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Chapter 1

Introduction

Ever since the invention of fire, the human race has engaged into a quest for
increasingly more powerful, efficient and versatile light sources, going well be-
yond the visibile frequency range. 2020 will mark the 60th anniversary of the
first laser, but this invention would not have been possible without our under-
standing of light as a form of electromagnetic radiation. From that moment
lasers have became progressively smaller, tunable, more robust and energy ef-
ficient as well as less expensive. The technology has expanded the wavelength
range well beyond visible and infrared light and in the choice of materials used.
This work deals with random lasers, a peculiar class of coherent light sources
with very little apparent resemblance to conventional lasers. Differently from
conventional lasers, random lasers lack an external cavity and the comprehen-
sion of their lasing mechanisms has challenged the scientific community for sev-
eral years. Despite their unique properties [1–4], it is unlikely that random lasers
will achieve the success of conventional lasers unless the physics regulating their
working mechanism is fully explained and chaotic emission properties are even-
tually controlled. Far from addressing the many open questions in the field of
random lasing, in this work we report on a few experimental insights about ran-
dom laser emission and propose a novel spectroscopy technique that employs
random lasers as the ideal source of illumination. In particular, we will describe
the application of a random laser working in the pulsed chaotic regime to achieve
spectrally super-resolved reconstruction of an arbitrary transfer function. The
key functional properties enabling our application such as the uncorrelated las-
ing mode frequencies, their sub-nanometer width and their sparse distribution
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CHAPTER 1. INTRODUCTION 2

above the active medium curve, together with other typical emission character-
istics of a random laser are described in Chapter 2. An overview about the more
recent applications of random lasers and attempts to engineer their emission
characteristics is addressed in the last section. Chapter 3 extends the discus-
sion of the emission properties by reporting on the experimental observation in
dye-solution-based random lasers of occasional periodic, resonator-like emis-
sion spectra among the chaotic ones. We elucidate the possible mechanism un-
derlying this phenomenon, also taking into account previous attempts reported
in the literature to explain its origin. Chapter 4 describes our practical appli-
cation of the random laser and discusses its validation from a numerical per-
spective. The chapter comprises an introduction to the most widespread super-
resolution techniques and presents the new idea of spectral super-resolution us-
ing the emissions of the random laser. The last sections of this chapter are ded-
icated to numerical calculations evaluating the robustness against experimental
noise and the limits of applicability of the method. The spectral super-resolved
numerical reconstruction of a simple transmission function is demonstrated at
resolution exceeding that imposed by the instrumental response function. We
discuss in detail the goodness of the reconstruction as a function of the instru-
mental response shapes, the number of random laser spectra required, as well as
the statistic of the intensities of the laser peaks. Finally Chapter 5 shows the ex-
perimental results obtained in the lab providing the first proof-of-concept of the
super-resolved spectral reconstruction of a simple transmission function, with
a roughly threefold resolution enhancement with respect to the spectrometer
spectral response.



Chapter 2

The physics of random lasers

2.1 Light scattering by particles

When light waves interact with matter they can undergo scattering and absorp-
tion depending on the properties of the material. In the elastic scattering process
light changes its propagation direction without changing its frequency. Reflec-
tion can be described as a scattering event where the incidence and output an-
gles are the same. A blade of grass looks green because it scatters light efficiently
at that frequency, while blue and red light is absorbed for photosynthesis, mean-
ing that its energy is converted into a different form and is no longer present as
electromagnetic wave.

Light propagating through a homogeneous medium is not scattered, only in-
homogeneities cause scattering. Any real medium is inhomogeneous, since it
contains discrete electric charges that are set into oscillation when illuminated
by an electromagnetic wave. The accelerated charges radiate electromagnetic
waves in all directions, this radiation is known as scattered radiation.

In a single scattering event an oscillating field is applied to a single particle
that induces dipole moments in its sub-regions. These dipoles oscillate at the fre-
quency of the applied field and emit secondary radiation in all directions. Along
a certain direction, the total scattered field is obtained by superposing the scat-
tered wavelets, which maintain definite phase differences, meaning that scatter-
ing by dipoles is coherent. The phase relations change for different scattering
directions and the scattered field varies with scattering direction.

3
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Multiple scattering phenomena occur when light, after penetrating an opti-
cal material, is scattered many times before exiting again. Multiple scattering is
a well-known phenomenon that determines the appearance of opaque materials
such as clouds, white paint, milk and powders. When light is scattered multi-
ple times inside a disordered material its propagation can be described with a
random walk [5]. In this framework, two main length scales describing scatter-
ing are the scattering mean free path ls defined as the average distance that light
travels between two consecutive scattering events, and the transport mean free
path lt, the average distance a wave travels before its direction of propagation is
randomized. These two length scales are related by the relation:

lt =
ls

1°hcosµ i (2.1)

hcosµi is the average cosine of the scattering angle, which can be found from
the differential scattering cross section. For Rayleigh scattering hcosµi = 0 and
lt = ls , while in the Mie scattering regime hcosµi can span a larger range of values
(even negative), with typical values around hcosµi t 0.5 , and lt t 2ls [6].

Multiple scattered waves undergoing a random walk maintain their coher-
ence. This means that even if a material is strongly disordered, interference ef-
fects occur in a deterministic fashion. A classic example of interference in pres-
ence of multiple scattered light is that of a laser speckle from a disordered medium.

When the length scales of the medium are long compared to lt, it is conve-
nient to consider multiple scattering as diffusion of light, with the diffusion coef-
ficient given by D = clt

3 with c the effective speed of light in the dielectric medium.
However the diffusion model takes into account probability rather than ampli-
tude, and interference of waves can not always be neglected. In the case of opti-
cal waves propagating through a disordered dielectric medium, this interference
effect has been accurately demonstrated by a series of experiments initiated by
Kuga & Ishimaru [7], Albada & Lagendijk [8] and Wolf & Maret [9], who reported
on the observation of coherent backscattering. They measured the angular de-
pendence of the backscattered intensity of laser light entering in a disordered
dielectric sample.

When wave interference plays an important role in determining transport, as
it does in coherent backscattering, the transport of wave energy is not diffusive
in the simple sense of a photon performing the classical random walk. When ap-



CHAPTER 2. THE PHYSICS OF RANDOM LASERS 5

plying the concepts of classical diffusion to even more complicated situations,
we must consider the coherence properties of the illuminated sample. Typically,
it is reasonable to expect that scatterers that are very distant do not on average
cause large interference corrections to the classical diffusion picture. Instead,
changes in distant scatterers can give rise to significant fluctuations about the
average. Thus there exists a coherence length lcoh that represents the scale on
which we must incorporate interference effects in order to determine the effec-
tive diffusion coefficient within the coherence volume. By changing the scale of
the sample L, the number of possible interfering paths changes, then the effec-
tive diffusion coefficient D(L) depends also on the macroscopic scale. When L

is long compared to lcoh, the photon is considered in diffusive motion, with a
small renormalization value for the diffusion coefficient, D(L) ª clt

3 (lt/lcoh) [10].
The most striking consequence of the dependence of D on L is that, for 1D and
2D systems, limL!1 D(L) = 0. This means that, at least for low dimensional sys-
tems where lt ø L ø lcoh, the diffusive process may come to a halt because of
interference effects and light localization effects emerge [5].

2.2 Scattering and gain in random lasers

A conventional laser is based on an active medium that provides optical gain
through stimulated emission and an optical cavity that partially traps the light
and induces a coherent feedback. When the optical gain in the cavity becomes
larger than the losses, the system reaches the threshold and lases. For what con-
cerns light scattering inside a gain medium, from the point of view of conven-
tional laser action it has always been considered undesirable because scattering
removes photons from the lasing mode of a laser cavity. However, in a strongly
scattering gain medium, light scattering plays a positive role since multiple scat-
tering increases the dwell time of light in the active medium, enhancing stimu-
lated emission. Moreover, as it will be discussed in the following, recurrent light
scattering can provide a coherent feedback mechanism for laser oscillation. Las-
ing in disordered media has been a subject of intense theoretical and experimen-
tal studies from its first observations.

Just like in a regular laser it is the cavity that determines the modes, in a disor-
dered gain media the modes are determined by multiple scattering. Light ampli-
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fication is provided by stimulated emission but the feedback is supplied by scat-
tering. Two different types of feedback were individuated for lasing in disordered
media, one is an intensity feedback since it is incoherent and non-resonant, the
other is a field feedback, coherent and resonant. Basing on the feedback mecha-
nism involved, random lasers are thus classified as random lasers with incoher-
ent feedback and random lasers with coherent feedback. Cao [11] and Wiersma
[12], reviewed in detail the relevant physics, discussing both practical and poten-
tial applications of random lasers. Part of their discussion is summarized in the
following section, with the aim to trace the evolution in the comprehension of
random lasers, starting from the first experiments on the subject.

The first observation of an incoherent random laser was made by Ambart-
sumyan et al. in 1966 by replacing one mirror of a normal cavity with a scattering
surface [13]. In this kind of cavity light experiences multiple scattering, changing
its direction each time it is scattered by the surface. After one round trip, light
does not return to its original position and, as a consequence, ordinary spatial
resonances cannot form and the dwell time is independent on frequency. The
feedback in such a laser consists only in bringing part of the energy back to the
gain medium, that is, it is an energy feedback mechanism. The absence of res-
onant feedback results in an almost continuous emission spectrum, which does
not contain discrete resonant frequencies. By increasing the pumping rate, the
broad active medium emission spectrum undergoes a spectral narrowing around
the frequency corresponding to the maximum of the gain [14]. This is the result
of a non-resonant feedback mechanism, where instead of individual high-Q res-
onances, a large number of low-Q resonances appear, which overlap and form a
continuous spectrum. The statistical properties of laser emission are quite dif-
ferent from those of an ordinary laser, and rather much closer to those of a black
body in a narrow range of the spectrum [15].

In 1986 Markushev et al. reported intense stimulated radiation from neodymium
in a polycrystalline powder of Na5La(MoO4)4, under resonant pumping at low
temperature (77 K) [16]. When the pumping intensity exceeded a threshold, the
duration (140 µs) of the luminescence of the strongest emission component of
Nd3+ transition (∏ª1066 nm) reduced by about four orders of magnitude and its
spectral width decreased to the instrumental width. In a powder of small parti-
cles (1-10µm) with irregular shape there was only one narrow emission line at the
centre of a luminescence band, while in a powder of bigger regularly shaped (20-
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50µm) particles the emission spectrum consisted of several lines in the range of
the luminescence band [17]. In all cases, the spectral width of the emission lines
above the threshold was on the order of 0.1 nm. The observed emission was very
much like laser emission.

Other gain materials as Ti:sapphire powder [18], Pr3+-doped powder [19] and
LiF with color centres [20] were studied. Despite the different materials, com-
mon phenomena were observed such as the spectral narrowing of the emission
line above a pumping threshold and a drastic shortening of the emission pulse,
damped oscillation of the emission intensity under pulsed excitation, drifting of
the stimulated emission frequency and hopping of the emission line from one
discrete frequency to another within the same series of pulses. Gouedard et al.

analyzed the spatial and temporal coherence of the powder laser [21], concluding
that the emission of powders above the threshold is characterized by spatial inco-
herence and a low temporal coherence (ª10 ps). The feedback mechanism was
yet not fully understood, Gouedard et al. hypothesized that the grains of the pow-
der emit collectively in a pulse where multiple scattering provides a distributed
feedback.

Noginov et al. compared the powder laser with the single-crystal laser, ob-
serving that photon diffusion intervenes in the stimulated emission process, lead-
ing to longer paths in the powder and to a reduction of the threshold. To this pur-
pose Wiersma & Lagendijk proposed a model based on light diffusion with gain
[22]. They considered an incident pump pulse and probe pulse onto a powder
slab. The active material was approximated as a four-level system – 2, 1, 0a, 0b –
with the radiative transition from level 1 to 0a and the pumping from level 0b to 2.
Fast relaxation from level 2 to 1 and from level 0a to 0b makes both level 2 and 0a

nearly unpopulated, thus the population of level 1 can be described by one rate
equation. The whole system was described by three diffusion equations, they
numerically solved the coupled nonlinear differential equations and the simu-
lation result reproduced the experimental observation of transient oscillation of
the emission intensity under pulsed excitation. In powders, the gain and scatter-
ing medium are not separated, and it is difficult to say if the feedback is provided
by multiple scattering or total internal reflection, since both the models based on
light diffusion [22] and intraparticle resonances [21] reproduced the experimen-
tal phenomena.

Lawandy et al. separated the scattering and gain media observing laser-like
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emission from a methanol solution of rhodamine 640 perchlorate dye and TiO2

particles, with a mean diameter of 250 nm, as scattering centers [23]. The peak
of emission intensity reported versus the pump energy exhibited a well defined
slope change. At that threshold, the emission linewidth collapsed rapidly from
70 to 4 nm, and the duration of emission pulses was shortened from 4 ns to 100
ps. The threshold behavior suggested the onset of a feedback mechanism, while
the broad emission spectrum above the threshold indicated that the feedback
was not resonant. When the density of scattering particles was increased from
5·109 to 2.5·1012 cm°3 at the fixed dye concentration of 2.5·10°3 M, it was found
experimentally that the threshold was reduced by more than two orders of mag-
nitude. This strong dependence of the threshold on transport mean free path
revealed that the feedback was related to scattering [24, 25]. In these cases the
gain medium extended exclusively outside the scatterers that were too small to
work as resonators.

As explained in section 2.1, multiple scattering or light diffusion is negligible
unless the dimension of the scattering medium is much larger than the transport
mean free path. In the case of Lawandy’s experiment the thickness of the entire
suspension was much larger than the transport mean free path, so light trans-
port in the suspension was diffusive. The emitted photons could escape from
the small amplifying region toward the unpumped region of the sample or the
air through the facet of the cell containing the solution. The remaining photons
had a certain probability to return to the gain volume for further amplification
by performing a random walk. The return probability increases, as well as the
feedback, if scattering is stronger. The threshold for lasing is reached when the
rate of losses is equal to the amplification rate.

The frequency dependence of gain ensures that the highest photon genera-
tion rate happens at the peak of the gain spectrum. On the other hand, the trans-
port mean free path weakly depends on frequency, thus the feedback is nearly
frequency independent within the gain spectrum, as well as the loss rate. By in-
creasing the pumping rate, the photon generation rate in the spectral region of
maximum gain first reaches the threshold, while in the outer spectral region the
photon generation is lower than the loss rate. The photon density increases more
and more around the frequency of the gain maximum, resulting in a collapse of
the emission linewidth.

Balachandran, Lawandy and Moon proposed a model of random laser based
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on the ring laser in the limit of random phase [26]. They used the Monte Carlo
method to calculate the return probabilities of photons experiencing random
walks and their average total path length. The amplifying volume was approx-
imated with a disk of homogeneous gain coefficient. The threshold gain was de-
termined by the steady-state condition, analogously to what is found for a ring
laser. In the scattering medium the condition on round-trip phase shift (a mul-
tiple of 2º) that determines the lasing modes in a regular ring laser can not be
considered. Since the feedback is non-resonant, in this case the requirement is
simply that light returns to the gain volume and not necessarily to its original po-
sition. This assumption is always valid in the diffusive regime for a 3D medium,
where the probability of light returning to its original position is so low that in-
terference effects are totally negligible.

2.2.1 Emission properties of random lasers

Energy feedback random lasers Zhang et al. investigated the threshold for ran-
dom lasing varying the dye concentration and the gain length. The threshold was
reached when the pump transition was bleached. At bleaching, the penetration
length of the pump increases, consequently emitted light travels a longer path
inside the gain medium, resulting in a reduced threshold [28]. A similar con-
sideration holds for the pump diameter, with a strong increase of the threshold
pump intensity when reducing the illumination spot size [29]. When the exci-
tation beam diameter is of the same order of the mean free path the threshold
pump intensity increased by a factor of 70. This is because a large pump beam
produces a large amplified region, providing higher amplification to the emitted
photons. This also holds in the inward direction, indeed, as the probability of
coming back from unpumped regions, for escaped photons, is larger for a bigger
pumped volume. For small excitation beam diameters, the emitted light leaves
the active volume after a short time, and also the chance of returning is small.
This causes larger photon loss rate and therefore a higher threshold. The ampli-
fication by stimulated emission was found to be strongest when the absorption
length of the pump light is of the same order of magnitude of the transport mean
free path [30]. Totsuka et al. found a critical transport mean free path for each
pump beam diameter, below which the threshold was almost independent of the
mean free path [31]. These results can be explained in terms of the spatial over-
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lap of the gain volume and the diffusion volume. When the gain volume, or in
other words the spatial extent of the region containing the excited molecules, is
smaller than the diffusion volume, the amplification is not efficient, since light
propagates mostly through unpumped region. If the gain volume is larger than
the diffusion volume for light, part of the excitation pulse is not employed in the
amplification. The optimal condition is calculated in [31], by solving the coupled
rate and diffusion equations.

van Soest & Lagendijk introduced, following the theory of traditional laser, the
spontaneous emission coupling factorØ for the random laser [32]. The factorØ is
defined as the ratio of the rate of spontaneous emission into the lasing modes to
the total rate of spontaneous emission. Its value is determined by the overlap in
the wavevector space between the spontaneous emission and laser field. While
the spontaneous emission is isotropic, conventional cavity modes subtend thin
solid angles, resulting in a very small contribution of spontaneous emission to
the cavity modes (Ø ª 10°5). In the scattering medium, the diffusive feedback
does not conserve directionality, thus the spatial distinction between lasing and
non-lasing modes vanishes, and the only criterion is the spectral overlap of the
spontaneous emission spectrum with the lasing spectrum. This gives a large Ø
value ª0.1.

Coherent feedback random lasers In 1998 Cao et al. observed a different kind
of lasing process in disordered semiconductor powders [34] and polycrystalline
films [33], where the feedback was frequency dependent, and supplied by recur-
rent light scattering (i.e. multiple scattered light returns to a scatterer from which
it has been scattered before). Similar lasing phenomena were also observed in
luminescent º-conjugated polymer films [35], organic dye-doped gel films [36],
opal crystals saturated with polymer and laser dye solutions [37]. This kind of
lasing phenomenon was called random laser with coherent feedback.

Cao et al. made their experiment with polydisperse ZnO nanoparticles with
an average particle size of 100 nm and a filling factor around 50%, deposited onto
an ITO-coated substrate [33]. The sample thickness varied from 10 µm to 1 mm.
The ZnO samples were optically excited by picosecond pulses of third harmonic
and fourth harmonic of a Nd:YAG laser. The pump beam was focused on the sam-
ple surface, the electrons in the ZnO valence band absorbed pump photons and
jumped to the conduction band. They subsequently relaxed to the bottom of the
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conduction band before radiative decay. At low excitation intensity, the spectrum
consisted of a single broad spontaneous emission peak. As the pump power in-
creased, the emission peak became narrower owing to preferential amplification
at frequencies close to the maximum of the gain spectrum. When the excitation
intensity exceeded a threshold, discrete narrow peaks emerged in the emission
spectra. The linewidth of these peaks was less than 0.2 nm, 30 times narrower
than the linewidth of the amplified spontaneous emission (ASE) peak below the
threshold. When the pump intensity increased further, even sharper peaks ap-
peared, whose frequencies depended on the position of the excitation spot on
the sample. This phenomenon suggests that the discrete spectral peaks are the
result of the interference of scattered waves in the ZnO powder, so it is related to
the configurations of ZnO particles. The probability of intra-particle resonances
formed by total internal reflection at the particle surfaces can be excluded since
the single ZnO nanoparticles are too small to serve as resonators. Thus the ori-
gin of the spatial resonances lies in the inter-particle scattering. When scatter-
ing is strong enough to give rise to recurrent scattering events, interference of
return light becomes constructive only at certain frequencies. Therefore, the re-
quirement for constructive interference of backscattered light selects the reso-
nant frequencies. A threshold behavior was observed: above the pump intensity
at which discrete spectral peaks emerged, the emission intensity increased much
more rapidly with the excitation intensity. Light can be trapped in these regions
through multiple scattering and interference. For a particular configuration of
ZnO nanoparticles, only light at certain frequencies can be confined, because the
interference effect is frequency sensitive. In a different region of the sample, the
particle configuration is different, thus light at different frequencies is confined.
In other words, there are many resonant cavities formed by recurrent scattering
and interference. Incomplete trapping of light gives rise to cavity loss. When the
optical gain reaches the cavity loss, laser oscillation occurs in the cavity modes,
that gives discrete lasing peaks in the emission [11].

The statistical property of the emissions from ZnO powder was probed by Cao
et al. using a streak-camera in the photon counting mode [38]. They selected the
spectral interval corresponding to an emission peak, and counted the photons
for each pulse. After collecting photon count data for a large number of emis-
sions where discrete spectral peaks appear, the probability P (n) of detecting n
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photons in the wavelength interval ¢∏, is obtained for the single modes 1.
Below threshold the measured photon count distribution was almost identi-

cal to the Bose-Einstein (BE) distribution, the same of a chaotic light source. As
the pump intensity was increased the photon statistics of ZnO emission started
deviating from the BE statistics, when the pump intensity was slightly above the
threshold, the measured photon count distribution was between a BE distribu-
tion and the Poisson distribution. When the pump intensity was 6 times the
threshold, the photon count distribution was nearly identical to the Poisson dis-
tribution. The photon statistics of the random laser with coherent feedback is
therefore similar to that of a traditional laser, and different from the photon statis-
tics of the random laser with incoherent feedback, which is a linear superposition
of coherent and incoherent components, as observed by Zacharakis et al. [39].
In their non-resonant random laser, above threshold, the coherent component
reached a plateau of 51% of the emitted light.

2.2.2 Random laser with dye solutions

The previous section illustrates that the behavior of the random laser with co-
herent feedback is quite different from that of the random laser with incoher-
ent feedback. To understand this difference, Cao et al. studied the transition be-
tween them by varying the amount of scattering in the gain medium [40]. The
random media used in this experiment were rhodamine 640 dye solutions con-
taining ZnO nanoparticles. The advantage of the solutions was that the scattering
length can be varied continuously by changing the density of scatterers in the so-
lutions. A pulsed picosecond Nd:YAG laser was used to excite the dye molecules
in the solution. The emission spectrum was captured after a single pump pulse.
The evolution of the emission spectra by varying the pump intensity is observed,
whit a particle density of 2.5·1011 cm°3 and a dye concentration of 5 mM. When
the pump intensity crossed a threshold, a drastic spectral narrowing occurred.
Once above the threshold, the emission linewidth collapsed to ª5 nm. Simulta-
neously, the peak emission intensity increased dramatically. This phenomenon
was identical to that observed by Lawandy et al., [23]. It corresponded to lasing

1For single-mode coherent light, the photon number distribution P (n) satisfies the Poisson

distribution, P (n) = hnin
e
°hni

n! For single-mode chaotic light, the photon number distribution P (n)

satisfies the Bose-Einstein (B-E) distribution, P (n) = hnin

[1+hnin ] .
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with non-resonant feedback occurring in the colloid [23]. An analogous result is
reported as example in Figure 2.1 for an ethanol solution of dye (Rhodamine 6g)
and TiO2 nanoparticles.

Figure 2.1: Emission spectra of a 5mM solution of Rhodamine 6g and ethanol, with a scatterer
concentration of ª109 cm°3, when the pump excitation is varied from 0.5 µJ to 5 µJ. The pump
laser is a frequency-doubled Nd:YAG pulsed laser (20 ps).

When the particle density was increased from to 2.5·1011 cm°3 to 5·1011 cm°3,
keeping the dye concentration constant, two thresholds were observed [40]. The
first threshold corresponded to the spectral narrowing until 5 nm. If pump inten-
sity was increased further, a second threshold was reached, where discrete spec-
tral peaks of linewidth . 0.2 nm emerged on the gain curve. This phenomenon
was very similar to what observed in the ZnO powder [33] and corresponds to
lasing with coherent feedback. In this case the frequencies of the lasing modes
are different for each pump pulse. When the ZnO particle density was increased
to 1·1012 cm°3 the discrete spectral peaks appeared before the collapse of the
emission linewidth, indicating that the threshold for lasing with coherent feed-
back became lower than the threshold for lasing with incoherent feedback in the
strong scattering medium (exemplary spectra showing this phenomenon are re-
ported in Figure 2.2).
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Figure 2.2: Two exemplary emission shots at threshold crossing from an ethanol solution of
5mM of Rhodamine 6G and a scatterer concentration of ª1012 cm°3. The blue curve shows the
emission below threshold. Narrow peaks of linewidth of less than 0.2 nm appear upon the gain
curve, before observing spectral narrowing of the gain curve (orange curve).
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Transition between the feedback mechanisms The above phenomena was ex-
plained directly by Cao in terms of Maxwell equations in a random medium [11].
Since the random medium can be seen as an open system with finite size, its
modes can be therefore described with complex eigenenergies with the imagi-
nary parts representing the decay rates. The coupling to the outside reservoir
(the modes outside the random medium) makes modes interact with each other,
meaning that photons of one mode can hop to another one through scattering at
the boundary. In the regime of non-localization for light, the average decay rate
of an eigenmode is larger than the mean frequency spacing of adjacent modes.
Then, the eigenmodes are spectrally overlapped resulting in a continuous emis-
sion spectrum. When scattering is weak, the coupling between the modes is
stronger. Due to photon exchange among the modes, the photon loss rate for
a set of interacting modes is much lower than that of a single mode. At the fre-
quency of maximum gain, when the optical gain for a set of interacting modes
reaches the threshold, the total photon number in these coupled modes grows,
giving origin to the phenomenon of lasing with incoherent feedback. The in-
crease of photon number at the frequency of gain maximum determines a spec-
tral narrowing. Well above the threshold, gain saturation quenches the total pho-
ton number fluctuation. When modes are strongly coupled, photon hopping oc-
curs, preventing the stabilization of the photon number in a single mode. If the
dwell time of light in the random medium increases, for example by increasing
the amount of optical scattering, the coupling of the modes with the external
reservoir is weakened, consequently the interaction among the modes is lower.
When the optical gain increases, a set of coupled modes at the frequency of gain
maximum firstly reaches the threshold for lasing, and when the optical gain in-
creases further, the single mode with longer lifetime finally reaches the threshold
and lasing occurs in this mode. A further increase of optical gain leads to las-
ing also in other modes with low losses. These conditions give origin to discrete
peaks in the emission spectrum. When the scattering strength increases further,
the decay rates of the eigenmodes and the coupling among them continue to de-
crease. There are few eigenmodes with long lifetimes which are nearly decoupled
from the others. As a result, the threshold for lasing in these individual modes
becomes lower than the threshold gain for lasing in a set of coupled modes and
lasing occurs even before spectral narrowing of the ASE is reached. Above the
threshold, because of weak coupling between the modes, the fluctuation of the
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photon number in each mode is quenched by the gain saturation effect, while in
a random laser with incoherent feedback is rather the total number of photons
in all the modes to be suppressed by gain saturation.

Intensity fluctuations When lasing occurs in a large number of strongly cou-
pled modes, the sensitivity to the boundary conditions is higher. In a pulsed
configuration, the random laser can show a chaotic behavior in its temporal and
spectral response, meaning that each time the medium is excited, if there is no
specific frequency dominating the others, the laser shots exhibit different spec-
tra [12]. One could think that the reason for the observation of uncorrelated laser
spectra in a dye solution with suspension of scattering nanoparticles is due to
motion of particles inside a liquid that change continuously their configurations,
however this is not the case. Mujumdar et al. performed an experiment with Rho-
damine 6G infiltrated inside a porous glass, i.e. in a configuration where the ac-
tive medium is embedded in a random material with static disorder, and they
also observed distinct random laser shots totally different from each other [41]. It
was found that the narrow emission spikes in the emission spectrum can change
frequency in a random fashion from one excitation pulse to another. This chaotic
behavior is observed under the specific conditions of fast excitation source (tens
of picoseconds) and by collecting single-shot emission spectra. Additionally, the
threshold of a random-laser system can also show chaotic behavior, in the sense
that under repeatable experimental conditions the system jumps above and be-
low threshold [42]. This can be explained again with the high sensitivity of the
system to small intensity fluctuations [43]. The consequence of these fluctua-
tions is that the intensity distribution obeys a Lévy type statistic. The Lévy distri-
bution belongs to the family of stable distributions, it is characterized by an in-
finite variance, since the occurrences of rare but very large values contributes to
a slowly decaying tail (see Appendix A). It was found that there exist three differ-
ent regimes for the laser intensity fluctuations: the threshold where Lévy statistic
applies, and below and above the threshold where the statistics remain gaussian
[44–46]. The Lévy regime corresponds to the range where spectra have an accen-
tuated chaotic character.

Linewidth and peak frequency tuning Most of the characteristics of random
lasers realized with dye solutions and scattering particles, are also on average
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applicable to a vast variety of active media and disordered matrices from which
random lasers can be realized. One of the appealing characteristic of the random
laser is its narrow linewidth. Tuning the linewidth of random lasers is crucial to
promote their practical applications. However, the disordered structures make
this tuning very complex. To date, how to realize a random laser with tunable
linewidth or increasingly narrow lines is a relevant challenge. Our novel tech-
nique presented and explained in detail in Chapters 4 and 5 of super-resolved
spectral reconstruction requires narrow laser linewidths to improve the resolu-
tion. In accordance with what we discussed in the previous sections, random
lasing with a line width of few nanometers is considered to be the result of inco-
herent feedback (see Figure 2.1) while coherent feedback leads to narrower peaks
with sub-nanometer width (see Figure 2.2). Experimentally, by tuning the com-
position of the random laser, such as the concentrations of scatterers and the
gain material, as well as the pumping area, the switch between these two regimes
can be achieved as desired [40]. However, an optimization of the linewidth needs
still to be reached, and constitutes an open issue. In recent years many works in
this direction were presented, for example the manipulation of plasmonic scat-
tering of metal particles with plenty of nanogaps is proposed as an effective method
to achieve line width-tunable random lasers from 0.03 to 6.5 nm, with a tuning
range exceeding 2 orders of magnitude [47].

Similar results were obtained also for the tuning of the emission lines, a multi-
color coherent random laser using various laser dyes, based on cascade energy
transfer, was developed [48]. Moreover, Bachelard et al. showed experimentally
that control over emission can be gained by actively shaping the optical pump in-
side the random laser, and single-mode operation at any selected wavelength can
be achieved with spectral selectivity down to 0.06 nm [49]. This method opens
the way towards versatile tunable and controlled random lasers, with ultra-narrow
emission lines (ª0.03 nm).

2.3 Optimization and application of random lasers

The peculiar properties of random laser, also benefitting from low cost and ro-
bustness of operation finds a lot of potential and practical applications in many
different fields. For example, the low coherence of random lasers with incoherent
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feedback which translates into a low contrast speckle pattern, is very attractive
for applications requiring high uniformity of the field distribution. They can be
advantageous in holography, in the energy transport in fibers for medical appli-
cations, and generally in all applications where the coherent properties of con-
ventional lasers represent a disadvantage as they would degrade luminescence
uniformity. Redding et al. exploited the low spatial coherence of specifically de-
signed random lasers to demonstrate speckle-free full-field imaging in the setting
of intense optical scattering [2]. They quantitatively showed that images gener-
ated with random laser illumination exhibit superior quality than images gener-
ated with spatially coherent illumination. Recently, a random laser has been ex-
ploited in optical sensing applications. By maintaining the active medium sepa-
rated from the diffusive one Ignesti et al. built a self-contained optical sensor that
could be employed in non-invasive diagnostics of biological samples [50]. Ran-
dom lasers however are notorious for their unpredictability, with large efforts be-
ing dedicated to obtaining at least a partial control of their emission properties.
Lee et al. experimentally observed that photonic band-tail eigenstates, which are
manifestations of photonic Anderson localizations, are responsible for random
lasing in a compositionally disordered photonic crystal [51]. They also demon-
strated that the process of governing the band-tails offers an opportunity to reg-
ulate random laser emissions [52].

For all the mentioned applications, from sensing and spectroscopy to speckle-
free imaging, it is moreover useful to have high-radiance sources operating in
continuous-wave (CW). Biasco et al. demonstrated the CW operation of a ran-
dom laser using an electrically pumped quantum-cascade laser gain medium in
which a bi-dimensional random distribution of air holes is patterned into the
top metal waveguide [53]. They obtained a highly collimated vertical emission
at 3 THz and CW emission of 1.7 mW. An external cavity formed with a movable
mirror was used to tune the random laser over 11 GHz.

As concerns the random laser efficiency, many different kind of lasing mech-
anisms have been proposed in the latest two years. Wu et al. studied random
lasing in a metal surface plasmon waveguide with gold-plated silicon pyramids.
The emission efficiency of the random laser was greatly enhanced through the
spiky tips. The surface plasmon waveguide confined the emitted light in a cer-
tain direction with a small divergence angle. They found that the enhancement
effect for the random laser is likely to be due to the localized surface plasmon
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(LSP) field. The LSP field nearby the spiky tips can enhance field-molecule in-
teraction, which is beneficial for lasing at small scale, opening the way for the
application of random lasers in sub-wavelength optical elements [54].

However, as remarked by Yu in his review, for random lasers to be useful, elec-
trical excitation (i.e. the realization of laser diodes) is an essential condition for
commercialization [55]. It is necessary to overcome the problems of high scat-
tering loss and multidirectional emission from the random media. If these re-
quirements can be fulfilled, random lasers will provide the ideal light sources for
laser projectors, spotlights, car headlights, etc. A random laser diode can simul-
taneously offer compact size, low power consumption and collimated incoherent
emission. Nevertheless, the development of electrically pumped random lasers
is still in its infancy. A recent demonstration of an electrically-pumped random
laser was made in 2013 by Liang et al. They realized for the first time a random
laser in the mid-IR regime, using a random distribution of air holes patterned
on quantum cascade laser heterostructures (GaAs/InAlAs)[56]. For a sufficiently
dense configuration of air holes, random peaks arise due to multiple scattering
and interference, and either multi-peak or single lasing regime can be switched
depending on the size of the structure. The proposed method provides a plat-
form for studying the physics of random lasing with controllable randomness,
and further prove that random lasing can be observed at a wide range of wave-
lengths and in a broad range of material system.

The proposal of using GaAs- and GaN-based materials for the fabrication of
random laser diodes might be the most promising, since the design and fabri-
cation technologies of GaAs- and GaN-based double hetero-structures is well es-
tablished and commercially available. The problems of high scattering losses and
multidirectional emission can be suppressed by using a waveguide design. More-
over, the unexplored nonlinear processes at the basis of random laser diodes
makes the development of functional electrically driven random lasers even more
interesting.
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Chapter 3

Fabry-Pérot-like resonances in

weakly scattering medium with gain

3.1 Introduction

As we have seen in Chapter 2 a feedback mechanism is required to achieve lasing
oscillation: in a conventional laser it is provided by the mirrors and lasing occurs
only via the modes that are defined by the geometry of the cavity. In a scatter-
ing medium with gain, recurrent scattering events provide amplification along
closed loops that act as ring cavities for light, so that the modes associated to
these random ring cavities can sustain lasing oscillations. When the scattering is
weak, light performs a random walk with a vanishing probability of returning to a
specific scatterer, then recurrent mechanisms can be neglected and in principle
no kind of coherent feedback is typically achieved. However, lasing with coher-
ent feedback can be still observed in many weakly scattering systems ranging
from conjugated polymer films to organic dyes-doped gel films [1, 2], polymer-
infiltrated opal crystals [3, 4] and laser dye solutions [5].

Polson et al. observed a certain degree of periodicity in the emission spec-
tra associated with a coherent feedback signature, which was confirmed by a
clear peak in the Fourier Transform spectrum as in the case of a laser resonator
[4]. Wu et al. in 2006 performed a rigorous series of experiments on a colloidal
suspension of scattering nanoparticles embedded in either diethylene glycol or
methanol dye solutions [6]. Above a threshold pump intensity they observed nar-

25
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row peaks ( ª 0.1 nm wide) rising upon the gain medium curve (ª20 nm wide),
whose frequencies changed from shot to shot. Despite the fact that the frequen-
cies of the peaks were uncorrelated among the shots, many spectra exhibited
a resonator-like, constant frequency spacing of the lasing peaks. This constant
frequency spacing can be interpreted with the free-spectral range of a standard
Fabry-Perot cavity, whit the wavelength spacing ¢∏ inversely proportional to the
cavity length Lc:

¢∏ = ∏2

2nLc
(3.1)

where n is the effective refractive index. The estimated cavity length was Lc ª 200-
300 µm. The emission from the random laser sample was detected in the back-
ward direction with respect to pump illumination. Images collected at 90° from
the pump beam showed the lateral section of the excited volume revealing its
conical shape, with the base at the cuvette entrance and the vertex inside the liq-
uid solution. Since these systems were weakly scattering and the scattering mean
free path was longer than the absorption length even at saturation condition, the
cone shape was mainly determined by absorption and its height associated to
the penetration length of the pump light inside the sample. The measured value
of the cone height was comparable to the cavity length estimated from the reg-
ular spacing of the random laser peaks in the emission, suggesting an explana-
tion for the comb-like resonances. Even if the feedback provided by scattering
was weak, the high gain due to intense pumping was enough to create a coher-
ent feedback effect, that resulted in narrow and discrete lasing peaks. Numerical
calculations were showed sustaining the hypothesis that the major feedback to
the observed Fabry-Perot like emissions was provided by particles at the bound-
aries of the pumped volume: two particles, respectively at the vertex, and at the
base of the light cone, are sufficient to instaurate a resonant feedback. Indeed,
the backscattered light from a scatterer at the boundaries of the pumped vol-
ume experiences an higher amplification than light scattered from particles in
the central zone, which could explain why the mean cavity length retrieved from
the periodic spectra was similar to the height of the cone. The authors associated
the lasing phenomenon to that of a distributed feedback laser (DFBL) in under-
coupling regime of operation, where the distributed feedback was provided by
the random scattering particles inside the pumped volume, rather than from a
periodic variation of the permittivity.
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While the hypothesis of scattering particles can be considered reasonable in
explaining the regular spacing between the peaks in the emission shots, the op-
tical system used to image the liquid sample in their experiments did not have
enough resolution to detect particle sizes of the order of few micrometers. More-
over, the images reproducing the light cone inside the sample were the result
of an average over ª 30 frames. The average precluded the possibility of study-
ing the dynamic of the liquid, first of all the motion of the scattering particles.
Since the scattering particles are fundamental for the formation of the regular
resonances in the emissions, a synchronous acquisition between the single-shot
spectra and the images of the sample at the same instants is necessary to look
into this mechanism. In this work we present a detailed experimental study con-
ducted on the random laser emissions from liquid weakly scattering dye solu-
tions, by achieving triggered acquisitions of the sample images with the random
laser pulses. These allows to investigate the importance of the contemporary
presence of two scattering particles one in the vertex and one on the basis of the
pumped volume and if this condition is sufficient to achieve a coherent feedback
for random lasing.

3.2 Experimental results

In the following section we describe the random laser sample and the optical
setup that we used to characterize the random laser emission. The weakly scat-
tering systems consist of scattering nanoparticles of TiO2 suspended in a solution
of Rhodamine 6g and ethanol. The experiments were performed with various dye
concentrations, 5 mM, 15 mM and 45 mM, and also particle density was varied
from 3·109 to 8·1010 cm°3 for a fixed dye concentration. The liquid sample con-
tained in a cuvette was optically excited at ∏= 532 nm by a Nd:YAG mode-locked
laser with 20 ps pulse width and a repetition rate of 10 Hz. Figure 3.1 shows a
scheme of the experimental setup. The pump beam was focused by a 10£ ob-
jective lens into the solution through the front window of the cuvette. The light
emitted in the backward direction is collimated by the same objective lens and
focused with a second lens ( f = 50 mm) into an optical fiber. The fiber output is
focused at the entrance slit of a spectrometer and a CMOS camera triggered with
the pump pulse records the single random laser emission shots, with a spectral
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resolution of ª 0.1 nm. An objective lens (20£, 0.5 NA) is placed in front of the
cuvette, at 90° with respect to the pump beam producing a magnified image of
the lateral emission which is detected by a second CMOS camera, synchronous
with the pump pulse. Therefore, for each random laser emission shot we collect
both its spectrum and a side image of the liquid sample. A white spectrum lamp
was placed in the vicinity of the cuvette, orthogonal to the pump beam in order
to create a diffuse illumination of the liquid. In this way the white light scattering
from small TiO2 particles or clusters makes them more visible inside the liquid.
The characterization of the pump was performed by imaging the fluorescence
signal emitted by a weakly absorbing 5·10°6M solution of dye and ethanol (see
Figure 3.1.b). The estimated focal spot of the pump is 10 µm.

Figure 3.2.a shows the ASE emission spectrum from a solution of 5mM dye
in ethanol exhibiting characteristic resolution-limited spikes, over the large dye
emission. The peaks in the ASE spectrum change stochastically their positions
for different shots. The ASE emission has been fully explained in early works
since its first observation [7–9]. The random spikes on the ASE spectrum orig-
inate from intensity fluctuations in time within the same ASE pulse and they
average out when integrating over few shots. The time fluctuations are due to
amplification of spontaneous emission mainly occurring along the direction of
largest gain, and determined by the direction of maximum spatial extent of the
pumped volume. In our case it assumes the shape of the gaussian beam pene-
trating inside the absorptive liquid medium.

Figure 3.2.b shows a random laser shot emission from a 5mM dye solution
with a TiO2 particle concentration of 109 cm°3, the narrow discrete peaks with a
width < 0.2nm are uncorrelated among different emission shots. The shape and
the origin of these peaks are different from the spikes rising on the ASE curve,
where a coherent feedback mechanism intervenes to select narrow, discrete and
highly prominent peaks that deplete the gain curve.

The singular characteristic of the shot of Figure 3.2.b is the regular spacing be-
tween the peaks within the spectrum, different from a typical random laser emis-
sion where peaks arise at unpredictable frequencies. This is also clearly shown by
the peak in the Fourier Transform (Figure 3.2.d). Considering a statistical ensam-
ble of thousands of shots, roughly 30% show this characteristic. In this subset, the
absolute position of the peaks varies in a random fashion from shot to shot, but
their relative spacing is almost constant (¢∏ ª 0.4 nm), with a relative standard
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Figure 3.1: a) Scheme of the experimental setup. The random laser (RL) is optically excited by
a pump laser (LS) which is focused using a 10£ microscope objective (OB1). The same objective
collimates the backscattered signal and the pump light is filtered out by an interference filter (f).
Using a 50-50 beam splitter (BS), 50% the emission is focused to a multimodal fiber and then fo-
cused at the entrance of the spectrometer (S) and collected by a camera (C1). The rest is directed
to a camera (C) in order to characterize the angular emissions. An other objective (OB2) is placed
at ninety degrees with respect to the RL excitation beam. The images of the spatial characteris-
tic of amplified spontaneous emission shots are collected by another camera (C2) synchronized
with that placed at the spectrometer output. Then to each RL emission spectrum we can relate
an image of the liquid sample at the same instant. The inset shows a graphical picture of the ran-
dom laser sample and the cross-section of the cuvette wall (thickness ª 500 µm). The sample is a
solution of Rhodamine 6G and ethanol with a suspension of scattering TiO2 nanoparticles. The
picture is not to scale to highlight the effective cavities length inside the sample (200–300µm),
from the scattering particle to the inner face of the cuvette. b) The image shows the pump beam
propagating in a weakly absorbing dye solution in ethanol. From this image we can estimate a
focus waist of 10 µm ). The right side shows part of the cuvette wall.
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Figure 3.2: a) Typical ASE emission spectrum. b) Example of a periodic emission spectrum of
a random laser shot. c) Fourier Transform of ASE emission. The inset is an average of over ª 300
ASE emission shots. d) Fourier Transform of RL emission shot.
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deviation of 20%. The associated cavity length Lc to the measured ¢∏, assuming
1.37 as the effective refractive index for the solution, is ª 300 µm. The ASE emis-
sion from the clear dye do not show any evident spectral periodicity, this is prob-
ably due to the absence of feedback mechanisms, as verified over a large statistic
of shots (Figure 3.2.c). By averaging over 300 ASE emission shots, a small broad
peak at 5 nm°1 appears in the FT spectrum (inset of Fig. 3.2.c) which is merely
caused by the interference of multiple reflections between the two plane-parallel
facets of the cuvette wall, corresponding to a path length of 550(30) µm.

Different emission features have been observed by varying the dye concen-
tration. Figure 3.3 reports the average of 30 Fourier Transform of emission spec-
tra, exhibiting prominent and equispaced peaks (as those of of Fig. 3.2.b), for
three different dye concentrations of 45mM, 15mM, 5mM and a fixed particles
concentration of 109 cm°3. By decreasing the dye concentration, the penetra-
tion length of the pump increases as well as the gain volume, as it is shown by the
lateral images (inset of panels a)-c)) showing ASE and/or fluorescence emissions,
since random lasing mainly occurs in the longitudinal direction. Figure 3.4 shows
the angular distributions of some sequential random laser shots. In the studied
weakly scattering systems the gain volume mainly extends along the pump direc-
tion, then also emissions maintain the same directionality. As a result the angular
spread of the modes is below 2°.

Figure 3.3: a),b),c) Average of the Fourier Transform spectra of 30 periodic RL sample with a
dye concentration respectively of 45mM, 15 mM, 5 mM. The insets correspond to the images of
emission at ninety degrees with respect to pump axis.

By reducing absorption the cavity enlarges, and the FT peak moves toward
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Figure 3.4: Angular emissions of different random laser shots. The images of the angular dis-
tribution is obtained by imaging the collimated output of the microscope objective lens. Indeed,
since the sample is in the focal plane of the objective, the collimated beam is Fourier Transformed
by the objective lens forming an angular-resolved image at its back-focal plane.
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higher frequencies ( 1
¢∏=2nL/∏2) consistently with this interpretation.

In the average FT spectra of Figure 3.3, in particular in that of panel c), one
can recognize a peak corresponding to the inverse of a mean periodicity in the
emission spectrum and other Fourier components with decreasing intensity sep-
arated by a multiple of the frequency of the principal peak, usually corresponding
to higher harmonics. Additional peaks can also appear not exactly at frequency
multiples and they are most probably due to intensity fluctuations of the emis-
sion, as will be clarified in the following discussion.

The cavity lengths Lc calculated from the FT peaks of Figure 3.3 are reported
in panel a) of Figure 3.5 versus the dye concentration. However, they do not cor-
respond to the penetration lengths of the pump inside the sample as observed
by [6]. By considering for example the 5mM sample (Fig. 3.3.c), the estimated
mean cavity length is 300 (70)µm from the FT, whereas the penetration length es-
timated by the fluorescence of the lateral image (inset) is approximately 600µm.
The pump photon flux is of 2·1028 cm°2s°1 – assuming a 50µm of spot radius at
the sample interface – which is ª1000 times larger than the saturation intensity
ª 2·1025 cm°2s°1 (calculated as 1/æstø with a cross section for stimulated emis-
sionæst ª 1·10°16 cm2 and a fluorescence lifetime ø ª 1 ns). Panel b) of Figure 3.5
for a fixed dye concentration of 5mM shows that Lc it is practically insensitive to
variations of the scattering mean free path over more than one order of magni-
tude (20µm to 570 µm).

Figure 3.6 shows three subsequent side images and the Fourier transforms of
their respective emission spectra. From top to bottom a single cluster, of ª3µm,
appreciably distinguishable from the image background, is falling through the
light beam. When the particle is outside the beam (panel a)) nothing is notice-
able in the Fourier Transform spectrum, but when the particle enters in the light
beam cone (panel b)), a higher peak near 3.2 nm°1 and other smaller ones appear
in the FT, becoming more intense and less noisy as the particle gets more illumi-
nated in the centre of the light beam (panel c). In panel c) the major peak in
the FT corresponds to a cavity length of 370(30)µm, while the distance between
the particle and the cuvette, obtained by the side image, is 360(10)µm. A mi-
nor, broader peak at 6.3 nm°1 represents the higher harmonic component, while
the peak at 5.2 nm°1 is ascribed to the cuvette thickness 520(10)µm (compatible
with the value of 550(30)µm, due to the fabrication tolerance). As concerns the
other peaks in the FT, resonances inside the cluster are excluded, since the first
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Figure 3.5: The panel a) plot reports the cavity lengths Lc, for three different value from the
peak FT. Panel b) shows the cavity length as a function of the scattering mean free path, Lc results
substantially independent from this parameter and then from the scatterer concentration.

prominent peak appears around 0.8 nm°1, corresponding to a length of the or-
der of 50µm. To explain the origin of these secondary peaks, we show in Figure
3.7 the spectra and the relative Fourier Transforms of three sequential emission
shots corresponding, analogously to Figure 3.6, to a particle passing through the
light beam, where correspondences are particularly evident.

Panel a.I shows the spectrum of a particle that is just entered in the light beam
and lasing appears. The Fourier Transform (panel a.II) shows a series of peaks,
the first at 0.4 nm°1 (blu arrow) followed by other ones with decreasing intensi-
ties towards higher frequencies. The one at 1.7 nm°1 (black arrow) corresponds
to the visible fine periodicity of 0.6 nm in the spectrum on the left panel, which
can be directly related to the distance of the particle from the cuvette interface.
The peak at 0.4 nm°1 and its higher order harmonics (0.8°1,1.2 nm°1) are essen-
tially caused by the intensity fluctuations of the lasing modes: it is clear from
the left panel, that the two intense peaks distant 2.5 nm induce in the Fourier
Transform a more intense peak at 0.4 nm°1. It is therefore sufficient to have just
a couple of two more intense peaks in the emission spectrum to create “artifi-
cial” peaks in the Fourier Transform spectrum, that are not directly associable
to an existent short cavity inside the sample. The same is probably true for the
other secondary peaks for which the correspondences are more complex to indi-
viduate. Panel b.I shows the emission spectrum when the same particle is fully
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Figure 3.6: From top to bottom, three subsequent images of the liquid and the ASE emissions
shots. The green circle evidences a particle moving in the liquid and crossing the light beam.
Its distance from the cuvette inner face corresponds to the cavity length extracted from the peak
in the Fourier Transform spectra relative to the RL emission at that instant. The peak in the FT
corresponds to the inverse of the FSR of the Fabry-Perot like cavity created by the presence of the
particle and the cuvette margin. When the particle is perfectly immersed in the light beam the
peak in the FT is enhanced, when it is entering or outing in the light beam, the FT peaks goes
down.
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illuminated by the light beam. Correspondingly, the emission intensity increases
by a factor ten, thanks to the enhanced coherent feedback provided by the pres-
ence of the scattering particle. The Fourier Transform is dominated by the peak
at 1.7 nm°1 and the higher harmonic orders 3.5 and 5.3 nm°1, as highlighted in
the inset of panel c.II. Eventually, when the particle goes out of the light beam,
the spectrum is characterized by an alternation of weakly lasing modes and ASE
emission (panel c.I,c.II).

The same experiments have been conducted on several samples, varying both
dye and particles concentrations. By pumping slightly above the threshold to
observe random lasing, it has been observed that all the times that the emission
spectrum becomes periodic a small cluster passes through the light beam, as that
reported in Figure 3.6.b. The side images provides a one-to-one correspondence
between the cavity length calculated from the emissions and the particle distance
from the cuvette front window. Also scattering particles that do not form “big”
clusters can be responsible of spectral periodic feature. In some case it is pos-
sible to observe periodic spectra without finding cluster in the images, meaning
that the particle is too small to be resolved by our imaging system (the resolution
of the imaging system allows to clearly distinguish objects with a size greater than
2µm, to be compared with the average diameter of 400 nm of isolated scattering
particles). However the estimated cavity length remains almost the same, consid-
ering the same sample, even if the particle is not visible. The particle or the small
cluster of particles probably behave as one mirror cavity, while the second mirror
is always provided by the cuvette face. This is a small but significant difference
from the interpretation given by Wu et al. which required the presence of two
particles at both the extremities of the light penetration length [6]. In contrast,
we have never observed two or more clusters falling down during a sequence of
periodic spectra. We have seen that the position of the falling particle is critical
to achieve the comb-like spectral emission, which is entirely suppressed as soon
as the particle leaves the central part of the pumping volume. For this reason, the
estimated probability of having two or more particles fulfilling at the same time
these stringent conditions seems negligible for the particle concentration values
investigated here and in the work of Wu et al.
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Figure 3.7: Spectra and the relative Fourier Transforms of three sequential emission shots cor-
responding, analogously to Figure 3.6, where a particle is entering (panel a)), crossing (panel b)),
and outing (panel c)) from the light beam.
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3.3 Discussion

In the previous section, we have seen how the penetration length of the pump
beam estimated from the side images is longer than the effective cavity length
that is estimated from the spectral mode spacing (see Figure 3.6). A possible ex-
planation is that the particle or the cluster can build lasing oscillations only if it
crosses the light beam up to a maximum distance from the the entrance of the
excitation beam which is of the order or greater than the threshold gain length.
Then, the cavity extends from the inner face of the cuvette to the position of the
particle, like it happens in a regular laser with two reflecting mirrors.

Ito & Tomita in 2004 performed numerical simulations of a random laser in
a spherical multiple scattering medium [10]. They studied how the gain volume
increase, in random lasing emission, when saturated absorption occurs in the ex-
citation process. For very weak excitation energy the size of the gain volume in-
creases with a one-third power of the excitation energy, until it reaches a critical
value where the threshold energy for lasing is surpassed. The size of the gain vol-
ume as well as the threshold for lasing depend on dye concentration and trans-
port mean free path. The relation for the energy balance of a random laser sys-
tem, assuming that the whole excitation photon rate E contributes to pump the
active medium and that all the molecules of dye are in the excited state is [10]:

E = L
3
gN

µ
1
ø
+ cæsts

∂
(3.2)

Where the first term represents the spontaneous emission process and the
second the stimulated emission, N is the dye concentration, ø is the excited state
lifetime and s the emitted photon density. The emission light escapes from the
gain volume by a diffusion process, then the number of emitted photons has to
be equal to that given by the diffusion:

L
3
gN

µ
1
ø
+ cæsts

∂
=

L
3
gs

ød
(3.3)

with ød=L
2
g/(ltc), which is the diffusion time employed by light to diffuse out-

side the gain volume and lt the transport free mean path. For weak excitation,
stimulated emission can be ignored and the gain length reduces to:
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Lg =
µ

Eø

N

∂1/3

, (3.4)

which depends with 1/3 power on the excitation rate E . Under strong excitation
energy, the size of the gain volume is independent from excitation energy and
spontaneous emision can be neglected in equation 3.3 :

Lg =
µ

lt

Næst

∂1/2

(3.5)

At the lasing threshold condition equations (3.4) and (3.5) can be both equated
to the threshold gain length Lth:

Lth =
µ

lt

Næst

∂1/2

=
µ

3æa

æst

∂1/2

La (3.6)

Whereæa is the absorption cross-section, la the absorption length and La=(lalt/3)
1
2

the diffusive absorption length. In Figure 3.8 we report the diffusive absorption
length La we estimated from lateral imaging, versus the mean cavity length for
the three dye concentrations relative to the average of the FTs of random laser
emission spectra (Figure 3.3). The trend for the cavity length is in good accor-
dance with (3.6). The relation between La and Lc seems to validate the hypoth-
esis that Lth and Lc are strictly connected, and it also explains why the other
particles within the light beam, if any, do not contribute to create other cavities
with shorter lengths. Indeed, particles passing in the centre of the beam do not
reach the threshold length to build up lasing oscillation through backward scat-
tering, while those that are far beyond that length, where the pump is weaker,
incur in much stronger reabsorption effects. Indeed, the average values for cav-
ity lengths show only a rather limited ª 20% relative standard deviation, which
for the three different dye concentrations correspond to the threshold lengths
needed to achieve lasing mechanisms.

In conclusion we studied the emission spectra of random laser shots, ob-
tained from a liquid, weakly scattering sample of nanoparticle and dye at various
concentrations, and examine the mechanism responsible for the observation of
equidistant lasing peaks. The synchronous acquisition of the lateral images of
the liquid and the emission spectra allowed to relate the spectral periodicity of
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Figure 3.8: Diffusive absorption length La estimated from lateral imaging, versus the mean
cavity lengths Lc for the three dye concentration. These are estimated from the average of the FTs
of random laser emission spectra.

the emission shots to the configuration of the scattering suspension at those in-
stants. By examining many different emission shots, we found an exact corre-
spondence between the spectral periodicity and the presence of a single small
cluster of particles falling across the light beam, visible in the lateral images. The
retrieved cavity lengths are in excellent agreement with the distances between
the cluster and the cuvette face measured from the images. Moreover by repeat-
ing the same characterization for three different dye concentrations we observe
that the cavity lengths do not show any significant dependence from the scat-
tering strength and are mostly determined by the dye concentration alone. Un-
der high gain saturation conditions, following Ito & Tomita we find a link be-
tween the absorption length and the cavity length. We estimate from experi-
mental measurements that the cavity length corresponds, within certain mar-
gins, to the threshold length required for lasing inside the medium. It is suffi-
cient that a single cluster or a particle moving randomly through the suspension,
passes through the beam at a distance from the cuvette wall equal to the thresh-
old length to give rise to the regular comb-like emission of narrow lasing peaks.
Bigger clusters are typically associated to higher feedback enhancement, which
explains why even a single scatterer can enhances periodicity, being the second
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mirror provided by the cuvette interface.
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Chapter 4

Optical super-resolution

4.1 Super-resolution techniques for imaging and spec-

troscopy

The general concept of super-resolution relates to the methods used to recre-
ate a higher quality signal using sets of low-resolution measurements. In recent
years various optical techniques able to achieve a resolution beyond the diffrac-
tion limit or more simply the instrumental resolution were proposed, ranging
from imaging techniques for super-resolution microscopy to reconstruction al-
gorithms enhancing the resolution of a detected interferogram.

Super-resolution microscopy In near-field scanning optical microscopy (SNOM)
the excitation laser light is focused through an aperture with a diameter smaller
than the excitation wavelength, resulting in an evanescent field on the far side of
the aperture. When the sample is scanned at a small distance (<∏/50) below the
aperture, the optical resolution of transmitted or reflected light is limited only by
the diameter of the aperture. This allows to generate images that resolve details
of nano-scaled samples [1]. More recently optical masks have also been designed
to remove the need of the evanescent field by achieving a sub-wavelength focus
at a distance beyond their typical reach. This means that the object to be imaged
does not need to be in the immediate proximity of the superlens. This device can
be used to perform super-resolution imaging for example on a living cell, which
would be otherwise impossible to investigate with a near-field device [2]. In the

43
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far-field, many fluorescence light microscopy techniques have been developed to
improve the study of biological specimens. Using these techniques, novel mech-
anisms in nerve growth and new properties of synapses have been revealed [3].
Some of these techniques, whose importance was emphasized by the 2014 Nobel
Prize for chemistry, are based on the clever concept of sparse spatial sampling,
which allows to map an image, point by point, at high resolution. The Stimulated

emission depletion microscopy (STED) is a deterministic technique that exploits
the non-linear response of emitting fluorophores. An exciting beam is focused by
an objective lens on the fluorophores. According to diffraction limit, the inten-
sity distribution in the focal plane represents the point-spread-function (PSF).
To increase resolution, the extension of the excitation area is reduced by inhibit-
ing the fluorescence in the outer regions. This mechanism is achieved with an
additional light beam, the STED beam, that induces stimulated emission at the
borders. This allows to locally deplete the population of the excited state, so that
only the innermost region contributes to the fluorescence signal [4].

Conversely, stochastic techniques as Photo-activated localization microscopy

(PALM) and Stochastic optical reconstruction microscopy (STORM) use mathe-
matical models to reconstruct a sub-diffraction image from many sets of diffrac-
tion limited images. In STORM, photo-switchable molecules as the cyanine dye
Cy5 are probed continuously by a low-intensity red laser beam. An additional
red pulse converts the molecules to a non-fluorescent "dark" state, while a green
pulse can bring them back to the fluorescent state. A secondary chromophore,
Cy3, facilitates the switching of Cy5 to a light state[5]. In PALM, numerous sparse
subsets of fluorescent protein molecules are activated by a light beam, localized
and then bleached. This process is repeated for many cycles, depending on the
spatial distribution of the molecules, until the population of inactivated and un-
bleached molecules is depleted [6, 7]. Then for both techniques, only a sparse
and optically resolvable subset of point-like sources is activated to a fluorescent
state, allowing to determine their position by fitting the centroids of the blurred
disk generated by each point source. Following the repeated identification of
such sources over a large amount of frames, a complete, sub-diffraction image
is obtained.

Compressed-sensing and reconstruction algorithms A separate discussion re-
gards the techniques based on compressed sensing (CS) algorithm, which have
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been applied to the reconstruction of both images and spectral data. For exam-
ple, in conventional far-field imaging, sub-wavelength information is lost due to
the decay of evanescent waves. The problem is equivalent to that of recovering an
original signal after been filtered from a low-pass filter. In practice this is possible
if we have the a priori knowledge that the signal is sparse [8]. For a signal to be
sparse means that there exists a certain mathematical basis where its represen-
tation comprises a very small number of elements with non-zero projection in
that basis. An essential result of CS is that it is enough to choose a measurement
basis that is uncorrelated with the signal basis. This important theorem indeed
ensures that if the signal is sparse in one of the bases, it will give rise to a dense
representation in the other. An example of maximally uncorrelated bases are the
spatial and the Fourier domains. One of the most common algorithms to recover
the signal in practice is the basis-pursuit method, it involves the minimization of
an L1 norm, and can be implemented quickly and efficiently [9]. Being b the lin-
ear measurement of the original signal x: b = A x, where the matrix A is a known
measurement function. If x is sparse, it can be exactly recovered by minimizing
its L1 norm

minimize ||x||L1 subject to b = A x

even when x has far fewer elements than b. Both STORM and PALM are based on
the imaging of sparsely distributed single-molecules. In these techniques only a
portion of the sparsely distributed molecules is imaged and localized in each raw
image, requiring thousands of raw images. CS can for example increase the maxi-
mum density of fluorescent molecules in a raw image, even if these fluorophores
are not distributed so sparsely and their images overlap with one another [10,
11]. Moreover sparsity provides an effective tool for overcoming the fundamental
resolution limit of spectroscopic devices. Sidorenko et al. use the sparsity-based
concepts of CS to demonstrate the recovery of spectral features at a resolution ex-
ceeding the fundamental resolution limit of a FTIR spectrometer [12], while Katz
et al. can achieve the resolution of a N-point Fourier spectrum from much less
than N time-domain measurements using a compressive-sensing reconstruction
algorithm [13].

Among the existing reconstruction methods to increase the resolution of a
frequency spectrum there is the maximum entropy method (MEM) [14]. The idea
is to choose the spectrum which corresponds to the most random time series
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whose autocorrelation function agrees with a set of known values. The method
derives its name from the same concept of maximum entropy used in informa-
tion theory. The algorithm operates a reconstruction of the frequency spectrum
applied to Fourier transform spectroscopy data (interferogram) producing a spec-
tral estimation with enhanced resolution [15].

Deconvolution in spectroscopy In spectroscopy, the overlapping of spectral
components results in line-broadening when the instrumental resolution is too
low. This typically happens in Fourier-Transform spectrometers where the in-
terferogram is limited by the maximum delay time, or in a dispersion spectrom-
eter where the spectral response to a delta-function translates to a line of finite
width. The artificial resolution improvement that results in a partial separation of
spectral data and decomposition of a composite spectrum into individual pure-
component spectra is defined as deconvolution. Deconvolution can upgrade the
resolution of a spectroscopic measurement up to 2-3 times. From the theoreti-
cal point of view, deconvolution is generally considered as an inverse problem,
which is commonly encountered in practical applications. The problem posed in
spectroscopic terms is that of retrieving the true spectrum from that measured by
using the instrumental response function. A deconvolution method widely used
is Fourier self-deconvolution (FSD) which was developed on the basis of Fourier
transform spectroscopy [16].

S(x) =
Z1

°1
K (x °x

0)R(x
0)d x

0 (4.1)

where S is the measured spectrum, K the instrumental response function and
R the true spectrum. By the knowledge of the instrumental response function
and the the measured spectrum, we can retrieve the true spectrum. Stationary
convolution from the spatial to the frequency domain is commonly implemented
using integral Fourier transform :

S̃(!) = K̃ (!)R̃(!) (4.2)

Since for !!1 K̃
°1(!) ! 0, the deconvoluted spectrum is evaluated within

a regularization window (i.e a filter) W that at infinity must decay more rapidly
than the response function. Then:

R(x) = 1
2º
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°1
W (!)K̃
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j x!

d! (4.3)
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It is evident from eq. 4.3 that deconvolution is the solution of an inverse ill-posed
problem, where disturbances of the instrumental function and of the measured
spectrum as well as truncation effects may cause computational errors of R(x).
Common mathematical methods can be used to obtain a more stable solution,
and are usually based on a priori assumptions concerning the mathematical rep-
resentation of the instrumental function and/or its properties. Prior knowledge
of the response function, however, poses another problem. The vast majority
of deconvolution algorithms are still based on that knowledge and their perfor-
mance degrades quickly for incorrectly presumed instrumental response func-
tions. To date, no method is known for the exact determination of the response
function of an instrument. To circumvent this issue, blind deconvolution has
also been proposed as an iterative algorithm that allows to improve the estima-
tions of both the ideal spectrum or image and the effective response function of
the instrument [17, 18].

4.2 A new concept of spectral super-resolution

In this section we describe the basic concepts and the idea underlying a novel
technique to achieve super-resolved spectral reconstruction. Following an intro-
ductory part, we discuss first a set of numerical calculations that we have per-
formed to test its validity limits, while Chapter 5 is entirely dedicated to the first
experimental demonstration of its applicability.

In this work, the concept of sparse sampling in the frequency domain is used
to achieve a super-resolved spectral characterization of an unknown sample, sim-
ilarly to the case of super-resolution microscopy with spatial sparse sampling. In
this case, the resolution limit is posed by the spectral resolution of a dispersive
spectrometer which is not sufficient to characterize a sample with spectral fea-
tures that are finer than the nominal resolution of the measuring instrument.

The resolution of a spectrometer is defined using the Rayleigh criterion [19],
i.e. its ability to identify two adjacent spectral lines. This is strictly connected
with the “instrumental line profile”, I (∏), corresponding to the spectral line mea-
sured by a detector at the output slit if a “monochromatic field” is focused at the
spectrometer entrance slit. The FWHM of I (∏) defines the spectrometer resolu-
tion. This implies that any spectrum S(∏), analyzed by the spectrometer, is the
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result of the convolution of the real spectrum S0(∏) with the instrumental line
profile I (∏): S(∏) = S0(∏)§ I (∏) (eq. 4.1).

The shape of I (∏) depends both on the properties of the spectrometer and
the detector; if the latter is realized by an array, the spatial density and arrange-
ment of the pixels concur to determine the instrumental resolution. As a rule of
thumb, if the monochromatic line is not resolved by at least three pixels, then
the resolution of the measurement is clearly limited by the detector rather than
the monochromator. In the following, unless otherwise specified, we will always
assume that the instrumental resolution is not limited by the properties of the
detector. This corresponds to the most relevant situation in many cases. If the
light source has an emission characterized by peaks with a natural widths that
is narrower than the instrumental resolution, then the FWHM of the recorded
peaks coincides with that of the instrumental profile. Even if the spectral fea-
tures to be determined are below the spectral resolution of the apparatus, we are
able, within certain validity limits described in the following, to obtain a super-
resolved characterization of the transfer function of a sample.

4.2.1 Simulation of a spectral-super resolution experiment

In the following, we describe an alternative strategy to reconstruct the transmis-
sion curve of an unknown sample without using white light illumination and
therefore avoiding the need to resort to deconvolution. Our approach leverages
instead random sparse sampling of the unknown curve to progressively refine its
reconstruction, similarly to what stochastic microscopy applications have demon-
strated for imaging purposes. The main novelty of the method, and what makes it
unique with respect to previous stochastic reconstruction methods, is to employ
the random laser as narrow line emitting source which is inherently character-
ized by a stochastic spectral response. We retrieve the target transmission func-
tion by performing a sparse frequency sampling exploiting the intrinsic proper-
ties of random laser in the chaotic regime. As described in Chapter 2, when a
random laser is working in a pulsed regime, and above threshold, it exhibits a
chaotic emission spectrum with a set of narrow lasing modes fluctuating in fre-
quency and amplitude at each shot of the pump laser. To this purpose the re-
sulting series of sparse, sharp and uncorrelated laser peaks allows to probe the
spectral response of a sample and reconstruct the transmission spectrum with
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enhanced resolution, despite using a low resolution spectrometer and without
a precise knowledge of the instrumental response. In this section we illustrate
and demonstrate the idea providing theoretical insights on the parameter space
of operation and the results obtained with this method are compared with that
obtained from a standard deconvolution process. Let us consider as a start-
ing sample a low-finesse Fabry-Perot (FP) filter characterized by a free spectral
range (FSR) well below the spectral resolution of a measuring apparatus (FWHM=
4.9·FSR). The outline of the setup is shown in Fig.4.1, which was also used as a
guide to set up the numerical simulations. This outline also serves to illustrate
the idea more in detail. Two types of light sources have been considered: a ran-
dom laser (purple in the figure) and a regular lamp for comparison (yellow in the
figure). The transmission of the etalon is measured versus frequency, using a low
resolution spectrometer (indicated in green, together with its (broad) spectral
response function). In the yellow graph (panel b) the optical response is shown
when the sample is illuminated with an ideal Gaussian-shaped broadband illu-
mination source. Due to convolution of the transmission spectrum of the sample
with the (broad) instrumental response function of the spectrometer, the Fabry-
Perot fringes disappear almost completely. From a mathematical point of view,
by knowing I(∏) exactly for an ideal delta-like source, it would still be possible to
recover the original signal using a deconvolution operation. However, this is un-
feasible in practice due to the finite noise level of a real measurement, and it is in
fact already challenging even in this simulated case due to numerical instability
of deconvolution, which is highly susceptible to the finite precision of computed
functions [17, 20].

Numerical simulations have been performed on large sets of computer gen-
erated spectra with a random laser illumination source. In Fig. 4.1.d, examples of
the numerically simulated transmission spectra have been plotted. These shots
represent the random laser operating in the chaotic regime, where only few modes
actually reach threshold leading to the typical random laser emission spectrum
that consists of few narrow ‘spikes’, well-separated from each other. In the chaotic
regime of operation, the emission spectrum of each random laser pulse is com-
pletely uncorrelated from the previous pulse. These are precisely the properties
that make the random laser an ideal source for sparse sampling in the frequency
domain. In each transmission curve, one can identify isolated broadened peaks
arising from the convolution of the narrow mode (fuchsia curves) with the instru-
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Figure 4.1: a) Scheme of the setup described by the simulations: a light source (either a broad-
band source or a random laser) is used to measure the transmission function of a Fabry-Perot fil-
ter (FP), through a spectrometer (S) with a large point spread function (inset) and a linear camera
(C). The assumed spectral dispersion is 36 GHz/pixel, reproducing that of a standard diffraction
grating (1200 l/mm) and a commercial linear camera (1248 pixel, 14 µm pixel size). The numer-
ical transmission function of the low finesse FP approximates a sinusoid with FSR of 125 GHz.
b) Average of 104 numerical broadband spectra modulated by the FP. Because of convolution ef-
fect the original contrast is attenuated and almost hidden even by very low noise fluctuation. c)
Deconvoluted response (red) obtained by deconvolving spectrum b) from point spread function
(inset of panel (a)). Numerical FP response function (dashed grey) as measured by the camera
with a spectral resolution of FWHM=4.9·FSR. The deconvolution method fails in retrieving the
original response. d) Example of many single shot random laser emission (purple) obtained with
the same low spectral resolution setup of (b). In violet is evidenced the intrinsic narrow nature
of RL modes, which were pixel-limited in the case of very high resolution spectrometer. e) FP
transmission function reconstructed with the method of the peak analysis, performed on a set of
104 single shot RL spectra. In the average the original FP contrast is restored as well as the FSR.
The fluctuation in the peak transmission is mainly due to the lack of statistics and an unoptimal
peak normalization.
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mental response function of the spectrometer (inset of panel a)). Despite this
peak broadening, it is still possible to identify their center frequency with high
precision since there are typically only few prominent peaks for each emission
spectrum. Each of the selected peaks provides one data point in the reconstruc-
tion of the target spectrum. By recording peak amplitudes and frequencies for
the most prominent peaks through a series of chaotic spectra (in the order of a
few thousand) and by plotting their amplitudes as a function of frequency, the
original transmission function is eventually retrieved with a spectral resolution
that exceeds that of the instrument. The reconstructed spectrum is shown in
the bottom panel of Fig. 4.1 as obtained using a total of 104 single shot RL spec-
tra. For comparison, we also show the result for a broadband source like a reg-
ular lamp, using the same parameters. While nearly all information is lost using
the broadband source, random laser illumination allows to reconstruct the tar-
get spectrum with very good precision. Regular deconvolution is very sensitive
to small noise fluctuations – which are amplified in the reconstructed spectrum.
The statistical reconstruction using a random laser is much more stable and suc-
cessfully retrieves the original FP contrast and spectral pattern – especially in the
central region where the RL statistics is larger. We have performed a broad range
of similar simulations and found that random laser based super-resolved spec-
tral reconstruction can be applied nearly arbitrarily, for a wide range of apparatus
response functions and target transmission spectra. In the following section the
parameters for spectral reconstruction are discussed more in detail.

4.2.2 Statistics and noise levels for spectral reconstruction

To understand the validity limits that apply to this super-resolved spectral re-
construction, we test the method for many possible experimental configuration,
varying the statistics of the random laser spectra and the amplitude of noise fluc-
tuations. The MATLAB codes used to reconstruct the transmission function of
the FP filter presented in the previous section are reported for completeness in
Appendix 4.3. Figure 4.2 reports the results of the reconstruction algorithm when
the FWHM=4.9·FSR, fixing the number of spectra to 1·104 and varying the noise
amplitudes. The left panel reports the reconstructed FP transmission spectra
while the right panel shows the corresponding FT curves, from where we can see
that the target spectral feature is lost above a noise level of 20% for a statistical
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ensemble of spectra of that size.

Figure 4.2: Left) Reconstructed transmission function resulting from selection of prominent
random laser peaks. For each noise amplitude, the numerical random laser spectra are 104

. Right) Reconstructed FT spectra of the FP transmission function reconstructed numerically
through the algorithm. In both panels, curves have been shifted vertically for better clarity.

Figure 4.3 shows the reconstructed curves for a noise level of 1%, when the
number of spectra passes from 1000 to 40000. On the right panel, one can see
in the Fourier domain how the contrast of target spectral feature with respect to
nearby reciprocal frequencies increases when a larger statistics is considered.

We performed a numerical study of how the signal-to-noise ratio of the re-
covered transmission function varies as a function of the number of spectra. Fig-
ure 4.4 describes the trend for the signal to noise ratio (SNR) calculated from the
FTs of the reconstructed functions (Figure 4.3), when the number N of collected
spectra is increased from 500 to 40.000. The increase of collected spectra is as-
sociable to a Poissonian distribution where the accuracy of the reconstruction is
found to scale as

p
(N ).

Further simulations with different shapes for the instrumental response (from
Rect to Gaussian) and transfer functions (see Figure 4.5) shows that this method
can in principle work with functions of different shapes and with any form of
spectral responses, as long as the sampling is provided by the detector is enough
to resolve the response function with a sufficient amount of pixels. This method
is shown to work even when both the resolution is very low and when, under
certain limits, the measurement is deteriorated by noise fluctuations. The statis-
tic of the random laser peaks has also been varied from Gaussian to Lévy and
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Figure 4.3: Left) FP reconstructed curves, for noise fluctuations of 1%, and increased number
of spectra from bottom to top. Right) FT spectra of the curves in the left panel, showing the signal
to noise ratio of the reconstructed curves.

Figure 4.4: The signal to noise ratio of the reconstructed FP transmission function grows sub-
linearly with increasing the number of spectra, that is, the number of peaks collected.
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Figure 4.5: a) Numerically reconstructed transfer function presenting a complex structure of
spectral features. The transmission function selected is shaping the FT of a multilayer Fibonacci
structure (inset). The spectral response and the random laser spectra are the same as reported
in Figure 4.1. The acquisition noise is posed to zero. b) Deconvolution does not recover correctly
the transfer function even when the noise is absent.

in all these cases similar results were obtained. These results provide a compre-
hensive stress-test for the validity of the method over a broad range of condi-
tions and in particular give a rough estimate of the required statistics of random
laser shots to obtain an experimental evidence of a super-resolved reconstruc-
tion. The following chapter contains a full description of the experimental real-
ization of the super-resolution experiment, starting from the sample realization
and its spectral characteristics, then describing the optical setup used to recon-
struct the transmission features of a Fabry-Perot filter with FSR higher than the
spectrometer spectral response.
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4.3 Appendix

In this section we report the MATLAB codes used for the realization of the nu-
merical experiment showing the super-resolved spectral reconstruction of the
Fabry-Perot filter using the random laser. The algorithm can be divided in three
main sections. In the first part the we define the Fabry-Perot transmission func-
tion, the fluorescence band and generate a number N of random laser spectra.
The spectra generated are the result of the transmission through the FP filter and
the dispersion from the spectrometer with spectral resolution resolution equal to
G .

%%%%frequency axis definition for super-sampled spectra%%%%

c0=2.99792458e8; %m/s = nm*GHz

step=0.05;

z=[1:step:400];

z0=floor(z(end)/2);

lambda0=562; %nm

lambda=lambda0-(0.034)*(-z+z0);

nu_1=c0./lambda; %GHz

[r1,r1]=min(abs(560.5-lambda));

[r2,r2]=min(abs(564-lambda));

%%%%Fabry-Perot filter%%%%

FSR=125; %GHz

A=0.135;

fabry= A+0.018*sin(2*pi*nu_1/FSR);

%%%Gain Medium Curve %%%

F=100;

flu=exp(-4*log(2)*(z-z0).^2/F^2);

%%%% Generation of N random spectra with a spectral resolution of FWHM=G (in pixel)

N=[1000 4000 10000];

G=[4 20];

for l=1:length(N);

for k=1:length(G);

x=zeros(length(nu_1),N(l));

s=zeros(length(nu_1),N(l));
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e=zeros(length(nu_1),N(l));

n=zeros(length(nu_1),N(l));

%%% spectral response function of the spectrometer (Rect) %%%

g1=z*0;g1(floor(length(nu_1)/2)-floor(G(k)/2/step): ...

floor(length(nu_1)/2)+floor(G(k)/2/step))=1;

c=exp(-4*log(2)*(z-z0).^2/2^2);

g2=conv(c,g1,'same')*step;

g=g2/sum(g2*step);

%%%generation of Random Laser Spectra transmitted by the Fabry-Perot filer %%%

peak_number=3;

noise=4e-5;

for j=1:N(l);

r=abs(floor(random('norm',length(z)/2,F/step,[peak_number,1])));

ss=union(find(r>length(z)),find(r==0));

r(ss)=[];

a=random('Uniform',1-0.5,1+0.5,[length(r),1]);

rn=randi([1 length(z)],length(z),1);

an=1e-9+random('norm',0,noise,[1,length(z)]);

n(rn,j)=an;

x(r,j)=a;

x(:,j)=(x(:,j).*flu'+0.01*flu').*fabry';

s(:,j)=conv(g,x(:,j),'same')*step;

e(:,j)=s(:,j)+n(:,j);

end

There is an optimal number of peaks that should appear on the gain medium
curve, to avoid super-position effects on a curve that is ª4 THz wide, This limit
can be qualitatively determined to be around 7. A lower limit does not exist, in
theory a single random peak is analogous to a (stochastic) tunable laser.

%%%% resampled spectra to simulate acquisition from a linear camera

%%%%

px=[1:1:400];

px0=floor(px(end)/2);

lambda1=lambda0-(0.034)*(-px+px0); %nm

nu=c0./lambda1; %GHz
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f=(length(nu))/((nu(1)-nu(end)));

e_1=interp1(z,e,px);

fabry_1=interp1(z,fabry,px);

flu_1=interp1(z,flu,px);

g_1=interp1(z,g,px);

[e1,nu1]=resample(e_1,nu,f);

[fabry1,nuf1]=resample(fabry_1,nu,f);

[flu1,~]=resample(flu_1,nu,f);
[strum,~]=resample(g_1,nu,f);

A1=mean(e1,2);

A1=flipud(A1);

e1=flipud(e1);

fabry1=flipud(fabry1);

The N spectra at the output of the spectrometer are resampled as they where
acquired by a commercial camera with a limited number of pixels.

Below it is shown the routine for the selection of the random laser peaks. The
FWHM of a single RL mode is fixed by the spectral response function of the spec-
trometer, and depends on its resolution. The peak line-shape is the result of the
convolution of the narrow lasing mode with the spectral response of the spec-
trometer. If two fluctuating modes are closer than the spectral resolution limit,
they are unresolved and result in a slightly broader peak, precluding a correct re-
trieval of the exact peak positions. For this reason a control over the peak distance
in the same spectrum is needed to reject modes which are closer than G . The col-
lection of all peak frequencies and amplitudes is stored in a matrix. By plotting
this matrix we obtain a clouds of points, where to each frequency positions cor-
responds multiple peak amplitudes. To obtain the transmission function of the
sample, at each frequency bin, determined by pixel width, the average of the peak
amplitude is calculated. This operation is necessary in order to compensate for
intensity fluctuations of random laser peaks and acquisition noise.

%%%routine for peak selection %%%%

sub_nu=[];

sub_nu2=[];

e_sub_nu=[];



CHAPTER 4. OPTICAL SUPER-RESOLUTION 58

for i = 1:size(e1,2)

y0=smooth(e1(:,i)-A1,5);

y1=gradient(y0);

yout1=gradient(smooth(y1,5));

[~, locs,~] = findpeaks(yout1,'MinPeakHeight',0.6e-5);

i

if mod(length(locs),2)==0

for ii = 1:length(locs)/2;

if locs(2*ii)-locs((2*ii)-1)<1.1*G(k) && ...

locs(2*ii)-locs((2*ii)-1)>0.9*G(k)

sub_nu2= nu1(-1+floor((locs(2*ii)+locs((2*ii)-1))/2));

sub_nu=[sub_nu sub_nu2];

e_sub_nu2=e1(-1+floor((locs(2*ii)+locs((2*ii)-1))/2),i) ...

-A1(-1+floor((locs(2*ii)+locs((2*ii)-1))/2));

e_sub_nu=[e_sub_nu e_sub_nu2];

else

end

end

else

for ii = 1:(length(locs)-1)/2;

if locs(2*ii)-locs((2*ii)-1)<1.1*G(k) && ...

locs(2*ii)-locs((2*ii)-1)>0.90*G(k)

sub_nu2= nu1(-1+floor((locs(2*ii)+locs((2*ii)-1))/2));

sub_nu=[sub_nu sub_nu2];

e_sub_nu2=e1(-1+floor((locs(2*ii)+locs(2*ii-1))/2),i)...

-A1(-1+floor((locs(2*ii)+locs((2*ii)-1))/2));

e_sub_nu=[e_sub_nu e_sub_nu2];

else

end

end

end

end

%%%FP reconstruction%%%%

Ptot1=[sub_nu;e_sub_nu]';
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Ptot=sortrows(Ptot1);

C=[];ia=[];ic=[];iv=[];

[C,ia,ic]=unique(Ptot(:,1));

iv=accumarray(ic,Ptot(:,2),[],@mean);

%%% Display Results %%%

fC=abs(fft(iv)).^2;

xC=((0:1:length(fC)-1)/(length(fC)-1))/(nu1((2))-nu1((1)));

d=abs(fft(A1)).^2;

xd=((0:1:length(d)-1)/(length(d)-1))/(nu1(2)-nu1(1));

fy=abs(fft(fabry1)).^2;

xfy=(0:1:length(fy)-1)/(length(fy)-1)/(nuf1(2)-nuf1(1));

fg=fft(strum);

xg=((0:1:length(fg)-1)/(length(fg)-1))/(nu1(2)-nu1(1));

dec=real(ifft((fft(A1)./fg')));

plot_dec=[dec(floor(length(dec)/2)+1:length(dec)); dec(1:floor(length(dec)/2))];

dec_f=abs(fft(dec)).^2;

figure(1);

subplot(1,2,1)

plot(C,iv);

end

end
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Chapter 5

Experimental demonstration of

super-resolved spectral

reconstruction using a random laser

In this chapter we provide an experimental proof of concept for super-resolution
spectroscopy using a frequency sparse sampling approach. We show that this
can be done using a random laser as light source, taking advantage of its stochas-
tic emission properties. In particular, by operating a random laser in its chaotic
regime, its emission spectrum contains sharp random spikes that are sparsely
distributed over its emission bandwidth and which are uncorrelated from shot to
shot. These sparse collections of narrow spikes can be used to probe the spectral
response of a sample and reconstruct a high-resolution response function using
a ‘bad’, low resolution, spectrometer.

5.1 Description of the random laser sample

As described in Chapter 2, in a random laser there is no optical cavity in the
traditional sense and the feedback mechanism needed for lasing is provided by
multiple scattering. Due to the highly disordered arrangement of the disordered
medium, laser emission from a random laser is typically characterized by very
complex spectral features. Few technical points need to be considered in order
to achieve super-resolved spectral measurements. First, the random laser source

63
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should exhibit, on average, a suitable distribution of chaotic lasing modes with
few sparse bright peaks, distributed over the emission spectrum. Secondly, the
emission spectrum of each shot should be uncorrelated to the other shots. These
requirements were fulfilled by adjusting the pump energy and the excitation vol-
ume. Overall the chaotic regime is easy to obtain and most random lasers operate
here.

For this purpose, we realized a random laser sample made of a colloidal sus-
pension of ZnO nanoparticles (1012 particles per cm3, average particle diameter
200 nm) in a 5 mM solution of Rhodamine 6G in ethanol. The gain medium is
optically pumped with a frequency-doubled pulsed Nd:YAG laser system (Ekspla,
Mod. PL2143A), emitting pulses at 532 nm wavelength with a duration of 20 ps
and repetition rate of 10 Hz. The chaotic lasing regime is obtained for a pumping
condition just above threshold [1].

To optimize the efficiency of the spectral reconstruction method, it is impor-
tant to consider the average number of modes that reach the lasing threshold
(and hence generate a sharp peak) in each shot. According to the model devel-
oped by van der Molen et al. [2], the average number of lasing modes N̄ can be
written as:

N̄ = p · N (5.1)

where p is the probability of lasing and N the total number of modes in the sys-
tem. By exploiting the usual balance between spontaneous and stimulated emis-
sion, and assuming that all modes contribute equally, this model predicts the Ø
factor of a random laser to be Ø= N̄ /N , where Ø is equal to p. For picosecond ex-
citation, p is in the range 0.05-0.1 [3]. The average number N̄ of lasing modes in
our sample is 5, while the total number of cavity modes can be estimated with the
general relation N = 8ºn

3
V¢∏/∏4. For our sample this results in N ª1800 and

p equal to 0.003, which is one order of magnitude lower than the typical value
reported in literature.

In general, four main parameters that one can vary to get a different response
from a random laser source are the i) optical gain, ii) scattering strength, iii) opti-
cal pumping power and iv) volume/shape of the pumping region. In turn, these
parameters determine the two main features that we are interested in, namely
the intrinsic width of random laser peaks (which ultimately poses a limit to the
resolution achievable) and the average number of prominent peaks that are ob-
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Figure 5.1: Single emission shots of nine mixtures of Rhodamine dissolved in ethanol contain-
ing scattering nanoparticles of ZnO. From left to right the dye concentration increases, from 5, 15,
45 mM, while from top to bottom the scatterer concentration varies from 1 ·1012, 3·1012, 6·1012.
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served in a single shot (which should not be too high to allow the correct identifi-
cation of individual peaks, but also not too low so to collect a significant statistics
more efficiently). Figure 5.1 shows an array of representative lasing shots from 9
different random laser mixtures where we have independently varied both the
dye and ZnO nanoparticles concentrations while keeping all other conditions
fixed. In detail, the panels are arranged with increasing dye concentration (5
mM, 15 mM, 45 mM) from left to right and increasing scatterer concentration
(1012, 3·1012, 6·1012 particles/cm3) from top to bottom, showing the general trend
observed when varying these parameters. These spectra are in agreement with
previous reports in the literature, where it has been shown that starting from a
particle concentration of about 1012 cm°3 the discrete spectral peaks appear be-
fore the collapse of the linewidth of the dye emission, indicating that the thresh-
old for lasing with coherent feedback is lower than the threshold for lasing with
incoherent feedback [4].

Given all the parameters that we can tune to adapt the spectral emission of
our RL source, we have a large flexibility to tailor our random medium to suit
our purpose. Successful spectral reconstruction can be performed using either
the low gain (first column of Figure 5.1) and/or low scattering (first row) samples.
In any case, suitable working conditions can be found even for samples with a
higher density of lasing modes, as the average number of modes can be reduced
to some extent by simply reducing the excitation spot and therefore the active
medium volume. As long as one is working in a coherent feedback regime, these
finer optimizations concur only marginally to the accuracy of the profile recon-
struction and their main effect is that of slightly varying the number of spectra
that one has to accumulate to attain a target signal-to-noise ratio. Even if the
number of peaks for each mixture is subject to fluctuations, on average the emis-
sions of samples in the first row (i.e., lowest nanoparticle concentration) contains
fewer narrow peaks as compared to the other mixtures, as also expressed by the
density of peaks per nanometer n, calculated as the average number of peaks
in one spectrum divided by the FWHM of the gain curve. The optimal degree
of spectral separation between lasing modes will depend on the properties of the
spectrometer used, and in general should be set to be larger than its nominal res-
olution. In our case we varied the physical properties of the random laser used
and its pumping conditions so to set an average number of 0.5 modes per nm,
corresponding to an average separation of 2.5 times the instrumental resolution.
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When the random laser is operated above threshold, well within the chaotic
regime, the statistic of the intensity fluctuations follows the Lévy distribution [1,
5–7]. Figure 5.2.a shows the distribution of the peak frequencies for 300 emission
shots. As expected, they follow approximatively the shape of the gain medium
curve, with higher density around the frequency of maximum gain. Figure 5.2.b
shows the histogram of the random laser peak intensities, exhibiting a power-law
tail toward higher intensities. The histogram was fitted using a Stable probability
density function (see Appendix A for further considerations about the Stable dis-
tribution and the working regimes of the random laser). From the fit anÆ value of
1.4 was extracted, indicating a distinct Lévy character for the distribution of peak
intensities. Panel c) of Figure 5.2 shows three distinct histograms, respectively
showing the distribution of peak intensities in three different spectral regions,
around 527 THz, between 525 and 526 THz, and below 524 THz. In all these three
cases the Lévy distribution character is clearly visible.

Figure 5.2: a) Distribution of the frequencies of the random laser peaks. b) Distribution of the
peak intensities of the random laser, relative to the frequencies of panel a). The histogram data
are fitted with a Stable probability density function and reveal the Lévy type regime. c) Distribu-
tion of the peak intensities of the random laser, relative to three different spectral regions: at 527
THz (yellow), 525-526 THz (orange) and in the tails, below 524 THz (grey).

5.2 Experimental set-up

In order to test our ideas in practice, we performed an experimental analysis us-
ing a custom-made Fabry-Perot etalon as an example. The etalon was realized
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with a free spectral range of 0.3 THz and a maximum transmission contrast of
32% . A spectrometer was used with a resolution that did not allow to resolve the
interference fringes of the etalon (FWHM = 2.8·FSR). The analysis was performed
with a random laser and with a regular lamp for comparison. The outline of the
experimental setup is sketched in Figure 5.3.a. The frequency doubled Nd:YAG
laser was used to optically pump the random laser. The pump beam is collimated
to a diameter of 8 mm to match the entrance pupil of a 10£ microscope objec-
tive (NA 0.3, effective focal length 18 mm). The objective focuses the pump beam
to a 10µm spot size on the surface of the random laser sample. The same ob-
jective collects the random laser emission which is then divided into a reference
beam and a probe beam using a beam splitter. The reference is directly focused
by a lens (f = 50mm) into one of the two entrances of a multimodal fiber bun-
dle (fiber diameters 50µm). The probe beam passes through the test sample and
is then focused by a lens (f = 50mm) at the other fiber entrance. The two fiber
outputs (separated by 85µm) are focused on the entrance slit of the monochro-
mator and collected by a digital camera (Thorlabs, mod. DCC1240C, 1280£1024
pixel, 5.3µm pixel size) synchronized with the pump pulse. The resolution of
the spectrometer (Chromex, mod. 250is) can be tuned from an instrumental re-
sponse of FWHM = 0.13THz to 0.83 THz by changing the input slit aperture from
20µm to completely open. In the latter case, the actual resolution is determined
by the fiber output size and the entrance optics (3£ magnification), resulting in
an effective illuminated aperture of 150µm at the focal plane of the monochro-
mator. This FWHM corresponds to 2.8·FSR, and it is not sufficient to spectrally
resolve the transmission function of the FP test sample. The latter configuration
has been used to demonstrate our super-resolution method and reconstruct the
transmission function of the test sample using the random laser source.

Figure 5.3.c shows the transmission function of the low finesse FP. The test
sample has been fabricated using two uncoated IR flat mirrors. One side of each
mirror has been coated with a few tens of nanometers of gold by sputtering depo-
sition, resulting in a reflectivity of about 30%. The mirror inter-distance was set
so to obtain the free spectral range of 0.3 THz, that corresponds to the narrowest
FP modulation resolvable with the higher resolution configuration.

Figure 5.3.d reports the transmission spectrum of a single random laser shot
as measured by the low-resolution spectrometer. The sample modulates the in-
tensity of the probe signal with respect to the reference, but, as expected, the
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visibility of the Fabry-Perot transfer function is completely lost even in the flu-
orescence background. Nonetheless, information on the transmission function
of the sample is still contained in the relative heights of the peaks in the mea-
sured spectrum and can be retrieved by analyzing a large number of random
laser shots. For that purpose, the center of each peak should be determined ac-
curately, as well as the modulation of the peak height by the sample (obtained by
comparing the transmission through the sample with the reference beam).

5.3 Analysis

The statistical analysis reported here is based on a set of single-shot random laser
spectra acquired with the camera synchronized with the pump laser pulses. The
selection of the peaks is based on the camera images, where a single resolution-
limited random laser peak appears as a circle. Each circle is the image of the
optical aperture at the focal plane of the spectrometer dispersed by the grating.
When the apertures of the monochromator are fully open, the spectral resolution
represented by the diameter of the circles is determined uniquely by the entrance
optics. The observed diameter of 150µm, corresponds to the spectral resolution
of 0.83 THz. The spectral resolution was measured by replacing the random laser
source with a passive scattering medium and illuminating it with a monochro-
matic pump beam.

The idea of our statistical analysis is shown in Figure 5.4. A set of 4000 single-
shot random laser spectra is collected, each of them producing a double trace
as shown. All traces contain both the transmitted signal (bottom) as well as the
reference signal (top), so that the reference intensity profile is known for each in-
dividual random laser shot. Isolated random laser modes are selected on a single
shot basis by an algorithm that identifies bright disks within a certain diameter
range defined by the (low) spectral resolution of the spectrometer. Since the sam-
pling has to be sparse, the average number of random modes above threshold
should be small enough to have a vanishing probability of observing two peaks
closer than the instrumental response function. For each disk selected in the bot-
tom row (transmission signal), we determine its intensity by integrating over the
area of the disk. This value is then normalized to the reference as found from the
top row. Since random laser peaks have a finite linewidth, estimating the central



CHAPTER 5. EXPERIMENTAL DEMONSTRATION OF SUPER-RESOLVED
SPECTRAL RECONSTRUCTION USING A RANDOM LASER 70

Figure 5.3: a) Scheme of the experimental setup. The random laser (RL) is optically excited
by a pump laser (LS) which is focused using a 10£ microscope objective. The same objective
collimates the backscattered signal and the pump light is filtered out by an interference filter. A
beam splitter (BS) divides the emission, a reference signal is focused to a multimodal fiber, while
the probe passes through the sample (in this case a Fabry-Perot filter (FP)) before being focused
into the second fiber. The two fiber cores are kept close so that they can be simultaneously fo-
cused at the entrance of the spectrometer (S) and their output collected by the same detector
(C). b) Example of one of many (typically thousands) random emission spectra of the random
laser source detected independently with higher spectral resolution. c) The transmission curve
of the FP etalon sample that we are trying to characterize, as measured independently using a
high-resolution spectrometer and a broad spectrum lamp. d) Example of a single shot transmis-
sion spectrum through the sample (cyan curve), using the random laser as a light source and the
experimental scheme of the panel (a) with a low-resolution spectrometer. The center frequency
of each peak is determined accurately, as well as the value of the transmission compared to the
reference measurement (light blue curve) at that specific frequency.
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reference

transmitted

target diameter

Figure 5.4: Low-resolution peak selection. Exemplary low-resolution spectra measured by the
CMOS camera under random laser illumination. The top and bottom rows in each frame corre-
spond to the reference and transmitted signal, respectively. An algorithm finds the most intense,
non-overlapping circles within a fixed diameter range. Each shot allows to reconstruct a few
points of the target function.
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frequency of each lasing mode requires some extra care as the transmitted disks
might appear at a slightly detuned frequency due to possibly asymmetric modu-
lation through the unknown transfer function. In our experimental case, using an
average peak width of 0.19 THz, the resulting order of magnitude of the expected
apparent deviations lead to a negligible correction. However, our algorithm is in-
herently robust against even stronger deviations as long as the spectral sparsity
condition is fulfilled. In fact, we use the center position of each peak using the
disk centers of the reference signal – and not the probe signal – which did not in-
teract with the spectral filter and therefore shows each peak centered at its origi-
nal frequency. The procedure of sparse sampling in the frequency domain allows
to reconstruct the transmission function of the sample. The final result is shown
in Figure 5.5.a. One can clearly see that the transmission function of the Fabry-
Perot etalon is reconstructed with all its relevant features present. The unrefined
fabrication procedure of the FP allowed us to obtain a rich spectral benchmark
sample exhibiting both rapidly-varying and slowly-varying spectral features and
the reconstruction procedure successfully retrieves all these features, including
both the FP spectrum and its slant underlying background.

For comparison, when the transmission spectrum is measured using a stan-
dard lamp as light source, the etalon transmission function cannot be retrieved
even when averaging over the same amount of spectra to reduce measurement
noise (See Figure 5.5.b.). The effectiveness of the method is further highlighted by
analyzing the results in the Fourier domain. The periodicity of the transmission
function of the Fabry-Perot etalon is clearly retrieved when using the random
laser, while it is lost in the measurements with the lamp (See Figs. 5.5.c-d).

According to the numerical results reported on Figure 4.4 in Chapter 4, the
signal-to-noise ratio of the recovered transmission function grows by increasing
the number of spectra. However this is always the case under white noise con-
ditions, and, experimentally, we avoid collecting data for a longer period than
ª 400 s in order to exclude possible variations in the density of the scattering par-
ticles in the sample, due to the aggregation and precipitation processes. In gen-
eral, if one wants to set a higher reconstruction fidelity, care must be taken that
the overall measurement duration does not exceed the stability time-scale of the
spectral filter itself due to e.g., ambient temperature drifts. Alternatively, one can
simply use a pump laser with a higher repetition rate (e.g., a typical frequency-
doubled Nd:YAG laser with a 10 kHz repetition rate), by which one can easily
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Figure 5.5: a) Transmission curve as obtained by sparse sampling using the random laser. The
target transmission function is well reproduced. b) Transmission curve as obtained with a com-
mon lamp for comparison. As expected the transmission function of the Fabry-Perot etalon is lost
due to convolution with the instrumental response function. Deconvolution is not successful in
retrieving the original contrast since the target signal is lost in the noise. c) Fourier transform of
(a). The peak corresponds to the inverse of the free spectral range of the etalon, confirming that
the target function is well reproduced. d) Fourier transform of the transmission curve measured
with the common lamp.
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reduce the measurement time required to collect the same number of spectra
below a sub-second time scale.

5.3.1 Validity limits and fundamental bounds

A key issue that deserves to be discussed in details is the resolution enhance-
ment obtainable with the present technique. In the following we try to explain
the different experimental aspects that contribute to define the resolution. The
ultimate resolution limit is represented by the finite linewidth of the single ran-
dom laser peaks, which should be finer than the features that one wants to re-
solve. If this is not the case, the stochastic reconstruction can still be performed
but the final spectrum will be characterized by a reduced contrast of its sharpest
features. Indeed, if the linewidth of the random laser was broad, for example as
large as few FP filter resonances, the reconstructed transmission curve would be
the affected by the convolution of the lasing peak with the filter transfer func-
tion. Since the spectrometer resolution used for the characterizations (0.13 THz)
was slightly better than the measured linewidth, we can conservatively assume
that the measured value is an upper limit to the true line width of the modes. In
any case, this number is a typical value for random lasers based on liquid dye
solutions, even though it is possible to engineer the RL or the pumping strat-
egy to obtain much narrower linewidths (see, e.g [8]) which can directly improve
the resolution limit of the reconstruction technique. The second important fac-
tor, in analogy with the stochastic super-resolution microscopy techniques, is
represented by the (spectral) sparsity which is necessary to correctly identify the
laser peaks and therefore their center frequency. These are the two mandatory re-
quirements, i.e., narrowness and sparsity of the peaks, for the technique to work.
If they are not both satisfied the transfer function can still be retrieved but a de-
convolution process needs to be applied to finally recover the original contrast.
Another factor, which is more of a practical limit than an actual requirement, is
represented by the number of pixels of the camera which samples the spectral
response (point spread function) of the spectrometer. In close connection to the
microscopy case, to achieve a sub-pixel centroid estimation, it is necessary that
each peak be sampled with a minimum number of points. This final condition is
easily attainable with the vast majority of consumer CMOS camera as that used
in our experiment. Considering all these aspects, we have demonstrated a spec-
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tral resolution enhancement factor of ª3. This enhancement does not have an
upper limit in principle as the initial resolution of the spectrometer that one is
using can be arbitrarily coarse as long as the sparsity requirement is satisfied.

5.3.2 The roles of sparsity and randomness

The concept of “sparsity” can be related to different fields and concepts and its
specific meaning should be further clarified. For the purpose of this proof-of-
concept, our algorithm relies exclusively on the accumulation of a sufficiently
large statistical ensemble. In this respect, we refer to the concept of sparsity only
in relation to the inherent spectral separation that is typically observed between
RL peaks. Nonetheless, it could be appropriate to further refine the application
of our technique using e.g., compressed sensing, as demonstrated by recent ap-
plications to conventional stochastic microscopy techniques [9]. As in the case
of STORM microscopy, however, resorting to compressed sensing would not rep-
resent an enabling factor for the technique but rather just a convenient way to
reduce the acquisition time. More in detail, one could follow e.g., the approach
described in [9] to be able to use random lasers exhibiting, on average, a higher
number of discrete peaks in each laser shot. However, as discussed before, a
much more straightforward way to reduce acquisition time would be just that
of increasing the pumping repetition rate of the random laser. As far as random-
ness is concerned, it is not an inherent requirement for this technique to work.
Indeed, a single narrow frequency line from an ideal tunable laser could be swept
over the frequency range of interest to reconstruct a given transmission function
with a higher resolution than that offered by the spectrometer. The emphasis
on the chaotic lasing regime is due to the fact that this ensures both narrow line
widths and a uniform sampling over the emission band.

5.4 Comparison with state of the art techniques

The method we described allows to resolve, in the frequency domain, spectral
features below the instrumental response function of a spectrometer similarly to
how stochastic super-resolution microscopy methods allow to resolve fine spa-
tial features below the diffraction limit. In this respect, our method offers similar
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pros and cons as those characterizing these imaging methods. As previously dis-
cussed, a well-established approach to improve the resolution of spectroscopic
data is represented by deconvolution [10]. Deconvolution encompasses a family
of data processing methods that require or assume the knowledge of the instru-
mental response function and try to correct for it. When this is possible, decon-
volution has been shown to enhance the resolution of spectral data and is there-
fore considered as a standard tool [11]. Among all available deconvolution meth-
ods, the constrained deconvolution algorithm proposed by Jansson and other
methods such as the maximum likelihood, the maximum entropy and the alter-
nating projection methods are also known for their utility [12, 13], yet all these
methods require a priori knowledge of the instrumental response function (also
referred to as blur function or broadening function). In practice, however, the ex-
act shape of the response function cannot be known and it is typically assumed
to be Gaussian. More recently, blind deconvolution has been proposed to allevi-
ate this problem, being a deconvolution procedure where one tries to iteratively
refine an initial guess on the assumed instrumental response function according
to certain constraints. Even so, it is worth stressing that discrete deconvolution,
in any of its forms, belongs to the mathematical class of ill-conditioned inverse
problems, meaning that its output is not stable against small perturbations such
as those typically provided by acquisition noise. Regularization approaches can
be applied in some circumstances [14], but in general, in any deconvolution ap-
proach, one is obliged to search only for solutions that are compatible with some
a priori expectation on the experimental data, and satisfy additional constraints
provided by prior information coming from the physical problem that is being
investigated.

In our experimental measurements we have demonstrated a spectral enhance-
ment factor of about 3, which is the same limit that can be achieved with state-
of-the-art deconvolution-based approaches in low-noise conditions. However,
in contrast to deconvolution, our approach does not have any upper limit on the
resolution enhancement that can be achieved. Furthermore, our approach does
not require prior knowledge or an exact characterization of the instrumental re-
sponse function, as it only relies on the position of the geometric center of the
observed disk-shaped region, or of any other kind of spectral response that one
can have. This makes our method particularly robust against possible acquisi-
tion noise. As remarked in Section 5.3.2, compressive sensing methods should be
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straightforwardly applicable to the reconstruction technique in order to reduce
the number of spectra required to obtain a certain signal-to-noise level. In com-
pressive ghost imaging, for example, the reconstruction algorithms search for
the sparsest image in the compressive basis which fulfills the requirement that
the number of measured random projections was slightly greater or equal than
the number of the image grid points, in contrast to conventional ghost imaging
where the requirement is much greater. The choice of randomness is due to the
fact that with more likely these image projection were linearly independent [15].

An alternative high-resolution spectroscopy technique that should also be
mentioned is that based on the use of frequency combs, which in a sense re-
sembles our own approach since it exploits a discrete (i.e., spectrally sparse) ex-
citation spectrum to probe an unknown transfer function. Initially invented for
frequency metrology, frequency combs are also enabling novel approaches to
spectroscopy over broad spectral bandwidths that are of particular relevance to
molecules [16]. In the simplest spectroscopy experiment a frequency comb can
be used as a broadband light source which interrogates an absorbing sample.
In fact, most of the times a spectrometer is not capable of resolving individual
comb lines, unless one uses frequency combs generated by a micro-resonator or
filtered through a Fabry-Perot cavity to increase the comb line spacing to exceed
the spectrograph resolution [17]. By doing so, high resolution gas-phase absorp-
tion spectra can be obtained by tuning the comb line inside one free spectral
range. On the other hand, of course the combination of a frequency comb and
an external cavity poses high costs and strict stability requirements. Conversely,
our proof of concept takes advantage of an intrinsic property of a random lasing
light source, which can conveniently generate a stochastic peaks distributed over
the gain medium curve. This approach does not require any particular spectral
stability of the source, cavity alignment nor tuning.

We should note that at this stage, even if the light source used for the exper-
iment is an optically pumped random laser, which is very cheap and easy to re-
alize, it still needs a pump laser to work. Since laser sources are already used
pervasively in most spectroscopic techniques, at the moment our spectroscopy
technique should be comparable in terms of power consumption to other con-
ventional spectroscopic techniques. However, among the existing realizations
of random lasers, electrically pumped RLs are appealing candidates in terms of
their high efficiency and low power requirements. Several realizations of electri-
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cally pumped random lasers (EPRL) have been reported in the literature, which
might represent a competitive alternative. As an outlook perspective to this the-
sis work, we are actually planning to explore this possibility using an EPRL in the
THz range, which is indeed of interest given the very low footprint with respect
to typical sources/detectors in this frequency range.



CHAPTER 5. EXPERIMENTAL DEMONSTRATION OF SUPER-RESOLVED
SPECTRAL RECONSTRUCTION USING A RANDOM LASER 79

Appendices

A Random laser threshold and stable distributions

Among the various intriguing properties of random lasers, one that remains fun-
damentally relevant to all studies is the random lasing threshold. When the pump
excitation reaches a critical value, the random laser system crosses the threshold
and the emission characteristics change. While in conventional lasers the emis-
sion intensity diverges (with a certain level of approximation) at threshold exci-
tation, in the case of random lasers different indicators are used to identify the
threshold, depending on their composition. When using broadband dyes, strong
fluctuations in both intensity and bandwidth are a commonly observed behavior
[18, 19].

The intensity fluctuations, depending upon parameters such as the pump en-
ergy, the system size and disorder strength, an interesting consequence of these
strong fluctuations is that the intensity distribution does not obey regular gaus-
sian statistics, but rather becomes of the Lévy type. Lévy distributions have an
infinite variance, owing to the occurrence of rare but very large values, and are
characterized by a slowly decaying tail (power-law trend).

Since the emission intensities involve mixed statistical features, we make use
of Æ-stable distributions to model the heavy-tailed distributions observed in the
lasing mode intensities, as also done by Uppu & Mujumdar [7].

Stable distributions are a class of probability distributions suitable for model-
ing heavy tails and skewness. The stable distribution results from an application
of the Generalized Central Limit Theorem, which states that the limit of normal-
ized sums of independent identically distributed variables is stable [20]. Several
different parameterizations exist for the stable distribution. We use the parame-
terization described in [21] (2).
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Most members of the stable distribution family do not have an explicit prob-
ability density function. The stable distribution has three special cases: the Nor-
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mal distribution, the Cauchy distribution, and the Lévy distribution. These dis-
tributions are notable because they have closed-form probability density func-
tions. The first shape parameter, Æ, describes the tails of the distribution, and
ranges from 0 to 2. The second shape parameter, Ø, describes the skewness of
the distribution (°1 ∑ Ø ∑ 1). If Ø = 0, then the distribution is symmetric. If Ø >
0, then the distribution is right-skewed and if Ø < 0, then the distribution is left-
skewed. The third parameter ± represents the location parameter (°1∑ ±∑1).
When the parameter Æ is equal to 2 it indicates a Gaussian behavior, and the
value of Ø has no effect, then the normal distribution is usually associated with
Ø= 0. The Lévy distribution is a special case of the stable distribution where Æ =
0.5 and Ø = 1.

In many works the Æ parameter has been used to identify the different work-
ing regimes of the random laser [1, 7]: below threshold a Gaussian regime is ob-
served, followed, at threshold, by an abrupt transition into a Lévy regime. Well
above the threshold, a gradual crossover toward a second Gaussian regime oc-
curs. The Levy regime is weak (Æ . 2) or strong (Æ . 1) also depending on the
system size, for example, for larger excitation volume, at threshold conditions,
the levy statistic is less prominent. In this configuration many lasing modes have
reached the threshold, and all of them compete for gain. Then, a situation where
two or even a single mode which deplete the gain is improbable, however it is
exactly this kind of fluctuations that is responsible for the tail of the Lévy distri-
bution, or, in other words, results in an Æ parameter below unity.
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B MATLAB code for peak selection

clear all;close all

nf1=274;

%gb=[];

gb=[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15];

XU=[];

YU=[];

YD=[];

x=[1:1280];

a=imread('rl3_fp_670nm_g600_200um_0.tif',2);

bck=imread('bck_g600_1.tif',1);

[~,idx]=findpeaks(smooth(mean(a(:,:,2),2),30)/max(smooth(mean(a(:,:,2),2),30)), ...

'MinPeakHeight',0.2,'MinPeakProminence',0.2);

cut1u=idx(2)-30;

cut2u=idx(2)+30;

cut1d=idx(1)-30;

cut2d=idx(1)+30;

R=15;

for k=gb

for i=1:nf1

str=['b0=imread(''rl3_fp_670nm_g600_200um_' num2str(k) '.tif'',' ...

num2str(i) ');'];eval(str);

b0u=b0(cut1u:cut2u,:,2)-bck(cut1u:cut2u,:,2);

b0d=b0(cut1d:cut2d,:,2)-bck(cut1u:cut2u,:,2);

v=double(max(max(b0u)));

vv=v/255;

J=imadjust(b0u,[0 vv],[0 1],1);

[centers, radii, metric] = imfindcircles(J,[14 25],'Sensitivity',0.94);

xu=[];

if not(isempty(centers))

xu= centers(:,1);

XU=[XU; xu];
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for ii=1:length(centers(:,1))

mn=[];

yu=[];

yd=[];

for l=1:1280

for s=1:(cut2u-cut1u)

if ((l-round(centers(ii,1)))^2+ ...

(s-round(centers(ii,2)))^2)<R^2

yu0=b0u(s,l);

yd0=b0d(s,l);

yu=[yu yu0];

yd=[yd yd0];

mn0=[l s];

mn=[mn; mn0];

end

end

end

YU0=mean(yu);

YD0=mean(yd);

YU=[YU YU0];

YD=[YD YD0];

end

end

end

k

end

Ptot1=[XU (YD./YU)'];

Ptot=sortrows(Ptot1);

[C,~,ic]=unique(Ptot(:,1));
iv=accumarray(ic,Ptot(:,2),[],@mean);

xx=[390:1:900];

yy=[];

My=[];

my=[];

for ii=1:length(xx)-1;

idx=find(C<xx(ii+1) & C>=xx(ii));

idy=mean(iv(idx));

yy=[yy idy];

My=[My max(iv(idx))];
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my=[my min(iv(idx))];

end

figure;plot(xx(2:end),yy,); xlim([415 738]);

for jj=1:length(yy)

if isnan(yy(jj));

yy(jj)=0;

end

end

F=abs(fft(yy));

FX=((0:1:length(F)-1)/(length(F)-1))/(xx(2)-xx(1));

figure(4);plot(FX,F/max(F));
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