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The heat transfers within the intake valve differs than the exhaust valves, due to the difference in the
boundary condition surrounding each valve. This paper concerns a comparison of the heat transfer coef-
ficient (HTC) at various engine speed and the temperature distribution through exhaust valves and intake
valves. The boundary condition are assessed using basic concept of heat transfer and correlation related
to internal cbustin engine. To assess perfectly the real effect of the valves surrounding, an adequate sub-
division of the valve is used where the heat transfer coefficient and the adiabatic wall temperature (AWT)
for each subdivision are evaluated during one engine cycle. An average value of these two parameters is
calculated and introduced as a boundary condition in a FEMmodel. This procedure is repeated for diverse
engine speeds, and therefore, the trend of the real boundary condition in term of HTC and AWT are given
versus engine speed. The comparison in term of HTCs shows different behaviour of valves surrounding
mainly in the seat and stem zones. The obtained model is used to highlight the temperature map of an
exhaust valve and intake valves for the different operating condition in addition to zones of fort thermal
gradient and thus, areas of maximum thermal load can be specified, which help automobile manufactures
to avoid valves failures.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Exhaust and intake valves are located in the cylinder head and
their main function is to allow fresh air or gases to enter/leave the
engine cylinder [1]. Because of the valves role and the exigencies of
the recent new vehicles, considerable efforts are focusing on the
aim of allowing valves to realize the requirements demanded.
The prediction of the temperature map of such components plays
primordial role in the design process and allows engineers to pro-
duce a more robust engine and the earlier, the distribution of the
temperature within valves is known, the higher chance to reach
robust design. The design of valves is directly related to the bound-
ary condition, which may complicate the conception process. Thus,
quantitative and qualitative information on heat transfer through
valves at diverse boundary condition (different engines and loads)
permit the optimal design at large operating condition, moreover,
extrapolation to the extreme conditions will be possible and with
accurate precision. Also, It is decisive to get the temperature map
within both the exhaust and intake valve to detect extreme
temperature regions and then check if the valve material’s temper-
ature limits are respected or not.

In recent times, with the environment restriction and simulta-
neously, the increased of specific output (engine downsizing and
turbocharging) progressive arduous conditions surround both the
exhaust and the intake valve.

Even if the study of the heat transfer within intake valves has an
important role to perform the ICE efficiency, since any increase in
their temperature will directly transformed to the incoming fluid
to the cylinder, rare works were focused on them, whereas
researchers are mostly interesting to heat transfer in the intake
manifolds. Also, in the open literature, there is little information
how the boundary condition enclosing the valves varies with the
engine speed.

Accordingly, the main contributions of the present work can be
cited in below:

1- Perform the numerical approach presented by the authors
by considering the relative motion of the valves and flow
transition inside the exhaust/intake manifolds and over the
seat region.

2- Determine the trend of the heat transfer coefficients and adi-
abatic wall temperature of each zone at divers engine speed

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2019.119005&domain=pdf
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119005
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http://www.sciencedirect.com/science/journal/00179310
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Notations

A area (m2)
B bore diameter (m)
c1 vickers micro-hardness correlation coefficient [Pa]
c2 vickers micro-hardness correlation confident [�]
C1;C2 � � �C6 constants
Cd discharge coefficient
Dh hydraulic diameter (m)
Dm mean valve diameter (m)
Dp port diameter (m)
Ds stem diameter (m)
E Young’ s modulus, MPa
F force (N)
G gap thickness (m)
Hc micro-hardness (MPa)
k thermal conductivity (W/m K)
L length (m)
Lv valve lift (m)
_m mass flow
M mean asperity slope, experimental exponents
Nu Nusselt number
P pressure (bar), specific pressure (N/m2)
Pr Prandtl number
pm motoring pressure (Pa)
R radial distance (m), resistance, K/W, gas constant
Re Reynolds number
T Temperature (K)
u differential expansion (m)
V,v Volume (m3), velocity (m/s)

Vp mean piston speed (m/s)
Vs swept volume (m3)
X,y coordinates

Greek symbols
a coefficient of thermal expansion [K�1], Flow angle (deg)
b seat angle (deg)
r RMS surface roughness (m)
c ratio of specific heats
h crank angle (deg)
m poisson’ s ratio
l dynamic viscosity (kg/m s)
e constant

Subscripts
r reference state
0 stagnation condition
s effective value
min minimum
max maximum
Al aluminium
up pressure upstream the restriction

Abbreviation
TCC thermal contact conductance
HTC heat transfer coefficient (W/m2 K)
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3- Compares the temperature map and the maximum temper-
ature of the intake valves to the exhaust valves after real
regime of an ICE.

The remainder of this paper gives consecutively a brief review
of previous works on the heat transfer within valves, a description
of the numerical approach adopted in the present and result of an
application considering both valves.
2. Literature survey

The identification of the parameters which influence the heat
transfer through exhaust valve have been the aim of first
researches [2,3], and still constitute the attention of the research
community since exhaust valve overlap of several field such as
heat transfer, metallurgy. The first attempts of the valve stud-
ding started by identifying the different parameters influencing
the heat transfer through valves. Gibson et al. [2] measured
the operating temperatures of valves showing that they depend
mainly on fuel air ratio, engine cooling and spark timing, the
range of the temperature it between 600� and 750 �C, for the
case of preignition, the temperature might exceed 800 �C. Zipkin
and Sanders [3] extended the parameters that influence the
valve temperature. They developed a semi empirical equation
to correlate the valve temperature including engine-operating
condition. Pandey et al. [4] noted that cyclic loading at high
temperatures causes valves fail, a decrease of hardness and a
corrosion of exhaust valves.

The details of the flow through the exhaust/intake port-valve-
cylinder are widely studied in the last century [5–7], generally,
the flow is characterized by the discharge coefficient; ratio of isen-
tropic area and geometric area. In unsteady measurement, Han
et al. [6] covered a pressure ratio range from 1.9 to 5.4 using special
test rig unsteady flow, Woods et al. [7] carried out a program of
unsteady flow test covering a pressure ratio of five for the exhaust
valve and two for intake valve with the aim to determine the
boundary conditions. The valve was tested with and without pipes,
the boundary conditions have been found to be independent of the
length pipe and the effective area of the exhaust valve based upon
the constant pressure model is independent of pressure ratio above
a value of 2. Recently, Franzke et al. [8] presented new approach to
model the wall heat transfer in the exhaust port and manifold, in
which the subdivision of the exhaust process is based on the
blow-down and a push-out phase, and the exhaust system is
divided into several sections. In experimental study, Plotnikov
et al. [9] focused on gas-dynamic unsteadiness effects on heat
transfer in the intake and exhaust systems of an ICE. The finding
shows that unsteadiness reduces the instantaneous local heat
transfer intensity about 1.3–2.5 times.

The main parameter to determine in the exhaust/intake system
of ICE when studying the heat transfer of such pulsatile fully devel-
oped turbulent flow is the heat transfer coefficient [10], which is
based mainly on the similitude theory [11].

According to Mavropoulos et al. [12] and Mavropoulos [13], the
phenomena related to unsteady internal combustion engine heat
transfer could be divided in two main modes: cyclic engine heat
transfer phenomena and long-term response heat transfer phe-
nomena related to non-periodic variations of engine speed and
load, resulting from the large time scale.

In the recent years, several studies were focused on the exhaust
valves mainly in the determination of the temperature map. In his
technical note, Tomlinson et al. [14] developed a method to evalu-
ate the maximum value of exhaust valve temperatures, based upon
the concept of fourth-root temperature.
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Fig. 1. Valve’s zones.
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Shojaefard et al. [15] used a finite-element method to model the
transient thermal analysis of an exhaust valve via Ansys APDL. The
model includes exhaust valve, seat, guide and spring. Karamangil
et al. [16] investigated numerically the effect of different carbon
film thickness on the exhaust valve where the stress distributions
and temperature profiles on exhaust valve are obtained depending
on different carbon film thickness and operation conditions. The
obtained results showed the increase of the carbon film thickness
decreases the temperature differences on the valve and the carbon
film at the valve head creates additional thermal resistance. Witek
[17] used a numerical model to study the failure and thermo-
mechanical stress of the exhaust valve of ICE.

In the aim to determine a feasible robust design solution and to
predict the effect of engine design and operating condition
changes, Baniasad et al. [18] presented a developed a new method-
ology to predict the cycle average valve temperatures in a 6-Sigma
context by considering a wide range of engine factors. The method-
ology assesses the main effects of on the exhaust valve tempera-
ture and engine performance and creates the transfer functions
by considering all the factors and their interactions.

For a limited engine speed range (5000–5250 rpm), Roth [19]
focused on the determination of both temperature map stress/
strain in the exhaust valve. The geometry included exhaust valve,
port section, guide, seat method, and used the FEM method for
the resolution. The boundary condition are provided from a steady
state CFD simulation of flow over the valve at different valve lifts.

Cerdoun et al. [20] presented a numerical approach to assess
the temperature map of an exhaust valve, based mainly on the
basic concept of heat transfer and available correlations. The
authors split the geometry of the valves into seven zones in the
aim was to isolate the effect of each part of the cylinder head.
Therefore, the average values of the HTC and adiabatic wall tem-
perature were taken as boundary conditions during one engine
cycle in the FEM model. In their second paper, Cerdoun et al.
[21] performed the previous model by introducing the effect of
lubricating oil and the contact resistance between guide and
engine block. They included also the differential displacement of
both the guide and engine block. They concluded that, the bound-
ary conditions implemented as an average of HTC and adiabatic
wall temperature, underestimate the temperature, whereas cyclic
boundary condition required more run time to reach steady state.

Recently, Alpaya et al. [22] a transient thermal model for the
exhaust valve of a four-stroke, in which the valve is subdivided
in zones, the boundary condition are obtained for each subdivision
and the transient heat transfer coefficient and temperature bound-
ary conditions are applied using the commercial code FloEFD.

3. Numerical approach and procedure

3.1. Methodology

To well carry out this investigation, there is a need for an appro-
priate subdivision considering the different parameters affecting
the heat transfer through the valve. Such subdivision may help to
better identify and quantify the boundary conditions. The same
subdivision of the exhaust valve as Cerdoun et al. [20,21] is
adopted for the intake valves, since it considers the real boundary
condition and considers the complex surrounding geometry of
engine block. According to Fig. 1, seven zones are considered as
follows:

a) Combustion face: it may be treated as part of chamber
combustion.

b) Seat: The main heat is being dissipated when exhaust valves
are closed.
c) Stem-port: This part of valve stem is located in the exhaust
manifold during all the engine cycle,

d) Stem-guide: Part of stem witch mate with the guide, it is
exposed to the heat transfer cooling.

e) Stem-tip: End of valve located in train-cam system.
f) Stem port/guide: This part is located in intermediate

between the two zones stem-port and stem-guide.
g) Stem_ guide/tip: As the previous zone, this part is located in

intermediate between the stem guide and the stem tip.

The heat transfer coefficient in the ICE is based mainly on the
assumption that the heat transfer rate can be taken proportional
to the difference of temperature between the fluid and the engine
block. This assumption of the heat transfer process is still being
applied in numerous studies [15–19], even if it has not rigorous
theoretical or experimental point of view (Annan [23]).

In the present study, the unsteady HTC and adiabatic wall tem-
perature Ta for each zone of exhaust valves versus engine crank
angle is calculated and then the time-averaged values for a four-
stroke engine of HTC and Ta are estimated as follow:

HTC
�

¼ 1
4p

Z 4p

0
HTCdh Ta

�
¼ 1

4pHTC
�

Z 4p

0
Ta � HTCdh ð1Þ
3.2. Methods to estimate the instantaneous heat transfer coefficient

3.2.1. Heat transfer coefficient in valve combustion face
The heat transfer in the cylinder of ICE is mainly done by con-

vection as stated by Heywood [1]; it is a non-uniform and unsteady
and presents high fluctuations in time and in space during one
engine cycle [8–13]. A famous correlation widely used to estimate
instantaneous spatially-averaged coefficient heat fluxes is that of
Woschni [24], relating between Nusselt and Reynolds number by
Nu ¼ aRemPrn: So, By emphasizing that the exponent m is equal
to 0.8,thermal conductivity kand dynamic gas viscosity l are pro-
portional to T0:75 and T0:62, respectively, Woschni [24], presented
the heat transfer by

HTCCombustionface ¼ aP0:8T�0:55B�0:2½C1Vp þ C2
VsTr

prVr
ðp� pmÞ�

0:8

ð2Þ
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The term between parentheses, represent the effective gas
velocity. P and T are the instantaneous pressure and temperature,
respectively. The bore diameter B is the characteristic length and
Vp is mean velocity of piston. Tr, Pr and Vr are temperature, pres-
sure, and volume, respectively, evaluated, as at any reference state,
such as inlet valve closing or combustion start. P and pm are the fir-
ing and the motoring pressure, respectively at the same crank
angle. Values suggested for C1 and C2 are given in Table 1

Since both intake and exhaust valves are included in the com-
bustion chamber of the ICE, the Woschni [24] correlation may be
used in both valves to estimate the HTC.
3.2.2. HTC valve seat
The heat transfer within this zone can be treated into two

phases according to the close of open of the valve. In the first
one, the heat transfer is done mainly by convection, whereas the
second one is modeled by conduction mode.
3.2.2.1. HTC valve-seat: Valve open. The transient mass flow rate
across an intake or an exhaust valve is expressed by the following
equation [1]:

_m ¼ CdArP0

RT0ð Þ12
ðpT

p0
Þ
1=c 2c

c� 1
1� ðpT

p0
Þ
ðc�1Þ=c� �� �1=2

ð3Þ

In cases where the pressure ratio exceeds the critical value, the
mass flow is given by

_m ¼ CdArP0

RT0ð Þ12
c1=2ð 2

cþ 1
Þ
ðcþ1Þ=½2ðc�1Þ�

ð4Þ

For the case of exhaust valves, P0 and T0 are the stagnation pres-
sure and temperature, which are taken as the pressure and temper-
ature in the cylinder and pT is the pressure upstream the
restriction. In the case of an intake valves, P0 and T0 are the stagna-
tion condition upstream the seat whereas pT is the pressure inside
the cylinder. Cdis the discharge coefficient representing the ratio
between isentropic area and geometric area. The geometric mini-
mumAmin flow area between valve and seat was used as the refer-
ence area (Ar).

Thus, the Reynolds number in the case of no chock wave is
given as

Re ¼ CdDhP0

l RT0ð Þ12
pT

p0

� �1
c 2c
c� 1

1� pT

p0

� �c�1
c

" #( )1
2

ð5Þ

According to Kastner et al. [25], there are three separate stages
to the flow area development as valve lift increases.

⁶ Low valve lifts, the minimum flow area corresponds to a frus-
tum of a right circular cone.

⁶ Medium valve lifts, the minimum is no longer perpendicular to
the valve seat.

⁶ Fully opened valve, the minimum flow area is the annular space
formed between the port and the valve stem.

The relations used to identify the lift range and minimum sec-
tion summarized in [20,21].
Table 1
Woschni’s coefficient.

Gas exchange period C1 ¼ 6:18;C2 ¼ 0
Compression C1 ¼ 2:28;C2 ¼ 0
Combustion and expansion C1 ¼ 2:28;C2 ¼ 3:2410�3
For the first and second stage of valve lift, the classic correlation
of Dittus-Boelter [25] for the convection heat transfer for turbulent
flow in pipe is used.

However, for the third case, the heat transfer can be assumed to
an internal cylinder heat transfer or to an external flow [20,21].
Assuming a turbulent flow, the Churchill and Bernstein [26] corre-
lation can be used for external flow.

3.2.2.2. HTC valve-seat: Valve close. To adequately assessing the
heat transfer conducted from valves to seat, the real model of the
contact valve seat is transformed to a theoretical model. This the-
oretical model considers that the heat flux follows a form of a trun-
cated cone from the valve until cooling fluid. (Fig. 2) [20,21].

Thus, write as the equivalent global resistance including the
conduction resistance with:

Rtot ¼ Rtc valve seat þ Lseat
kseatAseat

þ Rtc seat Al þ LAl
kAlAAl

þ 1
hH2OAH2O

ð6Þ

where kseat, kAl and hH2O are the thermal transfer coefficient.
Once the material resistance is defined, the equivalent thermal

resistance requires the estimation of the thermal contact conduc-
tance (TCC) valve seat and seat_aluminuim. Many researchers have
conducted studies on TCC for several decades with both theoretical
and experimental methods. The classical models are Mikic [27]
elastic model, Cooper, Mikic and Yovanovich (CMY [27]) plastic
model and elastoplastic model proposed by Sridar and Yovanovich
[28]. Fig. 3 illustrates a schematic seat-valve contact showing
asperities, and graphical representations of the absolute surface
slope m and the RMS surface roughness.

A dimensionless relationship between applied pressure, mate-
rial properties and thermal contact conductance was established
by Cooper, Mikic and Yovanovich [27], the proposed model was

hc ¼ 1:45
ksms

rs
ð P
Hc

Þ
0:985

ð7Þ

where Hcisthe microhardnes:P is the specific pressure.
Song and Yovanovich [28] developed a formula expressing of

the relative pressure P=Hc.as

P
Hc

¼ ½ P
1:62c1ðrs

r0
mÞc2 �

1=ð1þ0:071c2Þ
ð9Þ

where r0 ¼ 1lm, c1 is the Vickers correlation coefficient and c2is
Vickers size index.

Sridhar and Yovanovich [29] suggested empirical relations to
estimate Vickers micro hardness coefficients, using the bulk hard-
ness of the material. To calculate the specific pressure P, the New-
ton’s first law is applied to the system: Valve, seat, cam system
[20,21].

Both exhaust and intake valves can be treated using the afore-
mentioned methods, the only parameters that change are the ther-
modynamic properties and the geometrical characteristic of the
valves.

3.2.3. HTC valve stem_porte
To calculate the heat transfer across cylinder and since its main

direction is inclined from the stem axial about an angle imposed by
the exhaust and the intake pipe shape, the model of Carcasci et al.
[30,31] is adopted. The heat transfer can be modeled as the sum of
heat transfer across a cylinder and heat transfer parallel to a flat
plat since these latter are widely studied [25,26] (Fig. 4).

hstem port ¼ estem port � hcylinder þ ð1� estem portÞhflatpalt ð10Þ
A weighting coefficientðestem port 2 0;1½ �) can be used to favor

configuration against the other.



Table 2
Nusselt number formulation for the stem_port zone.

Flat plat

Flow speed Vy ¼ Vexhaust=intake cos að Þ þ Vvalve
Reynolds number ReL ¼ qgazVyLstem

lgaz

Nusselt number ReD 2 1� 4000½ �
ReD 2 4000� 40000½ �

ReD 2 40000� 400000½ �

8<
:

NuD ¼
NuD ¼ 0
NuD ¼ 0

8<
:

Fig. 4. Transformation of the real model to the theoretical m

Fig. 2. Transformed of the real model to theoretical model.

Fig. 3. Illustration of Seat-valve contact.
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It has to note, that for the case of an intake valves, the flow
properties, the inlet air direction and the relative motion should
be adjusted in order to bascule from the exhaust valves configura-
tion to intake valve configuration.

For the considered flat plat, the velocity is the sum of the axial
gas velocity and the valve velocity.

Table 2 summarize the formulations used in the present paper
to evaluate the Nusselt number basing on the Churchill and Bern-
stein [26] correlation. The Nusselt number is calculated regarding
the Reynolds number range. The velocity of the flow is calulctaed
by incorporating the relative motion of the valves.
3.2.4. HTC stem guide. The heat transfer in the zone stem_guide can
be assumed to a typical conduction through multilayer cylinder
(Fig. 5). However, the transition from real model to theoretical
one incorporates the effect of lubricating oil and the contact resis-
Cylinder

Vx ¼ Vexhaust=intake sin að Þ
ReD ¼ qgazVxDstem

lgaz

0:43þ 0:53Pr0:31ReD
0:5

:43þ 0:193Pr0:31ReD
0:618

:43þ 0:0265Pr0:31ReD
0:805

Nu ¼ 0:029 Re4
5 Pr13

odel for the case of (a) exhaust valve (b) intake valves.



Fig. 5. Illustration of heat transfer process in the stem_guide zone.
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Table 3
Some geometrical of the test engine.

Characteristics Values

Number of cylinders 2
Cylinder volume (cm3) 610
Fuel C7.3H13.9

Compression ratio 11.48
Cylinder bore (mm) 84
Stroke (mm) 55
Connecting rod length (mm) 124
Number of intake valves 2
Number of exhaust valves 1
Engine speed (rpm) 3200–7500
Mean exhaust valve diameter (mm) 32
Mean intake valve diameter (mm) 38

6 M. Cerdoun et al. / International Journal of Heat and Mass Transfer 147 (2020) 119005
tance between the guide and the engine block. The global resis-
tance may be expressed by:

Req ¼ 1
2pRAlhH2O

þ
lnð RAl

RGuide
Þ

2pkAl
þ Rtc Al guide þ

lnð RGuide
gþRStem

Þ
2pkGuide

þ ROil ð11Þ

where g is the thickness of the oil film.
The thermal conductivity coefficient and geometry of engine

block and guide allowed identifying the thermal resistance.
The gap spacing is assumed to be very small compared to the

stem radii and guide radii so that curvature effects may be ignored.
The lubricant fluid can be considered as Couette flow between two
parallel plane walls. One of the walls (valve) is moving in its own
plane with the constant velocity VValve. The other wall (guide) is
assumed to be at rest. The valve motion drives the fluid filling
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Fig. 7. The evolution of transient HTC and AWT at engine speed of 5500 rpm.
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the gap of spacing between the two walls. The wall temperatures
are assumed uniform and are denoted Tvalve; Tguide for the valve
and guide, respectively. The fluid properties assumed to be con-
stant. With the assumption of parallel flow, radial velocity compo-
nent is negligible.
The determination of the thermal resistance of the oil film ROil is
well explained in Cerdoun et al. [20,21], whereas the determina-
tion of the contact thermal resistance Rtc guide Al.

In the cylindrical joint between guide and the block engine
depends on interference existing at the time of operation. A model
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Fig. 8. Averaged heat transfer coefficient versus engine speed for (a) combustion face (b) seat (c) stem_port and (d) stem_port/guide zone.

Table 4
Coefficient of the polynomial fitting.

Polynomial Y = A + B * X + C * X^2 + D * X^3

Zones A B C D
Combustion face �301.704 0.23762 �1.113 10�5 0
Seat Intake 3407.5 �0.5269 1.67 10�4 �1.19 10�8

Exhaust 2249.7 �0.3197 1.40 10�4 �1.185 10�8

Stem_port Intake 21.42 0.034 0 0
Exhaust 31.36 0.046 0 0

Stem_guid/port Intake 186.5 0.06784 �8.34 10�6 5.54 10�10

Exhaust 384.62 �0.05741 1.19 10�5 1.40 10�9
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developed by Chakravarti and Madhusudana [32,33] is adapted to
the present study by Cerdoun et al. [21] is reutilized.
3.2.5. HTC valve stem_guide/port. In order to obtain the heat trans-
fer coefficient in this zone, the result of the stem_guide and stem_-
port are used. The length of this zone is equal to the maximum of
the exhaust valve lift. When the valve is close, the treatment of this
zone is similar to the stem_guide zone and when the valve is fully
open, this zone is treated as stem_port zone. In the remained case,
the heat transfer is an average value between the heat transfer
coefficient of the stem_guide and stem_port depending on the part
of stem including in the guide. These three cases can be written as
following.

HTCstem guide=port ¼
Lv ;Max � Lv

Lv ;Max

� �
HTCstem guide

þ Lv
Lv ;Max

� �
HTC

stem port
ð12Þ



Fig. 9. Mesh generation for (a) exhaust valve and (b) intake valve.
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3.2.6. HTC valve stem_tip. The cyclic motion of the valve takes place
with the help of a rocker lever, which is connected to the push rod.
The push rod rests over cams on the camshaft. The tip of the valve
is exposed to air and by ignoring the friction between the stem tip
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Fig. 11. Evolution of the maximum and minimum temp
and the cams system, a fixed value assigned of the heat transfer
coefficient to this area could not be a very remoteness to the real-
ity. Thus, the boundary condition in terms of adiabatic wall tem-
perature and the heat transfer coefficient are represented
respectively by the temperature and convection coefficient of the
air. They are assumed constant during the one engine cycle with
values equal:
3.2.7. HTC valve stem_guide/tip. This part of stem is initially (valve
close) out of the guide and during the valve opening, a part of this
zone enter gradually to the guide until its maximum length, which
of course correspond to the maximum of lift. The same way as
stem_guide/port zone is used to obtain the instantaneous heat
transfer coefficient and adiabatic wall temperature.

HTCstem guide=tip ¼ Lv;Max � Lv
Lv;Max

� �
HTCstem tip

þ Lv
Lv;Max

� �
HTC

stem guide
ð13Þ
4. Case of application

4.1. Engine

The exhaust and intake valves are mounted on 0.6 l gasoline ICE
where the main characteristics are presented in Table 3. This
engine is modelled via the 1D Ricardo Wave software in order to
generate the instantaneous thermodynamic parameters such as
the in-cylinder temperature, temperature of exhaust gases and
intake air, velocity of burned gases at exhaust port, which are dif-
ficult to measure experimentally.
4.2. Valves geometry

The geometry of the exhaust and intake valves are shown in
Fig. 6-a. The length of both valve seats is 2.1 mm and the stem
diameter is 9.5 mm. The stem length is 12.91 mm. The exhaust
valve opens at a crank angle of 88 and closes at 410 CA, whereas
the intake valves open at crank angle of 308 and close at �75 CA
with an overlap of 102 CA (see Fig. 6-b). The maximum lift is about
9.9 mm.
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Fig. 12. Temperature map and thermal gradient for the exhaust and intake valves at different time at engine speed of 5500.
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4.3. Boundary conditions for the exhaust and intake valves

4.3.1. An example of transient HTC and AWT
Fig. 7 shows an example of the evolution of transient HTC and

AWT over one engine cycle, for the case of the exhaust valves at
an engine speed of 5500 rpm.

The transient HTC is obtained using Woschni correlation [17], it
reaches a maximum of 2593 W/m2 K that corresponds to the max-
imum of in-cylinder pressure. The adiabatic wall temperature is in-
cylinder temperature of gases provide directly by the software
Ricardo Wave (see Fig. 7-a).

At the zone seat (Fig. 7-b), the instantaneous exhaust gas tem-
perature is taken as an AWT when the valve is open, and while the
valve is close, the AWT is that of fluid cooling. The HTC is shown to
rapidly increase with the combustion process due the rapid
pressure rise whereas when the exhaust is closed the HTC drops
to relatively low values. The effect of lift law is directly identified
by the three zones as shown in Fig. 7-b. Fig. 7-c highlight the
instantaneous exhaust gas temperature recorded at the port, which
is considered as adiabatic wall temperature. During the opening of
exhaust valve, the burned gases leave the cylinder with a high
velocity, causing a rapid increase in HTC. For the remaining zones
(Fig. 7, d–f)), the AWT and HTC are directly a combination of the
average between the values of HTC an AWT in the guide and the
parts which be included in the port or exit the guide.

4.3.2. Average HTC at various engine speeds
The transient boundary conditions, in term of HTC and AWT for

both intake and exhausts valves, is obtained for all zones and at
diverse engine speeds by varying the input parameters. Then, the
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average values of the boundary condition for each zone of both
valves are elaborated during one cycle of the engine.

Fig. 8 presents the averaged HTC in function of engine speed for
combustion face, seat, port zone and port/guide zone for both
valves. The heat transfer coefficient for the combustion face is
identical for the exhaust and intake valve since they are imposed
to the same pressure and temperature of gases. Mainly, the heat
transfer coefficients for all zones present linear trends at low
engine speeds, whereas at high engine speed polynomial beha-
viours are showed mostly at seat zone. For stem zone, the heat
transfer coefficient is almost linear for all the range of engine
speed. Polynomial fittings are superimposed to the findings to well
describe the trend of the heat transfer coefficient versus engine
speed. Table 4 summarizes constant of the polynomial for each
zones.

4.4. Finite element analysis

The 2D transient isotopic solid FEM model was developed to
simulate the conduction through this valve, in which the tempera-
ture field is a function of time and spatial coordinates. The 2D four-
node thermal plane element, PLANE55, was applied to mesh the
whole of valve. Fig. 9 illustrates the meshed elements near tip
and head for both valves. In order to limit the effect of number
of nodes on the finale results, seven meshed were generated for
both valves. The grid dependency is based on the fact that errors
due to the spatial discretization should be minimized, as the grid
is refined. Fig. 10 shows the maximum of temperature within the
exhaust and intake valves stabilized at 4015 and 3811 nodes,
respectively.

To facilitate simulation runs of the proposed model, an APDL
was used. The thermal conductivity of valve material is equal to
28 W/m2K and the density is about 7780 kg/m3.

4.5. Heat transfer analyses within intake and exhaust valves

4.5.1. Maximum temperature
The comparison between the heat transfer through the intake

and exhaust valves is made in term of maximum temperature that
valves reach and the required time to reach the stable regime is
depicted in Fig. 11. For a rotational speed about 4500 rpm of the
engine, the maximum temperatures stabilize to attain 881 k and
1127 K for the intake and exhaust valves, respectively. Moreover,
a double time is required for the intake valve (about 200 s) to reach
it maximum compared to the exhaust valves (100 s).

4.5.2. Temperature and thermal gradient
Fig. 12 a-d b show the temperature map and thermal flux of

both exhaust valve and intake valves at an engine speed of
5500 rpm four times 1 s, 10 s, 100 s and 200 s. The maximum value
of temperature is recorded through the overall valves typically at
the combustion face since it is directly exposed to the in-cylinder
temperature. At the steady state, the maximum temperature of
the exhaust valve is higher about 177 K than the intake valve even
if they are very close spatially, thus, indicating the arduous thermal
condition affecting the exhaust valves.

For the exhaust valves, it is clearly apparent that the zone
labelled stem-guide/port records a rapid drop in term of tempera-
ture; therefore, with the cyclic motion of the valve, this area is sus-
ceptible to a high thermal fatigue and it can be indicated as critical
zone. However, for the intake valve, we note a gradually decrease
of the temperature from the head to the tip. This behaviour is con-
solidating by the field of the thermal gradient, which shows a clear
slope in the exhaust valves mainly in the stem_port/guide and the
seat zones.

4.5.3. Thermal flux
Fig. 13 depicts the propagation of heat flux density near valves

heads at the steady state condition. When comparing the flux den-
sity within the intake and exhaust valves, we not that the vectors
of heat flux density are mainly directed to the seat zone for the
intake valves to continuously remove the heat from valve head
due to high difference between the regions of seat and engine
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block. For both valves, the values recorded in term of thermal flux
valve are good indicator of the zone of high thermal stresses. They
will help prediction of the optimumworking temperature and thus
the adequate material properties.

4.5.4. Maximum of valves temperature at various engine speeds
The findings of the present approach allow also predicting

details about the maximum temperature of exhaust valves after
series of engine regimes. Fig. 14 presents the evolution of maxi-
mum temperature of an exhaust valves after a furtive circuit. Such
results have their importance when focusing in the real thermal
loading of overall or a part of exhaust valves, it gives a good predic-
tion of the both temperature map for actual the actual operating
condition, which certainly help to avoid any extreme thermal load.

6. Conclusion

A simple numerical model performed in the present work for
assessing the temperature map of an exhaust and an intake valves,
based upon the basic concept of the heat transfer and available cor-
relation related to internal combustion engine. The valve is, firstly,
subdivided to several zones in the aim to better assess the effect of
each part of the cylinder head, thus, to identify the instantaneous
boundary conditions for each part. A comparison between the
exhaust and intake valves in term of heat transfer coefficient at
each zones, maximum temperature and temperature map allows
identifying thermal loading of each valves. The HTC are shown to
vary linearly at low engine speed and takes polynomial trend at
high engine speed. In addition, the intake valves are shown to take
double time compared to the exhaust valves to stabilize. The pre-
sent approach allows quantifying the temperature distribution,
thermal gradient and thermal flux of each zone constituting the
valves and at various engine speed, which help metallurgist to rise
the lifetime of valves.
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