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Algebraic entropy for amenable semigroup actions

Dikran Dikranjan Antongiulio Fornasiero Anna Giordano Bruno

Abstract

We introduce two notions of algebraic entropy for actions of cancellative right amenable semigroups S on discrete
abelian groups A by endomorphisms; these extend the classical algebraic entropy for endomorphisms of abelian groups,
corresponding to the case S = N. We investigate the fundamental properties of the algebraic entropy and compute it
in several examples, paying special attention to the case when S is an amenable group.

For actions of cancellative right amenable monoids on torsion abelian groups, we prove the so called Addition Theo-
rem. In the same setting, we see that a Bridge Theorem connects the algebraic entropy with the topological entropy of
the dual action by means of the Pontryagin duality, so that we derive an Addition Theorem for the topological entropy
of actions of cancellative left amenable monoids on totally disconnected compact abelian groups.
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1 Introduction

The notion of entropy was largely studied for discrete dynamical systems since the mid fifties, when Kolmogorov and
Sinai defined the measure entropy in ergodic theory. Inspired by their work, Adler, Konheim, and McAndrew [1]
introduced the topological entropy for continuous selfmaps of compact topological spaces, while a different notion of
topological entropy for uniformly continuous selfmaps of metric spaces was given by Bowen [7] and Dinaburg [34]
independently.

Yuzvinski [78] computed the topological entropy of continuous endomorphisms of compact metrizable groups, in-
cluding the celebrated formula (carrying now his name, that is, Yuzvinski Formula) establishing that the topological
entropy of a continuous endomorphism of a finite-dimensional universal solenoid coincides with the Mahler measure of
their characteristic polynomial over Z. Yuzvinski proved also the so-called Addition Theorem (usually called Yuzvin-
ski’s addition formula) for the topological entropy of continuous endomorphisms of compact metrizable groups, that
was recently extended to all compact groups in [31]. Later on, Stoyanov [70] established uniqueness of the topological
entropy of continuous endomorphisms of compact groups, imposing several natural axioms, in the so-called Uniqueness
Theorem. As a by-product, this entails the coincidence of the topological and the measure entropy in the category of
compact groups and surjective continuous endomorphisms (see [7] for the metrizable case, [3] for the abelian case).

After a very brief and schematic introduction in the very end of [1], the algebraic entropy for endomorphisms of
abelian groups was gradually developed by Weiss [77] and Peters [64, 65]. The interest in this direction increased after
[30], where a rather complete description in the case of torsion abelian groups was obtained, including an Addition
Theorem and a Uniqueness Theorem. These were generalized to all abelian groups in [23]. Details and results can be
found in [2, 4, 23, 29, 38, 42, 43], in [40, 41] for the non-abelian case, in [66, 67] for the algebraic entropy for modules;
see also the surveys [26, 28, 33, 44, 45].

As far as non-discrete dynamical systems are concerned, the measure entropy for actions of finitely generated groups
on probability spaces by measure preserving transformations was defined by Kirillov [49]; the case of abelian group
actions was studied by Conze [14], and by Katznelson and Weiss [47]. Lind, Schmidt, and Ward [58] gave reference to
Conze for the measure entropy of Zd-actions, while for Zd-actions on compact metrizable groups they generalized to
this setting both the definition of topological entropy by Bowen, as well as that by Adler, Konheim, and McAndrew,
showing that they coincide. They proved the Addition Theorem for Zd-actions on compact metrizable groups, and
analogues of the Yuzvinski Formula (involving multidimensional Mahler measure).

The measure entropy for amenable group actions was introduced by Kieffer [53], while the topological entropy
for amenable group actions on compact metric spaces by Stepin and Tagi-Zade [69], and Ollagnier [61] defined the
topological entropy for amenable group actions on compact spaces using open covers as in [1]. A cornerstone in
the theory of entropy of amenable group actions is the work by Ornstein and Weiss [62], where in particular they
proved the celebrated Ornstein-Weiss Lemma. Apparently, not much was done for actions of genuine non-abelian
amenable groups until Deninger’s paper [20], followed by Chung and Thom [15], and Li [56]. These authors established
appropriate analogues of the Yuzvinski Formula in terms of the Fuglede-Kadison determinant in place of the Mahler
measure, and analogues of the Addition Theorem. In particular, Li [56] proved the Addition Theorem for actions of
countable amenable groups on compact metrizable abelian groups.
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The algebraic and the topological entropy were extended by Virili [74] to actions on locally compact abelian groups.
Another paper by Virili [73] concerns the algebraic entropy of amenable group actions on modules; there he proved
also an Addition Theorem and finds applications to the Stable Finiteness Conjecture and the Zero Divisors Conjecture,
originally stated by Kaplansky. These ideas were pushed further by Li and Liang [57]. Various extensions of these
entropies to the case of actions of sofic groups can be found, for example, in [8, 9, 48], and the survey [76].

Recently, Ceccherini-Silberstein, Coornaert, and Krieger [11] extended Ornstein-Weiss Lemma to cancellative
amenable semigroups (see Theorem 3.1 below). Using this result, they introduced the measure entropy and the
topological entropy for actions of cancellative amenable semigroups. In particular, a notion of topological entropy htop
was defined for left actions of cancellative left amenable semigroups on compact topological spaces (see §7.1 below)
extending the one in [1].

Following this approach, we consider left actions

S
α
y A

of cancellative right amenable semigroups S on abelian groups A by group endomorphisms (i.e., α(s) : A → A is a
group endomorphism for every s ∈ S). For such actions we define and investigate two variants of the algebraic entropy,
denoted by ent and halg, that coincide when A is torsion. In case S = N, these notions of algebraic entropy coincide
with those mentioned above for discrete dynamical systems. Details and basic properties of the algebraic entropies can
be found in §4.

Before that, in §2 we provide the necessary background on amenable semigroups and their Følner nets, in particular
we introduce the canonical Følner nets. These tools are used in §3 to build a kind of integration theory for a class
of real valued functions defined on the finite subsets of an amenable cancellative monoid. We show that this integral
satisfies an appropriate version of Fubini’s Theorem (see Theorem 3.10).

This theory allows us to introduce the algebraic entropy in §4 as an integral of a suitable function. Moreover, our
counterpart of Fubini’s Theorem applies several times in §5, where we compute the algebraic entropy of restriction and

quotient actions. More precisely, for a left action G
α
y A of a cacellative right amenable monoid G on an abelian group

A, denote by

N
α↾N
y A

the restriction action of α with respect to a submonoid N of G. If G is a an amenable group and N is a normal
subgroup of G trivially acting on A, then the quotient G/N of G acts on A and we denote by

G/N
αG/N
y A

this quotient action of α. We show that, in case N is a normal subgroup of the amenable group G, the algebraic entropy
of α ↾N is always a greater than the algebraic entropy of α, and the same applies to αG/N when N acts trivially on A
(see Theorems 5.12 and 5.24).

Several corollaries of the theorems on restriction and quotient actions are given, showing that the algebraic entropy
vanishes very often. In particular, many actions of Nd and Zd, for d > 1 (see Corollary 5.5 and Corollary 5.16), as well
as the natural action of various amenable subgroups of GLn(K) on Kn for an infinite field K (see Corollary 5.18) have
zero algebraic entropy. The counterparts of this frequent vanishing of the algebraic entropy seem to be known for the
topological entropy and the measure entropy (see [46]). They represent a motivation to study an alternative kind of
entropy, called measure receptive entropy and topological receptive entropy in [6] (see also [5]), for actions of finitely
generated, not necessarily amenable monoids.

We dedicate the whole §6 to the following Addition Theorem for actions on torsion abelian groups A with respect
to an invariant subgroup B:

Theorem 1.1 (Addition Theorem). Let S
α
y A be a left action of a cancellative right amenable monoid S on a torsion

abelian group A. Let B be an α-invariant subgroup of A, and denote by αB and αA/B the induced actions of S on B
and on A/B, respectively. Then

ent(α) = ent(αB) + ent(αA/B).

As recalled above, this theorem was proved for N-actions in [30], and its counterpart for N-actions on arbitrary
abelian groups in [28]. In both cases the proof was quite long, making heavy use of the algebraic structure of A. Our
proof avoids any recourse to the structure of A. In [22] we consider a particular case of the Addition Theorem for
monoids S admitting tiling Følner sequences, which largely covers the case of Nd-actions (and in particular, the case
of N-actions from [30]), with a notably simplified proof.

The action α of a cancellative right amenable monoid S on an abelian group A provides a left Z[S]-module structure
on A. By Proposition 4.11, we have that halg is an invariant of the category ModZ[S] of left Z[S]-modules, and by
Proposition 4.18 halg is upper-continuous, that is, continuous with respect to direct limits. If we restrict to the
subcategory T of ModZ[S] consisting of left Z[S]-modules that are torsion as abelian groups, analogously we have that
ent is an uppercontinuous invariant of T. Moreover, Theorem 1.1 shows that ent is also additive, and so it is a length
function of T in the sense of Northcott and Reufel [60] and Vámos [71].
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In the case of discrete dynamical systems there is a remarkable connection, usually named Bridge Theorem, between
the topological entropy and the algebraic entropy discovered by Weiss [77] and Peters [64], and proved in general in
[25]. More precisely, the topological entropy of a continuous endomorphism φ of a compact abelian group K coincides

with the algebraic entropy of its dual endomorphism φ̂ of the Pontryagin dual K̂ of K, which is a discrete abelian
group. This connection was extended to totally disconnected locally compact abelian groups in [27].

The Bridge Theorem from [64] was recently extended by Virili [74] to the case of actions of amenable groups on
locally compact abelian groups, while the one from [27] was extended in [39] to semigroup actions on totally disconnected
locally compact abelian groups. In §7, generalizing the main result of [77], we prove a Bridge Theorem for left actions
of cancellative left amenable monoids on totally disconnected compact abelian groups (their Pontryagin dual groups
are precisely the torsion abelian groups).

Theorem 1.2 (Bridge Theorem). Let S
γ
y K be a left action of a cancellative left amenable monoid on a totally

disconnected compact abelian group K, which induces a dual right action γ̂ of S on the Pontryagin dual of A. Then
the topological entropy of γ coincides with the algebraic entropy of γ̂.

Combining Theorem 1.1 and Theorem 1.2, one obtains an Addition Theorem for the topological entropy of left
actions of cancellative left amenable monoids on totally disconnected compact abelian groups.

What we said above about the vanishing of the algebraic entropy may leave the wrong feeling that there are no
significant instances of cancellative right amenable semigroups S, distinct from N and Z, acting with positive algebraic
entropy on discrete abelian groups. This is not the case; indeed, in a preliminary version of this manuscript we dedicated

special attention to the computation of the algebraic entropy of the shifts, that is, standard actions S
αS
y A(S) of a

cancellative right amenable semigroup S on the direct sum A(S) =
⊕

S A of |S| copies of an abelian group A. The
shifts, except trivial cases, have always positive algebraic entropy. Moreover, one can define and study the generalized

shifts S
αλy A(X) associated to actions S

λ
y X of S on a set X . The algebraic entropy of αλ is related to the set-theoretic

entropy of λ, introduced in [4] in the case of N-actions. Gradually the material on generalized shifts and set-theoretic
entropy grew more and more, so it will be published separately in [21].
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Notation and terminology

For a subset X , we let
ℓ(X) = log |X |,

using the convention that ℓ(X) = ∞ if the set X is infinite. Moreover, we denote by P(X) the family of all subsets of
X and by Pfin(X) its subfamily consisting of all non-empty finite subsets of X .

For a monoid S, let P0
fin(S) = {Y ∈ Pfin(S) : 1 ∈ Y }. Clearly, P0

fin(S) ⊆ Pfin(S) ⊆ P(S).
If A is an abelian group, let F(A) denote the family of all finite subgroups of A.
For a subset W of A and m ∈ N+, let

Wm =W +W + . . .+W︸ ︷︷ ︸
m

.

Let S be a semigroup. For F, F ′ ∈ P(S), we denote

FF ′ = {gh : g ∈ F, h ∈ F ′} .

A left semigroup action S
α
y X of S on a set X is defined by a map

α : S ×X → X, (s, x) 7→ α(s)(x) = s · x,

such that α(st) = α(s) ◦ α(t) for every s, t ∈ S (i.e., (st) · x = s · (t · x) for every s, t ∈ S and every x ∈ X). Given
s ∈ S, x ∈ X , and Y ⊆ X , we denote

s · Y = {α(s)(y) : y ∈ Y } .

Similarly, a right action X x S can be defined.

In case S is a monoid with neutral element 1, a left semigroup action S
α
y X is a left monoid action of S on X if

α(1)(x) = x for all x ∈ X , i.e., α(1) is the identity map idX . If S is a group, then this condition implies that α(s) is
a bijection for every s ∈ S. Unless otherwise stated, all the actions of monoids considered in this paper are monoid
actions (see also Remark 1.4).
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Remark 1.3. (a) In order to avoid reformulating everything for both left and right actions, it is convenient to
consider the opposite semigroup (Sop, ·op) of the semigroup (S, ·) defined as follows:

Sop = S and x ·op y = y · x for every x, y ∈ S.

This allows one to associate to every left action S
α
y X a right action X

αop

x Sop by simply putting αop(s) = α(s)
for every s ∈ S.

(b) For a non-empty set Y we denote by Sym(Y ) the monoid of all selfmaps Y → Y with operation f · g = f ◦ g and

identity idY . Note that one has a left action Sym(Y )
π
y Y given by π(σ)(y) = σ(y) for every σ ∈ Sym(Y ).

If S is a semigroup and S
γ
y Y is a left semigroup action, then equivalently there is a semigroup homomorphism

γ : S → Sym(Y ). Analogously, a right semigroup action Y
η
x S is given by a semigroup homomorphism

γ : Sop → Sym(Y ).

In case S is a monoid and S
γ
y Y is a left monoid action, γ : S → Sym(Y ) is a monoid homomorphism, i.e.,

γ(1) = idY . The same holds for right monoid actions.

Remark 1.4. Let G be a group, A an abelian group, and consider the left monoid action G
α
y A. Then G acts on A

by automorphisms, that is, α takes G into the group Aut(A).
If α is a left semigroup action (i.e., the condition α(1) = idA need not be verifed), then α simply takes G into

some subsemigroup of the multiplicative semigroup of the unitary endomorphism ring End(A) that is a group but not
necessarily contained in Aut(A); so 1 may end up just in some idempotent element of End(A), not necessarily idA
(e.g., α(G) can simply be the singleton {0} in End(A)).

Let S be semigroup, A an abelian group, and consider the left action S
α
y A. We say that a subset B of A is

α-invariant if α(s)(B) ⊆ B for every s ∈ S. Moreover, if T is a subsemigroup of S, we say that B is T -invariant if
α(t)(B) ⊆ B for every t ∈ T , that is, B is α ↾T -invariant.

If B is an α-invariant subgroup of A, then α induces in a natural way an action S
αB
y B and an action S

αA/B
y A/B.

2 Background on amenable semigroups and Følner nets

2.1 Amenable semigroups

Let S be a semigroup. For every s ∈ S denote by Ls : S → S the left multiplication x 7→ sx and by Rs : S → S the
right multiplication x 7→ xs. The semigroup S is left cancellative (respectively, right cancellative) if Ls (respectively,
Rs) is injective for every s ∈ S. Every finite semigroup which is left cancellative and right cancellative is a group.

The semigroup S is left amenable if there exists a left subinvariant finitely additive probability measure on S, that
is, a function µ : P(S) → [0, 1] such that:

(L1) µ(S) = 1;

(L2) µ(F ∪ E) = µ(F ) + µ(E) for every F,E ∈ P(S) with F ∩ E = ∅;

(L3) µ(L−1
s (F )) = µ(F ) for every s ∈ S and every F ∈ P(S).

The semigroup S is right amenable if Sop is left amenable, and S is amenable if it is both left amenable and right
amenable (see [16, 17, 19]). Every commutative semigroup is amenable [16].

Remark 2.1. The condition in (L3) is in general weaker than requiring µ to be left invariant (i.e., µ(sX) = µ(X) for
every s ∈ S and every X ∈ P(S)). In fact, assume that µ is left invariant and let s ∈ S and X ∈ P(S). Denoting
f = Ls : S → S, our hypothesis yields

µ(f(Z)) = µ(Z) for every Z ⊆ S. (2.1)

Let Y = f(f−1(X)). Then Y = X ∩ f(S) ⊆ X and µ(f−1(X)) = µ(Y ) by Equation (2.1). As µ(S) = µ(f(S)) = 1 by
Equation (2.1), we deduce that

µ(X \ Y ) = µ(X \ f(S)) ≤ µ(S \ f(S)) = 0.

Hence, µ(Y ) = µ(X), and so µ(f−1(X)) = µ(Y ) = µ(X).

In [50] the semigroups admitting a left invariant finitely additive probability measure are called left measurable. If
S is cancellative, then the two conditions are equivalent, that is, S is left amenable if and only if S is left measurable.
Indeed, let s ∈ S and F ∈ P(S); since S is cancellative, L−1

s (sF ) = F , so if (L1) holds for µ, then µ(F ) = µ(L−1
s (sF )) =

µ(sF ).

While left amenability and right amenability are equivalent for groups, and every finite group is amenable, there
exist finite semigroups that are left amenable but not right amenable as the next example shows. An example of a
cancellative right amenable semigroup which is not left amenable can be found in [55].
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Example 2.2. Let S be a semigroup and let µ be a left subinvariant finitely additive probability measure on S.
Assume that z ∈ S is a left zero element of S (i.e., zx = z for every x ∈ S). Then (L1) implies that µ({z}) = 1, so
µ(S \ {z}) = 0 by (L2). Hence, a left amenable semigroup cannot admit more than one left zero element.

Let S = {p1, p2}, with multiplication pix = pi, i = 1, 2. Then p1 and p2 are left zero elements of the semigroup
S, so S is not left amenable. On the other hand, S is right amenable with the measure µ : S → [0, 1] defined by
µ({p1}) = a1 and µ({p2}) = a2, where a1, a2 ∈ [0, 1] and a1 + a2 = 1.

An example of an amenable group containing a copy of the free semigroup in two generators (which is not right
amenable) can be found in [52]. In particular, not every submonoid of an amenable group is amenable.

We say that a semigroup S satisfies the left Følner condition (briefly, lFC) if for every K ∈ Pfin(S) and every ε > 0
there exists F ∈ Pfin(S) such that

|kF \ F | ≤ ε|F | for every k ∈ K.

We say that S satisfies the right Følner condition (briefly, rFC) if Sop satisfies the lFC.
Clearly every finite semigroup S satisfies both lFC and rFC.

A left Følner net of a semigroup S is a net (Fi)i∈I in Pfin(S) such that for every s ∈ S

lim
i∈I

|sFi \ Fi|

|Fi|
= 0.

Analogously, a right Følner net is a left Følner net of Sop.

Example 2.3. If S is a semigroup such that S is increasing union of a sequence (Fn)n∈N of its finite subsemigroups,
then (Fn)n∈N is both a left Følner sequence and a right Følner sequence of S. This condition is satisfied for example
by all countable torsion abelian groups, and more in general by all countable locally finite groups.

A semigroup S satisfies lFC (respectively, rFC) if and only if there exists a left Følner net (respectively, a right
Følner net) of S (see [11] and [10, Proposition 4.7.1]). On the other hand, every left amenable semigroup satisfies lFC
(respectively, every right amenable semigroup satisfies rFC) (see [37] and [59, Theorem 3.5]).

By Følner Theorem [36], a group G is amenable if and only if G satisfies lFC (respectively, rFC), but this cannot
be extended to semigroups, since there exist non left amenable semigroups S satisfying lFC; indeed, a finite semigroup
S satisfies lFC, so it suffices to take a finite semigroup which is not left amenable as in Example 2.2. The equivalence
holds again if we suppose that the semigroup is left cancellative:

Theorem 2.4 (see [59, Corollary 4.3]). Let S be a left cancellative semigroup. Then the following conditions are
equivalent:

(a) S is left amenable;

(b) S satisfies lFC;

(c) S admits a left Følner net.

Clearly, the counterpart of this result holds also for right cancellative semigroups and right amenability.

2.2 Følner nets

Remark 2.5. Let S be a right amenable semigroup. If S is infinite and (Fi)i∈I is a right Følner net of S, then
limi∈I |Fi| = ∞. On the other hand, (Fi)i∈I need not be strictly increasing. For example, in N or Z consider
Fn = [n, n!] for every n ∈ N, or F ′

n = [n, 2n] for every n ∈ N.

The following known equivalent description of right Følner nets is a consequence of the definition.

Lemma 2.6. Let S be a cancellative right amenable semigroup. Then (Fi)i∈I is a right Følner net of S if and only if,
for every s ∈ S,

lim
i∈I

|Fis∆ Fi|

|Fi|
= 0.

Proof. It suffices to note that, for F ∈ Pfin(S) and s ∈ S, we have

|Fs∆ F | = 2 |Fs \ F | .

Indeed, |F | + |Fs \ F | = |F ∪ Fs| = |Fs| + |F \ Fs| . Since S is cancellative, |Fs| = |F | is finite, and therefore
|Fs \ F | = |F \ Fs| .

Lemma 2.7. Let S be a cancellative right amenable monoid and (Fi)i∈I a net in Pfin(S). Then:

(a) (Fi)i∈I is a right Følner net of S if and only if for every E ∈ Pfin(S),

lim
i∈I

|FiE ∆ Fi|

|Fi|
= 0; (2.2)

5



(b) if (Fi)i∈I is a right Følner net of S and E ∈ Pfin(S), then

lim
i∈I

|FiE|

|Fi|
= 1 (2.3)

and (FiE)i∈I is also a right Følner net of S.

Proof. (a) The sufficiency of the condition (2.2) (when applied to singletons) is obvious.
Conversely, assume that (Fi)i∈I is a right Følner net and let E ∈ Pfin(S). Fix ε > 0. By Lemma 2.6, for every

s ∈ E there exists is ∈ I such that, for every j ∈ I with j ≥ is,

|Fjs∆ Fj |

|Fj |
< ε.

Pick an ı ∈ I such that ı ≥ is for every s ∈ E (such an ı ∈ I exists since E is finite and I is a directed set).
Let j > ı. Then

FjE ∆ Fj ⊆
⋃

s∈E

Fjs∆ Fj ,

and so
|FjE ∆ Fj |

|Fj |
≤
∑

s∈E

|Fjs∆ Fj |

|Fj |
< ε |E| .

Thus, (2.2) holds.

(b) The equality limi∈I
|FiE|
|Fi|

= 1 can be easily deduced from (a), since it implies that limi∈I
|FiE\Fi|

|Fi|
= 0. Let

s ∈ S; by Lemma 2.6 we have to show that

lim
i∈I

|FiEs∆ FiE|

|FiE|
= 0. (2.4)

The inclusion FiEs∆ FiE ⊆ (FiEs∆ Fi) ∪ (FiE ∆ Fi), gives

|FiEs∆ FiE|

|FiE|
≤

|FiEs∆ Fi|+ |FiE ∆ Fi|

|FiE|
=

|FiEs∆Fi|
|Fi|

+ |FiE∆Fi|
|Fi|

|FiE|
|Fi|

.

Item (a) yields limi∈I
|FiEs∆Fi|

|Fi|
= 0 and limi∈I

|FiE∆Fi|
|Fi|

= 0, while limi∈I
|FiE|
|Fi|

= 1 by Equation (2.3). This proves the

equality in Equation (2.4).

Remark 2.8. One may get the wrong impression that if (Fi)i∈I is a right Følner net of a semigroup S, then the
family {Fi : i ∈ I} generates a “big” subsemigroup of S (actually, the whole S). To see that this is wrong consider two
examples.

(a) Suppose that S has a right absorbing element a (i.e., such that as = a for all s ∈ S). Now the singleton {a} is a
subsemigroup of S and forms a stationary right Følner net of S.

(b) Consider now the abelian group S = Z. The Følner sequence ([0, n])n∈N is contained in the subsemigroup N of S.

Yet, it is true that the subgroup generated by any right Følner net of a group S coincides with S.

The following well-known fact concerns right Følner nets in direct products. We omit its standard proof, since we
prove a much more general result below in Theorem 2.27.

Lemma 2.9. Let G = H ×K be an amenable group, let (Hi)i∈I be a right Følner net of H and let (Kj)j∈J be a right
Følner net of K. Then (Hi ×Kj)(i,j)∈I×J is a right Følner net of G.

In Example 2.28 we show that the näıve generalization of this lemma for semidirect products fails, while Theo-
rem 2.27 gives the correct generalization.

Recall that a semigroup S is called Ore semigroup (or right reversible semigroup as in [63]) if it satisfies the left
Ore condition, that is,

for every a, b ∈ S there exist f, g ∈ S such that fa = gb.

It is a well-known fact (see [63, Proposition 1.23]) that a right amenable semigroup S satisfies the left Ore condition,
and that the group generated by S is of the form S−1S.

We use the following consequence of this property.

Corollary 2.10. Let S be a right amenable semigroup, and s1, . . . , sk ∈ S. Then there exist t, r1, . . . , rk ∈ S such that
t = risi for every i ∈ {1, . . . , k}.

We conclude with the following relation between amenable monoids and amenable groups.
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Lemma 2.11. Let G be a group and S a submonoid of G that generates G as a group.

(a) If S is right amenable, then G is amenable.

(b) If (Fi)i∈I is a right Følner net of S, then (Fi)i∈I is a right Følner net of G.

Proof. (a) Let g ∈ G. Then, there exist a1, . . . , an ∈ S such that g = b1 . . . bn, where bi ∈ {ai, a
−1
i }. Let F ∈ Pfin(S),

such that, for every i ≤ n, |Fai ∆ F | < ε |F |. For every m ≤ n, let gm = b1 . . . bm ∈ G. Then we prove that

|Fgm ∆ F | < mε |F | . (2.5)

Then, taking m = n we get the Følner condition for G.
Thus, we are left with the proof of Equation (2.5). If m = 1, then g1 = b1 = a±1

1 . If b1 = a1, then |Fa1 ∆ F | < ε |F |
by definition of F . If b1 = a−1

1 , then

|Fb1 ∆ F | =
∣∣F ∆ Fb−1

1

∣∣ = |F ∆ Fa1| < ε |F | ,

also by definition of F .
Assume, by inductive hypothesis, that we have proved the claim for m; we want to prove it also for m+1. In view

of the inclusion
Fgmbm+1 ∆ F ⊆ (Fgmbm+1 ∆ Fbm+1) ∪ (Fbm+1 ∆ F )

we have that

|Fgm+1 ∆ F | = |Fgmbm+1 ∆ F |

≤ |Fgmbm+1 ∆ Fbm+1|+ |Fbm+1 ∆ F |

= |Fgm ∆ F |+ |Fbm+1 ∆ F |

≤ mε |F |+ ε |F |

= (m+ 1)ε |F | ,

where we have used the inductive hypothesis and the case m = 1.

(b) Let (Fi)i∈I be a right Følner net of S. Then, for every s ∈ S, limi∈I
|Fis∆Fi|

|Fi|
= 0. Let g ∈ G. As above, there

exist a1, . . . , an ∈ S such that g = b1 . . . bn, where bi ∈ {ai, a
−1
i }. Moreover, for ε > 0, there exists a cofinal subset

J ⊆ I such that, for every i ∈ J and for every l ∈ {i, . . . , n},

|Fisl ∆ Fi|

|Fi|
< ε;

by (2.5), for every i ∈ J ,
|Fig ∆ Fi|

|Fi|
< nε.

Hence limi∈I
|Fig∆Fi|

|Fi|
= 0, and so (Fi)i∈I is a right Følner net of G.

Corollary 2.12. If S is a cancellative right amenable monoid, then it embeds in an amenable group.

2.3 Canonically indexed Følner nets

Fixed ε ∈ (0, 1], we introduce the relation
∼ε

for finite subsets of a set S, although we use it in the sequel when S is a monoid. For F, F ′ ∈ Pfin(S), let

F ∼ε F
′ if and only if |F | = |F ′| and |F ∆ F ′| ≤ ε |F | .

The relation ∼ε is reflexive and symmetric; we see that in some sense it is also transitive:

Lemma 2.13. Let S be a set, F, F ′, F ′′ ∈ Pfin(S) and ε, ε′ ∈ (0, 1].

(a) F ∼ε F ;

(b) F ∼ε F ′ implies F ′ ∼ε F ;

(c) F ∼ε F ′ and F ′ ∼ε′ F ′′ imply F ∼ε+ε′ F ′′.

Proof. (a) is obvious, (b) follows from the fact that |F | = |F ′| when F ∼ε F ′, and (c) follows from the inclusion
F ∆ F ′′ ⊆ (F ∆ F ′) ∪ (F ′ ∆ F ′′).

We see other useful properties of the relation ∼ε.

Lemma 2.14. Let S be a set, F, F ′, F ′′, E,E′ ∈ Pfin(S) and ε ∈ (0, 1]. If F ∼ε F ′ and E ∼ε E′, then:
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(a) F ⊔ E ∼ε F ′ ⊔ E′;

(b) F × E ∼ε F ′ × E;

(c) F × E ∼4ε F
′ × E′;

(d) when S is a right cancellative semigroup, Fs ∼ε F ′s for every s ∈ S.

Proof. The inclusions

(F ⊔ E) ∆ (F ′ ⊔E′) ⊆ (F ∆ F ′) ∪ (E ∆E′) and (F × E) ∆ (F ′ × E) ⊆ (F ∆ F ′)× E

imply (a) and (b) respectively, while (c) follows from the inclusion

(F × E) ∆ (F ′ × E′) ⊆ ((F ∆ F ′)× E) ∪ ((F ∆ F ′)× E′) ∪ (F × (E ∆E′)) ∪ (F ′ × (E ∆ E′)).

The equality Fs∆ F ′s = (F ∆ F ′)s = Rs(F ∆ F ′) for s ∈ S, and the injectivity of Rs, give (d).

Let S be a monoid, and let
I(S) = P0

fin(S)× N+,

endowed with the partial order defined as follows. For every E,E′ ∈ P0
fin(G) and n, n

′ ∈ N+,

(E, n) ≤ (E′, n′) if and only if E ⊆ E′ and n ≤ n′.

Definition 2.15. Let S be a cancellative monoid. A right Følner net a (Fi)i∈I(S) of S is canonically indexed if

F(E,n)s ∼ 1
n
F(E,n) (2.6)

for every (E, n) ∈ I(S) and every s ∈ E.

We see several useful properties of the canonically indexed right Følner nets.

Lemma 2.16. Let S be a cancellative right amenable monoid and (Fi)i∈I(S) a canonically indexed right Følner net of
S. Then:

(a) (Fi)i∈I(S) is a right Følner net of S;

(b) for every E ∈ P0
fin(S) and every s ∈ E,

lim
n→∞

∣∣F(E,n)s∆ F(E,n)

∣∣
∣∣F(E,n)

∣∣ = 0.

Proof. (a) Let s ∈ S and n ∈ N+. We have to find ī ∈ I(S) such that, for every j ∈ I(S) with j ≥ ī,

|Fjs∆ Fj |

|Fj |
≤

1

n
.

Take ī = ({e, s} , n) and j = (X,m) ∈ I(S) with j ≥ ī; this means that s ∈ X and m ≥ n. Thus, Equation (2.6) yields

|Fjs∆ Fj |

|Fj |
=

∣∣F(X,m)s∆ F(X,m)

∣∣
∣∣F(X,m)

∣∣ ≤
1

m
≤

1

n
.

(b) Follows directly from Equation (2.6).

Canonically indexed right Følner nets are always available in cancellative right amenable monoids:

Proposition 2.17. Let S be a cancellative right amenable monoid. Then S admits a canonically indexed right Følner
net.

Proof. Let (E, n) ∈ I(S). By Lemma 2.7(a), there exists F ∈ Pfin(S) such that

|FE ∆ F |

|F |
≤

1

n
.

Let F(E,n) = F . Then (F(E,n))(E,n)∈I(S) is a canonically indexed right Følner net of S.
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2.4 Good sections and canonical Følner nets

Let S be a cancellative monoid, C a monoid, and π : S → C a surjective homomorphism. For s, s′ ∈ S let

s ∼ s′ if π(s) = π(s′).

It is well-known that ∼ is a congruence, that is, an equivalence relation compatible with the semigroup operation of
S. In particular,

N = [1]∼ = π−1(1)

is a submonoid of S. Obviously, every fibre
[s]∼ = π−1(π(s))

satisfies
Ns ⊆ [s]∼ ⊇ sN ;

nevertheless, these inclusions need not (simultaneously) become equalities.

Definition 2.18. Let S be a cancellative monoid, C a monoid, and π : S → C a surjective homomorphism.

(a) An element s ∈ S is good (respectively, semi-good) if Ns = [s]∼ = sN (respectively, Ns = sN).

(b) A fibre [s]∼ is good (respectively, semi-good) if it admits a good (respectively, semi-good) representative.

The existence of good elements of a specific fibre [s]∼ does not mean that all elements of [s]∼ are good. Indeed,
N is a good fiber as 1 is a good element, and the set of all good elements of N coincides with the group U(N) of all
invertible elements of N .

Lemma 2.19. Let S be a cancellative monoid, C a monoid, and π : S → C a surjective homomorphism. If s ∈ S is
semi-good, then for every n ∈ N there exists a unique element hs(n) ∈ N such that

ns = shs(n).

Then hs : N → N , n 7→ hs(n), is an automorphism of N .

Proof. Obviously, h(n) exists by definition, and it is unique because S is cancellative.
Consider h : N → N , n 7→ hs(n). Then h is bijective since it has an inverse, defined by associating to every m ∈ N

the (unique) n ∈ N such that ns = sm. Moreover, for n, n′ ∈ N , we have that

shs(n)hs(n
′) = nshs(n

′) = nn′s = shs(nn
′);

since S is cancellative, we conclude that hs(nn
′) = hs(n)hs(n

′), and therefore hs is an automorphism of N .

Now we face the situation when all fibers are good. Recall that, if π : S → C a surjective monoid homomorphism,
a section for π is a map σ : C → S such that

π(σ(c)) = c for every c ∈ C.

Definition 2.20. Let S be a cancellative monoid, C a monoid, and π : S → C a surjective homomorphism. A section
σ for π is good if σ(c) is good for every c ∈ C.

Clearly, σ is a good section for π if and only if

π−1(c) = Nσ(c) = σ(c)N for every c ∈ C. (2.7)

Moreover, π has a good section if and only if all fibers of π are good; the section is defined, for every c ∈ C, by
σ(c) = sc, where sc is any of the good elements of π−1(c).

Several possibilities can occur; indeed, it may happen that all sections are good, some sections are good, or no
section is good. First, if S and C are groups and π : S → C is a surjective homomorphism, then every section for π is
good.

Examples 2.21. (a) If S = N × C for some cancellative monoids N and C, and π : S → C is the canonical
projection, then the canonical section σ : c 7→ (1, c) is good.

(b) Let N and C be cancellative monoids, and let φ : C → Aut(N) be a homomorphism of monoids. Let S be the
semidirect product of N and C with respect to φ and π : S → C be the canonical projection. Then, the canonical
section σ : c 7→ (1, c) is good.

(c) Let S = (N,+). Fix n ≥ 1 and let C = Z/nZ with the usual addition. Let π : N → C be the canonical projection.
Then, π has a unique good section.

(d) Fix n ∈ N and let S = {0, 1, . . . , n− 1} ∪ [n,+∞) ⊆ R. Then S is a submonoid of (R,+). Let C = R/Z and
π : S → C be the restriction of the canonical projection R → C. Then π has a unique good section.
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(e) Let S = (N,+). Let C = {0, 1, 2} with commutative monoid operation ⊕ given by x⊕ y = min(2, x+ y) (notice
that 0 is the neutral element of C). Let π : N → C be the homomorphism defined by x 7→ min(2, x). Then no
section for π is good.

(f) A variant of the above example is the following. Let S = R≥0, and C =
(
[0, 1],⊕

)
be the standard MV-algebra:

x⊕ y := min(1, x+ y). Let π : S → C be the homomorphism π(x) = min(1, x). Then, no section for π is good.

(g) Let S = (R≥0,+), C = R/Q, and let π : S → C be the restriction of the canonical projection R → C. Even if S
is cancellative and C is a group, there is no good section for π.

Lemma 2.22. Let S be a cancellative monoid, C a monoid, and π : S → C a surjective homomorphism admitting a
good section σ. Then every section for π is good if and only if N = π−1(1) is a group.

Proof. Suppose that N is a group and let σ′ be another section for π. Fix c ∈ C and let s ∈ π−1(c). Then, there exist
m,n ∈ N such that s = nσ(c) and σ′(c) = mσ(c). Therefore, s = nm−1σ′(c) ∈ Nσ′(c). Similarly one proves that
s ∈ σ′(c)N .

Suppose that every section for π is good. Let n ∈ N and define a new section σ′ for π by putting σ′(c) = σ(c) for
all c ∈ C \ {1} and σ′(1) = n. Equation (2.7) applied to c = 1 and the good section σ′ gives N = Nn = nN , which
yields that n is an invertible element of N .

Item (b) of the next lemma makes use of the assumption that S is cancellative.

Lemma 2.23. Let S be a cancellative monoid, C a monoid, and π : S → C a surjective homomorphism admitting a
good section σ. Then:

(a) σ(x)σ(y)N ⊆ σ(xy)N = π−1(xy) for every x, y ∈ C;

(b) the map f : N × C → S, (n, c) 7→ nσ(c) is a bijection.

Proof. (a) The equality is immediate by the assumption that σ is good. To verify the (first) inclusion, let n ∈ N . Then

π(σ(x)σ(y)n)) = π(σ(x))π(σ(y))π(n) = xy,

and hence
σ(x)σ(y)n ∈ π−1(xy) = σ(xy)N.

(b) To see that f is injective assume that f(n, c) = f(n′, c′) for some (n, c), (n′, c′) ∈ N ×C. Then nσ(c) = n′σ(c′),
and so

c = π(nσ(c)) = π(n′σ(c′)) = c′.

Since S is cancellative, we conclude that n = n′.
To check that f is surjective take s ∈ S; as σ is good, we have that s ∈ Nσ(π(s)) ⊆ f(N × C).

The following technical lemma applies in the next section.

Lemma 2.24. Let S be a cancellative monoid, C a monoid, and π : S → C a surjective homomorphism admitting a
good section σ. Assume that N = π−1(1) is right amenable. If C̄ ∈ Pfin(C) and y ∈ C, there exist Z ∈ Pfin(N) and
u ∈ N such that

uσ(yC̄) ⊆ Zσ(y)σ(C̄).

Proof. Let C̄ = {c1, . . . , ck}. Since σ is a good section, for every i ∈ {1, . . . , k} there exists ti ∈ N such that

σ(y)σ(ci) = tiσ(yci).

By Corollary 2.10, there exist u ∈ N and z1, . . . , zk ∈ N such that

u = ziti for every i ∈ {1, . . . , k}.

Let Z = {z1, . . . , zk}. Therefore,

uσ(yci) = zitiσ(yci) = ziσ(y)σ(ci) ∈ Zσ(y)σ(C̄)

for every i ∈ {1, . . . , n}.

We see now that it may occur that S is a non cancellative monoid even if C is a cancellative monoid and π : S → C
is a surjective homomorphism admitting a good section and such that N = π−1(1) is a subgroup of S.
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Example 2.25. Let S =
(
Z× {0}

)
∪
(
{0} × N+

)
, with the operation

(x, n) + (y,m) =

{
(x+ y, 0) if n = m = 0

(0,m+ n) otherwise.

Then (S,+) is a commutative non-cancellative monoid. Let C = N and let π : S → C, (a, b) 7→ b, notice that π is a
surjective homomorphism of monoids. Let σ : N → S, σ(n) = (0, n). Then C is cancellative, σ is a good section and
N = π−1(0) is a group.

We show that in presence of a good section for the surjective monoid homomorphism π : S → C, with S cancellative,
the amenability of S implies the amenability also of C and N = π−1(1).

Lemma 2.26. Let S be a cancellative monoid, C a monoid, π : S → C a surjective homomorphism, and let N =
π−1(1). If S is right amenable, then:

(a) C is right amenable;

(b) in case π admits a good section σ, N = π−1(1) is right amenable as well.

Proof. Remember that the right amenability of S is equivalent to the existence of a right invariant finitely additive
probability measure on S (see Remark 2.1). Let µ be a right invariant finitely additive probability measure on S.

(a) That C is right amenable is a known fact (see [19] – the (short) proof is to define a right invariant finitely
additive probability measure λ on C by λ(Y ) = µ(π−1(Y )), as Y varies among subsets of C).

(b) Let T = σ(C), which is a transversal of N in S. Let X ⊆ N , and define ν(X) = µ(TX). It is easy to see that
ν is a right invariant finitely additive probability measure on N . The only place where we need that σ is good is in
proving that ν(N) = µ(TN) = µ(S) = 1.

We cannot drop the assumption that π has a good section in the above lemma; indeed, in [52] one can find an
example of a solvable amenable group containing a submonoid which is not right amenable.

The following technical result is a kind of converse of Lemma 2.26 illustrating the impressing utility of the canonically
indexed right Følner nets. Given cancellative monoids S and C, a surjective homomorphism π : S → C and a good
section σ : C → S for π, we prove that S is right amenable whenever N = π−1(1) and C are right amenable. More
precisely, starting from canonically indexed right Følner nets of N and C, we provide a canonically indexed right Følner
net of S.

Theorem 2.27. Let S and C be cancellative monoids, π : S → C be a surjective homomorphism admitting a good
section σ, and N = π−1(1). Let (Ni)i∈I(N) and (Ci)i∈I(C) be canonically indexed right Følner nets of N and C,
respectively. Then there exists a map ζ : I(C) → P0

fin(N) such that

(a) for every (X,m) ∈ I(N) and (Y, n) ∈ I(C) with m ≥ n, letting

F((X,m),(Y,n)) = N(ζ(Y,n)∪X,m)σ(C(Y,n)),

we have that, for every x ∈ X and y ∈ Y ,

F((X,m),(Y,n))xσ(y) ∼ 3
n
F((X,m),(Y,n)). (2.8)

(b) Hence, the net
(F((X,m),(Y,n)))(X,m)∈I(N),(Y,n)∈I(C),m≥n

is a right Følner net of S such that

|F((X,m),(Y,n))| = |N(ζ(Y,n)∪X,m)| · |C(Y,n)|.

Proof. (a) Let (Y, n) ∈ I(C) and denote C̄ = C(Y,n). We have to produce Z = ζ(Y, n) ∈ P0
fin(N) such that Equa-

tion (2.8) holds, for every (X,m) ∈ I(N) with m ≥ n, and for every x ∈ X and y ∈ Y ; that is, denoting

N̄ = N(Z∪X,m), (2.9)

for every x ∈ X and y ∈ Y we have to verify that

N̄σ(C̄)xσ(y) ∼ 3
n
N̄σ(C̄). (2.10)

In view of Lemma 2.23, for every c ∈ C̄ and every x ∈ X , there exists zc,x ∈ N such that

σ(c)x = zc,xσ(c).

Moreover, for every c ∈ C̄ and every y ∈ Y , there exists zc,y ∈ N such that

σ(c)σ(y) = zc,yσ(cy)
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by the same lemma. Let
Z = {zc,x : c ∈ C̄, x ∈ X} ∪ {zc,y : c ∈ C̄, y ∈ Y }.

First we see that for every x ∈ X and every m ≥ n,

N̄σ(C̄)x ∼ 1
n
N̄σ(C̄). (2.11)

To this end, fix x ∈ X and m ≥ n. Then, using the notation in (2.9), since N̄ ⊆ N ,

N̄σ(C̄)x =
⊔

c∈C̄

N̄σ(c)x =
⊔

c∈C̄

N̄zc,xσ(c).

According to Equation (2.6), since m ≥ n, we have that N̄zc,x ∼ 1
n
N̄ for every c ∈ C̄; therefore, by Lemma 2.14(a,d)

N̄σ(C̄)x =
⊔

c∈C̄

N̄zc,xσ(c) ∼ 1
n

⊔

c∈C̄

N̄σ(c) = N̄σ(C̄).

This settles Equation (2.11).
Now we verify that for every y ∈ Y and every m ≥ n.

N̄σ(C̄)σ(y) ∼ 2
n
N̄σ(C̄). (2.12)

To this end, fix y ∈ Y and m ≥ n. Then, according to Equation (2.6) and Lemma 2.14(a,d), since m ≥ n,

N̄σ(C̄)σ(y) =
⊔

c∈C̄

N̄σ(c)σ(y) =
⊔

c∈C̄

N̄zc,yσ(cy) ∼ 1
n

⊔

c∈C̄

N̄σ(cy) = N̄σ(C̄y).

To complete the proof of Equation (2.12), we see now that

N̄σ(C̄y) ∼ 1
n
N̄σ(C̄).

Indeed, C̄y ∼ 1
n
C̄ by Equation (2.6), so σ(C̄y) ∼ 1

n
σ(C̄) since σ is injective. Hence,

N̄ × σ(C̄y) ∼ 1
n
N̄ × σ(C̄)

by Lemma 2.14(b). Since the map N ×C → S defined by (x, y) 7→ xσ(y) is a bijection by Lemma 2.23(b), we conclude
that

N̄σ(C̄y) ∼ 1
n
N̄σ(C̄),

as required. In view of Lemma 2.13(c), this settles Equation (2.12).
Equation (2.11) and (2.12), in view of Lemma 2.13(c), imply Equation (2.10), and so the thesis.

(b) Let
I(N,C) = {((X,m), (Y, n)) ∈ I(N)× I(C) : m ≥ n} ,

with the partial order induced by the partial orders of I(N) and I(C).
Let g ∈ S and ε > 0. We have to find ı ∈ I(N,C) such that, for every j = ((X,m), (Y, n)) ∈ I(N,C) with j ≥ ı,

|Fjg ∆ Fj |

|Fj |
≤ ε.

Let n ∈ N+ such that 3
n ≤ ε and write g = xσ(y) for some x ∈ N and y ∈ C. Define

ı = (({e, x} , n), ({e, y} , n)) ∈ I(N,C)

and let j = ((X,m), (Y, k)) ∈ I(N,C) with j ≥ ı; this means that x ∈ X , y ∈ Y and m ≥ k ≥ n. Thus, by item (a),

|Fjg ∆ Fj |

|Fj |
≤

3

n
≤ ε,

as required.

The map (X,Y ) 7→ Xσ(Y ) in the above theorem gives a cofinal embedding, as partially ordered sets, of P0
fin(N)×

P0
fin(C) in P0

fin(G).

We show an explicit example of the above construction.
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Example 2.28. Let A and C be groups, ϕ an action of C on A, and G = A⋊ϕ C be their semidirect product. That
is, as a set G = A× C, and the product of elements is given by

(a1, c1) ∗ (a2, c2) = (a1 · a
c1
2 , c1 · c2),

where ac = ϕ(c)(a). Then (under the identifications a 7→ (a, e) and c 7→ (e, c)), A and C are subgroups of G, with
A normal in G and C isomorphic to G/A. The map σ : C → G given by c 7→ (e, c) is a section of the quotient map
G→ C, and, as said before, we identify c with σ(c).

Let (Ai)i∈I and (Cj)j∈J be right Følner nets of A and C respectively; define Gi,j = Ai ∗Cj . We show that (Gi,j)i,j
need not be a right Følner net in general.

Let x ∈ A and y ∈ C. Notice that x ∗ y = (x, y) and y ∗ x = (xy , y). We have that

Gi,j ∗ y = {(a, c) ∗ (e, y) : a ∈ Ai, c ∈ Cj} = {(a, c · y) : a ∈ Ai, c ∈ Cj} = Ai ∗ (Cj · y)

Thus,
|Gi,j ∗ y \Gi,j |

|Gi,j |
=

|Cj · y \ Cj |

|Cj |
,

which converges to 0 as j goes to infinity, uniformly in i. However,

Gi,j ∗ x = {(a, c) ∗ (x, e) : a ∈ Ai, c ∈ Cj} = {(a · xc, c) : a ∈ Ai, c ∈ Cj} =
⊔

c∈Cj

(Ai · x
c) ∗ {c} .

Thus,
|Gi,j ∗ x \Gi,j |

|Gi,j |
=

1

|Cj |

∑

c∈Cj

|Ai · xc \Ai|

|Ai|
,

which in general does not converge to 0 as i, j go to infinity.

The following example was suggested to us by B. Weiss. Let A = Z2, C = Z, and, for every n ∈ Z and (v1, v2) ∈ Z2,

ϕ(n)(v1, v2) = (v1 + nv2, v2).

Take x = (0, 1), Cn = [0, n− 1], and Am = [0,m− 1]2. Then

δn,m(x) :=
|Gm,n ∗ x \Gm,n|

|Gm,n|
=

1

n

n−1∑

c=0

|Am + xc \Am|

m2
.

We have that

δn,n(x) ≥
1

n3

n−1∑

c=n/2

|An + (c, 1) \An| ≥
nn2/4

n3
= 1/4.

Therefore, (Gi,j)i,j is not a right Følner net.
On the other hand, for every ε > 0, n ∈ N and x ∈ Z2, if we take m large enough (depending on n, x, and ε), we

have that
|Am + xc \Am|

|Am|
< ε

for every c ∈ Cn, and therefore δn,m(x) < ε. Thus, for a function f(n) growing fast enough, the sequence (Gf(n),n)n∈N

is a right Følner sequence of G.
For a similar example see [63, Example 0.5].

3 An integral for subadditive functions

3.1 Definition of the integral

Let S be a semigroup and let f : Pfin(S) → R be a function. Following [11], we say that f is:

(1) subadditive if f(F1 ∪ F2) ≤ f(F1) + f(F2) for every F1, F2 ∈ Pfin(S);

(2) right subinvariant (respectively, left subinvariant) if f(Fs) ≤ f(F ) (respectively, if f(sF ) ≤ f(F )) for every s ∈ S
and every F ∈ Pfin(S);

(3) right invariant (respectively, left invariant) if f(Fs) = f(F ) (respectively, if f(sF ) = f(F )) for every s ∈ S and
every F ∈ Pfin(S);

(4) uniformly bounded on singletons if there exists a real number M ≥ 0 with f({s}) ≤M for every s ∈ S.
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A subadditive function is automatically non-negative; in fact, if f : Pfin(S) → R is subadditive, then f(F ) =
f(F ∪ F ) ≤ f(F ) + f(F ) for every F ∈ Pfin(S).

If S is a monoid, then from the fact that f is right subinvariant, it follows that f({s}) ≤ f({e}) for every s ∈ S,
that is, f is uniformly bounded on singletons. If S is a group, then from the fact that f is right subinvariant, it follows
that f is right invariant, that is, f(Fs) = f(F ) for every s ∈ S and every F ∈ Pfin(S).

The obvious counterparts for left subinvariance and left invariance hold true.

The following is the counterpart of Ornstein-Weiss Lemma for cancellative left amenable semigroups.

Theorem 3.1 (see [11, Theorem 1.1]). Let S be a cancellative left amenable semigroup and let f : Pfin(S) → R be
a subadditive right subinvariant function uniformly bounded on singletons. Then there exists λ ∈ R≥0 such that, for
every left Følner net (Fi)i∈I of S,

lim
i∈I

f(Fi)

|Fi|
= λ.

By applying Theorem 3.1 to Sop, one has the following “dual” version that we formulate here for reader’s conve-
nience.

Corollary 3.2. Let S be a cancellative right amenable semigroup and let f : Pfin(S) → R be a subadditive left
subinvariant function uniformly bounded on singletons. Then there exists λ ∈ R≥0 such that, for every right Følner
net (Fi)i∈I of S,

lim
i∈I

f(Fi)

|Fi|
= λ.

Let S be a cancellative right amenable semigroup and let

S(S)

be the family of all functions f : Pfin(S) → R+ that are increasing (i.e., such that f(F ) ≤ f(F ′) whenever F ⊆ F ′),
subadditive, left subinvariant, and uniformly bounded on singletons.

By Corollary 3.2, the limit in the following definition exists and it does not depend on the choice of the right Følner
net. The mere existence of the limit defining HS(f) does not require that the function in S(S) is increasing. Yet this
very mild property is always present in all cases of interest, so it is harmless to impose it as a blanket condition in the
definition of S(S), since it is needed in some proofs in the sequel (e.g., Lemma 3.9, Theorem 3.10, etc.).

If N is a right amenable subsemigroup of a cancellative right amenable semigroup S and f ∈ S(S), then f ↾Pfin(N)∈
S(N).

Definition 3.3. Let S be a cancellative right amenable semigroup and f ∈ S(S). Define

HS(f) = lim
i∈I

f(Fi)

|Fi|
,

where (Fi)i∈I is a right Følner net of S.
If N is a right amenable subsemigroup of S, let

HN (f) = HN (f ↾Pfin(N)).

The following results follow directly from the definition.

Lemma 3.4. Let S be a cancellative right amenable semigroup and f ∈ S(S).

(a) If f is the constant function f ≡ a ∈ R+, then

HS(f) =

{
0 if S is infinite,
a
|S| if S is finite (and hence a group).

(b) If f is bounded and S is infinite, then HS(f) = 0.

For the remainder of this section S is a cancellative right amenable monoid, so every f ∈ S(S) is automatically
bounded on singletons as observed above.

Lemma 3.5. Let S be a cancellative right amenable monoid and f ∈ S(S). Then

HS(f) ≤ f({1}).

Proof. For every F ∈ Pfin(S), we have that

f(F )

|F |
≤

∑
s∈F f({g})

|F |
≤

∑
s∈F f({1})

|F |
= f({1}),

hence the thesis.
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For a cancellative right amenable monoid S, S(S) with the pointwise addition is a submonoid of the partially
ordered vector space RPfin(S), so S(S) is a commutative cancellative monoid.

Let Ŝ(S) be the subgroup of RPfin(S) generated by S(S). Obviously, Ŝ(S) is a vector space over R (actually, a
subspace of RPfin(S)) and HS extends uniquely to a linear functional on Ŝ(S), by imposing HS(f1 − f2) = HS(f1) −
HS(f2) (this definition does not depend on the choice of f1 and f2 representing f1 − f2).

Moreover, Ŝ(S) is a partially ordered vector space with the partial order given by

f ≤ f ′ if f(F ) ≤ f ′(F ) for every F ∈ Pfin(S),

and Ŝ(S) is also endowed with the seminorm

‖f‖ = lim sup
F∈Pfin(S)

|f(F )|

|F |
;

clearly, HS(f) ≤‖f‖ for every f ∈ Ŝ(S). For example, the function card : F 7→ |F | is in Ŝ(S), and HS(card) =‖f‖ = 1.

Furthermore, HS(f) behaves like an average for f and its extension to Ŝ(S) is a positive linear functional on the
partially ordered vector space Ŝ(S). Next, we show that this average is invariant under the right action f 7→ fF of
Pfin(S) on S(S), where for every f ∈ S(S) and every F ∈ Pfin(S),

fF : Pfin(S) → R+, X 7→ f(XF );

clearly, fF ∈ S(S). (This should be compared to the well-known fact that there is a right invariant mean on the set of
all bounded real-valued functions of an amenable group G.)

Lemma 3.6. Let S be a cancellative right amenable monoid, f ∈ S(S), and F ∈ Pfin(S). Then

HS(f) = HS(f
F ).

Proof. Let (Fi)i∈I be a right Følner net of S. By Lemma 2.7(b) (FiF )i∈I is a right Følner net of S, too. Then the
assertion follows from Lemma 2.7(b).

The next lemma shows that this average is invariant also under the obvious action of Aut(S) on S(S).

Lemma 3.7. Let S be a cancellative right amenable monoid, ϕ : S → S an automorphism, and f ∈ S(S). Then

HS(f) = lim
i∈I

f(ϕ(Fi))

|Fi|
= HS(f ◦ ϕ),

for any right Følner net (Fi)i∈I of S.

Proof. The second equality is by definition of HS .
Since (ϕ(Fi))i∈I is a right Følner net of S and |ϕ(Fi)| = |Fi| for every i ∈ I, we have that

HS(f) = lim
i∈I

f(ϕ(Fi))

|ϕ(Fi)|
= lim

i∈I

f(ϕ(Fi))

|Fi|
,

hence the first equality in the thesis holds.

Remark 3.8. Let S be a cancellative right amenable monoid, let f ∈ S(S) and C ∈ Pfin(S), and denote

PC(S) = {X ∈ Pfin(S) : C ⊆ X}.

(a) Assume that f is bounded on PC(S), namely f↾PC(S) ≤ r ∈ R. If S is infinite, then HS(f) = 0. Indeed, there
exists a right Følner net (Fi)i∈I of S such that C ⊆ Fi for every i ∈ I. Then

HS(f) = lim
i∈I

f(Fi)

|Fi|
≤ lim

i∈I

r

|Fi|
= 0.

(b) If f is constant on PC(S), namely f↾PC(S) = r ∈ R, then

HS(f) =

{
0 if S is infinite,
r
|S| if S is finite.

Indeed, if S is finite, then HS(f) =
f(S)
|S| = r

|S| . If S is infinite, then item (a) applies.
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Fix a surjective homomorphism π : S → C of cancellative monoids, let N = kerπ, and fix a good section σ for π
with σ(1) = 1. Define the map

Θσ : S(S) → S(C)

by setting, for f ∈ S(S),
Θσ(f)(X) = HN (fσ(X)) for all X ∈ Pfin(C).

In the next lemma we show that indeed Θσ(f) ∈ S(C) and Θσ does not depend on the choice of the good section
σ. This is why most often we write simply Θ in place of Θσ, and θ in place of Θσ(f) when the function f is clear from
the context.

Lemma 3.9. Let S and C be cancellative monoids, π : S → C a surjective homomorphism with a good section σ, and
assume that C and N = π−1(1) are right amenable. Then Θσ does not depend on the choice of σ, and Θσ(f) ∈ S(C)
for every f ∈ S(S).

Proof. First we see that Θσ does not depend on the choice of σ. Assume that σ′ : C → G is another good section; we
have to prove that, for every C̄ ∈ Pfin(C),

HN (fσ
′(C̄)) = HN (fσ(C̄)).

For a fixed C̄ ∈ Pfin(C), we verify that HN (fσ
′(C̄)) ≤ HN (fσ(C̄)); the converse inequality can be proved similarly

exchanging the roles of σ and σ′. For every c ∈ C̄ let zc ∈ N such that σ′(c) = zcσ(c), and let Z = {zc : c ∈ C̄}; then
σ′(C̄) ⊆ Zσ(C̄). Let (Ni)i∈I be a right Følner net of N . Then, applying Lemma 3.6 in the last equality,

HN (fσ
′(C̄)) = lim

i∈I

f(Niσ
′(C̄))

|Ni|
≤ lim

i∈I

f(NiZσ(C̄))

|Ni|
= HN ((fσ(C̄))Z) = HN (fσ(C̄)).

Let f ∈ S(S) and put θ = Θσ(f). We prove that θ ∈ S(C). First, θ is increasing, since, if X,X ′ ∈ Pfin(C) and
X ⊆ X ′, then

θ(X) = lim
i∈I

fσ(X)(Ni)

|Ni|
= lim

i∈I

f(Niσ(X))

|Ni|
≤ lim

i∈I

f(Niσ(X
′))

|Ni|
= lim

i∈I

fσ(X
′)(Ni)

|Ni|
= θ(X ′).

Analogously, one proves that θ is subadditive. To verify that θ is left subinvariant, we need to prove that for y ∈ C
and C̄ ∈ Pfin(C),

θ(C̄) ≤ θ(yC̄). (3.1)

Let (Ni)i∈I be a right Følner net of N . By definition,

θ(yC̄) = HN (fyC̄) = lim
i∈I

f(Niσ(yC̄))

|Ni|
.

By Lemma 2.24, there exist u ∈ N and Z ∈ Pfin(N) such that

uσ(yC̄) ⊆ Zσ(y)σ(C̄).

Let h = hσ(y) : N → N be the automorphism of N from Lemma 2.19. Let also f ′ = fσ(C̄) ∈ S(S). Therefore,

θ(C̄) = lim
i∈I

f ′(Ni)

|Ni|
= by Lemma 3.6

= lim
i∈I

f ′(Nih(Z))

|Ni|
= by Lemmas 2.19 and 3.7

= lim
i∈I

f ′(h(Ni)h(Z))

|Ni|
= lim

i∈I

f ′(h(NiZ))

|Ni|
≥ since f ′ is left subinvariant

≥ lim
i∈I

f ′(σ(y)h(NiZ))

|Ni|
= by definition of h

= lim
i∈I

f ′(NiZσ(y))

|Ni|
= lim

i∈I

f(NiZσ(y)σ(C̄))

|Ni|
≥ since Zσ(y)σ(C̄) ⊇ uσ(yC̄)

≥ lim
i∈I

f(Niuσ(yC̄))

|Ni|
= lim

i∈I

fσ(yC̄)(Niu)

|Ni|
= by Lemma 3.6

= θ(yC̄).

Therefore, θ is left subinvariant, hence θ ∈ S(C).

Clearly, in the above notation, the obvious extension Θ̂ : Ŝ(S) → Ŝ(C) of the map Θ is a vector space homomor-
phism.
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3.2 Fubini’s Theorem for monoids

Considering HS introduced in the previous subsection as an integral, the next theorem reminds Fubini’s Theorem.

For r, s ∈ R, denote

r =ε s if |r − s| ≤ ε

r ≤ε s if r ≤ s+ ε.

Theorem 3.10. Let S and C be cancellative right amenable monoids, π : S → C a surjective homomorphism admitting
a good section σ, and let N = π−1(1). Then, for every f ∈ S(S),

HS(f) = HC(Θσ(f)). (3.2)

Proof. Fix f ∈ S(S) and put θ = Θσ(f) for brevity. Let (Ni)i∈I(N) and (Cj)j∈I(C) be canonically indexed right Følner
nets of N and C respectively (they exist in view of Proposition 2.17). Given i ∈ I(N) and j ∈ I(C), define

ρ(i, j) =
f(Niσ(Cj))

|Ni| |Cj |
.

By definition,

HC(θ) = lim
j∈I(C)

θ(Cj))

|Cj |

= lim
j∈I(C)

HC(f
σ(Cj))

|Cj |

= lim
j∈I(C)

1

|Cj |
lim

i∈I(N)

f(Niσ(Cj))

|Ni|

= lim
j∈I(C)

lim
i∈I(N)

ρ(i, j).

Fix ε > 0. Then there exists ī ∈ I(N) such that, for every i ≥ ī there exists j̄(i) ∈ I(C) such that, for every j ≥ j̄(i),

HC(θ) =ε ρ(i, j). (3.3)

Let ζ : I(C) → P0
fin(N) and

I(N,C) = {((X,m), (Y, n)) ∈ I(N)× I(C) : m ≥ n} ⊆ I(N)× I(C)

be as in the proof of Theorem 2.27. Let also

µ : I(N,C) → I(N), ((X,m), (Y, n)) 7→ (ζ(Y, n) ∪X,m),

and note that, for every (i, j) ∈ I(N,C),
µ(i, j) ≥ i. (3.4)

By Theorem 2.27, (Nµ(i,j)σ(Cj))(i,j)∈I(N,C) is a right Følner net of S, so we have that

HS(f) = lim
(i,j)∈I(N,C)

ρ(µ(i, j), j).

Thus, there exists (i0, j0) ∈ I(N,C) such that i0 ≥ ī, j0 ≥ j̄(i0), and for every (i, j) ∈ I(N,C) with (i, j) ≥ (i0, j0),

HS(f) =ε ρ(µ(i, j), j). (3.5)

Since µ(i0, j0) ≥ j0 by (3.4), in view of (3.3) we have that

HS(f) =ε ρ(µ(i0, j0), j0) =ε HC(θ).

Since ε > 0 is arbitrary, this gives Equation (3.2).

Corollary 3.11. Let S and C be cancellative right amenable monoids, let π : S → C be a surjective homomorphism
admitting a good section σ, and let N = π−1(1). If f ∈ S(S), then

HS(f) ≤ HN (f).

Proof. By Theorem 3.10, we have HS(f) = HC(θ), where θ = Θσ(f) ∈ S(C). Therefore, by Lemma 3.5, we have that

HS(f) = HC(θ) ≤ θ({1}) = HN (f{1}) = HN (f),

hence the required inequality.
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As mentioned in Definition 3.3, the limit defining HS(f) does not depend on the choice of the right Følner net
(Fi)i∈I of the cancellative right amenable monoid S, so we can assume when necessary that all members Fi contain
the neutral element 1 of S.

Proposition 3.12. Let S and C be cancellative right amenable monoids, π : S → C a surjective homomorphism
admitting a good section σ, and let N = π−1(1). Given f ∈ S(C), define

fπ : Pfin(S) → R, X 7→ f(π(X)).

Then fπ ∈ S(S) and

HS(fπ) =
HC(f)

|N |
.

Proof. Let us first note that N is amenable by Lemma 2.26, therefore HN (fπ) is well-defined. It is easy to check that
fπ ∈ S(S).

Let θ = Θσ(fπ). Given X ∈ Pfin(C), we have that

θ(X) = HN (fσ(X)
π ).

By definition, for every Y ⊆ N ,

fσ(X)
π (Y ) = f

(
π(σ(X)Y )

)
= f

(
π(σ(X))π(Y )

)
= f(π(σ(X))) = f(X)

does not depend on Y . Thus,

θ(X) = HN (fσ(X)
π ) =

f(X)

|N |
,

and, by Theorem 3.10,

HS(fπ) = HC(θ) =
HC(f)

|N |
,

as required.

Corollary 3.13. Let S and C be cancellative right amenable monoids, let π : S → C be a surjective homomorphism
admitting a good section σ, and consider the function

cardπ : Pfin(S) → R+, F 7→ |π(F )| .

Then cardπ ∈ S(S) and

HS(cardπ) =
1

|π−1(1)|
.

Proof. Apply Proposition 3.12 to the function card ∈ S(C).

4 Algebraic entropy for amenable semigroup actions

We define two notions of algebraic entropy for left actions of cancellative right amenable semigroups on discrete abelian
groups. They extend respectively the algebraic entropy ent introduced by Weiss [77] for endomorphisms of torsion
abelian groups and the algebraic entropy halg introduced in [28] following the work of Peters [64] for endomorphisms
of abelian groups.

For amenable group actions on discrete abelian groups our definition of algebraic entropy coincides with that given
in [74] for locally compact abelian groups.

4.1 Definitions

Let S be a cancellative right amenable semigroup, A an abelian group, and consider the left action S
α
y A. For a

non-empty subset X of A and for every F ∈ Pfin(S), let

TF (α,X) =
∑

s∈F

α(s)(X) =
∑

s∈F

s ·X

be the α-trajectory of X with respect to F . Note that TF (α,X) is finite, whenever X is finite.
When there is no danger of confusion we simply write TF (X) in place of TF (α,X).

For X ∈ Pfin(A), consider the function

fX : Pfin(S) → R, F 7→ ℓ(TF (α,X)).

Note that fX(F ) = 0 for all F ∈ Pfin(S) whenever X ⊆ A is a singleton (as TF (α,X) is a singleton as well).
In the next lemma we see, in particular, that fX is subadditive for every X ∈ Pfin(A).
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Lemma 4.1. Let S be a cancellative right amenable semigroup, A an abelian group, S
α
y A a left action, and

X ∈ Pfin(A). Then fX ∈ S(S).

Proof. First we verify that fX is increasing. Let F, F ′ ∈ Pfin(S) with F ⊆ F ′ and F 6= F ′. Since L := TF ′\F (α,X) 6= ∅,
we have that

|TF (α,X)| = |TF (α,X) + l| ≤ |TF (α,X) + L| = |TF ′(α,X)|

for every l ∈ L, as TF (α,X) + l ⊆ TF (α,X) + L.

Let F1, F2 ∈ Pfin(S). In case F1 ∩ F2 = ∅,

TF1∪F2(X) =
∑

s∈F1∪F2

α(s)(X) =
∑

s∈F1

α(s)(X) +
∑

s∈F2

α(s)(X) = TF1(X) + TF2(X).

In the general case, let F ∗
2 = F2 \F1, so that F1 and F ∗

2 are disjoint, yet we have the same union F1 ∪ F2. By the first
case,

TF1∪F2(X) = TF1∪F∗

2
(X) = TF1(X) + TF∗

2
(X).

Therefore,

fX(F1 ∪ F2) = ℓ(TF1∪F∗

2
(X)) = ℓ(TF1(X) + TF∗

2
(X)) ≤ ℓ(TF1(X)) + ℓ(TF∗

2
(X)) = fX(F1) + fX(F ∗

2 ).

As the function fX is increasing, we have that fX(F ∗
2 ) ≤ fX(F2). This proves the desired inequality

fX(F1 ∪ F2) ≤ fX(F1) + fX(F2),

i.e., fX is subadditive.

Let now F ∈ Pfin(S) and s ∈ S. Then

TsF (X) =
∑

f∈F

α(sf)(X) = α(s)


∑

f∈F

α(f)(X)


 = α(s)(TF (X)),

and so
fX(sF ) = ℓ(TsF (X)) = ℓ(α(s)(TF (X))) ≤ ℓ(TF (X)) = fX(F ).

Therefore, fX is left subinvariant.

Finally, for every s ∈ S,
fX({s}) = log |α(s)(X)| ≤ log |X |,

so fX is uniformly bounded on singletons.

In view of Lemma 4.1, by applying Corollary 3.2, we can give the following definition.

Definition 4.2. Let S be a cancellative right amenable semigroup, A an abelian group, and S
α
y A a left action. For

X ∈ Pfin(A), the algebraic entropy of α with respect to X is

Halg(α,X) = HS(fX).

(In other words, Halg(α,X) = limi∈I
ℓ(TFi (α,X))

|Fi|
, where (Fi)i∈I is a right Følner net of S.)

The algebraic entropy of α is
halg(α) = sup{Halg(α,X) : X ∈ Pfin(A)}.

Let also
ent(α) = sup{Halg(α,X) : X ∈ F(A)}.

The definition of Halg(α,X) does not depend on the choice of the right Følner net (Fi)i∈I in view of Corollary 3.2.
Moreover, for every X ∈ Pfin(A), Halg(α,X) ≤ ℓ(X) is bounded, according to Lemma 3.5.

Remark 4.3. One can introduce the algebraic entropy also for right actions of cancellative left amenable semigroups
on abelian groups. (see also Remark 4.16 for the case of right actions of amenable groups). Namely, consider a right
action

A
β
x S

of a cancellative left amenable semigroup S on an abelian group A. To define the algebraic entropy of β, consider the
left action βop of the cancellative right amenable semigroup Sop on A (see Remark 1.3) and let

hralg(β) = halg(β
op).
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Now we see that the function Halg(α,−) is monotone increasing. As a consequence of this fact, it is possible to
restrict the family of finite subsets of A on which we compute the algebraic entropy. In particular, we can always
assume that X ∈ P0

fin(A).

Lemma 4.4. Let S be a cancellative right amenable semigroup, A an abelian group, and S
α
y A a left action.

(a) If X,Y ∈ Pfin(A) and X ⊆ Y , then Halg(α,X) ≤ Halg(α, Y ).

(b) If F ⊆ Pfin(A) is cofinal with respect to ⊆, then halg(α) = sup{Halg(α,X) : X ∈ F}.

Proof. (a) is clear from the definition and (b) follows from (a).

Since the torsion part t(A) of an abelian group A is a fully invariant subgroup of A, and so in particular t(A) is
α-invariant, it clearly follows from the definition that

ent(α) = ent(αt(A)). (4.1)

In view of Lemma 4.4 we clarify the relation between halg and ent.

Proposition 4.5. Let S be a cancellative right amenable semigroup, A an abelian group, and S
α
y A a left action.

Then
ent(α) = ent(αt(A)) = halg(αt(A)).

Proof. In view of Equation (4.1), it suffices to prove that, if A is torsion, then ent(α) = halg(α). This is true since in
this case F(A) is cofinal in P0

fin(A), and so Lemma 4.4 applies.

In the next remark we see that for S = N we find the classical case of the algebraic entropy of a single endomorphism.
This is why we keep the same notation.

Remark 4.6. Assume that A is an abelian group and fix an endomorphism φ : A→ A. Then φ induces the action αφ
of N on A defined by αφ(n) = φn for every n ∈ N. In [28], the algebraic entropy of φ is defined exactly as

halg(φ) = halg(αφ),

using the special right Følner sequence (Fn)n∈N+ of N with Fn = [0, n − 1] for every n ∈ N+, and consequently the
n-th φ-trajectories

Tn(φ,X) = TFn(αφ, X)

for every X ∈ Pfin(A).

On the other hand, there is a relevant difference with respect to the case of a single endomorphism when the acting
semigroup S is cyclic and finite. In fact, if A is an abelian group and φ : A→ A is an endomorphism such that φn = φm

for some distinct n,m ∈ N, then halg(φ) = 0 (see [23, 28]). This is no more true in general for the algebraic entropy
defined in this paper, as we see in item (a) of the next example.

Example 4.7. Let S be a cancellative right amenable monoid, A an abelian group, and S
α
y A a left action.

(a) If S is finite, then

halg(α) =
ℓ(A)

|S|
and ent(α) =

ℓ(t(A))

|S|
;

in particular, halg(α) = ∞ and ent(α) = ∞ whenever t(A) is infinite.

Indeed, take the constant right Følner sequence (S)n∈N of S. If A is finite, since TS(α,A) = A, by Lemma 4.4(a)
and Proposition 4.5 we get that

halg(α) = Halg(α,A) =
ℓ(TS(α,A))

|S|
=
ℓ(A)

|S|
and ent(α) =

ℓ(t(A))

|S|
.

If A is infinite, for every X ∈ P0
fin(A), since X ⊆ TS(α,X), we have that

Halg(α,X) =
ℓ(TS(α,X))

|S|
≥
ℓ(X)

|S|
.

Then halg(α) ≥ sup
{
ℓ(X)
|S| : X ∈ P0

fin(A)
}
is infinite since A is infinite. Similarly, ent(α) is infinite whenever t(A)

is infinite.

In particular, if S = {e}, then Halg(α,X) = ℓ(X) for every X ∈ P0
fin(A).
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(b) Consider the trivial left monoid action S
τ
y A, defined by τ(s) = idA for every s ∈ S. If S is infinite, then

halg(τ) = 0.

Indeed, for a right Følner net (Fi)i∈I of S and X ∈ Pfin(A), one has

TFi(τ,X) = X + . . .+X.

So,
fX(Fi) ≤ |X | log(1 + |Fi|).

This yields

Halg(τ,X) ≤ lim
i∈I

|X | log(1 + |Fi|)

|Fi|
= 0,

as A is infinite and so limi∈I |Fi| = ∞.

In item (a) of the above example, we assume S to be a finite monoid and S
α
y A a left monoid action, otherwise the

conclusion could be false. Indeed, consider the action such that α(s) = 0A for every s ∈ S, which is a left semigroup
action but not a left monoid action. Then, TS(α,X) = {0} for every X ∈ P0

fin(A), so halg(α) = sup{Halg(α,X) : X ∈

P0
fin(A)} = 0.

Remark 4.8. Let G be a group and S a cancellative right amenable submonoid of G that generates G as a group; by

Lemma 2.11(a) the group G is necessarily amenable. Let A be an abelian group and consider the left action G
α
y A.

Then
halg(α) = halg(α ↾S).

In fact, by Lemma 2.11(b), a right Følner net (Fi)i∈I of S is also a right Følner net of G. So, for every X ∈ P0
fin(A),

we have that Halg(α,X) = Halg(α ↾S, X) by definition.

Remark 4.9. Let G be an amenable group, A an abelian group, and G
α
y A a left action. Consider

kerα = {g ∈ G : α(g) = idA}.

It should be natural to expect that the induced action G/ kerα
ᾱ
y A would have the same algebraic entropy of G

α
y A.

Actually, this is not the case in view of the above examples. Indeed, halg(τ) = 0, while ker τ = G, so G/ ker τ = {1}
and hence halg(τ̄ ) = ∞ whenever A is infinite.

For a non-trivial example, in which G/ kerα is infinite, witnessing that halg(α) is not equal to halg(ᾱ), see Exam-
ple 5.23 as well as the general Theorem 5.24.

4.2 Basic properties

We start showing that halg coincides for weakly conjugated actions, defined as follows:

Definition 4.10. For cancellative right amenable semigroups S and T , abelian groups A and B, and left actions

S
α
y A and T

β
y B, we say that α and β are weakly conjugated if there exist an isomorphism η : S → T and an

isomorphism ξ : A→ B such that
ξ ◦ α(s) = β(η(s)) ◦ ξ (4.2)

for every s ∈ S.

Our leading example is when S = T and η = idS , yet Lemma 4.13 provides a relevant instance when S = T is
an amenable group, yet η is an arbitrary automorphism of S. The next proposition justifies our attention to weak
conjugacy.

Proposition 4.11. Let S, T be cancellative right amenable semigroups, A,B abelian groups, and S
α
y A, T

β
y B left

actions. If α and β are weakly conjugated, then halg(α) = halg(β).

Proof. Let (Fi)i∈I be a right Følner net of S, and let X ∈ Pfin(A). Then (η(Fi))i∈I is a right Følner net of T . For
every i ∈ I,

Tη(Fi)(β, ξ(X)) =
∑

s∈Fi

β(η(s))(ξ(X)) =
∑

s∈Fi

ξ(α(s)(X)) = ξ

(∑

s∈Fi

α(s)(X)

)
= ξ(TFi(α,X)).

Hence, ℓ(Tη(Fi)(β, ξ(X))) = ℓ(TFi(α,X)), and so Halg(β, ξ(X)) = Halg(α,X). Since ξ induces a bijection between
Pfin(A) and Pfin(B), this implies halg(α) = halg(β).
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Remark 4.12. Since the only automorphism of N is idN, two left actions N
α
y A and N

β
y B on abelian groups A and

B are weakly conjugated precisely when
ξ ◦ α(n) = β(n) ◦ ξ

for all n ∈ N. In other words, letting φ = α(1) and ψ = β(1), one has

φ = ξ−1 ◦ ψ ◦ ξ. (4.3)

Usually, a pair of endomorphisms φ : A → A and ψ : B → B are said to be conjugated if the condition in
Equation (4.3) holds for some isomorphism ξ : A → B (see [28]). Clearly, a pair of conjugated endomorphisms

φ : A → A and ψ : B → B gives rise to weakly conjugated N-actions N
αφ
y A and N

αψ
y B. Indeed, φ = ξ−1 ◦ ψ ◦ ξ

implies φn = ξ−1 ◦ ψn ◦ ξ for every n ∈ N, that is, ξ ◦ φn = ψn ◦ ξ for every n ∈ N; in terms of actions this means that
ξ ◦ αφ(n) = αψ(n) ◦ ξ for every n ∈ N, that is Equation (4.2) is satisfied with η = idN.

It is known that halg(φ) = halg(ψ) whenever the endomorphisms φ and ψ are conjugated (see [28]).

On the other hand, weakly conjugated automorphisms of A, viewed as Z-actions, need not be conjugated in the
sense of Equation (4.3) (see Remark 4.14).

In the case of an automorphism φ : A→ A of an abelian group A, it is known that

halg(φ) = halg(φ
−1).

In order to obtain this equality as a consequence of Proposition 4.11 in Remark 4.14, we see that φ and φ−1 are weakly

conjugated. To this end we consider, more generally, an action G
α
y A of an amenable group G on an abelian group

A, and an automorphism η : G→ G. Define the action

G
αη
y A

by αη(g) = α(η(g)) for every g ∈ G.

We omit the immediate proof of the next lemma.

Lemma 4.13. Let G be an amenable group, A an abelian group, and G
α
y A a left action. If η : G → G is an

automorphism, then α and αη are weakly conjugated and halg(α) = halg(α
η).

Remark 4.14. Let G be an abelian group, η = −idG ∈ Aut(G), and G
α
y A a left action. Then αη is now given by

αη(g) = α(g)−1 for every g ∈ G, and it is weakly conjugated to α, so halg(α) = halg(α
η) by Lemma 4.13. In particular,

for G = Z we obtain halg(φ) = halg(φ
−1) for any automorphism φ : A→ A.

To finish the comparison between conjugacy and weak conjugacy in the realm of automorphisms, consider the
automorphism m2 : Q → Q, defined by x 7→ 2x, inducing an obvious Z-action on Q, which is weakly conjugated to the
action induced by (m2)

−1 = m 1
2
. Nevertheless, m2 is not conjugated to (m2)

−1 in the sense of Equation (4.3).

Resuming Remark 4.12 and Remark 4.14, the notion of weak conjugacy provides a convenient umbrella covering two
relevant cases of coincidence of algebraic entropies: of a pair of conjugated endomorphisms, or a pair of two mutually
inverse automorphisms.

Using Proposition 4.11 we can specify the relation between the algebraic entropy of α(g) and the algebraic entropy
of the restriction of α to the semigroup generated by g.

Remark 4.15. Let S be a cancellative right amenable monoid, A an abelian group, and S
α
y A a left action. Let

g ∈ S and let T be the submonoid of S generated by g.

(a) If T is infinite, then T ∼= N and α ↾T is weakly conjugated to the action αα(g) in the notation of Remark 4.6. So,
halg(α(g)) = halg(α ↾T ) by Remark 4.6 and Proposition 4.11.

(b) If T is finite, then a straightforward computation shows that halg(α(g)) = 0, while halg(α ↾T ) is always positive
(actually ∞ if A is infinite) by Example 4.7(a).

The same properties hold when S is a group and T = 〈g〉 is the subgroup of S generated by g.

The following observation using Proposition 4.11 is related to Remark 4.3.

Remark 4.16. In case of a right action A
β
x G of an amenable group G acting on an abelian group A, one has also

an alternative option to define a left action β′ that leads to the same algebraic entropy hralg. Indeed, define the left

action β′ by putting β′(g) = β(g−1) for every g ∈ G. The left actions

Gop
βop

y A and G
β′

y A

are conjugated since the map ι : g 7→ g−1 provides a group isomorphism G→ Gop. By Proposition 4.11,

hralg(β) = halg(β
op) = halg(β

′).

This shows that we can use both ways to pass from right actions to left ones obtaining the same result.
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Now we consider the monotonicity of halg with respect to invariant subgroups and quotients over invariant sub-
groups.

Proposition 4.17. Let S be a cancellative right amenable semigroup, A an abelian group, and S
α
y A a left action.

If B is an α-invariant subgroup of A, then

halg(α) ≥ max{halg(αB), halg(αA/B)}.

Proof. For every X ∈ Pfin(B),
Halg(αB , X) = Halg(α,X),

so Halg(αB , F ) ≤ halg(α). Hence, halg(αB) ≤ halg(α).
Assume that X ∈ Pfin(A/B) and X = π(X0) for some X0 ∈ Pfin(A), where π : A → A/B is the canonical

projection. Let (Fi)i∈I be a right Følner net of S. Then, for every i ∈ I,

π(TFi(α,X0)) =
∑

s∈Fi

π(α(s)(X0)) =
∑

s∈Fi

αA/B(s)(π(X0)) = TFi(αA/B , X).

It follows that halg(α) ≥ Halg(α,X0) ≥ Halg(αA/B, X), and hence halg(α) ≥ halg(αA/B).

Next we verify the continuity for direct limits.

Proposition 4.18. Let S be a cancellative right amenable semigroup, A an abelian group, and S
α
y A a left action.

If A is a direct limit of α-invariant subgroups {Ai : i ∈ I}, then halg(α) = supi∈I halg(αAi).

Proof. By Proposition 4.17, halg(α) ≥ halg(αAi) for every i ∈ I and so halg(α) ≥ supi∈I halg(αAi).
To check the converse inequality, let X ∈ Pfin(A). Since A = lim

−→
{Ai : i ∈ I} and {Ai : i ∈ I} is a directed family,

there exists j ∈ I such that X ⊆ Aj . Then

Halg(α,X) = Halg(αAj , X) ≤ halg(αAj ).

This proves that halg(α) ≤ supi∈I halg(αAj ).

The following is a basic instance of the Addition Theorem.

Proposition 4.19. Let S be a cancellative right amenable semigroup, A an abelian group, and S
α
y A a left action.

If A = A1 ×A2, with A1, A2 α-invariant subgroups of A, then halg(α) = halg(αA1) + halg(αA2).

Proof. Note that, α(s) = αA1(s)× αA2(s) for every s ∈ S.
Let (Fi)i∈I be a right Følner net of S. For every i ∈ I, and for X1 ∈ Pfin(A1), X2 ∈ Pfin(A2),

TFi(α,X1 ×X2) =
∑

s∈Fi

(αA1(s)(X1)× αA2(s)(X2)) =

=

(∑

s∈Fi

αA1(s)(X1)

)
×

(∑

s∈Fi

αA2(s)(X2)

)
= TFi(αA1 , X1)× TFi(αA2 , X2).

Hence,
Halg(α,X1 ×X2) = Halg(αA1 , X1) +Halg(αA2 , X2). (4.4)

Consequently, halg(α) ≥ halg(αA1) + halg(αA2).
Since {X1 ×X2 : Xi ∈ Pfin(Ai), i = 1, 2} is cofinal in Pfin(A), in view of Lemma 4.4, Equation (4.4) proves also

that halg(α) ≤ halg(αA1) + halg(αA2).

4.3 Properties of the trajectories

Lemma 4.20. Let S be a semigroup, A an abelian group, and S
α
y A a left action. If F ∈ Pfin(S) and X,X ′ ∈

P0
fin(A), then:

(a) TF (X +X ′) = TF (X) + TF (X
′);

(b) TF (X) ∪ TF (X
′) ⊆ TF (X ∪X ′) ⊆ TF (X) + TF (X

′).

Proof. (a) We have

TF (X +X ′) =




∑

f∈F

α(f)(xf + x′f ) : xf ∈ X, x′f ∈ X ′



 =

=




∑

f∈F

α(f)(xf ) +
∑

f∈F

α(f)(x′f ) : xf ∈ X, x′f ∈ X ′



 = TF (X) + TF (X

′).

(b) can be proved analogously to (a).
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Recall, that if W is a subset of an abelian group A and m ∈ N+, we use the notation

Wm =W +W + . . .+W︸ ︷︷ ︸
m

.

Lemma 4.21. Let S be a right amenable semigroup, A an abelian group, S
α
y A a left action, F ∈ Pfin(S), and

B ∈ Pfin(A). Then, for every m ∈ N+,
TF (α,Bm) = TF (α,B)m.

Proof. It suffices to compute that

TF (α,Bm) =
∑

f∈F

α(f)(Bm) =
∑

f∈F

α(f)(B)m =


∑

f∈F

α(f)(B)



m

= TF (α,B)m

for every m ∈ N+.

Lemma 4.22. Let S be a right amenable semigroup, A an abelian group, S
α
y A a left action, and F, F ′ ∈ Pfin(S).

If X is a subset of A, and X ′ = X|F ′|, then

TFF ′(X) ⊆ TF (TF ′(X)) ⊆ TFF ′(X ′). (4.5)

If X is a subgroup of A, then X ′ = X and TFF ′(X) = TF (TF ′(X)).

Proof. For a subset X of A, we have that

TFF ′(X) =
∑

g∈FF ′

α(g)(X)

and

TF (TF ′(X)) =
∑

f∈F

α(f)


 ∑

f ′∈F ′

α(f ′)(X)


 =

∑

f∈F

∑

f ′∈F ′

α(f)(α(f ′)(X)) =
∑

f∈F,f ′∈F ′

α(ff ′)(X).

Hence, TFF ′(X) ⊆ TF (TF ′(X)).
To prove the second containment in Equation (4.5) we use as above that TF (TF ′(X)) =

∑
f∈F,f ′∈F ′ α(ff ′)(X).

Since
TFF ′(X ′) =

∑

g∈FF ′

α(g)(X ′) =
∑

g∈FF ′

α(g)(X)|F ′|,

and for every g ∈ FF ′, by the right cancellation property of S,

|Vg = {(f, f ′) ∈ F × F ′ : ff ′ = g}| ≤ |F ′| ,

we can conclude that TF (TF ′(X)) ⊆ TFF ′(X ′).
If X is a subgroup of A, then X ′ = X , so Equation (4.5) yields TFF ′(X) = TF (TF ′(X)).

The following examples show that the containments in the above lemma can be strict.

Example 4.23. Let A = Q.

(a) Let S = Z and consider the left action S
α
y A defined by α(n)(q) = 2nq for every n ∈ Z and every q ∈ Q. Let

F = F ′ = {0, 1} = X . Then TF (X) = {0, 1, 2, 3} and FF = {0, 1, 2}, so

TFF (X) = {0, . . . , 7} ( TF (TF (X)) = {0, . . . , 9} ( TFF (X
′) = {0, 1, . . . , 14} .

(b) Let S = Aut(Q), and consider the left action S
α
y A defined by α(φ)(q) = φ(q) for every φ ∈ S and every q ∈ Q.

Let F = F ′ = {±idQ} and X = {0,±1}. Then TF (X) = X +X = {0,±1,±2} and FF = F , hence

TFF (X) = TF (X) = {0,±1,±2} ( TF (TF (X)) = TF (X) + TF (X) = {0,±1,±2,±3,±4} .

Lemma 4.24. Let S be a cancellative right amenable monoid, A an abelian group, and S
α
y A a left action. If

X ∈ F(A) and F ∈ P0
fin(S), then

Halg(α,X) = Halg(α, TF (α,X)).
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Proof. Since X ⊆ TF (X), we have that Halg(α,X) ≤ Halg(α, TF (X)) by Lemma 4.4(a).
To prove the converse inequality, let (Fi)i∈I be a right Følner net of S and assume without loss of generality that

1 ∈ Fi for every i ∈ I. By Lemma 4.22, we have that

Halg(α, TF (X)) = lim
i∈I

ℓ(TFi(TF (X)))

|Fi|
= lim

i∈I

ℓ(TFiF (X))

|Fi|
.

For every i ∈ I, let Di = (FiF ) \ Fi. Fix ε > 0. Since (Fi)i∈I is a right Følner net of S, limi∈I
|Di|
|Fi|

= 0 by

Lemma 2.7(b), and so there exists J ⊆ I cofinal such that ℓ(X) |Dj | ≤ ε |Fj | for every j ∈ J . Thus, for every j ∈ J ,

ℓ(TFjF (X)) ≤ ℓ(TFj(X)) + ℓ(TDj (X)) ≤ ℓ(TFj(X)) + |Dj | ℓ(X) ≤ ℓ(TFj(X)) + ε |Fj | ,

and so
ℓ(TFjF (X))

|Fj |
≤
ℓ(TFj (X))

|Fj |
+ ε.

Therefore, we get
Halg(α, TF (X)) ≤ Halg(α,X) + ε.

Since the above inequality is true for every ε > 0, we have the conclusion.

The above lemma does not hold true in case X is not a subgroup of A:

Example 4.25. Let S = N, A = Z, and consider the left action S
αφ
y A, where φ = m4 : Z → Z is defined by φ(x) = 4x

for every x ∈ Z. It is known (and straightforward to prove) that halg(φ) = log 4 (see [28]).
Let X = {0, 1}. Then T2(φ,X) = X + 4X = {0, 1, 4, 5} and

Tn(φ,X) =
{
a0 + a14 + . . .+ an−14

n−1 : ai ∈ {0, 1}
}

for every n ∈ N+. Then ⋃

n∈N+

Tn(φ,X) ( Z = 〈X〉.

Fix n ∈ N+ and consider the map

jn : {0, 1, 2, 3}n → {0, 1, 2, . . . , 4n − 1} , (a0, . . . , an−1) 7→ a0 + a14 + . . .+ an−14
n−1,

which is easily verified to be a bijection; since jn({0, 1}
n
) = Tn(φ,X), we have that |Tn(φ,X)| = 2n. Hence,

Halg(φ,X) = log 2.

We see now that, for X ′ = T2(φ,X) = {0, 1, 4, 5},

Halg(φ,X
′) = log 3.

One can prove by induction that, for every n ∈ N+,

Tn(φ,X
′) = {b0 + 4b1 + . . .+ 4n−1bn−1 + 4nbn : b1, . . . , bn−1 ∈ {0, 1, 2}, b0, bn ∈ {0, 1}}. (4.6)

It implies that for every n ∈ N+,
Tn(φ,X

′) = jn({0, 1} × {0, 1, 2}n × {0, 1}),

so that we can conclude that
|Tn(φ,X

′)| = 4 · 3n.

Clearly, this implies that Halg(φ,X
′) = log 3.

4.4 Computing entropy using generators

Let S be a cancellative right amenable semigroup, A an abelian group, and S
α
y A a left action. For a subset X of A,

the full α-trajectory of X is

TS(α,X) =
⋃

F∈Pfin(S)

TF (α,X).

If X is a subgroup of A, then TF (α,X) = 〈α(s)(X) : s ∈ F 〉 is a subgroup of A for every F ∈ Pfin(S), and so also
TS(α,X) = 〈α(s)(X) : s ∈ S〉 is a subgroup of A. If furthermore X ∈ F(A), then TS(α,X) ⊆ t(A). On the other hand,
if X is a subset of A, in general TS(α,X) could be strictly contained in 〈α(s)(X) : s ∈ S〉 as Example 4.25 shows, so
the condition A = TS(α,X) is stronger than A = 〈α(s)(X) : s ∈ S〉.

We recall that the action S
α
y A induces on A a structure of left Z[S]-module. So, a subgroup B of A generates A

as a Z[S]-module if and only if A =
⋃
X∈P0

fin(B) TS(α,X).
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Proposition 4.26. Let S be a right amenable semigroup, A an abelian group and S
α
y A. If B is a subgroup of A

such that t(B) generates t(A) as a left Z[S]-module, then

ent(α) = sup {Halg(α,X) : X ∈ F(B)} . (4.7)

In particular, if t(A) = TS(α,X) for some X ∈ F(A), then ent(α) = Halg(α,X).

Proof. By definition, ent(α) ≥ sup {Halg(α,X) : X ∈ F(B)}. To prove the opposite inequality, let Y ∈ F(A). Since

t(A) =
⋃

X∈F(B)

TS(X),

there exist F ∈ P0
fin(S) and X ∈ F(B) such that Y ⊆ TF (X). Then, by Lemma 4.4(a) and Lemma 4.24,

Halg(α, Y ) ≤ Halg(α, TF (X)) = Halg(α,X). (4.8)

As Y ∈ F(A) was chosen arbitrarily, this proves (4.7).
If t(A) = TS(α,X) for some X ∈ F(A), for every Y ∈ F(A) there exists F ∈ P0

fin(S) such that Y ⊆ TF (X), so the
last assertion follows again from (4.8).

In case X is a finite subset of an abelian groups A, it is not clear whether A = TS(α,X) would imply halg(α) =
Halg(α,X). On the other hand, we have at least the following result.

Proposition 4.27. Let S be a cancellative right amenable monoid, A an abelian group, and S
α
y A a let action. If B

is a subgroup of A that generates A as a left Z[S]-module, then

halg(α) = sup
{
Halg(α,X) : X ∈ P0

fin(B)
}
.

Proof. If S is finite, then halg(α) = ∞ and

sup
{
Halg(α,X) : X ∈ P0

fin(B)
}
= ∞,

by Example 4.7(a). So assume that S is infinite and let (Fi)i∈I be a right Følner net of S. Clearly,

halg(α) ≥ sup
{
Halg(α,X) : X ∈ P0

fin(B)
}
.

To prove the converse inequality, let Z ∈ P0
fin(A). Since A =

⋃
X∈P0

fin
(B) TS(α,X), there exist X ∈ P0

fin(B) and

F ∈ P0
fin(S) such that Z ⊆ TF (X). Let X ′ = X|F |; since B is a subgroup of A, we have that X ′ ∈ P0

fin(B). Since
(FiF )i∈I is a right Følner sequence of S by Lemma 2.7(b), and since (Fi)i∈I is strictly increasing, we have that

Halg(α,X
′) = lim

i∈I

ℓ(TFiF (X))

|FiF |
= lim

i∈I

ℓ(TFiF (X))

|Fi|
·

|Fi|

|FiF |
= lim

i∈I

ℓ(TFiF (X))

|Fi|
.

By Lemma 4.4(a) and Lemma 4.22,

Halg(α,Z) = lim
i∈I

ℓ(TFi(Z))

|Fi|
≤ lim

i∈I

ℓ(TFi(TF (X)))

|Fi|
≤ lim

i∈I

ℓ(TFiF (X
′))

|Fi|
= Halg(α,X

′).

Hence, we can conclude that halg(α) ≤ sup
{
Halg(α,X) : X ∈ P0

fin(B)
}
.

Lemma 4.28. Let S be a cancellative right amenable monoid, A an abelian group, S
α
y A e left action, and B,C ∈

Pfin(A). Then
Halg(α,B + C) ≤ Halg(α,B) +Halg(α,C) and Halg(α,−B) = Halg(α,B).

Proof. For every F ∈ Pfin(S),

ℓ(TF (α,B + C)) ≤ ℓ(TF (α,B)) + ℓ(TF (α,C)) and ℓ(TF (α,−B)) = ℓ(TF (α,B)).

Let (Fi)i∈I be a right Følner net of S. Then

ℓ(TFi(α,B + C))

|Fi|
≤
ℓ(TF (α,B))

|Fi|
+
ℓ(TF (α,C))

|Fi|
and

ℓ(TFi(α,−B))

|Fi|
=
ℓ(TFi(α,−B))

|Fi|
.

Taking the limit as i→ ∞, we have the conclusion.

The following is a useful technical consequence of the above lemma.
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Lemma 4.29. Let S be a cancellative right amenable monoid, A an abelian group, and S
α
y A a left action. Let B

be a subset of A generating A as a group. For every a ∈ A, let Wa = {0, a} ∈ P0
fin(A). If Halg(α,Wb) = 0 for every

b ∈ B, then halg(α) = 0.

Proof. Let C ∈ P0
fin(A). Since B generates A, there exist b1, . . . , bm ∈ B (each of the bi can appear more than once)

such that
C ⊆ ±Wb1 + . . .+±Wbm

By Lemma 4.28,
Halg(α,C) ≤ Halg(α,W1) + . . .+Halg(α,Wm) = 0,

so we have the thesis.

Following [23, 28], call an action S
α
y A of a cancellative right amenable monoid S on an abelian group A

(a) locally nilpotent if for every a ∈ A there exists s ∈ S such that α(s)(a) = 0;

(b) weakly locally nilpotent if the same condition is satisfied for all elements a taken from a set B of generators of the
group A.

If S is commutative, then these two conditions are obviously equivalent.
We show that the algebraic entropy of every weakly locally nilpotent action is zero (for N-actions this can be found

in [23, 28]).

Corollary 4.30. Let S be a cancellative right amenable monoid, A an abelian group, and S
α
y A a left action. If α

is weakly locally nilpotent, then α is locally nilpotent, and halg(α) = 0.

Proof. Let B be a subset generating A as a group and witnessing the weak local nilpotency, i.e., such that for every
b ∈ B, there exists s ∈ S such that α(s)(b) = 0. Fix b ∈ B and let s ∈ S such that α(s)(b) = 0.

To show that α is locally nilpotent, let a ∈ A. There exist b1, . . . , bk ∈ B such that a = b1 + . . . + bk. For
every i ∈ {1, . . . , k}, let si ∈ S such that α(si)(bi) = 0. By Corollary 2.10, there exist t, r1, . . . , rk ∈ S such that
t = r1s1 = . . . = rksk. For every i ∈ {1, . . . , k}, we have that

α(t)(bi) = α(risi)(bi) = α(ri)(α(si)(bi)) = α(ri)(0) = 0.

Therefore,

α(t)(a) =

k∑

i=1

α(t)(bi) = 0,

that shows that α is locally nilpotent.
Let us prove now that halg(α) = 0. By Lemma 4.29, it suffices to show that Halg(α,Wb) = 0 for every b ∈ B.

Let (Fi)i∈I be a right Følner net of S. Then (Fis)i∈I is also a right Følner net of S by Lemma 2.7. Moreover,
TFis(α,Wb) = {0}. Therefore,

Halg(α,Wb) = lim
i∈I

ℓ(TFis(α,Wb))

|Fis|
= 0,

that concludes the proof.

No group S admits a weakly locally nilpotent action. Indeed, if s ∈ S is invertible and 0 6= a ∈ A, then α(s)(a) 6= 0.

5 Entropy of restriction and quotient actions of amenable group actions

5.1 Entropy of restriction actions

Let G be a cancellative right amenable monoid, A an abelian group, and G
α
y A a left action. If H is a submonoid of

G we call restriction action of α the left action H
α↾H
y A induced by α. In this section we point out some basic relation

between the algebraic entropy of α and the algebraic entropy of α ↾H .

The next example shows immediately that the restriction action of an action of finite (actually, zero) algebraic
entropy may have infinite algebraic entropy.

Example 5.1. Let G be an infinite amenable monoid, A an infinite abelian group, and consider the trivial action

G
τ
y A. By Example 4.7(b), we have that

halg(τ) = ent(τ) = 0,

while for H = {1},
halg(τ ↾H) = ∞

and ent(τ ↾H) = ∞ when t(A) is infinite.
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For a non-trivial example with halg(α) = 0 while halg(α ↾H) = ∞ see Example 5.23.

Next we give a result for monoids showing that many actions of Nd have zero algebraic entropy (see Corollary 5.5).
We will state many other results on the vanishing of the algebraic entropy for amenable group actions after Theo-
rem 5.12.

Lemma 5.2. Let G and H be infinite countable cancellative right amenable monoids, A an abelian group and consider

the left action G×H
α
y A. If halg(α ↾G) <∞, then halg(α) = 0.

Proof. Let (Fn)n∈N and (Em)m∈N be right Følner sequences of G and H respectively. Then (Fn×Em)n,m∈N is a right
Følner net of G×H by Lemma 2.9. Let X ∈ P0

fin(A). For every n,m ∈ N,

TFn×Em(α,X) = TFn(α ↾G, TEm(α ↾H , X)).

Fixed m ∈ N, we have that

lim
n→∞

ℓ(TFn(α ↾G, TEm(α ↾H , X)))

|Fn|
= Halg(α, ↾G, TEm(α ↾H , X)) ≤ halg(α ↾G) <∞.

Therefore,

Halg(α,X) = lim
n,m→∞

ℓ(TFn(α ↾G, TEm(α ↾H , X)))

|Fn| |Em|
≤ lim

m→∞

halg(α ↾G)

|Em|
= 0,

and we conclude that halg(α) = 0.

Corollary 5.3. Let G and H be infinite countable cancellative right amenable monoids, A an abelian group and

consider the left action G×H
α
y A. Then halg(α) ≤ halg(α ↾G).

Proof. If halg(α ↾G) = ∞ clearly halg(α) ≤ halg(α ↾G) = ∞, and when halg(α ↾G) < ∞ Lemma 5.2 gives halg(α) =
0 ≤ halg(α ↾G).

Corollary 5.4. Let d > 1, A an abelian group and Nd
α
y A a left action. If halg(α(ei)) < ∞ for some ei =

(0, . . . , 0, 1, 0, . . . , 0) ∈ Nd where 1 is in the i-th entry, then halg(α) = 0.

Corollary 5.5. Let d > 1, A a torsion-free abelian group of finite rank and Nd
α
y A a left action. Then halg(α) = 0.

Proof. In view of Corollary 5.4, it is enough to check that no endomorphism of A may have infinite algebraic entropy.
In fact, every endomorphism φ of A extends to an endomorphism φ̃ of the divisible hull D ∼= Qk, with k ≤ n, of A,
and halg(φ̃) = halg(φ) (see [28]). Moreover, all endomorphisms of Qk have finite algebraic entropy by the algebraic
Yuzvinski Formula (see [43]).

From now on we consider amenable group actions and their restriction actions. The following is a generalization of
what is called Logarithmic Law in the case G = Z.

Proposition 5.6. Let G be an amenable group, A an abelian group, and G
α
y A a left action. If H is a subgroup of

G of finite index [G : H ] = k, then

halg(α ↾H) = k · halg(α) and ent(α ↾H) = k · ent(α).

In particular:

(a) halg(α) = 0 if and only if halg(α ↾H) = 0, and ent(α) = 0 if and only if ent(α ↾H) = 0;

(b) halg(α) = ∞ if and only if halg(α ↾H) = ∞, and ent(α) = ∞ if and only if ent(α ↾H) = ∞.

Proof. Let (Fi)i∈I be a right Følner net of H . Let 1 ∈ L ⊆ G be a transversal of the family G/H = {Hg : g ∈ G} of
the right cosets of H in G; in particular |L| = k, so we can write L = {t1, t2, . . . , tk}. By Lemma 2.7(b), (FiL)i∈I is a
right Følner net of G.

Observing that |FiL| = |Fi| · |L|, we can compute, for X ∈ P0
fin(A),

Halg(α,X) = lim
i∈I

ℓ(TFiL(α,X))

|FiL|
.

For Y = TL(α,X), we have that
TFiL(α,X) = TFi(α, Y ) = TFi(α ↾H , Y ),

so

Halg(α,X) = lim
i∈I

ℓ(TFi(α, Y ))

|Fi| · |L|
=

1

|L|
lim
i∈I

ℓ(TFi(α, Y ))

|Fi|
=

1

k
Halg(α, Y ) =

1

k
Halg(α ↾H , Y ).

Therefore, we have the inequality halg(α) ≤
1
khalg(α ↾H).
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To prove the converse inequality, let Y ∈ P0
fin(A). Then

1

k
Halg(α ↾H , Y ) = lim

i∈I

ℓ(TFi(α, Y ))

|L| · |Fi|
= lim

i∈I

ℓ(TFi(α, Y ))

|FiL|
≤ lim

i∈I

ℓ(TFiL(α, Y ))

|FiL|
= Halg(α, Y ),

and so 1
khalg(α ↾H) ≤ halg(α). This concludes the proof that halg(α ↾H) = k · halg(α).

By Proposition 4.5 and the first equality, we have that

ent(α ↾H) = halg(αt(A)) = k · halg(αt(A)) = k · ent(α),

hence the thesis.

Let us recall that a group G is virtually cyclic if G has a cyclic subgroup of finite index. The above proposition
allows us to completely determine the algebraic entropy of actions of virtually cyclic groups:

Remark 5.7. Let G be a virtually cyclic group, A an abelian group, and G
α
y A a left action. The case when G is

finite was already discussed in Example 4.7(a), so we can assume without loss of generality that G is infinite. Then G
has an infinite cyclic subgroup N of finite index. Then its normal core NG is still an infinite cyclic subgroup of finite
index k = [G : NG] ∈ N+. As the subgroup NG is normal, we deduce from Proposition 5.6 that halg(α↾NG) = khalg(α).
Denoting φ = α(1), we have that halg(α↾NG) = halg(φ), by Remark 4.15(a). Therefore, halg(α) = khalg(φ).

The next proposition can be deduced from Theorem 5.12 and Proposition 5.6, nevertheless we anticipate it here
since its proof is much easier than that of Theorem 5.12.

Proposition 5.8. Let G be an amenable group, A an abelian group, and G
α
y A a left action. If N is a normal

subgroup of G, then
halg(α) ≤ halg(α ↾N) and ent(α) ≤ ent(α ↾N ).

Proof. Let X ∈ P0
fin(A) and f = fX (we recall that fX(Y ) = ℓ(TY (α,X)) for every Y ∈ Pfin(G)). By Corollary 3.11,

Halg(α,X) = HG(f) ≤ HN (f) = Halg(α ↾N , X).

Since the above is true for every X ∈ P0
fin(A), we have that

halg(α) ≤ halg(α ↾N ).

By Proposition 4.5 the second assertion follows from the first one.

Example 5.1 shows that the inequalities halg(α) ≤ halg(α ↾H) and ent(α) ≤ ent(α ↾H) in Proposition 5.8 can be
strict.

Corollary 5.9. Let G be a group and G
α
y A be a left action on an abelian group A. If an element g ∈ G is non-torsion

and central, then
halg(α) ≤ halg(α(g)).

In particular, if halg(α(g)) = 0, then halg(α) = 0.

Proof. The subgroup H = 〈g〉 is central, hence normal. By Proposition 5.8, halg(α) ≤ halg(α ↾H). Now, halg(α ↾H) =
halg(α(g)) by Remark 4.15(a).

The next corollary should be compared with Corollary 5.20 and Corollary 5.22 where the condition halg(φ) = 0 is
relaxed to a milder one.

Corollary 5.10. Let G be a non-torsion abelian group and let G
α
y A be a left action on an abelian group A. If

halg(φ) = 0 for every φ ∈ Aut(A), then halg(α) = 0.

The groups Z, Z(p∞) or Q/Z satisfy the hypothesis imposed on A in the above corollary (see [30]).

In the rest of this subsection we consider exclusively appropriate sufficient conditions that entail zero algebraic

entropy for a left action G
α
y A. Most of these conditions are in terms of the restricted action α↾N with respect to

appropriate subgroups (necessarily of infinite index) N of G. An exception to this tendency is the hypothesis of the
next proposition, verified in Example 5.23(a).

Proposition 5.11. Let G be an amenable group and let G
α
y A be a left action an abelian group A. Let N be a normal

subgroup of G such that G/N is infinite. If every N -invariant subgroup of A is also α-invariant, then

ent(α) = 0.
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Proof. For the sake of brevity, let α′ = α ↾N . Fix A0 ∈ F(A). Then L = TN(α
′, A0) is an α′-invariant (i.e., N -

invariant) subgroup of A containing A0, and this gives an action N
α′

L
y L. By hypothesis, L is also α-invariant. Hence,

for every Y ∈ P0
fin(G) the subgroup L contains TY (α,A0), which obviously generates L as a left Z[N ]-module. By

Proposition 4.26 applied to N
α′

L
y L and the subgroup TY (α,A0) of L, we deduce that

ent(α′
L) = Halg(α

′
L, TY (α,A0)). (5.1)

Let f = fA0 , and let C = G/N , which is infinite by virtue of our assumption. Fix a section σ : C → G and consider
θ = Θσ(f). Since A0 is a subgroup of A, for every X ∈ P0

fin(C),

fσ(X) = fTσ(X)(α,A0)

by Lemma 4.22. Hence, Equation (5.1) entails

θ(X) = HN (fσ(X)) = Halg(α
′
L, Tσ(X)(α,A0)) = ent(α′

L)

for every X ∈ P0
fin(C). As ent(α

′
L) is obviously independent from X , this proves that θ is constant on P0

fin(C). Since
C is infinite, we can apply Theorem 3.10 and Lemma 3.4 to deduce that

Halg(α,A0) = HG(f) = HC(θ) = 0.

Taking the supremum over all A0 ∈ F(A), we get the thesis.

The next is one of the main result that we have on restriction actions and it has some impressive consequences.

Theorem 5.12. Let G be an amenable group, A an abelian group, and G
α
y A a left action. Let N be a non-trivial

normal subgroup of G such that G/N is infinite.

(a) If ent(α↾N ) <∞, then ent(α) = 0.

(b) If halg(α↾N ) <∞, then halg(α) = 0.

Proof. In view of Proposition 4.5, (a) trivially follows from (b), since ent(α) = halg(αt(A)) and ent(α↾N ) = halg((α↾N )t(A)).
The proof of (b) follows the proof of the above proposition, so we keep the same notation, i.e., let α′ = α ↾N ,

C = G/N (infinite, by our hypothesis) and σ : C → G is a section. There is a subtle difference though, now we let
A0 ∈ Pfin(A). For f = fA0 we define again θ = Θσ(f).

Our first aim is to see that θ is bounded by halg(α
′). To this end fix X ∈ P0

fin(C) and let A1 = Tσ(X)(α,A0).
Clearly, A1 ∈ Pfin(A). Then, for an arbitrary Følner net (Fi)i∈I for N one has

θ(X) = HN (fσ(X)) = lim
i∈I

ℓ(TFiσ(X)(A0))

|Fi|

(∗)

≤ lim
i∈I

ℓ(TFi(A1))

|Fi|
= Halg(α

′, A1) ≤ halg(α
′), (5.2)

where the inequality (∗) is due to Lemma 4.22. We have proved in this way that our assumption halg(α
′) <∞ implies

boundedness of θ ↾P0
fin(C) for all A0 ∈ Pfin(A).

Since C is infinite, Theorem 3.10, Lemma 3.4, and Remark 3.8 imply that

Halg(α,A0) = HG(f) = HC(θ) = 0.

After taking the supremum over all A0 ∈ Pfin(A) we get halg(α) = 0.

We conjecture that Theorem 5.12 can be proved without the assumption that the subgroup N is normal (see
Conjecture 8.4).

The following is another interesting consequence of Theorem 5.12.

Corollary 5.13. Let G1, G2 be infinite amenable groups, A1, A2 abelian groups, and consider left actions G1
α1
y A1

and G2
α2
y A2. Let G = G1 ×G2, A = A1×A2, and let the left action G

α
y A be defined by α(g1, g1) = α1(g1)×α2(g2)

for every (g1, g2) ∈ G. If either halg(α1) or halg(α2) is finite, then halg(α) = 0.

Proof. Assume that halg(α1) <∞. Since α ↾G1= α1, it suffices to apply Theorem 5.12 with N = G1.

As an example one can take G = G1 = G2, A = A1 = A2 and an action G
α
y A with halg(α) <∞. Then the action

G2 y A2 defined as above has zero algebraic entropy.

The following corollary of Theorem 5.12 has very interesting consequences.

Corollary 5.14. Let G be an amenable group and G
α
y A a left action on an infinite abelian group A. If G has a

non-torsion central element g with halg(α(g)) <∞ and [G : 〈g〉] is infinite, then halg(α) = 0.
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Proof. The subgroup N = 〈α(g)〉 of G is central, hence normal. Since N = 〈g〉 is infinite by hypothesis, Remark 4.15(a)
gives that halg(α ↾N ) = halg(α(g)) <∞. Hence, halg(α) = 0 by Theorem 5.12.

The next example shows that in Corollary 5.14 one cannot replace the hypothesis g non-torsion by simply g non-
trivial, since halg(α(g)) does not always coincide with halg(α ↾〈g〉).

Example 5.15. Let G = Z(2) × Z and let g 6= 0 be the generator of Z(2). Hence, N = 〈g〉 = Z(2) and [G : 〈g〉] is
infinite. Then o(g) = 2 = o(α(g)).

Consider an action G
α
y A on an infinite abelian group A, such that α ↾Z(2) is trivial, while α ↾Z has positive

algebraic entropy, e.g., A = Q and, for every (kg,m) ∈ G,

α(kg,m)(x) = 2mx for every x ∈ Q.

Then halg(α(g)) = 0 < ∞; nevertheless, halg(α ↾Z(2)) = ∞, as A is infinite, according to Example 4.7(a) and
Remark 4.15(b).

Moreover, halg(α) = 1
2halg(α ↾Z) = 1

2 log 2 > 0, according to Proposition 5.6 and Remark 4.15(a), since the
multiplication m2 : Z → Z, x 7→ 2x has halg(m2) = log 2 (see [28]).

In the next corollary, Zd can be replaced by any non-torsion abelian group G that is not virtually ciclic (so that G
has an infinite cyclic subgroup of infinite index).

Corollary 5.16. Let n, d ∈ N+, let A be a subgroup of Qn, and Zd
α
y A a left action. If d > 1, then halg(α) = 0.

Proof. Follows from Corollary 5.5 and Remark 4.8.
Since A has no automorphism of infinite algebraic entropy (see the proof of Corollary 5.5), an alternative proof can

be obtained from Corollary 5.14, as since Zd with d > 1 has no cyclic subgroups of finite index.

We show now that the action of a field on itself by multiplication has zero algebraic entropy.

Proposition 5.17. Let K be an infinite field and consider the natural action K∗ λ
y K by multiplication. Then

halg(λ) = 0.

Proof. Assume first that K has characteristic zero. The underlying abelian group A = (K,+) is a Q-vector space and
we can assume that Q ⊆ K. By Proposition 5.8, halg(λ) ≤ halg(̺), where ̺ = λ ↾Q∗ , so it remains to prove that
halg(̺) = 0.

Let X ∈ Pfin(A) and let V be the Q-linear subspace of A generated by X , which is ̺-invariant. Since V is a
torsion-free abelian group of finite rank, and Q∗ as a group is isomorphic to Z(2)× Z(Z), by (the extended version of)
Corollary 5.16 and Proposition 5.6, we have that halg(̺V ) = 0. Hence, Halg(̺,X) = Halg(̺V , X) ≤ halg(̺V ) = 0.
Therefore, halg(̺) = 0.

Suppose that K has characteristic p > 0. We consider two cases.
First, assume that K is an algebraic extension of Fp. Then there exists a sequence (an)n∈N in N+ such that an|an+1

for every n ∈ N and

K =
⋃

n∈N

Kn, where Kn = Fpan .

Then we can consider (K∗
n)n∈N as a right Følner sequence of K∗. Let X ∈ P0

fin(K). Then there exists m ∈ N such
that X ⊆ Km. For every n ∈ N with n ≥ m, one has

TK∗

n
(λ,Km) = K∗

nKm = Kn.

Hence,

Halg(λ,X) ≤ Halg(λ,Km) = lim
n→∞

ℓ(TK∗

n
(λ,Km))

|K∗
n|

= lim
n→∞

ℓ(Kn)

|K∗
n|

= 0.

We can conclude that halg(λ) = 0.
Now assume that there exists a non-algebraic element c ∈ K. Let S = {ci(c + 1)j : i, j ∈ N} be the submonoid of

K∗ generated by c and c + 1. Obviously, S ∼= N2, since c is transcendental over Fp. This determines the restricted

action S
λ↾S
y K. To conclude, it sufficed to prove that

halg(λ ↾S) = 0. (5.3)

Indeed, for the subgroup G of K∗ generated by S, (5.3) implies that halg(λ ↾G) = halg(λ ↾S) = 0 in view of Remark 4.8,
and hence halg(λ) = 0 by Proposition 5.8.

To prove (5.3) we have to verify that for every X = {x0, x1, . . . , xk} ∈ P0
fin(K) with x0 = 0 one has

Halg(λ ↾S , X) = 0. (5.4)
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Let V be the smallest S-invariant Fp-linear subspace of K that contains X and let S
(λ↾S)V
y K the restricted action of

S on V . Then Halg(λ ↾S , X) = Halg((λ ↾S)V , X), and so (5.4) is equivalent to Halg((λ ↾S)V , X) = 0, so it is enough
to prove that

halg((λ ↾S)V ) = 0. (5.5)

Once we limit the computation to (λ ↾S)V , we can make use of Corollary 5.4. To this end we consider the submonoid
T of S generated by c. Obviously, T ∼= N and we have the restricted actions

T
λ↾T
y K and T

(λ↾T )V
y V.

To apply Corollary 5.4, it is enough to prove that

halg((λ ↾T )V ) <∞. (5.6)

To this end, note that T is a cyclic monoid generated by c, so by Remark 4.15(a)

halg((λ ↾T )V ) = halg(mc), (5.7)

where
mc = λ ↾T (c) : V → V

is the multiplication by c. Let U be the Fp-linear span of {cix : i ∈ N+, x ∈ X}. Obviously, U is T -invariant, and then

also S-invariant; moreover, the transcendence of c over Fp implies that U ∼= F(N)
p . Similarly, for i ∈ {1, . . . , k}, each

Vi = Uxi ∼= F(N)
p is T -invariant and S-invariant, and V = V1 + . . .+ Vk. This determines the restricted actions

T
(λ↾T )Vi
y Vi

and the endomorphisms
(λ ↾T )Vi(c) = mc ↾Vi .

Note that V is a quotient of the vector space W = V1 × . . . × Vk, that mc is induced on V by the multiplication µWc
by c in W , and

µWc = mc ↾V1 × . . .×mc ↾Vk .

The multiplication mc ↾Vi by c in Vi acts on Vi ∼= F(N)
p as the right Bernoulli shift, so halg(mc ↾Vi) = log p for every

i ∈ {1, . . . , k}. Hence, by Proposition 4.17, Proposition 4.11 and Proposition 4.19,

halg(mc) ≤ halg(µ
W
c ) = k log p ≤ |X | log p <∞. (5.8)

By (5.7) and (5.8) we have (5.6), and so Corollary 5.4 gives the desired equality (5.5). This proves (5.4), and so
also (5.3).

The following result extends Proposition 5.17, which is applied in its proof to cover the case n = 1, while the general
case follows from Theorem 5.12 and the case case n = 1 (that is, Proposition 5.17).

Corollary 5.18. Let K be an infinite field, n ∈ N+ and let G be the subgroup of GLn(K) of upper triangular matrices.

Denote by A the vector space Kn and by G
α
y A the natural action. Then halg(α) = 0.

Proof. Note that G is solvable, hence amenable. The case n = 1 is covered by Proposition 5.17. Assume that n > 1.
Then the center N = Z(G) of G has infinite index [G : N ]. As N is the subgroup of G of all non-zero scalar matrices,

and N ∼= K∗ so the action α ↾N is conjugated to the action K∗ λ
y Kn by multiplication. Then, from the case n = 1,

Proposition 4.11 and Proposition 4.19, we obtain that halg(α ↾N ) = 0. Therefore, halg(α) = 0 by Theorem 5.12.

Remark 5.19. Let K be a field of characteristic zero having finite degree n > 1 over Q. Then the underlying abelian
group A = (K,+) is a Q-vector space and A ∼= Qn. The group L := Aut(A) = AutQ(A) ∼= GLn(Q) is not amenable.

Let L
α
y A denote the natural action. By Corollary 5.18, for N = Z(L), we have that halg(α ↾N ) = 0. Hence, by

Theorem 5.12, for every amenable subgroup G of L that contains N and with [G : N ] infinite, halg(α ↾G) = 0.

The subgroups of Qn, and more generally the abelian groups with finite ranks introduced below, have the property
required in the following result (see Lemma 5.21). Under the assumption on G to be non-virtually cyclic, Corollary 5.20
strengthens Corollary 5.10 above.

Corollary 5.20. Let G be a non-torsion non-virtually-cyclic abelian group, A an abelian group, and G
α
y A a left

action. If halg(φ) <∞ for all φ ∈ Aut(A), then halg(α) = 0.

Proof. Since G is non-torsion and G is not virtually cyclic, there exists an infinite cyclic subgroup N = 〈g〉 of G of
infinite index in G. Since halg(α ↾N ) = halg(α(g)), by Remark 4.15(a), and halg(α(g)) <∞ by hypothesis, we conclude
that halg(α) = 0 by Theorem 5.12.
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In order to discuss further applications of Theorem 5.12, we recall that for an abelian group A the free-rank r0(A)
of A is

r0(A) = dimQ(Q⊗A)

and the p-rank rp(A) of A is
rp(A) = dimZ/pZA[p],

where A[p] = {x ∈ A : px = 0}.
In the sequel we are interested in the class N of abelian groups with finite ranks, namely, abelian groups A with

r0(A) <∞ and rp(A) <∞ for every prime p. The class N is stable under taking subgroups, quotients, and extensions
(hence, finite products). Moreover, every A ∈ N splits as A = t(A) × A1, where A1 ∈ N is torsion-free, so A1 is
isomorphic to a subgroup of Qn for some n ∈ N.

We see that the abelian groups in N have the property required in Corollary 5.20.

Lemma 5.21. Let A ∈ N and φ ∈ Aut(A). Then halg(φ) <∞.

Proof. Since the Addition Theorem holds for halg in the case of single endomorphisms of A (see [23]), we have that

halg(φ) = halg(φ ↾t(A)) + halg(φ̄),

where φ̄ : A/t(A) → A/t(A) is the automorphism induced by φ. Hence, it suffices to see that halg(φ ↾t(A)) < ∞ and
halg(φ̄) <∞.

Since the quotient A/t(A) is torsion free and has finite rank, it is isomorphic to a subgroup of Qn for some n ∈ N.
As recalled above in the proof of Corollary 5.16, halg(φ̄) <∞.

Now we show that halg(φ ↾t(A)) = 0. For every prime p consider the p-primary component tp(A) of t(A), which is
fully invariant. Since rp(A) < ∞, the subgroup A[pn] of tp(A) is finite and fully invariant for every n ∈ N; therefore,
every finite subset of tp(A) is contained in a finite fully invariant subgroup of tp(A) (see [30]). This yields that
halg(φ ↾tp(A)) = 0 for every prime p, so we can make use of the Addition Theorem for torsion abelian groups from [30]
to get that halg(φ ↾t(A)) = 0.

The next result generalizes Corollary 5.16, it follows directly from Corollary 5.20 and Lemma 5.21.

Corollary 5.22. Let G be a non-torsion non-virtually cyclic abelian group, A ∈ N, and G
α
y A a left action. Then

halg(α) = 0.

The class of abelian groups with all automorphisms of finite algebraic entropy, which contains N according to
Lemma 5.21, was studied in [30] for torsion abelian groups and in [32] in the general case, yet no complete description
of this class is known so far.

5.2 Entropy of quotient actions

In this section we consider the following general setting. Let G
α
y A be a left action of an amenable group G on an

abelian group A, and let N be a normal subgroup of G such that N ⊆ kerα, with π : G → G/N be the canonical
projection. Denote by

G/N
ᾱG/N
y A

the quotient action induced by α, that is, for x ∈ A and h ∈ G/N let ᾱG/N (h)(x) = α(g)(x) for any g ∈ G with
π(g) = h.

Under these hypotheses, and in particular in view of the assumption N ⊆ kerα, one could expect that halg(α) =
halg(ᾱG/N ), but this is not the case as item (b) of the following example shows.

Example 5.23. (a) Let A be an abelian group, L an amenable group, and L
γ
y A a left action. Let N be an

amenable group, G = N × L and let G
α
y A be defined by

α(k, h)(a) = γ(h)(a) for every (k, h) ∈ G.

Then N ⊆ kerα and α ↾L= γ, moreover ᾱG/N is weakly conjugated to γ. So, by Proposition 4.11

halg(ᾱG/N ) = halg(γ) and ent(ᾱG/N ) = ent(γ). (5.9)

We verify that

halg(α) =

{
0 if N is infinite
halg(γ)

|N | if N is finite
and ent(α) =

{
0 if N is infinite
ent(γ)
|N | if N is finite

. (5.10)
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The case when N is finite is settled by Proposition 5.6. So, assume that N is infinite. Let (Ni)i∈I be a right
Følner net of N and (Lj)j∈J be a right Følner net of L. Then (Ni × Lj)(i,j)∈I×J is a right Følner net of G by
Lemma 2.9. Let X ∈ P0

fin(A). For every (i, j) ∈ I × J , we have that

TNi×Lj(α,X) = TLj(γ,X).

Since the limit Halg(γ,X) = limj∈J
ℓ(TLj (γ,X))

|Lj|
is finite, there exists j0 ∈ J such that, for C = Halg(γ,X) + 1,

ℓ(TLj(α,X))

|Lj |
≤ C

for all j ≥ j0. Therefore,
ℓ(TNi×Lj (α,X))

|Ni × Lj|
=

1

|Ni|

ℓ(TLj(γ,X))

|Lj|
≤

C

|Ni|

for all j ≥ j0. Since limi∈I
1

|Ni|
= 0, we deduce that

Halg(α,X) = lim
(i,j)∈I×J

ℓ(TNi×Lj (α,X))

|Ni × Lj|
≤ lim

i∈I

C

|Ni|
= 0.

Since the above is true for every X ∈ P0
fin(A), we conclude that halg(α) = 0. The second equality follows from

the first one and Proposition 4.5.

(b) We discuss the equality halg(α) = halg(ᾱG/N ) in the example in item (a); in view of Equation (5.9), we need to
see when halg(α) = halg(γ).

We use Equation (5.10). If N is infinite, then halg(α) = 0. If N is finite, and halg(γ) = 0 or halg(γ) = ∞, then
halg(α) = halg(γ). If 0 < halg(γ) <∞, then halg(α) = halg(γ) precisely when N is trivial.

For specific examples consider L = Z, the right Bernoulli shift

β = βK : K(Z) → K(Z), (xn)n∈Z 7→ (xn−1)n∈N,

and the action L
αβ
y A = K(Z) induced by β. In case K = Z(p) for a prime p, one has ent(αβ) = halg(αβ) =

halg(β) = ent(β) = log p. To get an action with halg(γ) = ∞ it is enough to take K = Z.

Item (a) of Example 5.23 is a particular case of the following general result on quotient actions. While the
computation in the above example is elementary, the proof of the next theorem uses Theorem 3.10.

Theorem 5.24. Let G be an amenable group, A an abelian group, and G
α
y A a left action. Let N be a normal

subgroup of G such that N ⊆ kerα and consider G/N
ᾱG/N
y A. Then

halg(α) =

{
0 if N is infinite,
halg(αG/N )

|N | if N is finite.
and ent(α) =

{
0 if N is infinite,
ent(αG/N )

|N | if N is finite.

Proof. Let C = G/N , γ = ᾱG/N and fix a section σ : C → G. For B ∈ Pfin(A), by definition Halg(α,B) = HG(fB).
By Theorem 3.10,

Halg(α,B) = HC(θ),

where
θ = Θσ(fB) : Pfin(C) → R+, Y 7→ HN ((fB)

σ(Y )).

Let Y ∈ Pfin(C) and X ∈ Pfin(N) with m = |X |. Since N ⊆ kerα,

TXσ(Y )(α,B) = TX(α, Tσ(Y )(α,B)) = Tσ(Y )(α,B)m = Tσ(Y )(α,Bm) = TY (γ,Bm),

where in the next-to-the-last equality Lemma 4.21 applies. Therefore,

(fB)
σ(Y )(X) = fB(Xσ(Y )) = ℓ(TXσ(Y )(α,B)) = ℓ(Tσ(Y )(α,B)m) = ℓ(TY (γ,Bm)). (5.11)

Here we consider two cases.

Case 1. Assume that N is infinite. Then (fB)
σ(Y ) ↾Pfin(N) needs not be a constant function if B is not a subgroup of

A (i.e., Bm 6= B). Nevertheless, in this case we can find a convenient estimate of this function using the folklore fact
that for every finite subset W of A one has |Wm| ≤ (m + 1)|W |, so ℓ(Wm) ≤ |W | log(m+ 1). Hence, Equation (5.11)
gives

(fB)
σ(Y )(X) = ℓ(TY (γ,B)m ≤ |TY (γ,B)| log(m+ 1). (5.12)

where |TY (γ,B)| is constant with respect to X .
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Now we can compute θ by takingX to be a generic member of a right Følner net (Nj)j∈J ofN . From Equation (5.12)
we deduce that, for a right Følner net (Ci)i∈I of C, for every i ∈ I

θ(Ci) = HN ((fB)
σ(Ci)) ≤ lim

j∈J

|TCi(γ,B)| log(|Nj |+ 1)

|Nj|
= 0,

as |Nj | → ∞. Therefore, Halg(α,B) = HC(θ) = 0 by Theorem 3.10. Consequently, since B ∈ Pfin(A) is arbitrary, we
can conclude that halg(α) = 0, if N is infinite.

Case 2. Assume that N is finite and set X = N , so m = |N | = |X | in Equation (5.11). Pick a right Følner net (Ci)i∈I
of C and using Theorem 3.10 along with Equation (5.11) (applied to Y = Ci) conclude that

Halg(α,B) = lim
i∈I

HN ((fB)
σ(Ci))

|Ci|
= lim

i∈I

ℓ(TCi (γ,Bm))

m

|Ci|
=

1

m
lim
i∈I

ℓ(TCi(γ,Bm))

|Ci|
=

1

m
Halg(γ,Bm). (5.13)

Therefore,

Halg(α,B) =
1

m
Halg(γ,Bm) ≤

1

m
halg(γ),

and since B ∈ Pfin(A) is arbitrary, we conclude that

halg(α) ≤
1

m
halg(γ). (5.14)

To prove the opposite inequality consider first the case when halg(γ) <∞ and fix an ε > 0. There exists B ∈ Pfin(A)
such that Halg(γ,B) ≥ halg(γ)− ε. Then Equation (5.13) gives

halg(α) ≥ Halg(α,B) =
1

m
Halg(γ,Bm) ≥

1

m
Halg(γ,B) ≥

1

m
halg(γ)− ε.

Along with Equation (5.14), this proves that halg(α) =
1
mhalg(γ).

A similar argument works in the case halg(γ) = ∞. This completes the proof of the first assertion. The second
assertion follows from the first one and Proposition 4.5.

In the following direct consequence of the above theorem we see that the algebraic entropy of G
α
y A is always

smaller that the algebraic entropy of G/N
ᾱG/N
y A for N a normal subgroup of G contained in kerα. Moreover, we see

that the algebraic entropy of these two actions is the same only in special cases.

Corollary 5.25. Let G be an amenable group, A an abelian group, G
α
y A a left action, and N a normal subgroup of

G such that N ⊆ kerα. Then

halg(α) ≤ halg(ᾱG/N ) and ent(α) ≤ ent(ᾱG/N ).

Furthermore, halg(α) = halg(ᾱG/N ) if and only if either halg(ᾱG/N ) = 0, or N = {1}, or halg(ᾱG/N ) = ∞ and N is
finite. The same assertions hold for ent.

The inequalities in the above corollary can be strict also when N is infinite, as shown by Example 5.23(b).

Corollary 5.26. Let G be a torsion-free amenable group, A an abelian group, and G
α
y A a left action. If halg(α) > 0,

then the action is faithful (i.e., kerα = {1}).

Proof. Assume that N = kerα is non-trivial. Then N is infinite, as N is torsion-free. By Theorem 5.24 applied to G
and N we deduce that halg(α) = 0, a contradiction.

Corollary 5.27. Let G be a non-abelian torsion-free amenable group, A an abelian group, and G
α
y A a left action. If

Aut(A) is abelian, then halg(α) = 0. In particular, all actions G
α
y Z(p∞), G

α
y Q/Z and G

α
y Jp have halg(α) = 0.

Proof. Since G is non-abelian and Aut(A) is abelian, kerα is non-trivial. Hence, halg(α) = 0 by Corollary 5.26.
To prove the second assertion, note that Aut(Z(p∞)) ∼= Aut(Jp) ∼= U(Jp) is abelian for every prime p. So, in view

of the isomorphism Q/Z ∼=
⊕

p Z(p
∞), the group Aut(Q/Z) ∼=

∏
p∈PAut(Z(p

∞)) ∼=
∏
p∈P U(Jp) is abelian as well.

When A is one of the groups Z(p∞) and Q/Z, the conclusion of the above theorem remains true also in case G is
abelian (see Corollary 5.10). However, one can produce automorphisms φ of A = Jp with halg(φ) = ∞; indeed, taking
for example as φ the multiplication x 7→ ξx by an invertible p-adic number ξ that is transcendental over Z, one has
that the subgroup B of A generated by ξ is φ-invariant and isomorphic to

⊕
Z Z, and so halg(φ) = halg(φ ↾B) = ∞

since φ acts on B ∼=
⊕

Z Z as the two-sided Bernulli shift (see [28]).
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6 Addition Theorem

This section is dedicated to the proof of the Addition Theorem for the algebraic entropy stated in the introduction.

6.1 The function ℓ(−,−)

We start defining the useful auxiliary function ℓ(−,−). Let A be an abelian group, B ≤ A and π : A → A/B the
canonical projection. For Y ∈ P(A) let

ℓ(Y,B) = ℓ(π(Y )). (6.1)

Even if Y is not necessarily a subgroup, we shall write sometimes (Y + B)/B for the subset π(Y ) = {y + B : y ∈ Y }
of A/B in order to avoid the explicit use of π. Clearly, it may happen that B or Y are infinite, but ℓ(Y,B) is finite.
From the known properties of ℓ(−) we obtain that, for every Y, Y ′ ∈ P(A),

ℓ(Y + Y ′, B) ≤ ℓ(Y,B) + ℓ(Y ′, B). (6.2)

Remark 6.1. The the utility of the auxiliary function ℓ(−,−) is best illustrated in the calculation of the length of
orbits. Indeed, it allows for a transferring of the computation from the quotient A/B of an abelian group A to the

group A itself. More specifically, if S is a semigroup, S
α
y A a left action, B an α-invariant subgroup of A, and

π : A→ A/B the canonical projection, then for F ∈ Pfin(S) and Y ∈ P0
fin(A) one has

ℓ(TF (αA/B , π(Y ))) = ℓ(TF (α, Y ), B), (6.3)

due to the obvious equality TF (αA/B, π(Y )) = π(TF (α, Y )).

We start giving a basic property of the function ℓ(−,−).

Lemma 6.2. Let A be an abelian group and let B,C,D be subgroups of A. Then:

(a) ℓ(C,B) = ℓ(C,B ∩ C);

(b) ℓ(C,B) = ℓ(C,D) if B ∩C = D ∩ C.

Proof. (a) is clear and (b) follows from (a).

In the following lemma we collect other useful properties of the function ℓ(−,−).

Lemma 6.3. Let A an abelian group, X,X ′ ∈ P0
fin(A), C ∈ F(A), and B,B′ be subgroups of A. Then:

(a) the function ℓ(Y,B) is increasing in Y and decreasing in B;

(b) ℓ(X + C) = ℓ(X,C) + ℓ(C) and ℓ(X + C,B) = ℓ(X,C +B) + ℓ(C,B);

(c) ℓ(X +X ′, B +B′) ≤ ℓ(X,B) + ℓ(X ′, B′).

Proof. (a) and (b) are obvious.
(c) By (6.2) and item (a),

ℓ(X +X ′, B +B′) ≤ ℓ(X,B +B′) + ℓ(X ′, B +B′) ≤ ℓ(X,B) + ℓ(X ′, B′).

This concludes the proof.

Further properties of the function ℓ(−,−) follow, obtained from properties of trajectories from Lemma 4.20.

Lemma 6.4. Let S be a semigroup, A an abelian group, and S
α
y A a left action. Let F, F ′ ∈ Pfin(S), X ∈ P0

fin(A)
and B ≤ A. Then:

(a) ℓ(α(g)(X), α(g)(B)) ≤ ℓ(X,B) for every g ∈ S;

(b) if F ′ ⊆ F , then
ℓ(TF ′(X), B) ≤ ℓ(TF (X), B) and ℓ(X,TF (B)) ≤ ℓ(X,TF ′(B));

(c) ℓ(TF (X), TF (B)) ≤ |F | ℓ(X,B);

(d) if B is α-invariant, then ℓ(TF (X), B) ≤ |F | ℓ(X,B).

Proof. (a) The map α(g) : A→ A induces a surjective homomorphism (X +B)/B → (α(g)(X +B))/α(g)(B).
(b) Since 0 ∈ X , we have TF ′(X) ⊆ TF (X), and similarly TF ′(B) ⊆ TF (B). Hence, (a) applies, along with Lemma

6.3(a).
(c) By Lemma 6.3(c) and item (a),

ℓ(TF (X), TF (B)) ≤
∑

g∈F

ℓ(α(g)(X), TF (B)) ≤
∑

g∈F

ℓ(α(g)(X), α(g)(B)) ≤
∑

g∈F

ℓ(X,B) = |F | ℓ(X,B).

(d) Since TF (B) ≤ B, by Lemma 6.3(a) and item (c),

ℓ(TF (X), B) ≤ ℓ(TF (X), TF (B)) ≤ |F | ℓ(X,B).

This concludes the proof.
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We conclude with another lemma on the function ℓ(−,−).

Lemma 6.5. Let S be a semigroup, A an abelian group, and S
α
y A a left action. If F1, . . . , Fn ∈ Pfin(S), C1, . . . , Cn ∈

F(A), and B1, . . . , Bn ≤ A, then

ℓ(TF1(C1) + . . .+ TFn(Cn), TF1(B1) + . . .+ TFn(Bn)) ≤
n∑

i=1

|Fi| ℓ(Ci, Bi).

Proof. Applying Lemma 6.3(c), and taking into account that ℓ(TFi(Ci), TFi(Bi)) ≤ |Fi|ℓ(Ci, Bi) by item (c) of Lemma
6.4, we conclude that

ℓ(TF1(C1) + . . .+ TFn(Cn), TF1(B1) + . . .+ TFn(Bn)) ≤
n∑

i=1

ℓ(TFi(Ci), TFi(Bi)) ≤
n∑

i=1

|Fi| ℓ(Ci, Bi),

hence we have the thesis.

6.2 The Filling Theorem

In the sequel we expose a result from [11], and some of its consequences, that we apply in the next subsection to prove
the Addition Theorem.

Let S be a cancellative semigroup. For every D,E ⊆ S, define

∂E(D) = {s ∈ D : (sE) \D 6= ∅} .

In view of [11, Proposition 2.4], (Fi)i∈N is a right Følner net of S if and only if, for every E ∈ Pfin(S),

lim
i∈I

|∂E(Fi)|

|Fi|
= 0.

The following theorem is exactly [11, Theorem 3.8] for Sop. Actually, for a set X and ε > 0, a family (Yj)j∈J
in Pfin(X) is ε-disjoint if there exists a family (Zj)j∈J of pairwise disjoint subsets of X such that Zj ⊆ Yj and
(1 − ε) |Yj | ≤ |Zj| for every j ∈ J .

Theorem 6.6 (Filling Theorem). Let S be a cancellative semigroup. For every 0 < ε ≤ 1/2, there exists an integer
N = N(ε) ≥ 1 such that, if (Fj)j∈{1...,N} is a finite sequence of non-empty finite subsets of S such that

∣∣∂Fj (Fk)
∣∣

|Fk|
≤
ε2N

|Fj |
∀1 ≤ j < k ≤ N (6.4)

and D ⊆ S is a non-empty finite subset of S such that
∣∣∂Fj (D)

∣∣
|D|

≤ ε2N ∀1 ≤ j ≤ N, (6.5)

then there exists a finite sequence (Pj)j∈{1,...,N} of finite subsets of S, such that:

(1) for every j ∈ {1, . . . , N}, the family (sFj)s∈Pj is ε-disjoint1;

(2) the subsets PjFj, j ∈ {1, . . . , N}, are contained in D and pairwise disjoint;

(3) U :=
⋃N
j=1 PjFj ⊆ D satisfies |D \ U | ≤ ε |D|,

In the notations of Theorem 6.6, let

b =

N∑

j=1

|Pj | |Fj | , u = |U | , d = |D| .

We need the following inequality.

Lemma 6.7. In the above notations, u ≤ b and
b− u ≤ εb

Proof. The sets PjFj , with j ∈ {1, . . . , N}, are pairwise disjoint, and so u =
∑N

j=1 |PjFj |. Fix j ∈ {1, . . . , N}. Since
the family (sFj)s∈Pj is ε-disjoint, by [11, Lemma 3.2] we have

(1 − ε) |Pj | |Fj | ≤ |PjFj | ,

hence
|Pj | |Fj | − |PjFj | ≤ ε |Pj | |Fj | .

A summation with respect to j concludes the proof.

1and Pj ⊆ D \ ∂Fj (D) – we separated this property, since we do not use it in the sequel.
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Definition 6.8. Let S be a semigroup. Fix ε > 0, let D ∈ Pfin(S) and n ∈ N+. The n-tuple (F1, . . . , Fn) in Pfin(S)
is an ε-tiling of D, witnessed by the n-tuple (P1, . . . , Pn) in Pfin(S), if the subsets PiFi, i ∈ {1, . . . , n}, are pairwise
disjoint, and denoting

U =
n⋃

i=1

PiFi, d = |D| , u = |U | , b =
n∑

i=1

|Pi| |Fi| ,

(1) U ⊆ D;

(2) |D \ U | = d− u < εd;

(3) 0 ≤ b− u < εb.

We need the following property of ε-tilings.

Lemma 6.9. Let S be a semigroup. Fix ε > 0, let D ∈ Pfin(S) and n ∈ N+. If (F1, . . . , Fn) is an ε-tiling of D,
witnessed by (P1, . . . , Pn), then u ≤ b and ∣∣∣∣

1

d
−

1

b

∣∣∣∣ <
2ε

b
, (6.6)

Proof. From the inequalities 0 ≤ d − u ≤ εd and 0 ≤ b − u ≤ εb, given respectively by (2) and (3) in the above
definition, we deduce that both d and u belong to the interval [u, u

1−ε ]. Hence, |d − b| ≤ εu
1−ε ≤ 2εu ≤ 2εd. Dividing

both sides of the inequality |d− b| ≤ 2εd by bd we obtain (6.6).

The following is an important consequence of the Filling Theorem, that we apply in the proof of the Addition
Theorem in the particular case when F = D.

Corollary 6.10. Let S be a cancellative right amenable semigroup, and let F = (Fi)i∈I and D = (Dj)j∈J be two right
Følner nets of S. Fix 0 < ε < 1/2, and let N = N(ε) be as in Theorem 6.6. Then, there exist F1, . . . , FN ∈ F and
J ′ ⊆ J cofinal, such that, for every j ∈ J ′, (F1, . . . , FN ) is an ε-tiling of Dj.

Proof. We can find F1, . . . , FN in F satisfying (6.4) in Theorem 6.6. Let J ′ be the set of all j ∈ J such that Dj

satisfies (6.5) in Theorem 6.6. It is easy to see that J ′ is cofinal in J , so (Fj)j∈J′ is a subnet of (Fj)j∈J .
Fix j ∈ J ′. We can apply Theorem 6.6, and get P1, . . . , PN finite subsets of S as in the theorem. We claim that

(F1, . . . , FN ) is an ε-tiling of Dj , witnessed by (P1, . . . , PN ). Let U , d, u, b as in Definition 6.8. It is clear that U ⊆ Dj,
since PiFi ⊆ Dj for all i ∈ {1, . . . , N} by Theorem 6.6(2). This yields that |D \ U | = d−u, and furthermore d−u < εd
Theorem 6.6(3). Finally, Lemma 6.7 shows that b− u < εb.

Remark 6.11 (See also [62]). In [11, Definition 3.6], for a semigroup S, given K,D ∈ Pfin(S) and ε > 0, they define
an (ε,K)-filling pattern for a set D. Our notion of ε-tiling is related to it, but different. In fact, an (ε,K)-filling pattern
uses only one “tile” (the set K), while an ε-tiling uses n different tiles (the sets P1, . . . , Pn). Moreover, the resulting
set U for ε-tilings is “large” in D, in the sense that |D \ U | < ε |D|.

6.3 Proof of the Addition Theorem

The following result covers one inequality of the Addition Theorem.

Proposition 6.12. Let S be a cancellative right amenable semigroup, A be a torsion abelian group, S
α
y A a left

action, and B an α-invariant subgroup of A. Then

ent(α) ≥ ent(αB) + ent(αA/B).

Proof. Let π : A → A/B be the canonical projection and let (Fi)i∈I be a right Følner net of S. Let X ∈ F(B) and
Z ∈ F(A/B). Since A is torsion, we can find Y ∈ F(A) such that π(Y ) = Z. Let Y ′ = Y + X ∈ F(A). Then
π(Y ′) = Z, and let X ′ = Y ′ ∩B ∈ F(B), so that X ⊆ X ′. Therefore, by Lemma 4.4(a),

Halg(αB, X) ≤ Halg(αB, X
′) = Halg(α,X

′).

The exact sequence 0 → X ′ → Y ′ → Z → 0 gives rise, for every i ∈ I, to the sequence

0 → TFi(αB , X
′)

f
→ TFi(α, Y

′)
g
→ TFi(αA/B, Z) → 0,

where g = π ↾TFi (α,Y
′), while f is the inclusion map. This sequence need not be exact any more (as the kernel of the

map g may properly contain the image of f), nevertheless we have that

ℓ(TFi(αA/B, Z)) + ℓ(TFi(αB, X
′)) ≤ ℓ(TFi(αA/B, Z)) + ℓ(ker g) = ℓ(TFi(α, Y

′)).

Dividing by |Fi| and taking the limit, we conclude that

Halg(αA/B, Z) +Halg(αB , X) ≤ Halg(αA/B , Z) +Halg(αB, X
′) ≤ Halg(α, Y

′) ≤ ent(α).

To end the proof it suffices to take the supremum over all Z ∈ F(A/B) and X ∈ F(B).
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Now we prove the “second half” of the Addition Theorem.

Proposition 6.13. Let S be a right amenable monoid, A a torsion abelian group, α a left action of S on A, and B
an α-invariant subgroup of A. Then

ent(α) ≤ ent(αB) + ent(αA/B).

Proof. Let Y ∈ F(A) and fix ε > 0. Let π : A→ A/B be the canonical projection, and Z = π(Y ). To prove the thesis,
it suffices to show that

Halg(α, Y ) ≤5ε ent(αB) +Halg(αA/B , Z). (6.7)

Let F = (Fi)i∈I be a right Følner net of S, such that 1 ∈ Fi for every i ∈ I. By definition and by Remark 6.1,

Halg(α, Y ) = lim
i∈I

ℓ(TFi(α, Y ))

|Fi|
and Halg(αA/B, Z) = lim

i∈I

ℓ(TFi(αA/B, Y ), B)

|Fi|
.

Therefore, after taking a subnet of F if necessary, we have that for every i ∈ I

Halg(α, Y ) =ε
ℓ(TFi(α, Y ))

|Fi|
and Halg(αA/B, Z) =ε

ℓ(TFi(αA/B, Y ), B)

|Fi|
. (6.8)

Let
ε̄ =

ε

2ℓ(Y )
. (6.9)

By Corollary 6.10, there exist N ∈ N+, F1, . . . , FN ∈ F and a subnet (Fj)j∈J of F, such that (F1, . . . , FN ) is an ε̄-tiling
of Fj for every j ∈ J . This means that, for every fixed j ∈ J , letting (P1, . . . , PN ) in Pfin(S) be the N -uple witnessing
that (F1, . . . , FN ) is an ε̄-tiling of Fj , and moreover

d = |Fj | , U =

N⋃

i=1

PiFi, u = |U | , b =

N∑

i=1

|Pi| |Fi| , (6.10)

we have that
|Fj \ U |

d
< ε̄, |d− b| ≤ 2ε̄d, u ≤ b. (6.11)

Let X =
∑N
i=1(TFi(α, Y )) ∩B ∈ F(B).

Claim 6.14.

(i) ℓ(TFj (α, Y ), TFj (α,X))− ℓ(TU (α, Y ), TU (α,X)) ≤ εd2 ;

(ii) ℓ(TU (α, Y ), TU (α,X))
∣∣ 1
d − 1

b

∣∣ ≤ ε.

Proof. (i) Since U ⊆ Fj ,

TFj(α, Y ) = TFj\U (α, Y ) + TU (α, Y ) and TFj (α,X) = TFj\U (α,X) + TU (α,X). (6.12)

Hence, Lemma 6.3(c) yields

ℓ(TFj(α, Y ), TFj (α,X)) = ℓ(TFj\U (α, Y ) + TU (α, Y ), TFj\U (α,X) + TU (α,X))

≤ ℓ(TFj\U (α, Y ), TFj\U (α,X)) + ℓ(TU (α, Y ), TU (α,X)).

Consequently, by Lemma 6.4(c) and in view of (6.11) and (6.9),

ℓ(TFj (α, Y ), TFj (α,X)− ℓ(TU (α, Y ), TU (α,X)) ≤ ℓ(TFj\U (α, Y ), TFj\U (α,X)) ≤ |Fj \ U |ℓ(Y,X) ≤ ε̄dℓ(Y ) = ε
d

2
.

(ii) By Lemma 6.9, ∣∣∣∣
1

d
−

1

b

∣∣∣∣ ≤ 2ε̄
1

b
.

Thus, by Lemma 6.4(c) and (6.11),

ℓ(TU (α, Y ), TU (α,X))

∣∣∣∣
1

d
−

1

b

∣∣∣∣ ≤ uℓ(Y,X)2ε̄
1

b
≤ 2ε̄ℓ(Y )

u

b
≤ 2ε̄ℓ(Y ) = ε,

and this concludes the proof.
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After further taking a subnet of (Fj)j∈J , we may assume that, for every j ∈ J ,

Halg(αB, X) =ε
ℓ(TFj (α,X))

|Fj |
.

Fix j ∈ J . By (6.8) and Lemma 6.3(b), we have that

Halg(α, Y ) =ε
ℓ(TFj(α, Y ))

|Fj |
≤
ℓ(TFj(α, Y ) + TFj (α,X))

|Fj |
≤
ℓ(TFj (α, Y ), TFj (α,X))

|Fj |
+
ℓ(TFj (α,X))

|Fj |

≤ε
ℓ(TFj(α, Y ), TFj (α,X))

|Fj |
+Halg(α,X) ≤

ℓ(TFj (α, Y ), TFj (α,X))

|Fj |
+ ent(αB),

and so

Halg(α, Y ) ≤2ε

ℓ(TFj (α, Y ), TFj (α,X))

|Fj |
+ ent(αB).

In order to prove (6.7) (and so the thesis), it remains to show that

ℓ(TFj (α, Y ), TFj (α,X))

|Fj |
≤3ε Halg(αA/B , Z). (6.13)

To this end, let

r = max
i∈{1,...,N}

ℓ(TFi(α, Y ), TFi(α,X))

|Fi|
. (6.14)

Since 1 ∈ Fi, for every i ∈ {1, . . . , N}, one has TFi(α, Y ) ⊆
∑N

i=1 TFi(α, Y ). Hence,

TFi(α, Y ) ∩B ⊆
N∑

i=1

TFi(α, Y ) ∩B = X,

moreover, X ⊆ TFi(α,X) since 1 ∈ Fi; therefore,

TFi(α, Y ) ∩B ⊆ X ⊆ TFi(α,X) ⊆ B,

and so TFi(α, Y ) ∩ TFi(α,X) = TFi(α, Y ) ∩B. By Lemma 6.2, this gives

ℓ(TFi(α, Y ), TFi(α,X)) = ℓ(TFi(α, Y ), B).

Hence, by Equation (6.8)

ℓ(TFi(α, Y ), TFi(α,X))

|Fi|
=
ℓ(TFi(α, Y ), B)

|Fi|
=ε Halg(αA/B , Z),

therefore,
r =ε Halg(αA/B, Z). (6.15)

For every i ∈ {1, . . . , N}, let

δi =
|Pi| |Fi|

b
; (6.16)

clearly, 0 ≤ δi ≤ 1 and
∑N

i=1 δi = 1. Hence, by the definition of r in (6.14),

N∑

i=1

δi
ℓ(TFi(α, Y ), TFi(α,X))

|Fi|
≤ r. (6.17)

In the notation (6.10), by Claim 6.14(i,ii), we have that

ℓ(TFj(α, Y ), TFj (α,X))

|Fj |
=
ℓ(TFj (α, Y ), TFj (α,X))

d
≤ε

ℓ(TU (α, Y ), TU (α,X))

d
≤ε

ℓ(TU (α, Y ), TU (α,X))

b
. (6.18)

Since TU (α, Y ) =
∑N

i=1 TPiFi(α, Y ) and TPiFi(α, Y ) = TPi(α, TFi(α,X)) for every i ∈ {1, . . . , N}, and analogously for
TU (α,X), by Lemma 6.5 we have that

ℓ(TU (α, Y ), TU (α,X)) ≤
N∑

i=1

|Pi| ℓ(TFi(α, Y ), TFi(α,X)) (6.19)
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Now, since |Pi|/b = δi/|Fi for every i ∈ {1, . . . , N} by the definition of δi in (6.16),

∑N
i=1 |Pi| ℓ(TFi(α, Y ), TFi(α,X))

b
=

N∑

i=1

δi
ℓ(TFi(α, Y ), TFi(α,X))

|Fi|
. (6.20)

By (6.18), (6.19), (6.20), (6.17) and (6.15) applied in this order, we conclude that

ℓ(TFj(α, Y ), TFj (α,X))

|Fj |
≤ε

N∑

i=1

δi
ℓ(TFi(α, Y ), TFi(α,X))

|Fi|
≤ r =ε Halg(αA/B, Z).

We have obtained (6.13), as required to conclude the proof.

7 Bridge Theorem

7.1 Topological entropy for amenable semigroup actions

Following [11], let C be a compact topological space, let S be a cancellative left amenable semigroup. and consider the

left action S
γ
y C by continuous maps, that is, γ(s) : C → C is a continuous selfmap for every s ∈ S.

Let U = {Uj}j∈J and V = {Vk}k∈K be two open covers of C. One says that V refines U , denoted by V ≻ U , if for
every k ∈ K there exists j ∈ J such that Vk ⊆ Uj . Moreover,

U ∨ V = {Uj ∩ Vk : (j, k) ∈ J ×K}.

Let also
N(U) = min{n ∈ N+ : U admits a subcover of size n}.

We use in the sequel that
if V ≻ U then N(V) ≥ N(U). (7.1)

If f : C → C is a continuous selfmap, let

f−1(U) = {f−1(Uj)}j∈J .

For an open cover U of C and for every F ∈ Pfin(S), let

Uγ,F =
∨

s∈F

γ(s)−1(U).

Consider the function
fU : Pfin(S) → R, F 7→ logN(Uγ,F ).

For every U , the function fU is non-decreasing, subadditive, right subinvariant and uniformly bounded on singletons
(see [11]). So by applying Theorem 3.1, we have the following definition.

Definition 7.1 (See [11]). Let S be a cancellative left amenable semigroup, C a compact space, and S
γ
y C a left

action. For an open cover U of C, the topological entropy of γ with respect to U is

Htop(γ,U) = lim
i∈I

fU(Fi)

|Fi|
,

where (Fi)i∈I is a left Følner net of S. The topological entropy of γ is

htop(γ) = sup{Htop(γ,U) : U open cover of C}.

We are interested in the case when C = K is a totally disconnected compact abelian group. So, we consider the

topological entropy for left actions S
γ
y K by continuous endomorphisms, that is, γ(s) : K → K is a continuous

endomorphism for every s ∈ S. In this setting we can compute the topological entropy using open subgroups instead
of open covers. Indeed, for a totally disconnected compact group K, let B(K) be the family of all open subgroups of
K. In particular, each U ∈ B(K) has finite index in K.

For every U ∈ B(K), let
ζ(U) = {k + U : k ∈ K}.

Clearly,
N(ζ(U)) = [K : U ]. (7.2)
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Since K is a totally disconnected compact group, B(K) is a local base of K by van Dantzig’s theorem, so every
open cover of K is refined by some ζ(U) with U ∈ B(K). Hence, by (7.1),

htop(γ) = sup{Htop(γ, ζ(U)) : U ∈ B(K)}.

Define, for every F ∈ Pfin(S), the γ-cotrajectory of U with respect to F by

CF (γ, U) =
⋂

s∈S

γ(s)−1(U).

In particular, CF (γ, U) ∈ B(K), so each CF (γ, U) has finite index in K.

Lemma 7.2. Let S be a cancellative left amenable semigroup, K a totally disconnected compact abelian group, and

S
γ
y K a left action. For every U ∈ B(K) and every F ∈ Pfin(S),

ζ(U)γ,F = ζ(CF (γ, U)).

Proof. Recall that ζ(U)γ,F =
∨
s∈F γ(s)

−1(ζ(U)).
Let s ∈ F and k ∈ K. Then

γ(s)−1(k + U) = k′ + γ(s)−1(U) for every k′ ∈ γ(s)−1(k + U). (7.3)

Hence,

ζ(U)γ,F =

{⋂

s∈F

γ(s)−1(ks + U) : ks ∈ K

}
=

{⋂

s∈F

(k′s + γ(s)−1(U)) : k′s ∈ K

}
.

Now, for ks ∈ K, with s ∈ F ,

⋂

s∈F

(ks + γ(s)−1(U)) = z +
⋂

s∈F

γ(s)−1(U) for every z ∈
⋂

s∈F

(ks + γ(s)−1(U)). (7.4)

Therefore,

ζ(U)γ,F =

{⋂

s∈F

(k′s + γ(s)−1(U)) : k′s ∈ K

}
=

{
z +

⋂

s∈F

γ(s)−1(U) : z ∈ K

}
= ζ(CF (γ, U)).

This concludes the proof.

Proposition 7.3. Let S be a cancellative left amenable semigroup, K a totally disconnected compact group, S
γ
y K a

left action, and (Fi)i∈I a left Følner net. If U ∈ B(K), then

Htop(γ, ζ(U)) = lim
i∈I

log[K : CFi(γ, U)]

|Fi|
.

Proof. By definition, by Lemma 7.2 and Equation (7.2),

Htop(γ, ζ(U)) = lim
i∈I

logN(ζ(U)γ,Fi)

|Fi|
= lim

i∈I

logN(ζ(CFi(γ, U))

|Fi|
= lim

i∈I

[K : CFi(γ, U)]

|Fi|
,

hence the thesis holds.

From now on we write simply Htop(γ, U) in place of Htop(γ, ζ(U)).

7.2 The entropy of the dual action

Let A be a locally compact abelian group and denote by Â its Pontryagin dual. For a continuous homomorphism
φ : A→ B, where B is another locally compact abelian group, let φ̂ : B̂ → Â be the dual of φ, defined by φ̂(χ) = χ ◦φ.

Let S be a cancellative left amenable semigroup and K a compact abelian group, and consider the left action

S
γ
y K. Then γ induces the right action K̂

γ̂
x S, defined by

γ̂(s) = γ̂(s) : K̂ → K̂ for every s ∈ S.

In fact, fixed s, t ∈ S, since γ(st) = γ(s)γ(t), we have that

γ̂(st) = γ̂(st) = ̂γ(s)γ(t) = γ̂(t)γ̂(s) = γ̂(t)γ̂(s).
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Analogously, let S be a cancellative left amenable semigroup and A an abelian group, and consider the right action

A
α
x S. Then α induces the left action S

α̂
y Â, defined by

α̂(s) = α̂(s) : Â→ Â for every s ∈ S.

In fact, fixed s, t ∈ S, since α(st) = α(t)α(s), we have

α̂(st) = α̂(st) = ̂α(t)α(s) = α̂(s)α̂(t) = α̂(s)α̂(t).

According to Pontryagin–van Kampen duality theorem A ∼=top
̂̂
A, so in the sequel we shall simply identify

̂̂
A with

A. As a direct consequence one obtains:

Proposition 7.4. Let S be a cancellative left amenable semigroup and K a compact abelian group, and consider the

left action S
γ
y K. Then

̂̂γ = γ.

Let A
α
x S be a right action of S on an abelian group A. Then

̂̂α = α.

This shows in particular that every left action S
γ
y K of a cancellative left amenable semigroup S on a compact

abelian group K is induced by a right action A
α
x S of S on an abelian group A, and vice versa.

We collect here some known facts concerning Pontryagin duality. Recall that, if A is a locally compact abelian
group, and B is a subgroup of A, then the annihilator of B in Â is B⊥ = {χ ∈ Â : χ(B) = 0}. Under the identification

of
̂̂
A with A we have that, for every closed subgroup B of A,

(B⊥)⊥ = B, (7.5)

and moreover,

B̂ ∼=top Â/B
⊥ and Â/B ∼=top B

⊥. (7.6)

Lemma 7.5. Let A be an abelian group.

(a) If A is discrete (respectively, compact) then Â is compact (respectively, discrete).

(b) If A is discrete, then Â is totally disconnected precisely when A is torsion.

(c) If A is finite, then A ∼= Â.

(d) If B1, B2 are subgroups of A, then (B1 +B2)
⊥ = B⊥

1 ∩B⊥
2 .

(e) If φ : A→ A is an endomorphism, then φ(B)⊥ = (φ̂)−1(B⊥).

The following technical lemma is a key step in the proof of Theorem 7.7.

Lemma 7.6. Let S be a cancellative left amenable semigroup, A a torsion abelian group, and A
α
x S a right action.

For B ∈ F(A) and F ∈ Pfin(S),

|TF (α,B)| = [Â : CF (α̂, B
⊥)].

Proof. Recall that TF (α,B) =
∑

s∈F α(s)(B) is a finite subgroup of A, so by Lemma 7.5(c) and by (7.6) it is isomorphic

to its dual ̂TF (α,B) ∼= K/TF (α,B)⊥. In view of Lemma 7.5(d,e),

TF (α,B)⊥ ∼=
⋂

s∈F

(α(s)(B)⊥) =
⋂

s∈F

α̂(s)
−1

(B⊥) =
⋂

s∈F

α̂(s)−1(B⊥) = CF (α̂, B
⊥).

Therefore, |TF (α,B)| = | ̂TF (α,B)| = [Â : TF (α,B)⊥] = [Â : CF (α̂, B
⊥)].

We are now in position to prove the so-called Bridge Theorem.

Theorem 7.7. Let S be a cancellative left amenable semigroup, A a torsion abelian group, and A
α
x S a right action.

Then
hralg(α) = htop(α̂).

Proof. Let B ∈ F(A); by Lemma 7.5(c,e), B⊥ is a closed subgroup of Â with finite index, so it is open and B⊥ ∈ B(K̂).

Then, for (Fi)i∈I a left Følner net of S, since B⊥ ∈ B(Â), Proposition 7.3 and Lemma 7.6 give

Hr
alg(α,B) = lim

i∈I

log |TFi(α,B)|

|Fi|
= lim

i∈I

log[Â : CFi(α̂, B
⊥)]

|Fi|
= Htop(α̂, B

⊥).

By (7.5) there is a bijection F(A) → B(Â), given by B 7→ B⊥, so we can conclude that hralg(α) = htop(α̂) in view
of Proposition 7.3 and (4.5).
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The following is a consequence of Theorem 7.7 and Proposition 7.4.

Corollary 7.8. Let S be a cancellative left amenable semigroup, K a totally disconnected compact abelian group and

S
γ
y K. Then

htop(γ) = hralg(γ̂).

Proof. Let α = γ̂. By Proposition 7.4 we have that γ = α̂. So, Theorem 7.7 implies htop(γ) = htop(α̂) = hralg(α).

As a consequence of the Addition Theorem and the Bridge Theorem proved in this paper for the algebraic entropy,
we obtain the following Addition Theorem for the topological entropy.

Theorem 7.9 (Addition Theorem). Let S be a cancellative left amenable semigroup, K a totally disconnected compact

abelian group, S
γ
y K and L a closed γ-invariant subgroup of K. Then

htop(γ) = htop(γL) + htop(γK/L).

Proof. Let A = K̂, α = γ̂ and B = L⊥ ≤ A. By Corollary 7.8,

htop(γ) = hralg(α), htop(γL) = hralg(γ̂L), htop(γK/L) = hralg(γ̂K/L).

Since γ̂L is conjugated to αA/B and γ̂K/L is conjugated to αB , Proposition 4.11 gives

hralg(γ̂L) = hralg(αA/B), hralg(γ̂K/L) = hralg(αB).

So it suffices to apply the Addition Theorem and the previous equalities to get

htop(γ) = hralg(α) = hralg(αB) + hralg(αA/B) = htop(γK/L) + htop(γL),

which concludes the proof.

8 Final comments and open questions

In this final section we collect several open questions related to the results obtained in the paper.

We start from the following question related to Example 2.25.

Question 8.1. Let S be a cancellative monoid, C a monoid, and π : S → C a surjective homomorphism admitting a
good section σ. Is C necessarily cancellative?

It is known that if f : S → Q is a surjective semigroup homomorphism and S is left amenable, then Q is left
amenable as well (see [19] or [35, Lemma 3]). On the other hand, the following question is open.

Question 8.2. If f : S → S1 is a surjective homomorphism of semigroups (groups) and if (Fi)i∈I is a right Følner
net of S, is then (f(Fi))i∈I a right Følner net of S1?

In view of Proposition 5.8 we propose the following conjecture.

Conjecture 8.3. Let G be an amenable group, A an abelian group, and G
α
y A a left action. If H is a subgroup of

G, then halg(α) ≤ halg(α ↾H) and ent(α) ≤ ent(α ↾H).

We also conjecture that one can remove the condition in Theorem 5.12 that the subgroup of G of infinite index is
normal in G:

Conjecture 8.4. Let G be an amenable group, A an abelian group, G
α
y A a left action, and H a non-trivial subgroup

of G of infinite index.

(a) If ent(α↾H) <∞, then ent(α) = 0.

(b) If halg(α↾H) <∞, then halg(α) = 0.

If Conjecture 8.4 holds true, then it implies that also Conjecture 8.3 holds true in view of Proposition 5.6.

We end with two general conjectures related to the Addition Theorem and the Bridge Theorem (see Theorem 1.1
and Theorem 1.2 respectively). Indeed, we think that they hold without the hypothesis on the abelian group A to be
torsion.

Conjecture 8.5 (Addition Theorem). Let S
α
y A be a left action of a cancellative right amenable monoid S on an

abelian group A, and let B be an α-invariant subgroup of A. Then

halg(α) = halg(αB) + halg(αA/B).

Conjecture 8.6 (Bridge Theorem). Let S
γ
y K be a left action of a cancellative left amenable monoid on a compact

abelian group K. Then
htop(γ) = hralg(γ̂)

In case S is a group, a positive answer was announced by Virili [74] in the more general case of actions on locally
compact abelian groups.
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