [ZTT|(a) the group G is necessarily amenable. Let A be an abelian group and consider the left action G A A.
Then

hatg(@) = haig(a Is).
In fact, by Lemma 2TT|(b), a right Felner net (F;);c; of S is also a right Fgluer net of G. So, for every X € P?m(A)a
we have that Hag(o, X) = Hag(a [s, X) by definition.

Remark 4.9. Let G be an amenable group, A an abelian group, and G A A a left action. Consider
kera ={g€ G:a(g) =ida}.

It should be natural to expect that the induced action G/ ker « A A would have the same algebraic entropy of G A A.
Actually, this is not the case in view of the above examples. Indeed, hqiy(7) = 0, while ker7 = G, so G/ kert = {1}
and hence hq4(T) = co whenever A is infinite.

For a non-trivial example, in which G/ ker « is infinite, witnessing that hag(c) is not equal to hqig(@), see Exam-
ple 6.23] as well as the general Theorem [5.24]

4.2 Basic properties
We start showing that h.y coincides for weakly conjugated actions, defined as follows:

Definition 4.10. For cancellative right amenable semigroups S and 7', abelian groups A and B, and left actions

SA Aand T fév B, we say that a and 8 are weakly conjugated if there exist an isomorphism 7 : S — T and an
isomorphism £ : A — B such that

§oa(s) = Bn(s)) o (4.2)
for every s € S.

Our leading example is when S = T and n = idg, yet Lemma 13| provides a relevant instance when S = T is
an amenable group, yet 7 is an arbitrary automorphism of S. The next proposition justifies our attention to weak
conjugacy.

Proposition 4.11. Let S, T be cancellative right amenable semigroups, A, B abelian groups, and S A AT /@\v B left
actions. If o and B are weakly conjugated, then hqig(e) = haig(B).

Proof. Let (F;)ier be a right Fglner net of S, and let X € Py, (A). Then (n(F;))ier is a right Felner net of T. For
every i € I,

Ty (B:6(X)) = D Bn(s))(E(X)) = Y Elals)(X)) = ¢ (Z a(S)(X)> = &(Tp; (, X)).

sEF; seF; seF;

Hence, £(Ty(r,)(5,6(X))) = L(TF, (o, X)), and so Haig(3,€(X)) = Hag(a, X). Since £ induces a bijection between
Prin(A) and Pyin(B), this implies hqrg(a) = hag(5). O
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Remark 4.12. Since the only automorphism of N is idy, two left actions N A A and N fB\v B on abelian groups A and
B are weakly conjugated precisely when

§oa(n) =p(n)og

for all n € N. In other words, letting ¢ = (1) and ¢ = 3(1), one has
d=E6Ttorot. (4.3)
Usually, a pair of endomorphisms ¢ : A — A and ¢ : B — B are said to be conjugated if the condition in

Equation (£3) holds for some isomorphism £ : A — B (see [2§]). Clearly, a pair of conjugated endomorphisms

¢:A— Aand 1y : B— B gives rise to weakly conjugated N-actions N ~ Aand N~ B. Indeed, ¢ = £ 1opoé
implies ¢" = £~ o™ o £ for every n € N, that is, £ 0 ™ = 9" o £ for every n € N; in terms of actions this means that
& oay(n) = ay(n) o for every n € N, that is Equation (£2) is satisfied with = idx.

It is known that hqig(¢) = haig(?0) whenever the endomorphisms ¢ and v are conjugated (see [28]).

On the other hand, weakly conjugated automorphisms of A, viewed as Z-actions, need not be conjugated in the
sense of Equation (@3] (see Remark E.T4]).

In the case of an automorphism ¢ : A — A of an abelian group A, it is known that

hatg(¢) = hag(67").

In order to obtain this equality as a consequence of Proposition 11 in Remark A.T4] we see that ¢ and ¢! are weakly

conjugated. To this end we consider, more generally, an action G A A of an amenable group G on an abelian group
A, and an automorphism 7 : G — G. Define the action

An

G A

by a(g) = a(n(g)) for every g € G.

We omit the immediate proof of the next lemma.

Lemma 4.13. Let G be an amenable group, A an abelian group, and G A~ A a left action. If n:G— G is an
automorphism, then o and " are weakly conjugated and hqig(c) = haig(a).

Remark 4.14. Let G be an abelian group, n = —idg € Aut(G), and G A A aleft action. Then o is now given by
a(g) = a(g)~! for every g € G, and it is weakly conjugated to a, 50 haig(t) = haig(a) by LemmalI3l In particular,
for G = Z we obtain hay(¢) = haig(¢') for any automorphism ¢ : A — A.

To finish the comparison between conjugacy and weak conjugacy in the realm of automorphisms, consider the
automorphism ms : Q — Q, defined by & — 2z, inducing an obvious Z-action on Q, which is weakly conjugated to the
action induced by (mg)~! = my. Nevertheless, ms is not conjugated to (m2)~! in the sense of Equation (E3).

Resuming Remark[£.12] and Remark[Z.14] the notion of weak conjugacy provides a convenient umbrella covering two
relevant cases of coincidence of algebraic entropies: of a pair of conjugated endomorphisms, or a pair of two mutually
inverse automorphisms.

Using Proposition [L11] we can specify the relation between the algebraic entropy of «(g) and the algebraic entropy
of the restriction of o to the semigroup generated by g.

Remark 4.15. Let S be a cancellative right amenable monoid, A an abelian group, and S A A a left action. Let
g € S and let T be the submonoid of S generated by g.

(a) If T is infinite, then "= N and « [ is weakly conjugated to the action ay(4) in the notation of Remark A6l So,
haig(a(g)) = haig(a [7) by Remark 6] and Proposition .11l

(b) If T is finite, then a straightforward computation shows that ha4(a(g)) = 0, while hqig(c [7) is always positive
(actually oo if A is infinite) by Example ().

The same properties hold when S is a group and T' = (g) is the subgroup of S generated by g.
The following observation using Proposition [.11]is related to Remark

Remark 4.16. In case of a right action A fw G of an amenable group G acting on an abelian group A, one has also
an alternative option to define a left action 3 that leads to the same algebraic entropy h’”, . Indeed, define the left

alg*
action 8’ by putting 8'(g) = B(g~!) for every g € G. The left actions
o Bop B/
GP A and G A
are conjugated since the map ¢ : g — ¢g~! provides a group isomorphism G — G°P. By Proposition E11]

zrzlg(ﬁ) = halg(ﬁop) = halg(ﬁ/)-

This shows that we can use both ways to pass from right actions to left ones obtaining the same result.
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Now we consider the monotonicity of h.s with respect to invariant subgroups and quotients over invariant sub-
groups.

Proposition 4.17. Let S be a cancellative right amenable semigroup, A an abelian group, and S AAa left action.
If B is an a-invariant subgroup of A, then

hatg(@) = max{haig(ap); haig(aa/B)}-

Proof. For every X € Pyin(B),
Halg(aBa X) = Halg(aa X),

SO Halg(OzB,F) < halg(Oé)- Hence, halg(OéB) < halg(oz).
Assume that X € Pyin(A/B) and X = m(X() for some Xy € Pyin(A), where 7 : A — A/B is the canonical
projection. Let (F;)ier be a right Fglner net of S. Then, for every i € I,

(T, (, Xo)) = Y w(a(s)(X0)) = Y aayp(s)(7(Xo0)) = Tr, (a5, X).
seF; seF;

It follows that haig(a) > Harg(cr, Xo) > Hag(aasp, X), and hence haig() > hag(aa,p)- O
Next we verify the continuity for direct limits.

Proposition 4.18. Let S be a cancellative right amenable semigroup, A an abelian group, and S A~ A a left action.
If A is a direct limit of a-invariant subgroups {A; : i € I}, then hqig(a) = sup;e; haig(aa,).

Proof. By Proposition @17 heig(a) > haig(@a,) for every i € I and so hqag(a) > sup;e; Raig(ca, ).
To check the converse inequality, let X € Py, (A). Since A = ligl{Ai :i €I} and {4, : i € I} is a directed family,
there exists j € I such that X C A;. Then

Halg(a; X) = Halg(aAj 5 X) < halg(aAj )
This proves that haig(a) < sup;cs haig(aa;)- O
The following is a basic instance of the Addition Theorem.

Proposition 4.19. Let S be a cancellative right amenable semigroup, A an abelian group, and S AAa left action.
If A= As x As, with A1, Ay a-invariant subgroups of A, then haig(a) = haig(@a,) + hag(aa,).

Proof. Note that, a(s) = aa,(s) X aa,(s) for every s € S.
Let (F})ier be a right Fglner net of S. For every ¢ € I, and for X € Pyin(A1), Xo € Prin(A2),

Tr, (o, X1 % X2) = ) (aa, (8)(X1) X aay(s)(X2)) =

seF;
= <Z A, (8)(X1)> X (Z aAz(S)(X2)> =T, (aa,, X1) x Tr,(aa,, X2).
sEF; seF;
Hence,
Halg(O[,Xl X XQ) = Halg(aAqu) + Halg(aAwXQ)' (44)

Consequently, hqig(a) > haig(aa,) + haig(ca,).
Since {X1 x X9 : X; € Prin(Ai), i = 1,2} is cofinal in Py (A), in view of Lemma B4 Equation (4] proves also
that halg(Oé) < halg(aAl) + halg(OéAQ). O

4.3 Properties of the trajectories

Lemma 4.20. Let S be a semigroup, A an abelian group, and S A A a left action. If F € Ptin(S) and X, X' €
P?ML(A), then:

(a) Tp(X + X') =Tp(X) + Tr(X');

() TR(X)UTp(X) CTr(XUX') CTr(X)+Tr(X').

Proof. (a) We have

Tr(X+X) =8> o(f)(zs+af): o e X,ah e X' p =
feF

=Y alf)ap) + D alf)@f): 2y € X,af € X' b =Tp(X) + Tr(X').
feFr ferF
(b) can be proved analogously to (a). O
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Recall, that if W is a subset of an abelian group A and m € N, we use the notation

Wy =W4+W4+ ...+ W.

m

Lemma 4.21. Let S be a right amenable semigroup, A an abelian group, S A Aa left action, F' € Psin(S), and
B € Pyin(A). Then, for every m € N4,
TF(Oé, Bm) = Tp(a, B)m

Proof. 1t suffices to compute that

Tr(a,Bpn) =) alf)(Bn) =Y alf)B)m= Y alf)B)| =Tr(aB)n

fEF feEF fer
for every m € N_. O

Lemma 4.22. Let S be a right amenable semigroup, A an abelian group, S ~ A a left action, and F,F' € Prin(S).
If X is a subset of A, and X' = X|p/|, then

Trr (X) CTp(Tr (X)) C Tre (X'). (4.5)
If X is a subgroup of A, then X' = X and Trp/ (X) = Tr(Tp(X)).

Proof. For a subset X of A, we have that

and
Tr(Tr(X) =Y a(f) | D af)X)| =3 > aN(NEX)= >  alff)X)
fer frer’ fEF f'eF" fEF,f'eF"
Hence, TFF/(X) Q TF(TF/ (X))
To prove the second containment in Equation ([L5) we use as above that Tr(Tr (X)) = > icp prep a(ff))(X).
Since
Trpr(X') = Z a(g)(X') = Z o(9)(X)F;
geFF! geFF!

and for every g € FF’, by the right cancellation property of S,
Vo ={(f,f) e FxF : ff =g} <I|F,

we can conclude that Tp(Tr (X)) C Trp(X').
If X is a subgroup of A, then X’ = X, so Equation ([{3) yields Tpp/(X) = Tr(Tr (X)). O

The following examples show that the containments in the above lemma can be strict.
Example 4.23. Let A =Q.

(a) Let S = Z and consider the left action S A A defined by a(n)(q) = 2"¢ for every n € Z and every ¢ € Q. Let
F=F ={0,1} = X. Then Tr(X) = {0,1,2,3} and FF = {0,1,2}, so

Trr(X)={0,...,7} CTp(Tr(X)) ={0,...,9} C Trp(X') = {0,1,...,14}.

(b) Let S = Aut(Q), and consider the left action S A A defined by a(¢)(q) = ¢(q) for every ¢ € S and every g € Q.
Let FF = F' = {+idg} and X = {0,+1}. Then Tr(X) =X + X = {0,£1,£2} and FF = F, hence

Trp(X) =Tp(X) = {0,£1,£2} C Tp(Tp(X)) = Tp(X) + Tp(X) = {0, £1, 2, +3, +4} .

Lemma 4.24. Let S be a cancellative right amenable monoid, A an abelian group, and S A Aa left action. If
X € F(A) and F € P},,,(S), then
Hag(a, X) = Hag(o, Tr (o, X)).
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Proof. Since X C Tr(X), we have that Hyg(a, X) < Hgg(o, Tr(X)) by Lemma [4(a).
To prove the converse inequality, let (F;);e; be a right Fglner net of S and assume without loss of generality that
1 € F; for every i € I. By Lemma [L.22] we have that

: . UTrr(X))
— - 7 =] [l S
i€l | F5| iel | F3 |
For every i € I, let D; = (F;F)\ F;. Fix ¢ > 0. Since (F;);cs is a right Fglner net of S, lim;e; % =0 by
Lemma [Z7(b), and so there exists J C I cofinal such that ¢(X) |D;| < e |Fj| for every j € J. Thus, for every j € J,

UTrr(X)) < UTF, (X)) + UTp, (X)) < U(Tr, (X)) + |D;| €(X) < LT, (X)) + e |F],
and so

{Trr(X)) _ TR (X))
7 . P 3

+ €.

Therefore, we get
Halg(a, Tr(X)) < Halg(a, X)+e.

Since the above inequality is true for every € > 0, we have the conclusion. O

The above lemma does not hold true in case X is not a subgroup of A:

Example 4.25. Let S = N, A = Z, and consider the left action S ~ A, where ¢ = my : Z — 7Z is defined by ¢(z) = 4x
for every x € Z. It is known (and straightforward to prove) that hqiq(¢) = log4 (see [28]).
Let X = {0,1}. Then Ta(¢, X) = X +4X = {0,1,4,5} and

To(p, X) = {ao +ad+...+a, 14" :a; € {0, 1}}

for every n € N4. Then

U Tu6.X) C 2= (X).

neNL

Fix n € N} and consider the map
gn 0 {0,1,2,3}" = {0,1,2,...,4" — 1}, (ao,...,an—1) = ao + a1d + ... + an_14"" ",
which is easily verified to be a bijection; since j,,({0,1}") = T},(¢, X), we have that |T,,(¢, X)| = 2". Hence,
Hag(9, X) =log2.
We see now that, for X' = Ty(¢, X) = {0,1,4,5},
Hag(¢, X') = log3.
One can prove by induction that, for every n € N,
To(p, X') = {bg +4by + ... +4" b, 1 +4"b, : by,...,by_1 € {0,1,2},bo,b, € {0,1}}. (4.6)

It implies that for every n € N,
To(6, X') = jn({0,1} x {0,1,2}" x {0,1}),
so that we can conclude that
|T7L(¢7X/)| =4-3"

Clearly, this implies that Hge(4, X') = log 3.

4.4 Computing entropy using generators

Let S be a cancellative right amenable semigroup, A an abelian group, and S A A a left action. For a subset X of A,
the full a-trajectory of X is
Ts(,X)= | Tr(a,X).
FEme(S)

If X is a subgroup of A, then Tr(a, X) = (a(s)(X) : s € F) is a subgroup of A for every F € Py (S5), and so also
Ts(a, X) = (a(s)(X) : s € S) is a subgroup of A. If furthermore X € F(A), then Ts(c, X) C t(A). On the other hand,
if X is a subset of A, in general Ts(a, X) could be strictly contained in (a(s)(X) : s € S) as Example shows, so
the condition A = Ts(a, X) is stronger than A = (a(s)(X) : s € S).

We recall that the action S A A induces on A a structure of left Z[S]-module. So, a subgroup B of A generates A
as a Z[S]-module if and only if A = UXeP?_ () I's(a, X).

25



Proposition 4.26. Let S be a right amenable semigroup, A an abelian group and S A A. If B is a subgroup of A
such that t(B) generates t(A) as a left Z[S]-module, then

ent(a) = sup {Hay(a, X) : X € F(B)}. (4.7)
In particular, if t(A) = Ts(o, X) for some X € F(A), then ent(a) = Hyg(a, X).

Proof. By definition, ent(c) > sup { Hayg(o, X): X € F(B)}. To prove the opposite inequality, let Y € F(A). Since

()= |J Tsx),

XeF(B)
there exist F € P, (S) and X € F(B) such that Y C Tr(X). Then, by Lemma E4(a) and Lemma F24]
Hag(0,Y) < Hag(a, Tr(X)) = Hag(a, X). (4.8)

As'Y € F(A) was chosen arbitrarily, this proves ([@.7]).
If t(A) = Ts(wr, X) for some X € F(A), for every Y € F(A) there exists F' € ’PJQM(S) such that Y C Tr(X), so the
last assertion follows again from (). O

In case X is a finite subset of an abelian groups A, it is not clear whether A = Ts(a, X') would imply hqiq(c) =
Hgaig(a, X). On the other hand, we have at least the following result.

Proposition 4.27. Let S be a cancellative right amenable monoid, A an abelian group, and S A A a let action. If B
is a subgroup of A that generates A as a left Z[S]-module, then

haig(a) = sup {Halg(oz,X) X e P})in(B)} .
Proof. If S is finite, then hqq(a) = 0o and
sup { Harg(o, X): X € PJQM(B)} = 00,
by Example @7(a). So assume that S is infinite and let (F});cr be a right Fglner net of S. Clearly,
haig() = sup { Hag(o, X) : X € ”P?m(B)} .

To prove the converse inequality, let Z € PP, (A). Since A = UXGP(;' () Ts(a, X), there exist X € P}, (B) and

F € P},,(S) such that Z C Tr(X). Let X’ = Xp|; since B is a subgroup of A, we have that X’ € Py, (B). Since
(F;F)er is a right Fglner sequence of S by Lemma 27(b), and since (F;);e; is strictly increasing, we have that

. ATrr(X)) . UTrr(X)) |F . A(Trr(X))
N — N e VA A . — B S
Huoloo X0 =0 ppr — 8 (Bl TRF S B

By Lemma [£4{(a) and Lemma [£.27]

UTR(2) _ | T (Tr (X))

Hyy(a, Z) =1 <1i : = Hug(a, X').
tg(e, Z) iel |F;| el | F;| = Get F| tg (e, X7)
Hence, we can conclude that hqiq(c) < sup {Halg(a, X): X e P?m(B)} O

Lemma 4.28. Let S be a cancellative right amenable monoid, A an abelian group, S AAe left action, and B,C €
Ptin(A). Then
Hag(o, B+ C) < Hyg(o, B) + Hyig(a,C)  and  Hgg(o, —B) = Hyg(ar, B).
Proof. For every F' € Pgin(S),
L(Tr(a, B+ Q) <l(Tr(c, B)) + {(Tr(a,C)) and £(Tr(a,—B)) =4(Tr(c, B)).
Let (F;);er be a right Fglner net of S. Then

U(Tg, (o, B+ C))
| F3]

UTr(a,B)  UTr(a,C)  UTr(a,~B) _UTr(e,~B))

| F; | | F3 | F3| | F3

<

Taking the limit as ¢ — oo, we have the conclusion. O

The following is a useful technical consequence of the above lemma.
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Lemma 4.29. Let S be a cancellative right amenable monoid, A an abelian group, and S AAa left action. Let B
be a subset of A generating A as a group. For every a € A, let W, = {0,a} € P?m(A)' If Hyg(o, W) =0 for every
b € B, then hqg(a) = 0.

Proof. Let C € P?m(A)' Since B generates A, there exist by, ..., by € B (each of the b; can appear more than once)
such that
CCEtWy, +...+EWs,

By Lemma [£28
Halg(aa C) S Halg(aa Wl) +...+ Halg(a; Wm) = 0;

so we have the thesis. O

Following [23] 28], call an action S A A of a cancellative right amenable monoid S on an abelian group A
(a) locally nilpotent if for every a € A there exists s € S such that «(s)(a) = 0;

(b) weakly locally nilpotent if the same condition is satisfied for all elements a taken from a set B of generators of the
group A.

If S is commutative, then these two conditions are obviously equivalent.
We show that the algebraic entropy of every weakly locally nilpotent action is zero (for N-actions this can be found
in [23, 28]).

Corollary 4.30. Let S be a cancellative right amenable monoid, A an abelian group, and S AAa left action. If «
is weakly locally nilpotent, then « is locally nilpotent, and haqg(a) = 0.

Proof. Let B be a subset generating A as a group and witnessing the weak local nilpotency, i.e., such that for every
b € B, there exists s € S such that a(s)(b) =0. Fix b € B and let s € S such that a(s)(b) = 0.

To show that « is locally nilpotent, let a € A. There exist by,...,by € B such that a = by + ...+ bg. For
every ¢ € {1,...,k}, let s; € S such that a(s;)(b;) = 0. By Corollary 210, there exist ¢,71,...,7, € S such that
t=71181 =...=risk. Foreveryic {1,...,k}, we have that

a(t)(b;) = a(risi)(bi) = a(ri)(a(s;)(bi)) = a(r;)(0) = 0.

Therefore,
a(t)(a) =Y a(t)(b:;) =0,
i=1
that shows that « is locally nilpotent.
Let us prove now that hqg(e) = 0. By Lemma 29 it suffices to show that Hgq(a, Wp) = 0 for every b € B.

Let (F;)icr be a right Fglner net of S. Then (F;s);cr is also a right Fglner net of S by Lemma 271 Moreover,
Tr,s(o, Wp) = {0}. Therefore,

Tr s,
Haig(a, W) = lim M -0,

icl |F;s]

that concludes the proof. O

No group S admits a weakly locally nilpotent action. Indeed, if s € S is invertible and 0 # a € A, then «(s)(a) # 0.

5 Entropy of restriction and quotient actions of amenable group actions

5.1 Entropy of restriction actions

Let G be a cancellative right amenable monoid, A an abelian group, and G A A aleft action. If H is a submonoid of

G we call restriction action of « the left action H afoI A induced by «. In this section we point out some basic relation
between the algebraic entropy of « and the algebraic entropy of « [z .

The next example shows immediately that the restriction action of an action of finite (actually, zero) algebraic
entropy may have infinite algebraic entropy.

Example 5.1. Let G be an infinite amenable monoid, A an infinite abelian group, and consider the trivial action
G A~ A. By Example E7(b), we have that
haig(T) = ent(7) =0,

while for H = {1},
halg(T rH) = o0

and ent(7 [g) = oo when t(A) is infinite.
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For a non-trivial example with hqiq(a) = 0 while hqg(o [5) = 00 see Example [5.23]

Next we give a result for monoids showing that many actions of N have zero algebraic entropy (see Corollary [5.5)).
We will state many other results on the vanishing of the algebraic entropy for amenable group actions after Theo-
rem [o.12)

Lemma 5.2. Let G and H be infinite countable cancellative right amenable monoids, A an abelian group and consider
the left action G x H A A, If haig(a Tq) < 00, then hgig(a) = 0.

Proof. Let (Fp,)nen and (Ey, )men be right Fglner sequences of G and H respectively. Then (F, X Ey,)n men 1 a right
Fglner net of G x H by Lemma Let X € PY;,(A). For every n,m € N,

Tr,x g, (o, X) =TF, (o |6, TE,, (o [1, X)).
Fixed m € N, we have that

UTr, (a6, Tk, (o [, X)))

nh_)n;o |F | = Halg(Oé, rGa TEm (O[ rH) X)) S halg(Oé rG) < 00.
Therefore,
o MTp, (a6 TE, (a1, X)) . haglale)
Halg(aaX)—n}rﬂoo |Fn||Em| SW}EDOOW =0,
and we conclude that hqg(c) = 0. O

Corollary 5.3. Let G and H be infinite countable cancellative right amenable monoids, A an abelian group and
consider the left action G x H A A. Then hag(@) < hag( [@).

Proof. If haig(a [q) = oo clearly hqig(a) < haig(a [¢) = o0, and when hgq(a [¢) < oo Lemma [52 gives hqq()
0 S halg(a TG)

Ol

Corollary 5.4. Let d > 1, A an abelian group and N* A A a left action. If haig(a(e;)) < oo for some e; =
(0,...,0,1,0,...,0) € N where 1 is in the i-th entry, then haig(a) = 0.

Corollary 5.5. Let d > 1, A a torsion-free abelian group of finite rank and N¢ A A a left action. Then haig(a) = 0.

Proof. In view of Corollary 5.4 it is enough to check that no endomorphism of A may have infinite algebraic entropy.
In fact, every endomorphism ¢ of A extends to an endomorphism ¢ of the divisible hull D = QF, with k < n, of A,
and haig(¢) = haig(¢) (see [28]). Moreover, all endomorphisms of QF have finite algebraic entropy by the algebraic
Yuzvinski Formula (see [43]). O

From now on we consider amenable group actions and their restriction actions. The following is a generalization of
what is called Logarithmic Law in the case G = Z.

Proposition 5.6. Let G be an amenable group, A an abelian group, and G AAda left action. If H is a subgroup of
G of finite index [G : H| = k, then

haig(o ) =k - haig(a) and ent(a [g) =k - ent(w).

In particular:
(a) haig(a) =0 if and only if hag(e [g) =0, and ent(a) = 0 if and only if ent(a [g) = 0;
(b) hag(e) = o0 if and only if hag(a [r) = 00, and ent(a) = oo if and only if ent(a [) = 0.

Proof. Let (F;)icr be a right Fglner net of H. Let 1 € L C G be a transversal of the family G/H = {Hg : g € G} of
the right cosets of H in Gj; in particular |L| = k, so we can write L = {t1,ta,...,tx}. By Lemma R7(b), (F;L)cs is a
right Fglner net of G.

Observing that |F;L| = |F;| - |L|, we can compute, for X € ’P?m(A),

o TR (o, X))
Harg (e, X) = lim |F,L|

For Y = Ty (a, X), we have that
TFiL(avx) =TF, (a,Y) =Tp, (Oé [a s Y)v

) et _ Ly TR0 Ly 0,v) = L (o 1Y),

el |F;|-|L] :mzlenfl

Therefore, we have the inequality hqy(a) < %halg(a le).
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To prove the converse inequality, let Y € PP, (A). Then

1 _ iy TR (0, Y))
g Hatslor [ X) =1y =

é(TFiL(O‘a Y))
FiL]

= lim < lim

| Fi i€l |F;L| — el = Hay(a,Y),

and so %halg(a ) < haig(cr). This concludes the proof that hqig(a [g) =k - hag(c).
By Proposition and the first equality, we have that

ent(a [#7) = hag(Qia)) = k - harg(ayay) = k - ent(a),
hence the thesis. O

Let us recall that a group G is virtually cyclic if G has a cyclic subgroup of finite index. The above proposition
allows us to completely determine the algebraic entropy of actions of virtually cyclic groups:

Remark 5.7. Let G be a virtually cyclic group, A an abelian group, and G A A a left action. The case when G is
finite was already discussed in Example [L7)(a), so we can assume without loss of generality that G is infinite. Then G
has an infinite cyclic subgroup N of finite index. Then its normal core N is still an infinite cyclic subgroup of finite
index k = [G : Ng| € N4. As the subgroup Ng is normal, we deduce from Proposition[5.6] that hag(alng) = khaig(c).
Denoting ¢ = a(1), we have that hag(alng) = haig(¢), by Remark BI85 a). Therefore, hqig(e) = khaig(9).

The next proposition can be deduced from Theorem [B.12] and Proposition [.6] nevertheless we anticipate it here
since its proof is much easier than that of Theorem (.12

Proposition 5.8. Let G be an amenable group, A an abelian group, and G A Aa left action. If N is a normal
subgroup of G, then
haig(a) < haig(e [n) and  ent(a) < ent(ao [n).

Proof. Let X € P})m(A) and f = fx (we recall that fx(Y) = {(Ty (o, X)) for every Y € Py, (G)). By Corollary B11]
Haig(o, X) = Ha(f) < HN(f) = Hag(a [n, X).
Since the above is true for every X € Py, (A), we have that
haig(a) < hag(e [N)-
By Proposition the second assertion follows from the first one. O

Example [5.1] shows that the inequalities hqig(e) < haig(a [mr) and ent(a) < ent(a [g) in Proposition can be
strict.

Corollary 5.9. Let G be a group and G A Abea left action on an abelian group A. If an element g € G is non-torsion
and central, then

halg(a) < halg(a(g))'
In particular, if hag(a(g)) =0, then hqg(a) = 0.
Proof. The subgroup H = (g) is central, hence normal. By Proposition 5.8 haig() < hag(e [1). Now, haig(a [g) =
haig(a(g)) by Remark AI5(a). O

The next corollary should be compared with Corollary 5201 and Corollary 522 where the condition hqiz(¢) = 0 is
relaxed to a milder one.

Corollary 5.10. Let G be a non-torsion abelian group and let G A A bea left action on an abelian group A. If
haig(¢) = 0 for every ¢ € Aut(A), then hqg(a) = 0.

The groups Z, Z(p) or Q/Z satisfy the hypothesis imposed on A in the above corollary (see [30]).

In the rest of this subsection we consider exclusively appropriate sufficient conditions that entail zero algebraic
entropy for a left action G A A. Most of these conditions are in terms of the restricted action a]y with respect to
appropriate subgroups (necessarily of infinite index) N of G. An exception to this tendency is the hypothesis of the
next proposition, verified in Example [5.23(a).

Proposition 5.11. Let G be an amenable group and let G A Abea left action an abelian group A. Let N be a normal
subgroup of G such that G/N s infinite. If every N-invariant subgroup of A is also a-invariant, then

ent(a) = 0.
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Proof. For the sake of brevity, let o/ = o [y. Fix Ag € F(A). Then L = Tn(a/, Ag) is an o’-invariant (i.e., N-

invariant) subgroup of A containing Ag, and this gives an action N L By hypothesis, L is also a-invariant. Hence,
for every Y € P})in(G) the subgroup L contains Ty («, Ag), which obviously generates L as a left Z[N]-module. By

Proposition [£28] applied to N % L and the subgroup Ty («, Ag) of L, we deduce that
ent(a}) = Hug(a, Ty (o, Ag)). (5.1)

Let f = fa,, and let C' = G/N, which is infinite by virtue of our assumption. Fix a section o : C' — G and consider
0 = ©,(f). Since Ay is a subgroup of A, for every X € P}Jm(C),

fU(X) = ng(X)(a7A0)
by Lemma 22 Hence, Equation (B.I)) entails
0(X) = Hn(f7X)) = Hag(a, To(x) (@, Ao)) = ent(al)

for every X € ’P?m(C). As ent(a}) is obviously independent from X, this proves that 6 is constant on P?m(c ). Since
C' is infinite, we can apply Theorem and Lemma B4 to deduce that

Hag(a, Ag) = Ha(f) = He(0) = 0.
Taking the supremum over all Ay € F(A), we get the thesis. O

The next is one of the main result that we have on restriction actions and it has some impressive consequences.
Theorem 5.12. Let G be an amenable group, A an abelian group, and G AAa left action. Let N be a non-trivial
normal subgroup of G such that G/N is infinite.

(a) If ent(aln) < oo, then ent(a) = 0.
(b) If haig(aln) < 00, then hqig(a) = 0.
Proof. In view of Proposition[d.5] (a) trivially follows from (b), since ent(a) = haig(az(a)) and ent(afn) = harg((afn)sca))-

The proof of (b) follows the proof of the above proposition, so we keep the same notation, i.e., let &/ = « [y,
C = G/N (infinite, by our hypothesis) and o : C — G is a section. There is a subtle difference though, now we let
Ap € Psin(A). For f = fa, we define again § = O,(f).

Our first aim is to see that 6 is bounded by hg4(a’). To this end fix X € P})in(C) and let Ay = T,(x)(a, Ap).
Clearly, A1 € Pfin(A). Then, for an arbitrary Felner net (F;);c; for N one has

0(X) = M (f7) = lim (L Fe0MA0)) @y (T (A1)

= ! < ! .
el |E| >~ ilenll |Fz| Halg(a 7A1) ~ halg(a )a (5 2)

where the inequality (x) is due to Lemma 22l We have proved in this way that our assumption hgg(c’) < oo implies
boundedness of 6 1P0,..(©) for all Ag € Pyin(A).

Since C' is infinite, Theorem B.I0, Lemma 34 and Remark B8 imply that
Hag(a, Ag) = Ha(f) = He(9) = 0.
After taking the supremum over all Ag € Pyin(A) we get hqig(a) = 0. O

We conjecture that Theorem [5.12] can be proved without the assumption that the subgroup N is normal (see
Conjecture B4).

The following is another interesting consequence of Theorem [B.12]

Corollary 5.13. Let G1, G2 be infinite amenable groups, A1, As abelian groups, and consider left actions G A
and Gy /3 As. Let G = Gy ¥ Go, A = A1 X Ag, and let the left action G A A be defined by a(g1,91) = a1(g1) X aa(g2)
for every (g1, 92) € G. If either hqig(on) or haig(ce) is finite, then hqg(o) = 0.

Proof. Assume that hqig(a1) < 0o. Since o [q,= aq, it suffices to apply Theorem E.I2 with N = G . |

As an example one can take G = G; = Gy, A = A; = A5 and an action G A A with haig(e) < co. Then the action
G? ~ A? defined as above has zero algebraic entropy.

The following corollary of Theorem [5.12] has very interesting consequences.

Corollary 5.14. Let G be an amenable group and G AAa left action on an infinite abelian group A. If G has a
non-torsion central element g with hag(a(g)) < oo and [G : (g)] is infinite, then hqig(c) = 0.
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Proof. The subgroup N = (a(g)) of G is central, hence normal. Since N = (g) is infinite by hypothesis, Remark L.T5|(a)
gives that haig(a [n) = haig(a(g)) < co. Hence, hqyg(a) = 0 by Theorem (121 O

The next example shows that in Corollary [£.I4] one cannot replace the hypothesis g non-torsion by simply g non-
trivial, since hqig((g)) does not always coincide with haig(a [(g))-

Example 5.15. Let G = Z(2) x Z and let g # 0 be the generator of Z(2). Hence, N = (g) = Z(2) and [G : {(g}] is
infinite. Then o(g) = 2 = o(a(g)).

Consider an action G A A on an infinite abelian group A, such that o l7(2) is trivial, while a [z has positive
algebraic entropy, e.g., A = Q and, for every (kg,m) € G,

a(kg,m)(z) = 2™« for every z € Q.

Then hag(a(g)) = 0 < oo; nevertheless, haiy(a [72)) = o0, as A is infinite, according to Example A7(a) and

Remark FT5(b).

Moreover, hqig(a) = 2hag(e 1z7) = $log2 > 0, according to Proposition and Remark ET5|(a), since the

multiplication my : Z — Z, & — 2x has hqig(me) = log 2 (see [28]).
In the next corollary, Z? can be replaced by any non-torsion abelian group G that is not virtually ciclic (so that G
has an infinite cyclic subgroup of infinite index).

Corollary 5.16. Let n,d € N, let A be a subgroup of Q", and Z* AAa left action. If d > 1, then hqq(a) = 0.

Proof. Follows from Corollary and Remark
Since A has no automorphism of infinite algebraic entropy (see the proof of Corollary B.H]), an alternative proof can
be obtained from Corollary [5.14] as since Z¢ with d > 1 has no cyclic subgroups of finite index. O

We show now that the action of a field on itself by multiplication has zero algebraic entropy.

Proposition 5.17. Let K be an infinite field and consider the natural action K* A K by multiplication. Then
haig(A) = 0.

Proof. Assume first that K has characteristic zero. The underlying abelian group A = (K, +) is a Q-vector space and
we can assume that Q C K. By Proposition B8, hqig(A) < hag(o), where ¢ = X [+, so it remains to prove that
haig(0) = 0.

Let X € Ptin(A) and let V be the Q-linear subspace of A generated by X, which is g-invariant. Since V is a
torsion-free abelian group of finite rank, and Q* as a group is isomorphic to Z(2) x Z® by (the extended version of)
Corollary [5.16] and Proposition [5.6] we have that hag(ov) = 0. Hence, Hyg(0,X) = Haglov,X) < hag(ov) = 0.
Therefore, hqiq(0) = 0.

Suppose that K has characteristic p > 0. We consider two cases.
First, assume that K is an algebraic extension of F,,. Then there exists a sequence (a,)nen in Ny such that ay,|an41
for every n € N and
K = | J Ky, where K, = Fpen.
neN

Then we can consider (K;)nen as a right Folner sequence of K*. Let X € Py, (K). Then there exists m € N such
that X C K,,,. For every n € N with n > m, one has

Tre: (N Km) = KK = K.

Hence,
H. T (N, Ko :
alg(0 X) < Hapg(M Kyp) = lim Tres N K)o UK

We can conclude that hqie(A) = 0.
Now assume that there exists a non-algebraic element ¢ € K. Let S = {¢’(c+ 1)?: 4,j € N} be the submonoid of
K* generated by ¢ and ¢+ 1. Obviously, S 2 N?| since c is transcendental over F,. This determines the restricted

action S >}r\f K. To conclude, it sufficed to prove that
haig(A 1s) = 0. (5.3)

Indeed, for the subgroup G of K* generated by S, (5.3)) implies that haig(A [¢) = haig(A [s) = 0 in view of Remark 4.8
and hence hqq(A) = 0 by Proposition 5.8
To prove (53) we have to verify that for every X = {xg,z1,..., 21} € ’P?m (K) with xo = 0 one has

Hag(A s, X) =0. (5.4)
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A
Let V be the smallest S-invariant IF,-linear subspace of K that contains X and let S Nk the restricted action of

S on V. Then Hyg(A [s,X) = Hag((A Is)v, X), and so (&) is equivalent to Haie((A [5)v, X) = 0, so it is enough
to prove that
haig((A Ts)v) = 0. (5.5)

Once we limit the computation to (A [s)v, we can make use of Corollary[5.4l To this end we consider the submonoid
T of S generated by c. Obviously, T = N and we have the restricted actions

T K and TRV

To apply Corollary 5.4] it is enough to prove that

halg(()\ rT)V) < 00. (56)

To this end, note that 7" is a cyclic monoid generated by ¢, so by Remark [.15(a)

hatg((A I7)v) = haig(me), (5.7)

where

me=Ar(¢c): V-V
is the multiplication by c. Let U be the F,-linear span of {c'z: i € N;,z € X}. Obviously, U is T-invariant, and then
also S-invariant; moreover, the transcendence of ¢ over F, implies that U = IE‘,(,N). Similarly, for ¢ € {1,...,k}, each
Vi=Uzx; = IF,(DN) is T-invariant and S-invariant, and V = V; 4+ ...+ V. This determines the restricted actions

A ]
T(rfT\v)v,Vi

and the endomorphisms
(A Tr)vi(¢) = me v, .
Note that V is a quotient of the vector space W = V; x ... x Vi, that m, is induced on V by the multiplication )’
by ¢ in W, and
/LZV:mC l'v, X...Xme [y, -
The multiplication m, [y, by ¢ in V; acts on V; & IF;N) as the right Bernoulli shift, so hqg(me [v;) = logp for every
i €{1,...,k}. Hence, by Proposition 17 Proposition ELTT and Proposition ET9]

hatg(me) < haig(pe”) = klogp < |X|logp < cc. (5-8)

By (51) and (5.8) we have (5.0), and so Corollary 5.4 gives the desired equality (5.0). This proves (5.4)), and so
also (B3). O

The following result extends Proposition (.17, which is applied in its proof to cover the case n = 1, while the general
case follows from Theorem [5:12] and the case case n = 1 (that is, Proposition B.17]).

Corollary 5.18. Let K be an infinite field, n € N4 and let G be the subgroup of GL,,(K) of upper triangular matrices.
Denote by A the vector space K™ and by G A~ A the natural action. Then haig(a) = 0.

Proof. Note that G is solvable, hence amenable. The case n = 1 is covered by Proposition B.I7l Assume that n > 1.
Then the center N = Z(G) of G has infinite index [G : N]. As N is the subgroup of G of all non-zero scalar matrices,

and N = K* so the action « [y is conjugated to the action K* A K" by multiplication. Then, from the case n =1,
Proposition 1Tl and Proposition @19, we obtain that hqg(a [n) = 0. Therefore, hqiq(a) = 0 by Theorem B121 ([

Remark 5.19. Let K be a field of characteristic zero having finite degree n > 1 over Q. Then the underlying abelian
group A = (K, +) is a Q-vector space and A = Q™. The group L := Aut(A) = Autg(A) = GL,(Q) is not amenable.
Let L A A denote the natural action. By Corollary I8, for N = Z(L), we have that ha,(a [x) = 0. Hence, by
Theorem [5.12] for every amenable subgroup G of L that contains N and with [G : N] infinite, hqq(a [g) = 0.

The subgroups of Q™, and more generally the abelian groups with finite ranks introduced below, have the property
required in the following result (see Lemma[B52T]). Under the assumption on G to be non-virtually cyclic, Corollary 5201
strengthens Corollary B.I0 above.

Corollary 5.20. Let G be a mon-torsion non-virtually-cyclic abelian group, A an abelian group, and G A Aa left
action. If hqig(¢) < oo for all € Aut(A), then hqg(a) =0.

Proof. Since G is non-torsion and G is not virtually cyclic, there exists an infinite cyclic subgroup N = (g) of G of
infinite index in G. Since hqig(a [n) = haig(a(g)), by Remark I I%(a), and hqg(a(g)) < oo by hypothesis, we conclude
that hqig(a) = 0 by Theorem O
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In order to discuss further applications of Theorem [B.12] we recall that for an abelian group A the free-rank ro(A)
of Ais
ro(4) = dimg(Q ® A)

and the p-rank r,(A) of A is
rp(A) = dimg,,7 Alp],

where A[p] = {x € A: pz = 0}.

In the sequel we are interested in the class 91 of abelian groups with finite ranks, namely, abelian groups A with
ro(A) < 0o and 7,(A) < oo for every prime p. The class D is stable under taking subgroups, quotients, and extensions
(hence, finite products). Moreover, every A € 9 splits as A = t(A) x Ay, where A; € 9 is torsion-free, so A; is
isomorphic to a subgroup of Q™ for some n € N.

We see that the abelian groups in 91 have the property required in Corollary
Lemma 5.21. Let A € 0N and ¢ € Aut(A). Then hqiy(¢) < co.

Proof. Since the Addition Theorem holds for hg, in the case of single endomorphisms of A (see [23]), we have that

halg((b) = halg(¢ rt(A)) + halg(¢)a

where ¢+ AJt(A) — AJt(A) is the automorphism induced by ¢. Hence, it suffices to see that hgy(¢ lt(a)) < oo and

halg (¢) < 0.
Since the quotient A/¢(A) is torsion free and has finite rank, it is isomorphic to a subgroup of Q" for some n € N.

As recalled above in the proof of Corollary [5.106] hqiq(¢) < co.

Now we show that haiy(¢ [4(a)) = 0. For every prime p consider the p-primary component #,(A) of ¢(A), which is
fully invariant. Since r,(A) < oo, the subgroup A[p"] of ¢,(A) is finite and fully invariant for every n € N; therefore,
every finite subset of ¢,(A) is contained in a finite fully invariant subgroup of ¢,(A) (see [30]). This yields that
Paig(® Tt,(a)) = 0 for every prime p, so we can make use of the Addition Theorem for torsion abelian groups from [30]
to get that haig(¢ [¢(a)) = 0. O

The next result generalizes Corollary [5.16) it follows directly from Corollary and Lemma [5.27]

Corollary 5.22. Let G be a non-torsion non-virtually cyclic abelian group, A € N, and G AAa left action. Then
halg (Oé) =0.

The class of abelian groups with all automorphisms of finite algebraic entropy, which contains 91 according to
Lemma [52T] was studied in [30] for torsion abelian groups and in [32] in the general case, yet no complete description
of this class is known so far.

5.2 Entropy of quotient actions

In this section we consider the following general setting. Let G A A be a left action of an amenable group G on an
abelian group A, and let N be a normal subgroup of G such that N C ker«, with 7 : G — G/N be the canonical
projection. Denote by

aG/N

G/N ~ A

the quotient action induced by «, that is, for x € A and h € G/N let ag/n(h)(x) = a(g)(x) for any g € G with
7(g) = h.

Under these hypotheses, and in particular in view of the assumption N C ker a, one could expect that hqq (o) =
haig(@g/n), but this is not the case as item (b) of the following example shows.

Example 5.23. (a) Let A be an abelian group, L an amenable group, and L A A a left action. Let N be an
amenable group, G = N x L and let G A A be defined by

alk,h)(a) =v(h)(a) for every (k,h) € G.

Then N C kera and « [= 7, moreover a¢,y is weakly conjugated to v. So, by Proposition E1T]

halg(@G/N) = haig(y) and ent(ag,n) = ent(y). (5.9)
We verify that
0 if N is infinite 0 if N is infinite
hatg(2) = RatelD) - if N s finite and - ent(a) = ) f N s finite (5.10)
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The case when N is finite is settled by Proposition So, assume that N is infinite. Let (N;);e; be a right
Fglner net of N and (L;)jes be a right Folner net of L. Then (N; x Lj)(; jjerx. is a right Fglner net of G by
Lemma 29 Let X € P}, (A). For every (i,j) € I x J, we have that

TNiXLj (a,X) = TLj (7) X)

Z(TL]‘ (v, X))

Since the limit Haqg(y, X) = limjey T is finite, there exists jo € J such that, for C' = Hgg(y, X) + 1,

UTr, (o, X))
1L =¢

for all j > jo. Therefore,
g(TNiXLj (OZ,X)) _ 1 ‘g(TLj (77X)) < C
|Ni x Lj| Nl Ll TN

for all j > jo. Since lim;e; \T1| = 0, we deduce that

UTn,xp.(a, X
Hug(a, X)= lim M < lim ¢

— =0.
(i)elxt  |Npx Lyl i€l |N]

Since the above is true for every X € ’PJQM(A), we conclude that hqig(a) = 0. The second equality follows from
the first one and Proposition 35l

(b) We discuss the equality hqig(a) = haig(@g/n) in the example in item (a); in view of Equation (53)), we need to
see when hqig(a) = haig(7y).

We use Equation (BI0). If N is infinite, then hqg(a) = 0. If N is finite, and hqig(y) = 0 or hag(y) = oo, then
hatg(@) = haig(7y). If 0 < haig(7y) < 00, then hqig() = haig(7y) precisely when N is trivial.

For specific examples consider L = Z, the right Bernoulli shift

ﬁ = ﬁK : K(Z) — K(Z); (xn)nGZ = (mn—l)nGNv
and the action L ~~ A = K@) induced by 8. In case K = Z(p) for a prime p, one has ent(ag) = hqg(ag) =
haig(B) = ent(8) = logp. To get an action with hqiq(7y) = oo it is enough to take K = Z.

Item (a) of Example (23] is a particular case of the following general result on quotient actions. While the
computation in the above example is elementary, the proof of the next theorem uses Theorem 310

Theorem 5.24. Let G be an amenable group, A an abelian group, and G ~ A a left action. Let N be a normal
aG/N

subgroup of G such that N C ker a and consider G/N ~ A. Then

- and ent(a) =< ont(a . . .
7}1‘“-‘7‘(]\,‘0”) if N is finite. (@) W if N is finite.

0 if N is infinite, 0 if N is infinite,
haig(cr) =

Proof. Let C = G/N, v = ag/n and fix a section 0 : C — G. For B € Pyi,(A), by definition Hyy(a, B) = Ha(fB).

By Theorem [3.10]
Heag(o, B) = He(0),

where
0 =0,(fB): Prin(C) = Ry, Y = Hn((f5)°Y)).

Let Y € Psin(C) and X € Pyin(N) with m = |X|. Since N C kera,
Txovy(a, B) = Tx (o, Tovy (o, B)) = Tovy(a, B)m = Tyvy (o, Bm) = Ty (7, Bm),
where in the next-to-the-last equality Lemma [£.21] applies. Therefore,
(f5)"(X) = f(Xo(Y)) = UTxo(v) (@, B)) = UT(vy (@ B)m) = U(Ty (7, Bu))- (5.11)

Here we consider two cases.

Case 1. Assume that N is infinite. Then ( fB)"(Y) [P;in () eeds not be a constant function if B is not a subgroup of
A (i.e., By, # B). Nevertheless, in this case we can find a convenient estimate of this function using the folklore fact
that for every finite subset W of A one has |W,,| < (m + 1)!W! so £(W,,) < |W|log(m + 1). Hence, Equation (5.1
gives

(/)" (X) = U(Ty (v, B)m < [Ty (v, B)|log(m + 1). (5.12)

where |Ty (v, B)| is constant with respect to X.
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Now we can compute 6 by taking X to be a generic member of a right Fglner net (N;),cs of N. From Equation (5.12))
we deduce that, for a right Fglner net (C;);er of C, for every i € I

Te, (v, B)|1 Ni|+1
0(01) _ HN((fB)U(Ci)) < hm | 01(75 )| Og(| ]| + ) =0,
et [N
as |N;| — oo. Therefore, Hyg(a, B) = He(8) = 0 by Theorem B101 Consequently, since B € Py;n(A) is arbitrary, we
can conclude that hqq(a) = 0, if N is infinite.
Case 2. Assume that N is finite and set X = N, so m = |N| = | X| in Equation (5I1)). Pick a right Fglner net (C;);e,
of C and using Theorem BI0] along with Equation (&.I1]) (applied to Y = C;) conclude that

) UTc; (v,Bm))
- Ha((fp)7©)) =1 (T (v, Bm)) 1
Huyla, B) =1lim ZNNB) ) iy — gy DG Pm)) D g B, 5.13
tolen B) = Im =12 il |Ci] miel |Gyl o Mot (1 Bm) (5:13)
Therefore,
1 1
Halg(aﬂ B) = EHalg(% Bm) < Ehalg(ﬁ/)a
and since B € Py, (A) is arbitrary, we conclude that
1

halg(a) S Ehalg('-)/)' (514)

To prove the opposite inequality consider first the case when hq4(y) < co and fix an e > 0. There exists B € Py, (A)

such that Hyg(7y, B) > haig(y) — €. Then Equation (5I3) gives
1

hatg(0) = Hatg 0, B) = Haiy 7, Bp) >

Halg(% B) Z halg(’}/) —&.

1 1
m m
Along with Equation (5.I4), this proves that hqg(er) = Lhaig(y).

A similar argument works in the case hqiq(7y) = 0o. This completes the proof of the first assertion. The second

assertion follows from the first one and Proposition O

In the following direct consequence of the above theorem we see that the algebraic entropy of G A A s always

«
smaller that the algebraic entropy of G/N A" A for N a normal subgroup of G contained in ker a. Moreover, we see
that the algebraic entropy of these two actions is the same only in special cases.

Corollary 5.25. Let G be an amenable group, A an abelian group, G AAa left action, and N a normal subgroup of
G such that N C ker . Then

haig(@) < hag(ag/n) and  ent(a) < ent(ag/n).

Furthermore, haig(o) = haig(ag/n) if and only if either hag(ag/n) = 0, or N = {1}, or hay(ag/n) = 0o and N is
finite. The same assertions hold for ent.

The inequalities in the above corollary can be strict also when N is infinite, as shown by Example B.23[(b).

Corollary 5.26. Let G be a torsion-free amenable group, A an abelian group, and G ~ A a left action. If haig(a) >0,
then the action is faithful (i.e., kera = {1}).

Proof. Assume that N = ker « is non-trivial. Then NN is infinite, as IV is torsion-free. By Theorem [£.24] applied to G
and N we deduce that hqig(a) = 0, a contradiction. O

Corollary 5.27. Let G be a non-abelian torsion-free amenable group, A an abelian group, and G A A a left action. If
Aut(A) is abelian, then hag,(e) = 0. In particular, all actions G ~ Z(p™), G ~ Q/Z and G A I, have hay(a) = 0.

Proof. Since G is non-abelian and Aut(A) is abelian, ker « is non-trivial. Hence, hq4(a) = 0 by Corollary G206

To prove the second assertion, note that Aut(Z(p>)) = Aut(J,) = U(J,) is abelian for every prime p. So, in view
of the isomorphism Q/Z = B, Z(p>), the group Aut(Q/Z) = [[,cp Aut(Z(p>)) = [[,cp UJp) is abelian as well. O

When A is one of the groups Z(p>) and Q/Z, the conclusion of the above theorem remains true also in case G is
abelian (see Corollary [.10). However, one can produce automorphisms ¢ of A = J, with hqe(¢) = oo; indeed, taking
for example as ¢ the multiplication = — &z by an invertible p-adic number £ that is transcendental over Z, one has
that the subgroup B of A generated by ¢ is ¢-invariant and isomorphic to @, Z, and so0 haig(¢) = haig(¢ [5) = 00
since ¢ acts on B = ), Z as the two-sided Bernulli shift (see [28]).

35



6 Addition Theorem

This section is dedicated to the proof of the Addition Theorem for the algebraic entropy stated in the introduction.

6.1 The function ¢(—, —)

We start defining the useful auxiliary function ¢(—,—). Let A be an abelian group, B < A and 7 : A — A/B the

canonical projection. For Y € P(A) let
LY, B) =¢n(Y)). (6.1)

Even if Y is not necessarily a subgroup, we shall write sometimes (Y + B)/B for the subset 7(Y) = {y+ B: y € Y}
of A/B in order to avoid the explicit use of . Clearly, it may happen that B or Y are infinite, but (Y, B) is finite.
From the known properties of £(—) we obtain that, for every Y, Y’ € P(A),

(Y +Y',B) <{Y,B)+ (Y’ B). (6.2)

Remark 6.1. The the utility of the auxiliary function ¢(—,—) is best illustrated in the calculation of the length of
orbits. Indeed, it allows for a transferring of the computation from the quotient A/B of an abelian group A to the

group A itself. More specifically, if S is a semigroup, S A A aleft action, B an a-invariant subgroup of A, and
m: A — A/B the canonical projection, then for F' € Pf;,(S) and Y € P})in(A) one has

U(Tr(aa/p,m(Y))) = LU(TF(a,Y), B), (6.3)
due to the obvious equality Tr(as,/p,7(Y)) = 7(Tr(a,Y)).
We start giving a basic property of the function ¢(—, —).
Lemma 6.2. Let A be an abelian group and let B,C, D be subgroups of A. Then:
(a) L(C,B) =¢(C,BNC);
(b) L(C,B)=¢(C,D) if BNC=DnC.

Proof. (a) is clear and (b) follows from (a). O

In the following lemma we collect other useful properties of the function ¢(—, —).
Lemma 6.3. Let A an abelian group, X, X' € P})m(A): C € F(A), and B, B’ be subgroups of A. Then:
(a) the function ¢(Y, B) is increasing in Y and decreasing in B;
(b) {(X+C)=L4X,C)+£(C) and {(X +C,B) =4(X,C + B) + ¢(C, B);
(¢) (X+X',B+B')<{X,B)+ (X' B).
Proof. (a) and (b) are obvious.
(¢) By (62) and item (a),
(X +X',B+B')<UX,B+B)+ (X' ,B+DB')<{X,B)+ (X' B).
This concludes the proof. [l

Further properties of the function ¢(—, —) follow, obtained from properties of trajectories from Lemma .20

Lemma 6.4. Let S be a semigroup, A an abelian group, and S AAa left action. Let F,F' € Pyin(S), X € P?m(A)
and B < A. Then:

(a) U(9)(X), (g)(B)) < (X, B) for every g € S;
(b) if F' C F, then
U(Tp(X), B) < {Tr(X), B) and (X, Tp(B)) < (X, Tr(B));
(c) {(Tp(X), Trp(B)) < |F| (X, B);
(d) if B is a-invariant, then {(Tr(X),B) < |F| ¢(X, B).
Proof. (a) The map a(g) : A — A induces a surjective homomorphism (X + B)/B — (a(g)(X + B))/a(g)(B).
(b) Since 0 € X, we have Tp/(X) C Tr(X), and similarly Tr/(B) C Tr(B). Hence, (a) applies, along with Lemma
63(a).
(¢) By Lemma [63|¢c) and item (a),

UTr(X), Tr(B)) < Y Ua(g)(X), Tr(B)) < Y Lalg)(X),alg)(B)) < Y U(X, B) = |F|L(X, B).

geF geF geF
(d) Since Tr(B) < B, by Lemma [6.3[(a) and item (c),
(Tr(X),B) <{(Tp(X),Tr(B)) < |F|{X,B).
This concludes the proof. O
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We conclude with another lemma on the function ¢(—, —).

Lemma 6.5. Let S be a semigroup, A an abelian group, and S AAa left action. If F1,..., F, € Ppin(S), Cr,...,Cph €
F(A), and By,...,B, < A, then

UTr, (C1) + ...+ Tp, (Cn), Tr, (B1) + ...+ Tr, (Bn)) < Y |Fi| £(Cy, Bi).

=1

Proof. Applying Lemma [6.3c), and taking into account that ¢(Trg, (C;), Tr,(B;)) < |F;|¢(C;, B;) by item (c¢) of Lemma
6.4, we conclude that

UTp (C1)+ ...+ TF,(Cp), Tr (B1) + ... + Tr, (By)) < Z (Tr, (C;), Tr, (B Z |F;|€(C;, By),
hence we have the thesis. O

6.2 The Filling Theorem

In the sequel we expose a result from [I1], and some of its consequences, that we apply in the next subsection to prove
the Addition Theorem.
Let S be a cancellative semigroup. For every D, E C S, define

Op(D)={seD:(sE)\D #0}.
In view of [I1}, Proposition 2.4], (F;);ecn is a right Felner net of S if and only if, for every E € Py, (5),

lim |0k (F;)]

= 0.
iel | F

The following theorem is exactly [II, Theorem 3.8] for S°P. Actually, for a set X and € > 0, a family (Y;) e
in Psin(X) is e-disjoint if there exists a family (Z;);e; of pairwise disjoint subsets of X such that Z; C Y; and
(1 —e)|Y;| <|Zj| for every j € J.

Theorem 6.6 (Filling Theorem). Let S be a cancellative semigroup. For every 0 < & < 1/2, there exists an integer
N = N(g) > 1 such that, if (Fj)je(1....n} 5 a finite sequence of non-empty finite subsets of S such that

|8Fj(Fk)| eV

<—— VI<j<k<N (6.4)
| F| |

and D C S is a non-empty finite subset of S such that
O, (D
| F|1§| )| <N V<<, (6.5)

then there exists a finite sequence (P;)jeq1,... ny of finite subsets of S, such that:
(1) for every j € {1,...,N}, the family (sF;)scp, is e-disjoindl;
(2) the subsets PjF;, j € {1,...,N}, are contained in D and pairwise disjoint;
(3) U =L, P;F; C D satisfies |D\ U| < e |D|,
In the notations of Theorem [6.06] let

N
b= _|Pl|Fl, u=|Ul, d=|D|.

We need the following inequality.
Lemma 6.7. In the above notations, u < b and
b—u<eb
Proof. The sets P;F;, with j € {1,..., N}, are pairwise disjoint, and so u = Zj\]:l |P;F;|. Fix j € {1,...,N}. Since
the family (sFj)sep,; is e-disjoint, by [T, Lemma 3.2] we have
(1 —e) [P] |F;| < |PFy|,
hence
[Pyl |Fj| — [P Fy| < e|Py| | F5].

A summation with respect to j concludes the proof. O

'and P; C D\ OF; (D) — we separated this property, since we do not use it in the sequel.
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Definition 6.8. Let S be a semigroup. Fix € > 0, let D € Py, (S) and n € Ny. The n-tuple (F,. .., F,) in P (S)
is an e-tiling of D, witnessed by the n-tuple (P, ..., P,) in Pfin(S), if the subsets PiF;, ¢ € {1,...,n}, are pairwise
disjoint, and denoting

U:UPZ'E) d=|D[, u=|U], b:Z|PZ||E|7
i=1 i=1
(1) UC D
(2) ID\U|=d—u < ed;
(3) 0<b—u<eb

We need the following property of e-tilings.

Lemma 6.9. Let S be a semigroup. Fiz e > 0, let D € Py (S) and n € Ny. If (Fi,...,Fy) is an e-tiling of D,

witnessed by (P1,...,P,), then u < b and
1 1 2
‘ ‘ <= (6.6)

Proof. From the inequalities 0 < d —u < ed and 0 < b — u < ¢b, given respectively by (2) and (3) in the above
definition, we deduce that both d and u belong to the interval [u, t#=]. Hence, |[d — b| < 7 < 2eu < 2ed. Dividing
both sides of the inequality |d — b| < 2ed by bd we obtain (6.6)). O

The following is an important consequence of the Filling Theorem, that we apply in the proof of the Addition
Theorem in the particular case when § = 9.

Corollary 6.10. Let S be a cancellative right amenable semigroup, and let § = (F;)icr and © = (Dj) e be two right
Fylner nets of S. Fix 0 < e < 1/2, and let N = N(e) be as in Theorem[6.0. Then, there exist Fy,...,Fx € § and
J" C J cofinal, such that, for every j € J', (F1,...,Fn) is an e-tiling of D;.

Proof. We can find F,...,Fy in § satisfying ([@4) in Theorem Let J' be the set of all j € J such that D;
satisfies (6.5]) in Theorem It is easy to see that J' is cofinal in J, so (F});e. is a subnet of (F}) e .

Fix j € J'. We can apply Theorem [6.6], and get P,..., Py finite subsets of S as in the theorem. We claim that
(Fh, ..., Fy) is an e-tiling of D;, witnessed by (Pi,..., Pn). Let U, d, u, b as in Definition68 It is clear that U C Dj,
since P;F; C Dj for alli € {1,..., N} by Theorem[6.6(2). This yields that |D \ U| = d —u, and furthermore d —u < ed
Theorem [6.0)3). Finally, Lemma [67 shows that b — u < ¢b. O

Remark 6.11 (See also [62]). In [11], Definition 3.6], for a semigroup S, given K, D € Py;,,(S) and € > 0, they define
an (e, K)-filling pattern for a set D. Our notion of e-tiling is related to it, but different. In fact, an (¢, K)-filling pattern
uses only one “tile” (the set K), while an e-tiling uses n different tiles (the sets Py, ..., P,). Moreover, the resulting
set U for e-tilings is “large” in D, in the sense that |[D\ U| < ¢ |D|.

6.3 Proof of the Addition Theorem

The following result covers one inequality of the Addition Theorem.

Proposition 6.12. Let S be a cancellative right amenable semigroup, A be a torsion abelian group, S A Aa left
action, and B an a-invariant subgroup of A. Then

ent(a) > ent(ap) +ent(ay/p).

Proof. Let m: A — A/B be the canonical projection and let (F;);c; be a right Felner net of S. Let X € F(B) and
Z € F(A/B). Since A is torsion, we can find Y € F(A) such that 7(Y) = Z. Let Y/ =Y + X € F(A). Then
n(Y')=Z,and let X' =Y'N B € F(B), so that X C X'. Therefore, by Lemma [L4](a),

Halg(aBa X) S Halg(aBa X/) = Halg(a7 XI)
The exact sequence 0 - X’ — Y’ — Z — 0 gives rise, for every i € I, to the sequence
0 = Tr(ap, X') 5 Tr (0, Y') % Tr,(aasp, Z) — 0,

where g = 7 |7, (a,y’), while f is the inclusion map. This sequence need not be exact any more (as the kernel of the
map g may properly contain the image of f), nevertheless we have that

UTr,(oasp, Z)) + U(Tr,(ap, X)) < UTr,(aa/p, Z)) + Lker g) = £(Tk,(a,Y")).
Dividing by |F;| and taking the limit, we conclude that
Hug(aasp, Z) + Hag(ap, X) < Hag(aa g, Z) + Hag(ap, X') < Hag(a,Y') < ent(a).
To end the proof it suffices to take the supremum over all Z € F(A/B) and X € F(B). O
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Now we prove the “second half” of the Addition Theorem.

Proposition 6.13. Let S be a right amenable monoid, A a torsion abelian group, « a left action of S on A, and B
an a-imvariant subgroup of A. Then
ent(a) < ent(ap) +ent(as,/p).

Proof. Let Y € F(A) and fix e > 0. Let 7 : A — A/B be the canonical projection, and Z = w(Y’). To prove the thesis,
it suffices to show that
Hag(e,Y) <sc ent(ap) + Hag(aa/p, Z). (6.7)

Let § = (F})ier be a right Fglner net of S, such that 1 € F; for every i € I. By definition and by Remark [6:T]

UTr, (. Y)) Tk (aa/8,Y), B)
Mol V)= gy ond Hosloam 2) =30 =

Therefore, after taking a subnet of § if necessary, we have that for every i € T

é(TFz(O‘aY)) é(TFi(O‘A/BaY)aB)

Halg(Oé,Y) = ‘ and Halg(aA/B,Z) = |F| (68)
Let -

By Corollary 610, there exist N € Ny, Fi,..., Fx € § and a subnet (F});cs of §, such that (F1,..., Fy) is an &-tiling
of F; for every j € J. This means that, for every fixed j € J, letting (Pi,..., Py) in Psin(S) be the N-uple witnessing
that (F1,..., Fy) is an &-tiling of F}, and moreover

N N
i=|F|, U=\JPF, u=U], b=Y |R|IFI, (6.10)
i=1 ‘
we have that AU
| J; |<§, |d —b| <2&d, u<b. (6.11)
Let X = YN (Tr,(a,Y)) N B € F(B).
Claim 6.14.
(i) U(Tr, (0, Y), Tp, (a, X)) = €Ty (e, V), Ty (o, X)) < €5
(it) Ty (oY), Ty(o, X)) |4 — 3| <e
Proof. (i) Since U C Fj,
Tr(a,Y) =Trpv(a,Y) + Ty(a,Y) and Tp (o, X) = Tpp\v(e, X) + Ty (a, X). (6.12)

Hence, Lemma [63)c) yields

é(TFj (O‘a Y)a TFj (O‘a X)) = é(TFj\U(O‘a Y) + TU(av Y)v TFj\U(av X) + TU(O‘a X))
< é(TFj\U(aa Y)a TFj\U(av X)) + é(TU(aa Y)v TU(av X))

Consequently, by Lemma [6.4(c) and in view of ([€I1)) and (69)),
d
é(TFj (Oé, Y)a TFj (Oé, X) - é(TU(O[,Y),TU(Oé, X)) < é(TFj\U(avy)vTFj\U(avx)) < |FJ \ U|€(Ya X) < édé(y) = 65'

(ii) By Lemma [6.9

1 1 1
<98
‘d b‘ =253
Thus, by Lemma [64)(c) and (G.IT),
1 1 1 _ U _
Ty (a,Y), Tu(a, X)) ‘3 - 5‘ < ul(Y, X)Q&‘g < Zsé(Y)E <28(Y) =¢,
and this concludes the proof. O
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After further taking a subnet of (F});ecs, we may assume that, for every j € J,

U(Tr, (o, X))

Halg(aB)X) :6 |F|
J

Fix j € J. By (6.8) and Lemma [6.3|(b), we have that
{(Tr,(a,Y)) < UTp, (oY) + Tr, (o, X)) < UTp, (oY), Tr, (o, X)) U(Tr; (o, X))

Hal (Oz,Y) = >~ >
! © A |51 |51 | E5]
T (a,Y), Tr. (o, X UTr (0, Y), Tr. (o, X
>¢ ( £ (a ) 5 (a )) + Halg(aa X) S ( 5 (a ) 5 (a )) + ent(aB)a
| |Fj
and so LT Y),T X
Halg(a,Y) <o ( o (Oé, ), o (Oé, )) +ent(aB)'
|}
In order to prove ([6.7) (and so the thesis), it remains to show that
é(TFj (Oé, Y)a TFj (Oé, X))
<3¢ Halg(aA/sz)' (6.13)
|}
To this end, let
Tr (o, Y), Tr (o, X
r— max é( Fm(a7 )7 Fz(a’ )) (614)
i€{l,....N} |F}
Since 1 € F;, for every i € {1,..., N}, one has Tr, (o, Y) C Zil Tk, (a,Y). Hence,
N
Tr(a,Y)NBC Y Tp(a,Y)NB =X,
i=1
moreover, X C Tp, (o, X) since 1 € Fy; therefore,
Tr,(0,Y)NB C X C Tr (o, X) C B,
and so T, (0, Y) N T (o, X) = Tr, (o, Y) N B. By Lemma [6.2] this gives
U(Tp (e, Y), Tp, (o, X)) = £(TF, (o, Y), B).
Hence, by Equation (6.8)
Z(TF (a,Y),TF, (a,X)) Z(TF (OZ,Y),B)
: . = - = Hll 7Z )
|Fz| |Fz| € lg(OéA/B )
therefore,
T =¢ Halg(aA/BaZ)' (615)
For every i € {1,..., N}, let
P | F;
5 IPLIFL (6.16)
b
clearly, 0 < ¢; <1 and Efil d; = 1. Hence, by the definition of r in (614,
N
{Tp(a,Y), Tp, (a, X
Zéi ( F; (O[, )7 F; (Oé, )) <7 (617)
i=1 |73l
In the notation ([G.I0), by Claim [614i,ii), we have that
(T, (0.7). T (0.X)) _ €5, (0¥). Ty, (0.X)) _ WTpfa V) To(a.X) _ UTp(@ ) To(@X) o

;| - d =< d = b
Since Ty (o, Y) = Zf\il Tp,r,(a,Y) and Tp,p,(a,Y) = Tp, (o0, Tr, (o0, X)) for every i € {1,..., N}, and analogously for
Ty (e, X), by Lemma [6.5] we have that

N
UTy(e,Y), Tu (o, X)) Z |Py| €(Tr, (,Y), Tk, (ar, X)) (6.19)
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Now, since |P;|/b = §;/|F; for every i € {1,..., N} by the definition of §; in (E10]),

SN P U(Tr (0, Y), Tk, (a, X)) 0T, (,Y), Tr, (o, X))
= - i : . 6.20
b Z W (6.20)
By (€18), (619), (620), ©I17) and ([EI5) applied in this order, we conclude that
0T, (0, Y), Ty (, X)) o U(Tr, (e, Y), Tr, (0, X
( ( ) S Z & F( )) Sr:a‘ Halg(aA/Baz)'
|E5] P | F3]
We have obtained (6.13), as required to conclude the proof. O

7 Bridge Theorem

7.1 Topological entropy for amenable semigroup actions

Following [11], let C' be a compact topological space, let S be a cancellative left amenable semigroup. and consider the
left action S A C by continuous maps, that is, v(s) : C — C' is a continuous selfmap for every s € S.

Let U = {U;}jes and V = {Vi }rer be two open covers of C. One says that V refines U, denoted by V > U, if for
every k € K there exists j € J such that V;, C U;. Moreover,

UVY ={U;NVi: (j,k) € J x K}.

Let also
N(U) = min{n € N; : Y admits a subcover of size n}.

We use in the sequel that
if V= U then N(V) > N(U). (7.1)

If f:C — C is a continuous selfmap, let
FHU) = {71 (Uj)}jeur-
For an open cover U of C and for every F' € Py, (5), let
Uy =\ 2(s)" WU).
sEF

Consider the function
fu . ’Pfln(S) — R, F— log N(Z/{%F)

For every U, the function f; is non-decreasing, subadditive, right subinvariant and uniformly bounded on singletons
(see [11]). So by applying Theorem Bl we have the following definition.

Definition 7.1 (See [I1I]). Let S be a cancellative left amenable semigroup, C' a compact space, and S A C a left
action. For an open cover U of C, the topological entropy of v with respect to U is

e Ju(F)
HtOZD(’Y?u) - lllen} |Fz| )

where (F;)ies is a left Fglner net of S. The topological entropy of v is

hiop(v) = sup{Hzop(v,U): U open cover of C'}.

We are interested in the case when C' = K is a totally disconnected compact abelian group. So, we consider the
topological entropy for left actions S A K by continuous endomorphisms, that is, y(s) : K — K is a continuous
endomorphism for every s € S. In this setting we can compute the topological entropy using open subgroups instead
of open covers. Indeed, for a totally disconnected compact group K, let B(K) be the family of all open subgroups of
K. In particular, each U € B(K) has finite index in K.

For every U € B(K), let

CU)={k+U: ke K}

Clearly,
o N(U) = [K U], (72)
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Since K is a totally disconnected compact group, B(K) is a local base of K by van Dantzig’s theorem, so every
open cover of K is refined by some ((U) with U € B(K). Hence, by (7)),

hiop(y) = sup{Hzop(7,¢(U)): U € B(K)}.

Define, for every F' € Py;in(S), the y-cotrajectory of U with respect to F' by

Cr(y,U) = () (s)~"(U).
sesS

In particular, Cr(v,U) € B(K), so each Cr(v,U) has finite index in K.

Lemma 7.2. Let S be a cancellative left amenable semigroup, K a totally disconnected compact abelian group, and
S A K a left action. For every U € B(K) and every F € Prin(9),

C(U)~,r =¢(Cr(v,0)).

Proof. Recall that ((U)y,r =V cpv(s)H(C(D)).
Let s € F'and k € K. Then

Y(8)THE4+U) =k +~(s) 1 (U) for every k' € v(s) 1 (k + U). (7.3)
Hence,

CU)yp = { (M) () (ks +U): ks € K} - { (K, +~(s) " (U)): K, € K} .

sEF seF
Now, for ks € K, with s € F,

Q(ks +9(s)7HU)) == + gv(s)‘l(U) for every = € g(ks +9(s)7H(U). (7.4)
Therefore,
CU)yr = { @(k; +(s)7 (U)): Ky € K} = {z + Qv(s)’l(U): z € K} =((Cr(1,1)).
This concludes the proof. m

Proposition 7.3. Let S be a cancellative left amenable semigroup, K a totally disconnected compact group, S AKa
left action, and (F;)ier a left Folner net. If U € B(K), then

T IOg[K : CF1 (77U)]
HtOP(75 C(U)) - lzlenll |Fz|

Proof. By definition, by Lemma [[:2] and Equation (T2]),

o g N(CU)yr) | Mg N(C(Cr (1, U) _ | [K : Cr(7,U)]
Hiop (7,¢(U) = lim === 25 — i | =& R

hence the thesis holds. O

From now on we write simply Hyop(7y, U) in place of Hiop(7y,¢(U)).

7.2 The entropy of the dual action

Let A be a locally compact abelian group and denote by A its Pontryagin dual. For a continuous homomorphism
¢ : A — B, where B is another locally compact abelian group, let ¢ : B — A be the dual of ¢, defined by ¢(x) = x o ¢.

Let S be a cancellative left amenable semigroup and K a compact abelian group, and consider the left action
S A K. Then ~ induces the right action KAS , defined by

ﬁ(s):'y/(;):f{%.f? for every s € S.

In fact, fixed s,t € S, since v(st) = v(s)v(t), we have that



Analogously, let S be a cancellative left amenable semigroup and A an abelian group, and consider the right action
A A S. Then « induces the left action S A A\, defined by

2)

(s):a/(;):ﬁ—mi for every s € S.

In fact, fixed s,t € S, since a(st) = a(t)a(s), we have

——

a(st) = a(st) = a(t)a(s) = a(s)a(t) = a(s)a(t).

According to Pontryagin—van Kampen duality theorem A =, A, so in the sequel we shall simply identify A with
A. As a direct consequence one obtains:

Proposition 7.4. Let S be a cancellative left amenable semigroup and K a compact abelian group, and consider the
left action S A K. Then R
7 ="
Let A A S be a right action of S on an abelian group A. Then
a=a.
This shows in particular that every left action S A K of a cancellative left amenable semigroup S on a compact
abelian group K is induced by a right action A A S of S on an abelian group A, and vice versa.

We collect here some known facts concerning Pontryagin duality. Recall that, if A is a locally compact abelian
group, and B is a subgroup of A, then the annihilator of B in A is B+ = {y € A: x(B) = 0}. Under the identification

of A with A we have that, for every closed subgroup B of A,
(BH)* =B, (7.5)
and moreover, -
B, A/B* and A/B =, B". (7.6)
Lemma 7.5. Let A be an abelian group.
(a) If A is discrete (respectively, compact) then A s compact (respectively, discrete).
(b) If A is discrete, then A s totally disconnected precisely when A is torsion.
(c) If A is finite, then A= A.
(d) If By, By are subgroups of A, then (By + By)* = Bf N By.
(e) If ¢: A — A is an endomorphism, then ¢(B)* = (a)’l(BJ-).
The following technical lemma is a key step in the proof of Theorem [7]

Lemma 7.6. Let S be a cancellative left amenable semigroup, A a torsion abelian group, and A A~ S a right action.
For B € F(A) and F € Psin(S),

|Tr(a, B)| = [A: Cr(@, BY))].
Proof. Recall that Tr(a, B) = . p a(s)(B) is a finite subgroup of A, so by Lemma[Z.5(c) and by (Z.G) it is isomorphic

to its dual Tr(a, B) 2 K/Tr(a, B)*. In view of Lemma [T.5(d,e),

Tr(a, B = ((a(s)(B)Y) = (N als) (BY) = [ als)""(BY) = Cr(a, BL).

seF seF seF
Therefore, |Tr(a, B)| = |Tr (o, B)| = [A: Tr(a, B)Y] = [A: Cp(&, BL)). O
We are now in position to prove the so-called Bridge Theorem.

Theorem 7.7. Let S be a cancellative left amenable semigroup, A a torsion abelian group, and A A S a right action.
Then

alg (@) = Ttop(@).

Proof. Let B € F(A); by LemmalZ.5(c,e), B~ is a closed subgroup of A with finite index, so it is open and B € B(IA()
Then, for (F;);cr a left Fglner net of S, since B+ € B(A), Proposition [73] and Lemma [Z.6] give

. . log|Tr (e, B)| . log[A:Cr,(a BY)] S
Halg(a7B) - zIEHIl |Fz| _];lérll |Fz| _Htop(aﬂB )
By (Z5) there is a bijection F(A) — B(A), given by B — BL, so we can conclude that Py (@) = hiop(@) in view
of Proposition [[3] and [@H]). O
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The following is a consequence of Theorem [[.7] and Proposition [.4

Corollary 7.8. Let S be a cancellative left amenable semigroup, K a totally disconnected compact abelian group and
S A K. Then
htop(P)/) = thg (’/\/\)

Proof. Let o =7. By Proposition [[.4 we have that v = @. So, Theorem [T7 implies hiop(7y) = htop(Q) = by (). O

As a consequence of the Addition Theorem and the Bridge Theorem proved in this paper for the algebraic entropy,
we obtain the following Addition Theorem for the topological entropy.
Theorem 7.9 (Addition Theorem). Let S be a cancellative left amenable semigroup, K a totally disconnected compact
abelian group, S A K and L a closed ~y-invariant subgroup of K. Then

htop("/) = htop(’YL) + htop (A/K/L)'

Proof. Let A = IA{, a =7 and B = L+ < A. By Corollary [T.8

—

htO;D(FY) = hglg(a)a htop(’yL) = hzrzlg(%)v htop(’YK/L) = hzrzlg(’)/K/L)'

Since 7r, is conjugated to a s, and "//K/\L is conjugated to ap, Proposition [ZI1] gives

zrzlg(%) = hzrzlg(aA/B)a hzrzlg(m) = hzrzlg(aB)'

So it suffices to apply the Addition Theorem and the previous equalities to get

hiop(7) = haig(@) = heyg(aB) + harg(asB) = hiop(Vi/L) + Piop(TL),
which concludes the proof. [l

8 Final comments and open questions

In this final section we collect several open questions related to the results obtained in the paper.
We start from the following question related to Example 2.25]

Question 8.1. Let S be a cancellative monoid, C' a monoid, and w : S — C a surjective homomorphism admitting a
good section o. Is C necessarily cancellative?

It is known that if f : S — @ is a surjective semigroup homomorphism and S is left amenable, then @ is left
amenable as well (see [I9] or [35, Lemma 3]). On the other hand, the following question is open.

Question 8.2. If f : S — S is a surjective homomorphism of semigroups (groups) and if (F;)icr is a right Folner
net of S, is then (f(F;))icr a right Folner net of Sy ¢

In view of Proposition .8 we propose the following conjecture.

Conjecture 8.3. Let G be an amenable group, A an abelian group, and G AAa left action. If H is a subgroup of
G, then hqg(e) < hag(e [m) and ent(a) < ent(o [H).

We also conjecture that one can remove the condition in Theorem [5.12 that the subgroup of G of infinite index is
normal in G:

Conjecture 8.4. Let G be an amenable group, A an abelian group, G AAa left action, and H a non-trivial subgroup
of G of infinite index.
(a) If ent(alpy) < oo, then ent(a) = 0.
(b) If haig(alm) < 0o, then hqg(a) = 0.
If Conjecture B4 holds true, then it implies that also Conjecture holds true in view of Proposition

We end with two general conjectures related to the Addition Theorem and the Bridge Theorem (see Theorem [[T]
and Theorem [[2 respectively). Indeed, we think that they hold without the hypothesis on the abelian group A to be
torsion.

Conjecture 8.5 (Addition Theorem). Let S A A be a left action of a cancellative right amenable monoid S on an
abelian group A, and let B be an a-invariant subgroup of A. Then

hatg(@) = haig(aB) + haig(aa;B)-

Conjecture 8.6 (Bridge Theorem). Let S A K bea left action of a cancellative left amenable monoid on a compact
abelian group K. Then
hiop(7) = harg(Y)
In case S is a group, a positive answer was announced by Virili [74] in the more general case of actions on locally
compact abelian groups.
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