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Abstract We present a study that investigated a quantum dipolar gas in continuous
space where a potential lattice was imposed. Employing exact quantum Monte Carlo
techniques, we analysed the ground-state properties of the scrutinised system, varying
the lattice depth and the dipolar interaction. For system densities corresponding to a
commensurate filling with respect to the optical lattice, we observed a simple crystal-
to-superfluid quantum phase transition, being consistent with the physics of dipolar
bosons in continuous space. In contrast, an incommensurate density showed the pres-
ence of a supersolid phase. Indeed, such a result opens up the tempting opportunity
to observe a defect-induced supersolidity with dipolar gases in combination with a
tunable optical lattice. Finally, the stability of the condensate was analysed at finite
temperature.

Keywords Dipolar bosons · Lattice potentials · Supersolidity · Path integral
quantum Monte Carlo

1 Introduction

During the last few years, tremendous development in the ability to control ultra-cold
gases, characterised by long-ranged dipolar interactions, confined in optical lattices
[1,2] has taken place. In particular, surprising results have been achieved in quantum
gases composed of Rydberg atoms [3], polar molecules [4] or lanthanides such as
erbium (Er) [5].
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From a theoretical perspective, long-range magnetic or electric dipolar interac-
tions are considered as chief candidates for observing and controlling novel phases
in quantum many-body systems [6,7]. One of these phases is known as supersolidity,
featuring both diagonal and off-diagonal order [8]. As is well known, the interaction
among defects is a key ingredient for driving such an intriguing phase. Although in
a quantum regime the defect interaction is still a problem not entirely understood in
detail, it appears well established as, in some cases, supersolidity yields as a result
of defects delocalisation [9]. Considering a classical regime only, some authors have
emphasised that the effective defect interactions in a self-assembled crystal can be
tuned from attractive to repulsive using an external periodic superlattice [10].

Concerning a quantum regime, recent studies have pointed out that the supersolid
phase can be observed in optical lattices [8,11–13]. For example, Pollet et al. [13] have
studied a complete phase diagramof a two-dimensional system composed of cold polar
molecules on a triangular lattice. The authors proposed a phase diagram that featured
a crystal, a superfluid, and, more important, a supersolid phase. However, even if these
studies have improved knowledge of the concept of supersolidity remarkably, they still
remain focused on single-band lattice models. Quantum phases using approximations
that take into account higher bands still remain a subject to be understood in full
[14–16].

In this paper, we present the results concerning a boson dipolar system in continuous
space where a potential lattice is imposed, in other words removing the usual tight-
binding condition [16]. In such a continuous limit, the band structure is not completely
formed, roughly depending on the potential depth.

Using exact quantum Monte Carlo methods, we studied the many-body system
investigating different lattice depths and dipolar interaction strengths, considering a
filling factor around n = 1/3. We showed that the behaviour of the dipolar systems
in shallow lattices changed drastically considering a commensurate and an incom-
mensurate filling of the lattice potential. In the first case, one can observe a simple
superfluid-to-crystal quantum phase transition, as already discussed in Refs. [17,18].
Concerning the second situation, incommensurability features a defect-induced super-
solidity, as originally proposed in Ref. [19].

The article is organised as follows: in the Sect. 2, we present the model Hamil-
tonian and the quantum Monte Carlo methods applied. The results are presented and
discussed in Sect. 3. In particular, Sect. 3.1 refers to the ground-state configuration,
while Sect. 3.2 is devoted to a regime of finite temperature. Finally, in Sect. 4, a number
of conclusions are presented.

2 Model Hamiltonian and Methodology

Weconsidered an ensemble of bosons interacting via a dipole-dipole potential confined
in a two-dimensional optical lattice. The system is described by a quantum-mechanical
many-body Hamiltonian as follows:

H = h̄2

2m

∑

i

∇2
i +

∑

i< j

D

r3i j
−

∑

i

ui (r), (1)
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where m is the mass of a single particle, while ri j = |ri − r j | is the distance between
particles i and j . D represents the characteristic strength of the interaction between
two dipoles. The last term of the Hamiltonian refers to an optical triangular lattice
potential

u(r) = u0

[
sin2

(
x + √

3y

2r0

)
+ sin2

(
−x + √

3y

2r0

)
+ sin2

(
x

r0

)]
(2)

with u0 being the lattice depth and r0 the optical lattice constant. For the sake of clarity,
we defined distances and energies in units of d = D/r30 .

As mentioned before, the model proposed in Eq. (1) was investigated using a quan-
tumMonte Carlo technique [20]. More precisely, we sampled the density matrix of the
system employing a path integral representation in continuous space. Our code was
based on the well-known worm algorithm [21]. This methodology has been imple-
mented in order to properly sample both configurations connected to the partition
function and configurations related to the one-particle Matsubara Green function.
Over the last decade, this technique has been successfully implemented for studying
the quantum properties of different bosonic systems [22]. An all-inclusive discussion
of this methodology is provided in Ref. [23]. Moreover, as pointed out lately [24], the
employment of repulsive dipolar interactions combined with trapping potentials does
not involve any particular pathology throughout the sampling stage.

The worm algorithm efficiently furnishes a numerically exact estimation of the sta-
tistical observables, such as, for instance, energy per particle, density distributions and
superfluid fraction. In the following sections, we are going to pay particular attention
to the last two quantities. Concerning the study of density distributions in a continuous
system described by the Hamiltonian (1), we introduce the density profile as

n1(r) =
〈
∑

i

δ (r − ri (t))

〉

t

(3)

〈. . .〉t denotes an average of the corresponding imaginary time trajectories ri (t). Con-
sistently [25], the pair distribution function reads

g2(r) = 1

2πn(N − 1)r

〈
∑

i

∑

j �=i

δ(r − ri j (t))

〉

t

(4)

where n is the system density, and N the number of particles of the ensemble.
In accordance with Ref. [26], in a system where periodic boundary conditions are

imposed, the estimator of the superfluid fraction can be defined as

fS = m

h̄2βN
〈w 2〉, (5)

where β = 1/kBT . The quantityw = (wx , wy) is the winding number estimator [26],
defined as
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w =
∑

i

(ri (t + 1) − ri (t)) . (6)

We present data considering up to N = 250 particles and about 650 sites in order
to exclude any finite-size effects. Even if the algorithm works at finite temperature, an
accurate extrapolation of the ground state limit (i.e. T → 0) may be reached as well.
As a general rule, this limit is approached when the structural and energetic properties
of the system remain constant within the statistical error of the simulation.

The phase diagram of the Hamiltonian (1) with u0 = 0 has been intensively inves-
tigated over the last few years. At present, there is a general consensus that this phase
diagram only presents a melting quantum phase transition from a triangular crystal
to a homogeneous superfluid [17,18,27]. The crystal-superfluid quantum phase tran-
sition results seem to be easily controlled by adjusting the dimensionless parameters
rd = Dm/ah̄2, a being the averaged interparticle distance of the purely continuous
system. Büchler et al. have identified the transition at rQMd = 18(4) [18]. Never-
theless, some aspects related to the transition order continue to be controversial. In
particular, as discussed by Spivak and Kivelson [28], at the interface between the two
phases, the system should feature a microemulsion phase. Using a variational quan-
tum Monte Carlo [29], Moroni and Boninsegni have recently pointed out that “for
all practical purposes” [17], the transition results of the first order, with a coexisting
phase (microemulsion) mainly inaccessible for any possible experiment.

Differently from the case just discussed, the limit u0 → ∞ presents amore complex
but also more interesting phase diagram. Here, between a superfluid and a crystal
phase, Pollet et al. [13] identified a supersolid phase as well as a microemulsion as
proposed inRef. [28]. The authors found that for a commensurate filling factor n = 1/3
(n typically being the ratio between simulated particles and lattice size), the system
displayed diagonal and off-diagonal long-range order concurrently.

In order to observe a supersolid phase, in this study, we were interested in analysing
the unexplored limit of finite u0, considering again the filling values n = 1/3 (com-
mensurate filling) and n � 1/3 (noncommensurate filling). The noncommensurate
filling case was studied by introducing an interstitials density ranging from 0.02 to
0.04. In addition, we focused our attention on the limit rd � rQMd , in other words far
from a free-space triangular lattice phase.

3 Results

3.1 Ground-State Properties

Figure 1 depicts snapshots of the projection of world lines onto the xy-plane for
n = 1/3 (Fig. 1a), with a density of defects (interstitials) equal to 0.036 (Fig. 1b). The
dipole–dipole interaction is d = 15 (i.e. rd ≈ 5), while the lattice depth corresponds
to u0 = 8. The representation in Fig. 1 provides a functional way to sketch out
the probability distribution of the many-body system in real space [20]. Below a
superfluid transition temperature, the overlap of paths entails exchanges among bosons
and superfluidity too.
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Fig. 1 Example of configuration snapshots, in other words particle world lines projection on an xy-plane,
for a system of dipolar bosons confined in a two-dimensional optical lattice with Eq. (2). The dots represent
the 325 sites, in other words the potential minimum. The interaction is d = 15 and the lattice depth is
u0 = 8. a N = 108 (no defects), and b N = 120 (density defect 0.036) (Colour figure online)
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Fig. 2 Superfluid fraction versus lattice depth considering a system without defects (a) and introducing a
defect density equal to 0.036. rd = 1.67 (square), 3.34 (circle), 5 (diamond) and 6.67 (triangle) (Colour
figure online)

We observe in Fig. 1a that particle paths are completely confined around the local
minima of the lattice potential (2), showing a stripe crystal ground state configuration.
The situation changes if one introduces defects. Figure 1b depicts a configuration,
whereby a localised path occurs with delocalised ones. This coexistence implies the
presence of a supersolid phase.

Figure 2 shows the superfluid fraction fS versus u0, considering the different values
of rd, again for a commensurate (Fig. 2a) and an incommensurate (Fig. 2b) sample,

123



158 J Low Temp Phys (2016) 182:153–161

0 2 4 6 8
r

0

0.5

1

1.5

2

g
2
(r)

Fig. 3 Pair distribution function g2(r) for a crystal phase (dashed line) and a supersolid phase (continuous
line), using the same set of parameters as in Fig. 1

respectively. Analysing Fig. 2a, we see that only for rd = 1.67, the dipolar system per-
sists in being superfluid ( fS = 1) over all the u0 considered. However, by increasing
rd, we obtain a simple drop of the superfluid estimator from one (homogeneous super-
fluid) to zero (crystal) when the lattice depth turns deeper. Such behaviour signalises
a simple superfluid-to-insulating-crystal quantum phase transition. The snapshot con-
figuration in Fig. 1a is a representative example that shows how the lattice is forcing
a crystal phase onto the system. In fact, for u0 = 0, we have observed a superfluid
phase for all the rd considered.

Figure 2b shows simulations introducing defects, again for different rd. Here for
rd = 3.34 and u0 ≤ 10,we notice that the presence of defects seems to remove only the
transition, leaving the superfluid phase unchanged.Moreover, for interaction strengths
rd = 1.67 and 6.67, fS does not show any fundamental changing with respect to the
commensurate case. Yet, for rd = 5 and 5 < u0 < 9, the ground-state superfluidity
leads to a nonhomogeneous superfluid behaviour, characterised by 0 < fS < 1 [30].
This set of parameters allows the system to move into a supersolid phase, as shown in
Fig. 1b.

Figure 3 reports the pair distribution function, introduced in equation (4). Such a
function provides more qualitative information on a liquid or crystal phase. The figure
still compares a commensurate (dashed line) and an incommensurate (continuous
line) filling value, respectively. In either case, the system perfectly mimics the lattice
periodicity, with the first maximum representing the averaged interparticle distance for
a stripe crystal. Regarding the supersolid phase (continuous line), g2(r) still presents
a robust modulation that becomes smoother at large distances due to a strong particle
delocalisation throughout the lattice.

3.2 Finite Temperature Properties

Now we discuss the temperature effects on the supersolid phase observed in Figs. 1b
and 2b. As one would expect, the stability of the condensate at finite temperature is
a key feature for supporting realistic experiments. In order to clarify the behaviour in
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Fig. 4 Superfluid fraction versus the reduced temperature t with a defect density equal to 0.036 considering
u0 = 6 (a) and u0 = 8 (b). N = 120 (open diamond) and 212 (full diamond) (Colour figure online)

temperature, Fig. 4 depicts the superfluid fraction as a function of temperature, for
u0 = 6 (Fig. 4a) and 8 (Fig. 4b), respectively. In accordance with Fig. 2b, we take
into account a dipole strength (rd = 5) that furnishes a nonhomogeneous superfluidity
for t → 0. We defined a reduced temperature t ≡ kBT/(h̄2n/m), h̄2n/m being the
kinetic energy at the mean interparticle distance.

Considering first u0 = 6 for an ensemble of N = 120 dipoles, one sees that fS
remains constant ( fS ∼0.75) up to t � 0.4, revealing a critical behaviour at finite
t (temperature phase transition). This, therefore, appears as entirely consistent with
the Berezinsky–Kosterlitz–Thoules (BKT) theory for a two-dimensional system with
a continuous symmetry [31]. It is well known that for a homogeneous gas of bosons,
the transition temperature can be estimated at TBKT = 2π h̄2n/mkB . Figure 4b shows
that this approximation yields a BKT regime for t � 0.85. The lowering of the BKT
regime in temperature is strictly connected with the interaction strength showed in
Fig. 4, consistent with the results discussed in Ref. [32]. Figure 2b shows a similar
physics for t � 0.3 but with a lower superfluid fraction in the ground state ( fS ∼0.22).
Weobserve that in the supersolid region, u0 appears to influence tBKT onlymildly. This,
actually, is an interesting feature of dipolar bosons in an optical lattice. For u0 > 8, we
do not observe any superfluidity (and consequently any tBKT), leading to the onset of
a crystal phase. These results seem to be consistent with a first-order phase transition.
It is worthwhile stressing that a crystal-to-supersolid first-order phase transition has
been observed also for ultra-cold soft-core bosons [33,34] and for dipolar bosons in
triangular lattices [35] as well.

Finally, in order to exclude finite-size effects, Fig. 4 compares two different system
sizes, N = 120 (open diamond) and N = 212 (full diamond). It clearly appears that
superfluidity at finite temperature does not change within the statistical errors for both
sizes.
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4 Conclusions

In this study, we considered a two-dimensional dipolar bosonic gas in the presence of
a weak triangular optical lattice. The results were obtained using an exact quantum
Monte Carlo that implements the worm algorithm in continuous space. Different from
previous studies, we investigated a Hamiltonian (1) modifying the depth of the optical
lattice (2) and the strength of the dipole–dipole interactions. Regarding a commensu-
rate filling, we observed that the presence of a periodic potential did not change the
phase diagram of the system for u0 = 0, in other words where the quantum gas simply
shows a crystal-to-superfluid quantum phase transition. In contrast, the introduction
of defects into the system was found to allow a clear defect-induced supersolidity.
We also verified that this phase remained thoroughly solid even at finite temperature.
Finally, the supersolid mechanism here discussed fully agrees with the original defini-
tion of supersolid phase given byAndreev and Lifshitz [19]. In this limit of density, our
results therefore proved that the experimental realisation of this long-sought quantum
phase can also be made using quantum dipolar gases in optical lattices.

Acknowledgments The author thanks G. Pupillo and T. Macrì for enlightening discussions.
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