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Derived algebraic geometry, determinants of
perfect complexes, and applications to

obstruction theories for maps and complexes
By Timo Schürg at Bonn, Bertrand Toën at Montpellier and Gabriele Vezzosi at Paris

Abstract. A quasi-smooth derived enhancement of a Deligne–Mumford stack X natu-
rally endows X with a functorial perfect obstruction theory in the sense of Behrend–Fantechi.
We apply this result to moduli of maps and perfect complexes on a smooth complex projective
variety.

For moduli of maps, forX D S an algebraicK3-surface, g 2 N, and ˇ ¤ 0 inH2.S;Z/
a curve class, we construct a derived stack RMred

g;n.S Iˇ/ whose truncation is the usual stack
Mg;n.S Iˇ/ of pointed stable maps from curves of genus g to S hitting the class ˇ, and such
that the inclusion Mg.S Iˇ/ ,! RMred

g .S Iˇ/ induces on Mg.S Iˇ/ a perfect obstruction the-
ory whose tangent and obstruction spaces coincide with the corresponding reduced spaces of Note 1:

removed the cross
references

Okounkov–Maulik–Pandharipande–Thomas. The approach we present here uses derived alge-
braic geometry and yields not only a full rigorous proof of the existence of a reduced obstruc-
tion theory – not relying on any result on semiregularity maps – but also a new global geometric
interpretation.

We give two further applications to moduli of complexes. For a K3-surface S we show
that the stack of simple perfect complexes on S is smooth. This result was proved with different
methods by Inaba for the corresponding coarse moduli space. Finally, we construct a map from
the derived stack of stable embeddings of curves (into a smooth complex projective variety X )
to the derived stack of simple perfect complexes on X with vanishing negative Ext’s, and
show how this map induces a morphism of the corresponding obstruction theories when X is
a Calabi–Yau 3-fold. Note 2:

unified to ‘3-fold’An important ingredient of our construction is a perfect determinant map from the derived
stack of perfect complexes to the derived stack of line bundles whose tangent morphism is given
by Illusie’s trace map for perfect complexes.

Introduction

It is well known in Algebraic Geometry – e.g. in Gromov–Witten and Donaldson–Thomas
theories – the importance of endowing a Deligne–Mumford moduli stack with a (perfect) ob-
struction theory, as defined in [3]: such an obstruction theory gives a virtual fundamental class
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in the Chow group of the stack. If the stack in question is the stack of pointed stable maps to
a fixed smooth projective variety ([4]), then integrating appropriate classes against this class
produces all versions of Gromov–Witten invariants ([1]).

Now, it is a distinguished feature of Derived Algebraic Geometry ([36]) that any quasi-
smooth derived extension of such a stack F , i.e. a derived stack that is locally of finite presen-
tation whose cotangent complex is of perfect amplitude in Œ�1; 0�, and whose underived part or
truncation is the given stack F , induces a canonical obstruction theory on F : we have collected
these results in Section 1 below. A morphisms of derived stacks induces naturally a morphism
between the induced obstruction theories – so that functoriality results like [3, Proposition 5.10] Note 3:

Red parts indicate
major changes.
Please check them
carefully.

or the so-called virtual pullback result in [17] follow immediately. Moreover the functoriality
of obstruction theories induced by morphisms of derived extensions is definitely richer than the
usual one in [3], that is restricted to special situations (e.g. [3, Proposition 5.10]), and requires
the axiomatics of compatible obstruction theories. In other words, a suitable reformulation of
a moduli problem in derived algebraic geometry, immediately gives us a canonical obstruction
theory, in a completely geometric way, with no need of clever choices.

In this paper we apply this ability of derived algebraic geometry in producing obstruction
theories – functorial with respect to maps of derived stacks – to the cases of moduli of maps
and moduli of perfect complexes on a complex smooth projective variety X .

Moduli of maps. For moduli of maps, we show how the standard obstruction theory
yielding Gromov–Witten invariants comes from a natural derived extension of the stack of
pointed stable maps to X . Then we concentrate on a geometrically interesting occurrence of
two different obstruction theories on a given stack, namely the stack Mg.S Iˇ/ of stable maps
of type .g; ˇ/ to a smooth projective complex K3-surface S . The stack Mg.S Iˇ/ has a stan-
dard obstruction theory, yielding trivial Gromov–Witten invariants in the n-pointed case, and a
so-called reduced obstruction theory, first considered by Okounkov–Maulik–Pandharipande–
Thomas (often abbreviated to O-M-P-T in the text), giving interesting – and extremely rich in
structure – curve counting invariants in the n-pointed case (see [20, 21, 25], and Section 4.1
below, for a detailed review). In this paper we use derived algebraic geometry to give a con-
struction of a global reduced obstruction theory on Mg.S Iˇ/, and compare its deformation
and obstruction spaces with those of Okounkov–Maulik–Pandharipande–Thomas. More pre-
cisely, we use a perfect determinant map form the derived stack of perfect complexes to the
derived stack of line bundles, and exploit the peculiarities of the derived stack of line bun-
dles on a K3-surface, to produce a derived extension RMred

g .S Iˇ/ of Mg.S Iˇ/. The derived
stack RMred

g .S Iˇ/ arises as the canonical homotopy fiber over the unique derived factor of the
derived stack of line bundles on S , so it is, in a very essential way, a purely derived geometrical
object. We prove quasi-smoothness of RMred

g .S Iˇ/, and this immediately gives us a global
reduced obstruction theory on Mg.S Iˇ/. Our proof is self-contained (inside derived algebraic
geometry), and does not rely on any previous results on semiregularity maps.

Moduli of complexes. We give two applications to moduli of perfect complexes on
smooth projective varieties. In the first one we show that the moduli space of simple perfect
complexes on a K3-surface is smooth. Inaba gave a direct proof of this result in [13], by
generalizing methods of Mukai ([22]). Our proof is different and straightforward. We use the
perfect determinant map, and the peculiar structure of the derived Picard stack of aK3-surface,
to produce a derived stack of simple perfect complexes. Then we show that this derived stack
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is actually underived (i.e trivial in the derived direction) and smooth. The moduli space studied
by Inaba is exactly the coarse moduli space of this stack.

In the second application, for X an arbitrary smooth complex projective scheme X , we
first construct a map C from the derived stack RMg;n.X/

emb consisting of pointed stable maps
which are closed immersions, to the derived stack RPerf.X/si;>0

L
of simple perfect complexes

with no negative Ext’s and fixed determinant L (for arbitrary L). Then we show that, if X
is a Calabi–Yau 3-fold, the derived stack RPerf.X/si;>0

L
is actually quasi-smooth, and use the

map C to compare (according to Section 5.2) the canonical obstruction theories induced by the
source and target derived stacks on their truncations. Finally, we relate this second applications
to a simplified, open version of the Gromov–Witten/Donaldson–Thomas conjectural compari-
son. In such a comparison, one meets two basic problems. The first, easier, one is in producing
a map enabling one to compare the obstruction theories – and derived algebraic geometry, as
we show in the open case, is perfectly suited for this (see Sections 1 and 5.2). Such a compar-
ison would induce a comparison (via a virtual pullback construction as in [29, Theorem 7.4])
between the corresponding virtual fundamental classes, and thus a comparison between the
GW and DT invariants. The second problem, certainly the most difficult one, is to deal with
problems arising at the boundary of the compactifications. For this second problem, derived
algebraic methods unfortunately do not provide at the moment any new tool or direction.

One of the main ingredients of all the applications given in this paper is the construction
of a perfect determinant map detPerf W Perf! Pic, where Perf is the stack of perfect com-
plexes, Pic the stack of line bundles, and both are viewed as derived stacks (see Section 3.1
for details), whose definition requires the use of a bit of Waldhausen K-theory for simplicial
commutative rings, and whose tangent map can be identified with Illusie’s trace map of perfect
complexes ([12, Chapter 5]). We expect that this determinant map might be useful in other
moduli contexts as well.

An important remark – especially for applications to Gromov–Witten theory – is that, in
order to simplify the exposition, we have chosen to write the proofs only in the non-pointed
case, since obviously no substantial differences except for notational ones are involved. The
relevant statements are however given in both the unpointed and the n-pointed case.

Finally, let us observe that most of the natural maps of complexes arising in moduli prob-
lems can be realized as tangent or cotangent maps associated to morphisms between appropri-
ate derived moduli stacks. This suggestion is confirmed in the present paper for the standard
obstruction theories associated to the stack of maps between a fixed algebraic scheme and
a smooth projective target, to the stack of stable maps to a smooth projective scheme or to
the Picard stack of a smooth projective scheme, for the trace map, the Atiyah class map, and
the first Chern class map for perfect complexes ([12, Chapter 5]), and for the map inducing
O-M-P-T’s reduced obstruction theory.

Organization of the paper. The first three sections and the beginning of the fifth are
written for an arbitrary smooth complex projective schemeX . We explain how a derived exten-
sion induces an obstruction theory on its truncation (Section 1), how to define the standard de-
rived extensions of the Picard stack of X , and of the stack of stable maps to X (Section 2), and
finally define the perfect determinant map (Section 3). In Section 4, we specialize to the case
where X D S is a smooth complex projective K3-surface. We first give a self-contained de- Note 4:

unified toK3-
surface (with
hyphen)

scription of O-M-P-T’s pointwise reduced tangent and obstruction spaces (Section 4.1). Then,
by exploiting the features of the derived Picard stack of S (Section 4.2), we define in Sec-
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tion 4.3 a derived extension RMred
g .S Iˇ/ of the usual stack Mg.S Iˇ/ of stable maps of type

.g; ˇ ¤ 0/ to S , having the property that, for the canonical inclusion

jred WMg.S Iˇ/ ,! RMred
g .S Iˇ/;

the induced map
j �redL

RMred
g .S Iˇ/

! LMg.S Iˇ/

is a perfect obstruction theory with the same tangent and obstruction spaces as the reduced
theory introduced by Maulik–Okounkov–Pandharipande–Thomas (Section 4.4, Theorem 4.8).

In Section 5, for a complex smooth projective variety X , we define the derived stack
RMg;n.X/

emb of pointed stable maps to X that are closed embeddings, the derived stack
MX � RPerf.X/si;>0 of simple perfect complexes onX with vanishing negative Ext’s, and the
derived stack MX;L � RPerf.X/si;>0

L
of simple perfect complexes on X with vanishing neg-

ative Ext’s and fixed determinant L, and we define a morphism C W RMg;n.X/
emb !MX;L.

When X is a K3-surface, we show that the truncation stack of MX is smooth. When X is
a Calabi–Yau 3-fold, we prove that MX;L is quasi-smooth, and that the map C induces a map
between the obstruction theories on the underlying underived stacks.

In an appendix we give a derived geometrical interpretation of the Atiyah class map and
the first Chern class map for a perfect complex E on a scheme Y , by relating them to the tangent
of the corresponding map 'E W Y ! RPerf; then we follow this reinterpretation to prove some Note 5:

you use � and '.
Unify?

properties used in the main text.
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Frequently used notions: Notations and references. For background and basic nota-
tions in derived algebraic geometry we refer the reader to [36, Chapter 2.2] and to the overview
[33, Sections 4.2 and 4.3]. In particular, StC (respectively, dStC) will denote the (homotopy)
category of stacks (respectively, of derived stacks) on Spec C with respect to the étale (resp.,
strongly étale) topology. We will most often omit the inclusion functor i W StC ! dStC from
our notations, since it is fully faithful; its left adjoint, the truncation functor, will be denoted
t0 W dStC ! StC ([36, Definition 2.2.4.3]). In particular, we will write t0.F / ,! F for the ad-
junction morphism i t0.F / ,! F . However recall that the inclusion functor i does not commute
with taking internal HOM (derived) stacks nor with taking homotopy limits. All fibered prod-
ucts of derived stacks will be implicitly derived (i.e. they will be homotopy fibered products in
the model category of derived stacks).

When useful, we will freely use Quillen result and switch back and forth between (the
model category of) simplicial commutative k-algebras and (the model category of) commuta-
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tive differential non-positively graded k-algebras, where k is a field of characteristic 0 (details
can be found also in [37, Appendix A]).

To any derived stack F , there is an associated dg-category Lqcoh.F / of quasi-coherent
complexes, and for any map f W F ! G of derived stacks, we have a (left, right) adjunction

.Lf � W Lqcoh.G/! Lqcoh.F /;Rf� W Lqcoh.F /! Lqcoh.G//

(see [33, Section 4.2] or [34, Section 1.1]).
All complexes will be cochain complexes and, for such a complex C �, either C�n or

C�n (depending on typographical convenience) will denote its good truncation in degrees� n.
Analogously for either C�n or C�n ([39, Section 1.2.7]).

To ease notation we will often write ˝ for the derived tensor product ˝L whenever no
confusion is likely to arise.

In what follows, X will denote a smooth complex projective scheme while S a smooth
complex projective K3-surface.

As a purely terminological remark, for a given obstruction theory, we will call its defor-
mation space what is usually called its tangent space (while we keep the terminology obstruc-
tion space). We do this to avoid confusion with tangent spaces, tangent complexes or tangent
cohomologies of related (derived) stacks.

We will often abbreviate the list of authors Okounkov–Maulik–Pandharipande–Thomas
to O-M-P-T.

1. Derived extensions, obstruction theories and their functoriality

We briefly recall here the basic observation that a derived extension of a given stack X

induces an obstruction theory (in the sense of [3]) on X, and deduce a richer functoriality with
respect to the one known classically. Everything in this section is true over an arbitrary base
ring, though it will be stated for the base field C.

1.1. Derived extensions induce obstruction theories. Let t0 W dStC ! StC be the
truncation functor between derived and underived stacks over C for the étale topologies ([36,
Def. 2.2.4.3]). It has a left adjoint i W StC ! dStC which is fully faithful (on the homotopy
categories), and is therefore usually omitted from our notations.

Definition 1.1. Given a stack X 2 Ho.StC/, a derived extension of X is a derived
stack Xder together with an isomorphism

X ' t0.Xder/:

Proposition 1.2. Let Xder be a derived geometric stack which is a derived extension of
the (geometric) stack X. Then, the closed immersion

j W X ' t0.Xder/ ,! Xder

induces a morphism
j �.LXder/! LX

which is 2-connective, i.e. its cone has vanishing cohomology in degrees � �1.
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Proof. The proof follows easily from the remark that if A is a simplicial commutative
C-algebra and A! �0.A/ is the canonical surjection, then the cotangent complex L�0.A/=A
is 2-connective, i.e. has vanishing cohomology in degrees � �1.

The previous proposition shows that a derived extension always induces an obstruction
theory (whenever such a notion is defined by [3, Definition 4.4], e.g. when X is a Deligne–
Mumford stack).

Definition 1.3. A derived stack is quasi-smooth if it is locally of finite presentation and
its cotangent complex is of perfect amplitude contained in Œ�1; 0�.

For quasi-smooth derived stacks we have the following result.

Corollary 1.4. Let Xder be a quasi-smooth derived Deligne–Mumford stack which is
a derived extension of a (Deligne–Mumford) stack X. Then

j �.LXder/! LX

is a Œ�1; 0�-perfect obstruction theory as defined in [3, Definition 5.1].

1.2. Functoriality of deformation theories induced by derived extensions. If the
map f W X ! Y is a morphism of (Deligne–Mumford) stacks, and if oX W EX ! LX and
oY W EY ! LY are (Œ�1; 0�-perfect) obstruction theories, the classical theory of obstructions
(see [3]) does not provide in general a map f �EY ! EX such that the square

f �EY
f �.oY ///

��

f �LY

��

EX
oX // LX

is commutative (or commutative up to an isomorphism) in the derived category D.X/ of com-
plexes on X , where f �LY ! LX is the canonical map on cotangent complexes induced by f
([12, Chapter 2, (1.2.3.2)’]). On the contrary, if jX W X ,! RX and jY W Y ,! RY are quasi-
smooth derived (Deligne–Mumford) extensions of X and Y , respectively, and F W RX ! RY
is a morphism of derived stacks

X
t0F //� _

��

Y � _

��

RX F // RY ,

then j �XLRX ! LX and j �YLRY ! LY are (Œ�1; 0�-perfect) obstruction theories by Corol-
lary 1.4, and moreover there is indeed a canonical morphism of triangles in D.X/ (we denote
t0.F / by f )

f �j �YLRY
//

��

f �LY //

��

f �LRY=Y

��

j �XLRX
// LX // LRX=X
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(see [36, Proposition 1.2.1.6] or [12, Chapter 2, (2.1.1.5)]). This map relates the two induced
obstruction theories and may be used to relate the corresponding virtual fundamental classes,
too (when they exist). We will not do this here since we will not need it for the results in this
paper. However, the type of result we are referring to is the following

Proposition 1.5 ([29, Theorem 7.4]). Let F W RX ! RY be a quasi-smooth morphism
between quasi-smooth Deligne–Mumford stacks, and f W X ! Y be the induced morphism on
the truncations. Then, there is an induced virtual pullback (as defined in [17])

f Š W A�.Y /! A�.X/;

between the Chow groups of Y andX , such that f Š.ŒY �vir/ D ŒX�vir, where ŒX�vir (resp., ŒY �vir)
is the virtual fundamental class ([3]) on X (resp., on Y ) induced by the Œ�1; 0� perfect obstruc-
tion theory j �XLRX ! LX (resp., by j �YLRY ! LY ).

2. Derived stack of stable maps and derived Picard stack

In this section we prove a correspondence between derived open substacks of a derived
stack and open substacks of its truncation, and use it to construct the derived Picard stack
RPic.X Iˇ/ of type ˇ 2 H 2.X;Z/, for any complex projective smooth variety X . After re-
calling the derived version of the stack of (pre-)stable maps to X , possibly pointed, the same
correspondence will lead us to defining the derived stack RMg.X Iˇ/ of stable maps of type
.g; ˇ/ to X and its pointed version.

Throughout the section X will denote a smooth complex projective scheme, g a nonneg-
ative integer, c1 a class in H 2.X;Z/ (which, for our purposes, may be supposed to belong to
the image of Pic.X/ ' H 1.X;O�X /! H 2.X;Z/, i.e. belonging to H 1;1.X/ \H 2.X;Z/),
and ˇ 2 H2.X;Z/ an effective curve class.

We will frequently use of the following

Proposition 2.1. Let F be a derived stack and t0.F / its truncation. There is a bijective
correspondence of equivalence classes

�F W ¹Zariski open substacks of t0.F /º ! ¹Zariski open derived substacks of F º:

For any Zariski open substack U0 ,! t0.F /, we have a homotopy cartesian diagram in dStC

U0
� � //

��

t0.F /

��

�F .U0/
� � // F

where the vertical maps are the canonical closed immersions.

Proof. The statement is an immediate consequence of the fact that F and t0.F / have
the same topology ([36, Corollary 2.2.2.9]). More precisely, let us define �F as follows. If
U0 ,! t0.F / is an open substack, �F .U0/ is the functor

SAlgC ! SSets W A 7! F.A/ �t0.F /.�0.A// U0.�0.A//
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where F.A/ maps to t0.F /.�0.A// via the morphism (induced by the truncation functor t0)

F.A/ ' RHomdStC
.RSpec.A/; F /! RHomStC

.t0.RSpec.A//; t0.F // ' t0.F /.�0.A//:

The inverse to �F is simply induced by the truncation functor t0.

2.1. The derived Picard stack.

Definition 2.2. The Picard stack of X=C is the stack

Pic.X/ WD RHOMStC .X;BGm/:

The derived Picard stack of X=C is the derived stack

RPic.X/ WD RHOMdStC .X;BGm/:

By definition we have a natural isomorphism

t0.RPic.X// ' Pic.X/

in Ho.dStC/. Note that even though Pic.X/ is smooth, it is not true that RPic.X/ ' Pic.X/
if dim.X/ > 1; this can be seen on tangent spaces since

TLRPic.X/ ' C�.X;OX /Œ1� WD R�.X;OX /Œ1�

for any global point xL W Spec.C/! RPic.X/ corresponding to a line bundle L over X .
Given c1 2 H 2.X;Z/, we denote by Pic.X I c1/ the open substack of Pic.X/ classi-

fying line bundles with first Chern class c1. More precisely, for any R 2 AlgC , let us de-
note by Vect1.RI c1/ the groupoid of line bundles L on Spec.R/ �X such that, for any point
x W Spec.C/! Spec.R/ the pullback line bundle Lx on X has first Chern class equal to c1.
Then, Pic.X I c1/ is the stack

AlgC ! SSets W R 7! Nerve.Vect1.RI c1//

where Nerve.C / is the nerve of the category C .
Note that we have

Pic.X/ D
a

c12H2.X;Z/

Pic.X I c1/:

Definition 2.3. Let c1 2 H 2.X;Z/. The derived Picard stack of type c1 of X=C is the
derived stack

RPic.X I c1/ WD �RPic.X/.Pic.X I c1//:

In particular, we have a natural isomorphism t0.RPic.X I c1// ' Pic.X I c1/, and a ho-
motopy cartesian diagram in dStC

Pic.X I c1/ �
�

//

��

Pic.X/

��

RPic.X I c1/ �
�

// RPic.X/.
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2.2. The derived stack of stable maps. We recall from [33, Section 4.3 (4.d)] the con-
struction of the derived stack RMpre

g .X/ (respectively, RMpre
g;n.X/) of prestable maps (resp., of

n-pointed prestable maps) of genus g to X , and of its open derived substack RMg.X/ (respec-
tively, RMg;n.X/) of stable maps (resp., of n-pointed stable maps) of genus g to X . Then we
move to define the derived version of the stack of (pointed) stable maps of type .g; ˇ/ to X .

Let Mpre
g (respectively, Mpre

g;n) be the stack of (resp., n-pointed) pre-stable curves of
genus g, and C

pre
g !Mpre

g (resp., C
pre
g;n !Mpre

g;n) its universal family (see e.g. [1, 23]).

Definition 2.4. The derived stack RMpre
g .X/ of prestable maps of genus g to X is de-

fined as
RMpre

g .X/ WD RHOMdStC=M
pre
g
.C

pre
g ; X �Mpre

g /:

Then RMpre
g .X/ is canonically a derived stack over Mpre

g , and the corresponding derived uni-
versal family RC

pre
gIX is defined by the following homotopy cartesian square:

RC
pre
gIX

��

// RMpre
g .X/

��

C
pre
g

//Mpre
g .

The derived stack RMpre
g;n.X/ of n-pointed prestable maps of genus g to X is defined as

RMpre
g;n.X/ WD RHOMdStC=M

pre
g;n
.C

pre
g;n; X �Mpre

g;n/:

Then RMpre
g;n.X/ is canonically a derived stack over Mpre

g;n, and the corresponding derived
universal family RC

pre
g;nIX is defined by the following homotopy cartesian square

RC
pre
g;nIX

��

// RMpre
g;n.X/

��

C
pre
g;n

//Mpre
g;n.

Remark 2.5. The derived stack RMpre
g;n.X/ has the following derived-moduli space

description. Roughly speaking, it associates to any simplicial commutative or differential non-
positively graded C-algebra A the nerve of equivalences of the category of pairs

.g W C ! R SpecA; h W C ! X/

where g is a pointed proper flat pointed curve over R SpecA, and h is a map that when restricted
to the fiber over any complex point of R SpecA, yields a stable map to X . We will not use this
derived-moduli interpretation in the rest of the paper.

Note that, by definition, RC
pre
gIX comes also equipped with a canonical map

RC
pre
gIX ! RMpre

g .X/ �X:

We also have t0.RMpre
g .X// 'Mpre

g .X/ (the stack of prestable maps of genus g to X ), and
t0.RC

pre
gIX / ' C

pre
gIX (the universal family over the stack of pre-stable maps of genus g to X ),

since the truncation functor t0 commutes with homotopy fibered products. The same is true for
the pointed version.
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We can now use Proposition 2.1 to define the derived stable versions. Let Mg.X/ (respec-
tively, Mg;n.X/ ) be the open substack of Mpre

g .X/ (resp., of Mpre
g;n.X/) consisting of stable

maps of genus g to X (resp., n-pointed stable maps of genus g to X ), and CgIX !Mpre
g .X/

(resp., Cg;nIX !Mpre
g;n.X/) the (induced) universal family ([1, 23]).

Definition 2.6. The derived stack RMg.X/ of stable maps of genus g to X is defined
as

RMg.X/ WD �RMpre
g .X/

.Mg.X//:

The derived stable universal family

RCgIX ! RMg.X/

is the derived restriction of RC
pre
gIX ! RMpre

g .X/ to RMg.X/.
The derived stack RMg;n.X/ of n-pointed stable maps of genus g to X is defined as

RMg;n.X/ WD �RMpre
g;n.X/

.Mg;n.X//:

The derived stable universal family

RCg;nIX ! RMg;n.X/

is the derived restriction of RC
pre
g;nIX ! RMpre

g;n.X/ to RMg;n.X/.

Recall that

� t0.RMg.X// 'Mg.X/;

� t0.RCgIX / ' CgIX ;

� RCgIX comes equipped with a canonical map

� W RCgIX ! RMg.X/ �X I

� we have a homotopy cartesian diagram in dStC

Mg.X/
� � //

��

Mpre
g .X/

��

RMg.X/
� � // RMpre

g .X/.

With the obvious changes, this applies to the pointed version too.
Let g be a non-negative integer, ˇ 2 H2.X;Z/, and Mg.X Iˇ/ (resp., Mg;n.X Iˇ/) be

the stack of stable maps (resp., of n-pointed stable maps) of type .g; ˇ/ to X (see e.g. [1]
or [23]); its derived version is given by the following

Definition 2.7. The derived stack of stable maps of type .g; ˇ/ to X is defined as the
open substack of RMg.X/

RMg.X Iˇ/ WD �RMg.X/
.Mg.X Iˇ//:
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The derived stable universal family of type .gIˇ/,

RCg;ˇ IX ! RMg.X Iˇ/;

is the (derived) restriction of RCgIX ! RMg.X/ to RMg.X Iˇ/.
The derived stack of n-pointed stable maps of type .g; ˇ/ to X is defined as the open

substack of RMg;n.X/

RMg;n.X Iˇ/ WD �RMg;n.X/
.Mg;n.X Iˇ//:

The derived stable universal family of type .gIˇ/,

RCg;n;ˇ IX ! RMg;n.X Iˇ/;

is the (derived) restriction of RCg;nIX ! RMg;n.X/ to RMg;n.X Iˇ/.

Remark 2.8. A derived-moduli space description similar to the one given in Remark 2.5
is available for RMg.X/, RMg;n.X/, RMg.X Iˇ/, and RMg;n.X Iˇ/. We leave the details to
the reader, since we will not need this result in the rest of the paper.

The fiber of the canonical projection map RMpre
g .X/!Mpre

g over the derived point
xA W R SpecA!Mpre

g (A being a cdga) is RHOMdStC=R SpecA.C;X/, where C is the curve
over R SpecA corresponding to xA. By [36, Corollary 2.2.6.14], this fiber is geometric, and
therefore the projection

RMpre
g .X/!Mpre

g

is representable. Therefore the derived stack RMpre
g .X/, as well as RMg.X Iˇ/ are geometric.

Moreover, by definition, t0.RMg.X Iˇ// 'Mg.X Iˇ/; thus RMg.X Iˇ/ is a proper derived
Deligne–Mumford stack ([36, Section 2.2.4]).

By the transitivity triangle associated to the representable map RMpre
g .X/!Mpre

g .X/, Note 6:
removed ‘By’ for
line break

the tangent complex T.f WC!X/ of the derived stack RMg.X Iˇ/ at a stable map .f W C ! X/

of type .g; ˇ/ (corresponding to a classical point xf W Spec.C/! RMg.X Iˇ/) is given by1)

T.f WC!X/ ' R�.C;Cone.TC ! f �TX //;

where TC is the tangent complex of C and TX is the tangent sheaf of X .
The canonical map RMg.X Iˇ/!Mpre

g is quasi-smooth. In fact, the fiber at a geo-
metric point, corresponding to prestable curve C , is the derived stack RHOMˇ .C;X/ whose
tangent complex at a point f W C ! X is R�.C; f �TX / which, obviously, has cohomology
only in degrees Œ0; 1�. But Mpre

g is smooth, and any derived stack quasi-smooth over a smooth
base is quasi-smooth (by the corresponding exact triangle of tangent complexes). Therefore the
derived stack RMg.X Iˇ/ is quasi-smooth.

Proposition 1.2 above then recovers the standard (absolute) perfect obstruction theory
on Mg.X Iˇ/ via the canonical map

j �.LRMg.X Iˇ/
/! LMg.X Iˇ/

induced by the closed immersion j WMg.X Iˇ/ ,! RMg.X Iˇ/.

1) As communicated by the authors, the [1]-shift in [8, Theorem 5.4.8] is just a typo: their proof is correct
and yields no shift.
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In the pointed case, the same argument used above for the unpointed case shows that the
map RMpre

g;n.X/!Mpre
g;n is representable, and that the tangent complex of RMg;n.X Iˇ/ at

a pointed stable map .f W .C I x1; : : : ; xn/! X/ of type .g; ˇ/ (corresponding to a classical
point xf W Spec.C/! RMg;n.X Iˇ/) is likewise given by

T.f W.C Ix1;:::;xn/!X/ ' R�

�
C;Cone

�
TC

�
�

X
i

xi

�
! f �TX

��
:

The pointed variant of the argument above, proving quasi-smoothness of RMg.X Iˇ/!Mpre
g ,

proves that also the canonical map RMg;n.X Iˇ/!Mpre
g;n is quasi-smooth, and Proposition 1.2

then recovers the standard absolute perfect obstruction theory on Mg;n.X Iˇ/ via the canonical
map

j �.LRMg;n.X Iˇ/
/! LMg;n.X Iˇ/

induced by the closed immersion

j WMg;n.X Iˇ/ ,! RMg;n.X Iˇ/:

Note that, as observed in [23, Section 5.3.5], this obstruction theory yields trivial Gromov–
Witten invariants on Mg;n.X Iˇ/ for X D S a K3-surface. Hence the need for another ob-
struction theory carrying more interesting curves counting invariants on aK3-surface: this will
be the so-called reduced obstruction theory (see Section 4.1, Section 4.3, and Theorem 4.8).

Finally, the derived stable universal family RCg;ˇ IX comes, by restriction, equipped with
a natural map

� W RCg;ˇ IX ! RMg.X Iˇ/ �X:

We have a homotopy cartesian diagram in dStC

Mg.X Iˇ/
� � //

��

Mg.X/

��

RMg.X Iˇ/
� � // RMg.X/.

Analogous remarks hold in the pointed case.

3. The derived determinant morphism

We recall from [35, 36] the definition of the derived stack RPerf (denoted as M1 in loc.
cit). The functor RPerf sends a differential non-positively graded C-algebra A to the nerve
of the category of perfect (i.e. homotopically finitely presentable, or equivalently, dualizable
in the monoidal model category of A-dg-modules) A-dg-modules which are cofibrant in the
projective model structure of all A-dg-modules. It is a locally geometric derived stack, that is
a union of open substacks which are derived Artin stacks of finite presentation over Spec C
([35, Proposition 3.7]).

For a derived stack Y , the derived stack of perfect complexes on Y is

RPerf.X/ WD RHOMdStC .X;RPerf/;
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and the space (or simplicial set) of perfect complexes on Y is, by definition, the mapping space
RHomdStC

.Y;RPerf/ in the model category dStC; an element in its �0 is called a perfect
complex on Y . Note that

RHomdStC
.Y;RPerf/ ' RPerf.X/.C/:

In this section we start by defining a quite general perfect determinant map of derived
stacks

detPerf W RPerf! Pic D BGm

whose construction requires a small detour into Waldhausen K-theory. We think this perfect
determinant might play an important role in other contexts as well, e.g. in a general GW/DT
correspondence.

Using the perfect determinant together with a natural perfect complex on RMg.X Iˇ/,
we will be able to define a map

ı1.X/ W RMg.X/! RPic.X/

which will be one of the main ingredients in the construction of the reduced derived stack of
stable maps RMred

g .S Iˇ/, for a K3-surface S , given in the next section.

3.1. The perfect determinant map. The aim of this subsection is to produce a deter-
minant morphism detPerf W RPerf! Pic in Ho.dStC/ extending the natural determinant mor-
phism Vect! Pic: To do this, we will have to pass through Waldhausen K-theory.

By [36, Lemma 2.2.6.1] we do not have to distinguish between the stack and derived
stack of vector bundles Vect: if i W StC ! dStC is the canonical functor viewing a stack as
a derived stack, we have a canonical equivalence i.Vect/ ' RVect. We will then simply write
Vect for either Vect or RVect.

We start with the classical determinant map in Ho.StC/, det W Vect! Pic, induced by
the map sending a vector bundle to its top exterior power. Consider the following simplicial
stacks:

B�Pic W �op
3 Œn� 7! .Pic/n

(with the simplicial structure maps given by tensor products of line bundles, or equivalently,
induced by the product in the group structure of BGm ' Pic), and

B�Vect W �op
3 Œn� 7! wSnVect;

where, for any commutative C-algebra R, wSnVect.R/ is the nerve of the category of se-
quences of split monomorphisms

0!M1 !M2 ! � � � !Mn ! 0

with morphisms the obvious equivalences, and the simplicial structure maps are the natural
ones described in [38, Section 1.3]. Similarly, we define the simplicial object in stacks

B�Perf W �op
3 Œn� 7! wSnPerf

(see [38, Section 1.3] for the definition of wSn in this case). Now, B�Pic and B�Vect, and
B�Perf are pre-�op-stacks according to [32, Definition 1.4.1], and the map det extends to
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a morphism
det� W B�Vect! B�Pic

in the homotopy category of pre-�op-stacks. By applying the functor i W Ho.StC/! Ho.dStC/

(that will be, according to our conventions, omitted from notations), we get a determinant
morphism (denoted in the same way)

det� W B�Vect! B�Pic

in the homotopy category of pre-�op-derived stacks. We now pass to WaldhausenK-theory, i.e.
apply K WD � ı j�j (see [32, Theorem 1.4.3], where the loop functor � is denoted by R��,
and the realization functor j�j by B), and observe that, by [32, Theorem 1.4.3 (2)], there is
a canonical isomorphism in Ho.dStC/

K.B�Pic/ ' Pic

since Pic is group-like (i.e. anH1-stack in the parlance of [32, Theorem 1.4.3]). This gives us
a map in Ho.dStC/

K.det�/ W K.B�Vect/! Pic:

Now, consider the map

u W KVect
WD K.B�Vect/! K.B�Perf/ WD KPerf

in Ho.dStC/, induced by the inclusion Vect ,! RPerf. By [38, Theorem 1.7.1], u is an iso-
morphism in Ho.dStC/. Therefore, we get a diagram in Ho.dStC/

KVect K.det�///

u

��

Pic

RPerf
1st-level

// KPerf

where u is an isomorphism. This allows us to give the following

Definition 3.1. The induced map in Ho.dStC/

detPerf W RPerf! Pic

is called the perfect determinant morphism.

For any complex scheme (or derived stack) X , the perfect determinant morphism

detPerf W RPerf! Pic

induces a map in Ho.dStC/

detPerf.X/ W RPerf.X/ WD RHOMdStC .X;Perf/! RHOMdStC .X;Pic/ DW RPic.X/:

As perhaps not totally unexpected (e.g. [12, Remark 5.3.3]), the tangent morphism to the per-
fect determinant map is given by the trace for perfect complexes. We state the result here only
for complex points of RPerf.X/ because we will only need this case in the rest of the paper.
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Proposition 3.2. Let X be a complex quasi-projective scheme, and

detPerf.X/ W RPerf.X/! RPic.X/

be the induced perfect determinant map. For any complex point xE W Spec C ! RPerf.X/,
corresponding to a perfect complex E over X , the tangent map

TxEdetPerf.X/ W TxERPerf.X/ ' RHom.E;E/Œ1�! RHom.OS ;OS /Œ1� ' TxERPic.X/

is given by trE Œ1�, where trE is the trace map for the perfect complex E of [12, Chapter 5,
Section 3.7.3].

Proof. Let RPerf strict.X/ WD RHOMdStC .X;RPerf strict/ be the derived stack of strict
([5, Exposé I, Section 2.1]) perfect complexes on X . Since X is quasi-projective, the canoni-
cal map RPerf strict.X/! RPerf.X/ is an isomorphism in Ho.dStC/. Therefore (e.g. [5, Ex-
posé I, Section 8.1.2]), the comparison statement is reduced to the case where E is a vector
bundle on X , which is a direct computation and is left to the reader.

3.2. The map RMg.X/ ! RPerf.X/. A map

RMg.X/! RPerf.X/ D RHOMdStC .X;RPerf/

in Ho.dStC/ is, by adjunction, the same thing as a map

RMg.X/ �X ! RPerf

i.e. a perfect complex on RMg.X/ �X ; so, it is enough to find such an appropriate perfect
complex.

Let
� W RCgIX ! RMg.X/ �X

be the derived stable universal family (Section 2.2), and recall the existence of a derived di-
rect image functor R�� W Lqcoh.RCgIX /! Lqcoh.RMg.X/ �X/ (see the section “Frequently
used notions: Notations and references” in the Introduction).

Proposition 3.3. The set R��.ORCgIX / is a perfect complex on RMg.X/ �X .

Proof. First of all, � is representable, and the truncation of � is proper. Moreover �
is quasi-smooth. To see this, observe that both RCgIX and RMg.X/ �X are smooth over
RMg.X/. Then we conclude, since any map between derived stacks smooth over a base is
quasi-smooth. So we have that � is representable, proper and quasi-smooth. Since the state-
ment is local on the target, we conclude by [34, Lemma 2.2].

Remark 3.4. If we fix a class ˇ 2 H2.X;Z/, the corresponding ˇ-decorated version of
Proposition 3.3 obviously holds.

We may therefore give the following

Definition 3.5. We will denote by

AX W RMg.X/! RPerf.X/

the map induced by the perfect complex R��.ORCgIX /.
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Note that, in particular, AX sends a complex point of RMg.X/, corresponding to a stable
map f W C ! X to the perfect complex Rf�OC on X .

The tangent morphism of AX . The tangent morphism of AX is related to the Atiyah
class of R��.ORCgIX /, and pointwise on RMg.X/ to the Atiyah class map of the perfect
complex Rf�OC : this is explained in detail in Appendix A, so we will just recall here the
results and the notations we will need in the rest of the main text.

Let us write E WD R��.ORCgIX /; since this is a perfect complex on RMg.X/ �X , its
Atiyah class map (see Appendix A)

atE W E ! LRMg.X/�X
˝ EŒ1�

corresponds uniquely, by adjunction, to a map, denoted in the same way,

atE W TRMg.X/�X
! E_ ˝ EŒ1�:

Let x be a complex point x of RMg.X/ corresponding to a stable map f W C ! X , and let
p W C ! Spec C and q W X ! Spec C denote the structural morphisms, so that p D q ı f .
Correspondingly, we have a ladder of homotopy cartesian diagrams

C
�f

//

f

��

RCgIX

�
��

X
x

//

q

��

RMg.X/ �X

pr
��

prX // X

q

��

Spec C
x

// RMg.X/ // Spec C.

Let us consider the perfect complex E WD Rf�OC on X . By [12, Chapter 4, Section 2.3.7],
the complex E has an Atiyah class map

atE W E ! E ˝�1X Œ1�

which corresponds uniquely (E being perfect) by adjunction to a map (denoted in the same
way)

atE W TX ! REndX .Rf�OC /Œ1�:

Proposition 3.6. In the situation and notations above, we have that:

� the tangent map of AX fits into the following commutative diagram: Note 7:
pr upright

TRMg.X/

TAX //

can
��

A�XTRPerf.X/
� // R pr�.E

_ ˝ E/Œ1�

R pr� pr� TRMg.X/ can
// R pr�.pr� TRMg.X/

˚ pr�X TX / �
// R pr� TRMg.X/�X

R pr�.atE/

OO

where can denote obvious canonical maps, and E WD R��.ORCgIX /.
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� The tangent map to AX at x D .f W C ! X/, is the composition

TxAX W TxRMg.X/ ' R�.C;Cone.TC ! f �TX //! R�.X; x�TRMg.X/�X
/

R�.X;x�atE/
���������! REndX .Rf�OC /Œ1� ' TRf�OCRPerf.X/

where E WD Rf�OC .

� The composition

R�.X; TX /
can
����! R�.X;Rf�f

�TX /

can
����! R�.X;Cone.Rf�TC ! Rf�f

�TX // ' TxRMg.X/

TxAX
����! x�A�XTRPerf.X/ ' TRf�OCRPerf.X/ ' REndX .Rf�OC /Œ1�

coincides with R�.X; atE /, where E WD Rf�OC .

Proof. See Appendix A.

Definition 3.7. We denote by ı1.X/ the composition

RMg.X/
AX

������! RPerf.X/
detPerf.X/
������! RPic.X/;

and, for a complex point x of RMg.X/ corresponding to a stable map f W C ! X , by

‚f WD Tf ı1.X/ W T.f WC!X/RMg.X/
TxAX
����! TRf�OCRPerf.X/

trX
����! Tdet.Rf�OC /RPic.X/:

Note that, as a map of explicit complexes, we have

‚f W R�.C;Cone.TC ! f �TX //
TxAX
����! RHomX .Rf�OC ;Rf�OC /Œ1�

trX
����! R�.X;OX /Œ1�:

Remark 3.8 (First Chern class of Rf�OC and the map ‚f ). Let x be a complex
point x of RMg.X/ corresponding to a stable map f W C ! X , and let p W C ! Spec C and
q W X ! Spec C denote the structural morphisms, so that p D q ı f . Using Proposition 3.6,
we can relate the map ‚f above to the first Chern class of the perfect complex Rf�OC (see
[12, Chapter V]). With the same notations as in Proposition 3.6, the following diagram is com-
mutative:

Rq�TX

��

Rq�.atRf�OC
/
// Rq�REndX .Rf�OC /Œ1�

tr // Rq�OX Œ1�

Rq�Rf�f �TX ' Rp�f �TX // Rp�Cone.TC ! f �TX /

TxAX

OO

‚f
// Rq�OX Œ1�.

id

OO

In this diagram, the composite upper row is the image under Rq� of the first Chern class
c1.Rf�OC / 2 Ext1X .TX ;OX / ' H

1.X;�1X /.
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Pointed case. In the pointed case, if

� W RCg;nIX ! RMg;n.X/ �X

is the derived stable universal family (Section 2.2), the same argument as in Proposition 3.3
shows that R��.ORCgIX / is a perfect complex on RMg;n.X/ �X . And we give the analogous

Definition 3.9. We denote by

A.n/X W RMg;n.X/! RPerf.X/

the map induced by the perfect complex R��.ORCg;nIX /.
We denote by ı.n/1 .X/ the composition

RMg;n.X/
A.n/X

������! RPerf.X/
detPerf.X/
������! RPic.X/;

and, for a complex point x of RMg.X/ corresponding to a pointed stable map

f W .C I x1; : : : ; xn/! X;

by

‚
.n/

f
WD Tf ı

.n/
1 .X/ W Tf RMg;n.X/

TxA.n/X
�����! TRf�OCRPerf.X/

trX
�����! Tdet.Rf�OC /RPic.X/:

Again, if we fix a class ˇ 2 H2.X;Z/, we have the corresponding ˇ-decorated version
of Definition 3.9.

4. The reduced derived stack of stable maps to a K3-surface

In this section we specialize to the case of an algebraic K3-surface S , with a fixed
nonzero curve class ˇ 2 H2.S IZ/, and a fixed symplectic form � 2 H 0.S;KS /. After re-
calling in some detail the reduced obstruction theory of O-M-P-T, we first identify canonically
the derived Picard stack RPic.S/with Pic.S/ �RSpec.Sym.H 0.S;KS /Œ1�//whereKS is the
canonical sheaf of S . This result is then used to define the reduced version RMred

g .S Iˇ/ of the
derived stack of stable maps of type .g; ˇ/ to S (and its n-pointed variant RMred

g;n.S Iˇ/), and to
show that this induces, via the canonical procedure available for any algebraic derived stack,
a modified obstruction theory on its truncation Mg.S Iˇ/ whose deformation and obstruction
spaces are then compared with those of the reduced theory of O-M-P-T. As a terminological
remark, given an obstruction theory, we will call deformation space what is usually called its
tangent space (while we keep the terminology obstruction space). We do this to avoid con-
fusion with tangent spaces, tangent complexes or tangent cohomologies of possibly related
(derived) stacks.

4.1. Reduced obstruction theory. For a K3-surface S , the moduli of stable maps
of genus g curves to S with non-zero effective class ˇ 2 H 1;1.S;C/ \H 2.S;Z/ (note that
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Poincaré duality yields a canonical isomorphism

H2.S IZ/ ' H
2.S IZ/

between singular (co)homologies) carries a relative perfect obstruction theory. This obstruction
theory is given by

.R��F
�TS /

_
! LMg.S Iˇ/=M

pre
g
:

Here � WCg;ˇ IS !Mg.S Iˇ/ is the universal curve, F WCg;ˇ IS ! S is the universal mor-
phism from the universal curve to S , and Mpre

g denotes the Artin stack of prestable curves.
A Riemann–Roch argument along with the fact that a K3-surface has trivial canonical bundle
yields the expected dimension of Mg.S Iˇ/:

exp dim Mg.S Iˇ/ D g � 1:

We thus expect no rational curves on a K3-surface. This result stems from the deformation
invariance of Gromov–Witten invariants. A K3-surface admits deformations such that the ho-
mology class ˇ is no longer of type .1; 1/, and thus cannot be the class of a curve.

This is unfortunate, given the rich literature on enumerative geometry of K3-surfaces,
and is in stark contrast to the well-known conjecture that a projective K3-surface over an
algebraically closed field contains infinitely many rational curves. Further evidence that there
should be an interesting Gromov–Witten theory of K3-surfaces are the results of Bloch, Ran
and Voisin that rational curves deform in a family of K3-surfaces provided their homology
classes remain of type .1; 1/. The key ingredients in the proof is the semi-regularity map.
We thus seek a new kind of obstruction theory for Mg.S Iˇ/ which is deformation invariant
only for such deformations of S which keep ˇ of type .1; 1/.

Such a new obstruction theory, called the reduced obstruction theory, was introduced
in [20, 21, 24]. Sticking to the case of moduli of morphisms from a fixed curve C to S , the
obstruction space at a fixed morphism f is H 1.C; f �TS /.

This obstruction space admits a map

H 1.C; f �TS /
�

�����! H 1.C; f ��S /
H1.df /
�����! H 1.C;�1C / �����! H 1.C; !C / ' C;

where the first isomorphism is induced by the choice of a holomorphic symplectic form on S .
The difficult part is to prove that all obstructions for all types of deformations of f lie in the
kernel of this map, called the semi-regularity map for morphisms. Recall that using classical
methods as in [6, 7] it has only been possible to show that the semi-regularity map annihi-
lates obstructions to deformations over a base of the form CŒx�=.xn/. For the construction of
a reduced virtual fundamental class this is not nearly enough, as this requires annihilation of
obstructions over square-zero extensions of arbitrary bases, which are not even assumed to be
Artinian [3, Theorem 4.5]. Once this is proven, Mg.S Iˇ/ carries a reduced obstruction theory
which yields a virtual class, called the reduced class. This reduced class is one dimension larger
that the one obtained from the standard perfect obstruction theory and leads to many interesting
enumerative results (see [20, 21, 25]).

We will give below the construction of the reduced deformation and obstruction spaces
giving all the details that will be needed in our comparison result (Theorem 4.8).
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4.1.1. Deformation and obstruction spaces of the reduced theory according to
Okounkov–Maulik–Pandharipande–Thomas. For further reference, we give here a self-
contained treatment of the reduced deformation and reduced obstruction spaces on Mg.S Iˇ/

according to Okounkov–Maulik–Pandharipande–Thomas.
Let us fix a stable map f W C ! S of class ˇ ¤ 0 and genus g; p W C ! Spec C and

q W S ! Spec C will denote the structural morphisms. Let !C ' p
ŠOSpec C be the dualizing

complex of C , and !C D !C Œ�1� the corresponding dualizing sheaf.
First of all, the deformation spaces of the standard (i.e. unreduced) and reduced theory, at

the stable map f , coincide withH 0.C;Cone.TC ! f �TS //where TC is the tangent complex Note 8:
displayed as in-line
formula

of the curve C .
Let us recall now ([25, Section 3.1]) the construction of the reduced obstruction space.

We give here version that is independent of the choice of a holomorphic symplectic form �

on S .
Consider the isomorphism2)

' W TS ˝H
0.S;KS /

�
�! �1S :

By tensoring this byH 0.S;KS /
_ ' H 2.S;OS / (this isomorphism is given by Grothendieck–

Serre duality that includes the Grothendieck trace map isomorphism H 2.S;KS /! C, see
e.g. [9, Section 3.4]) which is of dimension 1 over C, we get a sequence of isomorphisms of
OS -Modules

TS
�
 � TS ˝H

0.S;KS /˝H
2.S;OS /

�
�! �1S ˝H

2.S;OS /:

We denote by
 W TS ! �1S ˝H

2.S;OS /

the induced isomorphism. Form this, we get an isomorphism of OC -Modules

f � W f �TS
�
�! f �.�1S /˝H

2.S;OS /:

Now consider the canonical maps

f ��1S
s
�! �1C

t
�! !C ' p

ŠOSpec CŒ�1�

where !C ' !C Œ�1� is the dualizing sheaf of C and !C D p
ŠOSpec C the dualizing complex

of C (see [10, Chapter V]). We thus obtain a map

ev W f �TS ! !C ˝H
2.S;OS /Œ�1� ' !C ˝H

2.S;OS /:

By the properties of dualizing complexes, we have

!C ˝H
2.S;OS /Œ�1� D !C ˝ p

�.H 2.S;OS //Œ�1� ' p
Š.H 2.S;OS /Œ�1�/;

so we get a morphism
f �TS ! pŠ.H 2.S;OS /Œ�1�/

2) The map ' is canonical, and the fact that it is an isomorphism depend on the existence (though not on the
choice) of a symplectic form � on S . Also note that we use throughout the standard abuse of writing F ˝ V for
F ˝OX p

�V , for any scheme p W X ! Spec C, any OX -Module F , and any C-vector space V .
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which induces, by applying Rp� and composing with the adjunction map Rp�pŠ ! Id, a map

ę W R�.C; f �TS / ' Rp�.f
�TS /

Rp�.�v/
�����! Rp�.!C ˝H

2.S;OS // ' Rp�p
Š.H 2.S;OS /Œ�1�/

�����! H 2.S;OS /Œ�1�:

Since R� is a triangulated functor, to get a unique induced map

˛ W R�.C;Cone.TC ! f �TS //! H 2.S;OS /Œ�1�

it will be enough to observe that

HomD.C/.Rp�TC Œ1�;H
2.S;OS /Œ�1�/ D 0

(which is obvious since Rp�TC Œ1� lives in degrees Œ�1; 0�, whileH 2.S;OS /Œ�1� in degree 1),
and to prove the following

Lemma 4.1. The composition

Rp�TC �����! Rp�f
�TS

Rp�.�v/
�����! Rp�.!C ˝H

2.S;OS //

vanishes in the derived category D.C/.

Proof. If C is smooth, the composition

TC ���! f �TS
f � 
���! f ��1S ˝H

2.S;OS /
s˝id
���! �1C ˝H

2.S;OS /

is obviously zero, since TC ' TC in this case, and a curve has no 2-forms. For a general
prestable C , we proceed as follows. Let us consider the composition

� W TC ���! f �TS
f � 
���! f ��1S ˝H

2.S;OS /

s˝id
���! �1C ˝H

2.S;OS /
t˝id
���! !C ˝H

2.S;OS / WD L:

On the smooth locus of C , H0.�/ is zero (by the same argument used in the case C smooth),
hence the image of H0.�/ W H0.TC / ' TC ! L is a torsion subsheaf of the line bundle L.
But C is Cohen–Macaulay, therefore this image is 0, i.e. H0.�/ D 0; and, obviously, we have
H i .�/ D 0 for any i (i.e. for i D 1). Now we use the hypercohomology spectral sequences

Hp.C;Hq.TC //) HpCq.C;TC / ' H
pCq.R�.C;TC //;

Hp.C;Hq.LŒ0�//) HpCq.C;LŒ0�/ ' HpCq.R�.C;LŒ0�// ' HpCq.C;L/;

to conclude that the induced maps

H i .R�.�// W H i .R�.C;TC //! H i .R�.C;L// ' H i .C;L/

are zero for all i . Since C is a field, we deduce that the map R�.�/ D Rp�.�/ is zero inD.C/
as well.
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By the lemma above, we have therefore obtained an induced map

˛ W R�.C;Cone.TC ! f �TS //! H 2.S;OS /Œ�1�:

Now, O-M-P-T reduced obstruction space is defined as ker H 1.˛/.
Moreover, again by Lemma 4.1, we have an induced map

v W Rp�Cone.TC ! f �TS /! Rp�.!C ˝H
2.S;OS //;

and, since the map
Rp�.!C ˝H

2.S;OS //! H 2.S;OS /Œ�1�

obviously induces an isomorphism on H 1, we have that O-M-P-T reduced obstruction space
is also the kernel of the map

H 1.v/ W H 1.R�.C;Cone.TC ! f �TS //! H 1.C; !C ˝H
2.S;OS //:

The following result proves the non-triviality of O-M-P-T reduced obstruction space.

Proposition 4.2. If, as we are supposing, ˇ ¤ 0, the mapsH 1.v/,H 1.˛/,H 1.ę/, and
H 1.Rp�.ev// are all nontrivial, hence surjective.

Proof. The non-vanishing of H 1.Rp�.ev// obviously implies all other non-vanishing
statements, and the non-vanishing ofH 1.Rp�.ev// is an immediate consequence of the follow-
ing3).

Lemma 4.3. Since the curve class ˇ ¤ 0, the map

H 1.t ı s/ W H 1.C; f ��1S /! H 1.C; !C /

is nonzero (hence surjective).

Proof. By [4, Corollary 2.3], ˇ ¤ 0 implies non-triviality of df W f ��1S ! �1C . But Note 9:
removed ‘the map’
for line break

S is a smooth surface and C a prestable curve, hence in the short exact sequence

f ��1S
s
�! �1C ! �1C=S ! 0

the sheaf of relative differentials �1
C=S

is concentrated at the (isolated, closed) singular points
and thus its H 1 vanishes. Therefore the map

H 1.s/ W H 1.C; f ��1S /! H 1.C;�1C /

is surjective. The same argument yields surjectivity, hence non-triviality (since H 1.C; !C /

has dimension 1 over C), of the map H 1.t/ W H 1.C;�1C /! H 1.C; !C /, by observing that,
on the smooth locus of C , �1C ' !C and H 1.t/ is the induced isomorphism. In particular,
H 1.C;�1C / ¤ 0. Therefore bothH 1.s/ andH 1.t/ are non-zero and surjective, so the same is
true of their composition.

3) We thank R. Pandharipande for pointing out this statement, of which we give here our proof.
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4.2. The canonical projection RPic.S / ! RSpec.Sym.H 0.S;KS /Œ1�//. In this
subsection we identify canonically the derived Picard stack RPic.S/ of a K3-surface with
Pic.S/ �RSpec.Sym.H 0.S;KS /Œ1�//, where KS WD �2S is the canonical sheaf of S ; this al-
lows us to define the canonical map

prder W RPic.S/! RSpec.Sym.H 0.S;KS /Œ1�//

which is the last ingredient we will need to define the reduced derived stack RMred
g .S Iˇ/ of

stable maps of genus g and class ˇ to S in the next subsection.
In the proof of the next proposition, we will need the following elementary result (which

holds true for k replaced by any semisimple ring, or k replaced by a hereditary commutative
ring and E by a bounded above complex of free modules).

Lemma 4.4. Let k be a field and E be a bounded above complex of k-vector spaces.
Then there is a canonical map E ! E<0 in the derived category D.k/, such that the obvious
composition

E<0 ! E ! E<0

is the identity.

Proof. Any splitting p of the map of k-vector spaces

ker.d0 W E�1 ! E0/ ,! E�1

yields a map p W E ! E<0 in the category Ch.k/ of complexes of k-vector spaces. To see that
different splittings p and q give the same map in the derived category D.k/, we consider the
canonical exact sequences of complexes

0! E<0 ! E ! E�0 ! 0

and apply Ext0.�; E<0/, to get an exact sequence

Ext0.E�0; E<0/
a
�! Ext0.E;E<0/

b
�! Ext0.E<0; E<0/:

Now, the class of the difference .p � q/ in HomD.k/.E;E<0/ D Ext0.E;E<0/ is in the kernel
of b, so it is enough to show that Ext0.E�0; E<0/ D 0. But E�0 is a bounded above com-
plex of projectives, therefore (e.g. [39, Corollary 10.4.7]) Ext0.E�0; E<0/ D 0 is a quotient of
HomCh.k/.E�0; E<0/ which obviously consists of the zero morphism alone.

Proposition 4.5. Let G be a derived group stack locally of finite presentation over
a field k, e W Spec k ! G be its identity section, and g WD TeG. Then there is a canonical
map in Ho.dStk/


.G/ W t0.G/ �RSpec.A/! G

whereA WD k ˚ .g_/<0 is the commutative differential non-positively graded k-algebra which
is the trivial square zero extension of k by the complex of k-vector spaces .g_/<0.

Proof. First observe that RSpec.A/ has a canonical k-point x0 W Spec k ! RSpec.A/,
corresponding to the canonical projection A! k. By definition of the derived cotangent com-
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plex of a derived stack ([36, 1.4.1]), giving a map ˛ such that the diagram

RSpec.A/ ˛ // G

Spec k
x0

ee

e

<<

commutes in Ho.dStC/, is equivalent to giving a morphism in the derived category of complex
of k-vector spaces

˛0 W LG; e ' g_ ! .g_/<0:

Since k is a field, we may take as ˛0 the canonical map provided by Lemma 4.4, and define

.G/ as the composition

t0.G/ �RSpec.A/
j�id
���! G �RSpec.A/

id�˛0
���! G �G

�
���! G

where � is the product in G.

Proposition 4.6. Let S be a K3-surface over k D C, and G WD RPic.S/ be its de-
rived Picard group stack. Then the map 
.G/ defined in (the proof of) Proposition 4.5 is an
isomorphism


S WD 
.RPic.S// W Pic.S/ �RSpec.Sym.H 0.S;KS /Œ1�//
�
�! RPic.S/

in Ho.dStC/, where KS denotes the canonical bundle on S .

Proof. Since G WD RPic.S/ is a derived group stack, 
.G/ is an isomorphism if and
only if it induces an isomorphism on truncations, and it is étale at e ([36, Theorem 2.2.2.6 and
Lemma 2.2.1.1]), i.e. the induced map

T.t0.e/;x0/.
.G// W T.t0.e/;x0/.t0.G/ �RSpec.A//! Te.G/

is an isomorphism in the derived category D.k/, where x0 is the canonical k-point

Spec C ! RSpec.A/;

corresponding to the canonical projection A! C. Since �0.A/ ' C, t0.
.G// is an isomor-
phism of stacks. So we are left to showing that 
.G/ induces an isomorphism between tangent
spaces. Now,

g � Te.G/ D Te.RPic.S// ' R�.S;OS /Œ1�;

and, S being a K3-surface, we have

g ' R�.S;OS /Œ1� ' H
0.S;OS /Œ1�˚H

2.S;OS /Œ�1�

so that
.g_/<0 ' H

2.S;OS /
_Œ1� ' H 0.S;KS /Œ1�

(where we have used Serre duality in the last isomorphism). But H 0.S;KS / is free of dimen-
sion 1, so we have a canonical isomorphism

C ˚ .g_/<0 ' C ˚H 0.S;KS /Œ1� ' Sym.H 0.S;KS /Œ1�/
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in the homotopy category of commutative simplicial C-algebras. Therefore

T.t0.e/;x0/.Pic.S/ �RSpec.A// ' g�0 ˚ g>0 ' H
0.S;OS /Œ1�˚H

2.S;OS /Œ�1�

and T.t0.e/;x0/.
.G// is obviously an isomorphism (given, in the notations of the proof of
Proposition 4.5, by the sum of the dual of ˛0 and the canonical map g�0 ! g).

Using Proposition 4.6, we are now able to define the projection prder of RPic.S/ onto its
full derived factor as the composite

RPic.S/ ����!

.S/�1

Pic.S/�RSpec.Sym.H 0.S;KS /Œ1�// ����!pr2
RSpec.Sym.H 0.S;KS /Œ1�//:

Note that prder yields on tangent spaces the canonical projection4)

Te.RPic.S Iˇ// D g! g>0 D Tx0.RSpec.Sym.H 0.S;KS /Œ1�/// ' H
2.S;OS /Œ�1�;

where x0 is the canonical k-point Spec C ! Spec.Sym.H 0.S;KS /Œ1�//, and

g ' H 0.S;OS /Œ1�˚H
2.S;OS /Œ�1�:

4.3. The reduced derived stack of stable maps RM
red
g .S Iˇ/. In this subsection we

define the reduced version of the derived stack of stable maps of type .g; ˇ/ to S and describe
the obstruction theory it induces on its truncation Mg.S Iˇ/.

Let us define ıder
1 .S; ˇ/, respectively, ı.n/; der

1 .S; ˇ/, as the composition (see Defini-
tion 3.7 and Definition 3.9)

RMg.S Iˇ/ ,�! RMg.S/
ı1.S/
�����! RPic.S/

prder
�����! RSpec.Sym.H 0.S;KS /Œ1�//;

resp., as the composition

RMg;n.S Iˇ/ ,�! RMg;n.S/
ı
.n/
1 .S/
�����! RPic.S/

prder
�����! RSpec.Sym.H 0.S;KS /Œ1�//:

Definition 4.7. The reduced derived stack of stable maps of genus g and class ˇ to S ,
RMred

g .S Iˇ/, is defined by the following homotopy-cartesian square in dStC:

RMred
g .S Iˇ/

��

// RMg.S Iˇ/

ıder
1 .S;ˇ/

��

Spec C // RSpec.Sym.H 0.S;KS /Œ1�//.

The reduced derived stack of n-pointed stable maps of genus g and class ˇ to S , RMred
g;n.S Iˇ/,

is defined by the following homotopy-cartesian square in dStC:

RMred
g;n.S Iˇ/

��

// RMg;n.S Iˇ/

ı
.n/;der
1 .S;ˇ/

��

Spec C // RSpec.Sym.H 0.S;KS /Œ1�//.

4) Recall that, if M is a C-vector space, Tx0.RSpec.Sym.MŒ1�/// 'M_Œ�1�.
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Since the truncation functor t0 commutes with homotopy fiber products and

t0.RSpec.Sym.H 0.S;KS /Œ1�/// ' Spec C;

we get
t0.RMred

g .S Iˇ// 'Mg.S Iˇ/;

i.e. RMred
g .S Iˇ/ is a derived extension (Definition 1.1) of the usual stack of stable maps of

type .g; ˇ/ to S , different from RMg.S Iˇ/. Similarly in the pointed case.
We are now able to compute the obstruction theory induced, according to Section 1, by

the closed immersion jred WMg.S Iˇ/ ,! RMred
g .S Iˇ/. We leave to the reader the straightfor-

ward modifications for the pointed case.
By applying Proposition 1.2 to the derived extension RMred

g .S Iˇ/ of Mg.S Iˇ/, we get
an obstruction theory

j �redL
RMred

g .S Iˇ/
! LMg.S Iˇ/

that we are now going to describe.
Let

� W RMred
g .S Iˇ/! RMg.S Iˇ/

be the canonical map. Since RMred
g .S Iˇ/ is defined by the homotopy pullback diagram in Def-

inition 4.7 above, we get an isomorphism in the derived category of RMred
g .S Iˇ/

��.LRMg.S Iˇ/=RSpec.Sym.H0.S;KS /Œ1�//
/ ' L

RMred
g .S Iˇ/

:

We will show below that RMred
g .S Iˇ/ is quasi-smooth so that, by Corollary 1.4,

j �redL
RMred

g .S Iˇ/
! LMg.S Iˇ/

is indeed a perfect obstruction theory on Mg.S Iˇ/. Now, for any C-point

Spec C ! RMg.S Iˇ/;

corresponding to a stable map .f W C ! S/ of type .g; ˇ/, we get a distinguished triangle

LRSpec.Sym.H0.S;KS /Œ1�//; x0
! LRMg.S Iˇ/; .f WC!S/

! L
RMred

g .S Iˇ/; .f WC!S/

(where we have denoted by .f W C ! S/ also the induced C-point of RMred
g .S Iˇ/, and used

that a derived stack and its truncation have the same classical points, i.e. points with values in
usual commutative C-algebras) in the derived category of complexes of C-vector spaces. By
dualizing, we get that the tangent complex

T red
.f WC!S/ WD T.f WC!S/.RMred

g .S Iˇ//

of RMred
g .S Iˇ/ at the C-point .f W C ! S/ of type .g; ˇ/, sits into a distinguished triangle

T red
.f WC!S/ ��! R�.C;Cone.TC ! f �TS //

‚f
��! R�.S;OS /Œ1�

pr
��! H 2.S;OS /Œ�1�;

where ‚f is the composite

‚f W R�.C;Cone.TC ! f �TS //
TxAX
����! RHomS .Rf�OC ;Rf�OC /Œ1�

trS
��! R�.S;OS /Œ1�;

and pr denotes the tangent map of prder taken at the point ı1.S/.f W C ! S/. Note that the
map pr obviously induces an isomorphism on H 1.
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4.4. Quasi-smoothness of RM
red
g .S Iˇ/ and comparison with Okounkov–Maulik–

Pandharipande–Thomas reduced obstruction theory. In the case ˇ ¤ 0 is a curve class
in H 2.S;Z/, we will prove quasi-smoothness of the derived stack RMred

g .S Iˇ/, and compare
the induced obstruction theory with that of Okounkov–Maulik–Pandharipande–Thomas (see
Section 4.1.1 or [20, Section 2.2] and [25]).

Theorem 4.8. Let ˇ ¤ 0 be a curve class in H 2.S;Z/ ' H2.S;Z/, f W C ! S be a
stable map of type .g; ˇ/, and

T red
.f WC!S/ WD T.f WC!S/.RMred

g .S Iˇ//! R�.C;Cone.TC ! f �TS //! H 2.S;OS /Œ�1�

be the corresponding distinguished triangle. Then:

(1) the rightmost arrow in the triangle above induces on H 1 a map

H 1.‚f / W H
1.C;Cone.TC ! f �TS //! H 2.S;OS /

which is nonzero (hence surjective, sinceH 2.S;OS / has dimension 1 over C). Therefore
the derived stack RMred

g .S Iˇ/ is everywhere quasi-smooth,

(2) H 0.T red
.f WC!S/

/ (resp., H 1.T red
.f WC!S/

/) coincides with the reduced deformation space
(resp., the reduced obstruction space) of O-M-P-T.

Proof. Proof of quasi-smoothness. Let us prove quasi-smoothness first. It is clearly
enough to prove that the composite

H 1.C; f �TS / ��������! H 1.C;Cone.TC ! f �TS //

H1.TxAX /
��������! Ext2S .Rf�OC ;Rf�OC /

H2.trS /
��������! H 2.S;OS /

is non-zero (hence surjective). Recall that p W C ! Spec C and q W S ! Spec C denote the
structural morphisms, so that p D q ı f . Now, the map

Rq�TS ! Rq�Rf�f
�TS

induces a map H 1.S; TS /! H 1.C; f �TS /, and by Proposition 3.6 and Remark 3.8, the fol-
lowing diagram commutes:

H 1.S; TS /

��

h�;atRf�OC
i
// Ext2S .Rf�OC ;Rf�OC /

H 1.C; f �TS / // H 1.C;Cone.TC ! f �TS //.

H1.TxAX /

OO

So, we are reduced to proving that the composition

a W H 1.S; TS /
h�;atRf�OC

i

���������! Ext2S .Rf�OC ;Rf�OC /
H2.tr/

���������! H 2.S;OS /
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does not vanish. But, since the first Chern class is the trace of the Atiyah class (as in [12, (5.4.1)
and Section 5.9]), this composition acts as follows (on maps in the derived category of S ):

.� W OS ! TS Œ1�/ �����! .a.�/ W OS
c1˝�
���! �1S ˝ TS Œ2�

h�;�i
����! OS Œ2�/

where
c1 WD c1.Rf�OC / W OS ! �1S Œ1�

is the first Chern class of the perfect complex Rf�OC . What we have said so far, is true for
any smooth complex projective scheme X in place of S . We now use the fact that S is
a K3-surface. Choose a non-zero section � W OS ! �2S of the canonical bundle, and denote
by

'� W �
1
S

�
�! TS

the induced isomorphism. A straightforward linear algebra computation shows then that the
composition

OS
..'�ıc1/^�/˝�
�����������! .TS ^ TS ˝�

2
S /Œ2�

h�;�iŒ2�
�����������! OS Œ2�

coincides with a.�/. But, since ˇ ¤ 0, we have that c1 ¤ 0. The section � is non-degenerate,
so this composition cannot vanish for all �, and we conclude.

Alternatively, we could proceed as follows. By Serre duality, passing to dual vector
spaces and maps, we are left to proving that the composite

H 0.S;�2S /
tr_
��! Ext0S .RHom.Rf�OC ;Rf�OC /;�2S /

�_

��! Ext0.Rf�f �TS Œ�1�;�2S /

is non-zero. So it is enough to prove that the map obtained by further composing to the left
with the adjunction map

Ext0.Rf�f �TS Œ�1�;�2S /! Ext0.TS Œ�1�;�2S /

is nonzero. But this new composition acts as follows:

H 0.S;�2S / 3 .� W OS ! �2S / 7! .� ı tr/

7! .� ı tr ı at/ D .� ı c1.Rf�OC // 2 Ext0.TS Œ�1�;�2S /

where at W TS Œ�1�! RHom.Rf�OC ;Rf�OC / is the Atiyah class of Rf�OC (see Proposi-
tion 3.6 and Remark 3.8). Since ˇ ¤ 0, we have c1.Rf�OC / ¤ 0, and we conclude.

Proof of the comparison. Let us move now to the second point of Theorem 4.8, i.e. the
comparison statement about deformations and obstructions spaces. First of all it is clear that,
for any ˇ,

H 0.Tred; .f WC!S// ' H
0.TRMg.S Iˇ/; .f WC!S/

/ ' H 0.C;Cone.TC ! f �TS //

therefore our deformation space is the same as O-M-P-T’s one. Let us then concentrate on
obstruction spaces.

We begin by noticing the following fact.



Schürg, Toën and Vezzosi, Derived geometry, determinant and moduli of perfect complexes 29

Lemma 4.9. There is a canonical morphism in D.C/

� W Rp�!C ˝
L H 2.S;OS /! Rq�OS Œ1�

inducing an isomorphism on H 1.

Proof. To ease notation we will simply write ˝ for ˝L. Recall that p W C ! Spec C
and q W S ! Spec C denote the structural morphisms, so that p D q ı f . Since S is aK3-sur-
face, the canonical map

OS ˝H
0.S;�2S /! �2S

is an isomorphism. Since f Š preserves dualizing complexes, !S ' �
2
S Œ2� and !C ' !C Œ1�,

we have
!C ' f

Š�2S Œ1� ' f
Š.OS ˝H

0.S;�2S //Œ1�:

By applying Rp� and using the adjunction map Rf�f Š ! Id, we get a map

Rp�!C ' Rq�Rf�!C ' Rq�Rf�f
Š.OS Œ1�˝H

0.S;�2S //

! Rq�.OS Œ1�˝H
0.S;�2S // ' Rq�OS Œ1�˝H

0.S;�2S /

(the last isomorphism being given by projection formula). Tensoring this map by the isomor-
phism H 0.S;�2S /

_ ' H 2.S;OS / (a canonical isomorphism by Serre duality), and using the
canonical evaluation map V ˝ V _ ! C for a C-vector space V , we get the desired canonical
map

� W Rp�!C ˝H
2.S;OS /! Rq�OS Œ1�:

The isomorphism on H 1 is obvious since the trace map R1p�!C ! C is an isomorphism
(C is geometrically connected).

If � W OS
�
�! �2S is a nonzero element in H 0.S;�2S /, and '� W TS ' �1S the induced

isomorphism, the previous lemma gives us an induced map

�.�/ W Rp�!C ! Rq�OS Œ1�;

and an induced isomorphism

H 1.�.�// DW �� W H
1.C; !C /

� // H 2.S;OS /:

Using the same notations as in Section 4.1.1, to prove that our reduced obstruction space

ker.H 1.‚f / W H
1.C;Cone.TC ! f �TS //! H 2.S;OS //

coincides with O-M-P-T’s one, it will be enough to show that the following diagram is com-
mutative:

H 1.C; f �TS /

can
��

can // H 1.C;Cone.TC ! f �TS //

H1.‚f /

��

H 1.C;Cone.TC ! f �TS //

H1.v/
��

H 1.C; !C /
�

��
// H 2.S;OS /.
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But this follows from the commutativity of

Rp�f �TS Œ�1�

id

��

Rp�.'� / // Rp�f ��1S Œ�1�
Rp�.s/ // Rp��1C Œ�1�

Rp�.t/// Rp�!C Œ�1�

�.�/Œ�1�

��

Rp�f �TS Œ�1� TxAX
// Rq�RHomS .Rf�OC ;Rf�OC / tr

// Rq�OS

that follows directly from the definitions of the maps involved.

Remark 4.10. Note that by Lemma 4.2, the second assertion of Theorem 4.8 implies
the first one. Nonetheless, we have preferred to give an independent proof of the quasi-smooth-
ness of RMred

g .S Iˇ/ because we find it conceptually more relevant than the comparison with
O-M-P-T, meaning that quasi-smoothness alone would in any case imply the existence of some
perfect reduced obstruction theory on Mg.S Iˇ/, regardless of its comparison with the one
introduced and studied by O-M-P-T. A complete comparison with O-M-P-T would require not
only Theorem 4.8 (2), but also a proof that all obstruction maps are the same. We think this is
true, but we leave the task of verifying the details to the interested reader.

Moreover, we could only find in the literature a definition of O-M-P-T global reduced ob-
struction theory (relative to Mpre

g ) with values in the ���1-truncation of the cotangent complex
of the stack of stable maps5), that uses a result on the semiregularity map whose proof is not
completely convincing ([20, Section 2.2, formula (14)]); on the other hand there is a clean and
complete description of the corresponding pointwise tangent and obstruction spaces. There-
fore, our comparison is necessarily limited to these spaces. Our construction might also be
seen as establishing such a reduced global obstruction theory – in the usual sense, i.e. with
values in the full cotangent complex, and completely independent from any result on semireg-
ularity maps.

Theorem 4.8 shows that the distinguished triangle

T red
.f WC!S/ WD T.f WC!S/.RMred

g .S Iˇ//! R�.C;Cone.TC ! f �TS //! H 2.S;OS /Œ�1�

induces isomorphisms

H i .T red
.f WC!S// ' H

i .C;Cone.TC ! f �TS //;

for any i ¤ 1, while in degree 1, it yields a short exact sequence

0! H 1.T red
.f WC!S//! H 1.C;Cone.TC ! f �TS //! H 2.S;OS /! 0:

So, the tangent complexes of RMred
g .S Iˇ/ and RMg.S Iˇ/ (hence our induced reduced and

the standard obstruction theories) only differ at the level of H 1 where the former is the kernel
of a 1-dimensional quotient of the latter: this is indeed the distinguished feature of a (codimen-
sion 1) reduced obstruction theory.

5) The reason being that the authors use factorization through the cone, and therefore the resulting obstruc-
tion theory is only well-defined, without further arguments, if one considers it as having values in such a truncation.
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The pointed case. In the pointed case, a completely analogous proof as that of Theo-
rem 4.8 (1), yields

Theorem 4.11. Let ˇ ¤ 0 be a curve class in H 2.S;Z/ ' H2.S;Z/. The derived
stack RMred

g;n.S Iˇ/ of n-pointed stable maps of type .g; ˇ/ is everywhere quasi-smooth, and
therefore the canonical map

j �.LRMg;n.X Iˇ/
/! LMg;n.X Iˇ/

is a Œ�1; 0� perfect obstruction theory on Mg;n.X Iˇ/.

5. Moduli of perfect complexes

In this section we will define and study derived versions of various stacks of perfect com-
plexes on a smooth projective variety X . If X is a K3-surface, by using the determinant map
and the structure of RPic.X/, we deduce that the derived stack of simple perfect complexes
on X is smooth. This result was proved with different methods by Inaba in [13].

When X is a Calabi–Yau 3-fold, we prove that the derived stack of simple perfect com-
plexes (with fixed determinant) is quasi-smooth, and then use an elaboration of the map

A.n/X W RMg;n.X/! RPerf.X/

to compare the obstruction theories induced on the truncation stacks. This might be seen as a
derived geometry approach to a naive, open version of the Gromov–Witten/Donaldson–Thomas
comparison.

Definition 5.1. LetX be a smooth complex projective variety, L be a line bundle onX ,
and xL W Spec C ! RPic.X/ be the corresponding point.

� The derived stack RPerf.X/L of perfect complexes on X with fixed determinant L is
defined by the following homotopy cartesian diagram in dStC:

RPerf.X/L //

��

RPerf.X/

det
��

Spec C
xL

// RPic.X/.

We will write RPerf.X/0 for RPerf.X/OX , the derived stack of perfect complexes on X
with trivial determinant.

� If Perf.X/�0 denotes the open substack of Perf.X/ consisting of perfect complexesF on
X such that Exti .F; F / D 0 for i < 0, we define RPerf.X/�0 WD �RPerf.X/.Perf.X/�0/
(as a derived open substack of RPerf.X/, see Proposition 2.1).

� If Perf.X/si;>0 is the open substack of Perf.X/ consisting of perfect complexes F on X
for which Exti .F; F / D 0 for i < 0, and the trace map Ext0.F; F /! H 0.X;OX / ' C
is an isomorphism, we define RPerf.X/si;>0 WD �RPerf.X/.Perf.X/si;>0/ (as a derived
open substack of RPerf.X/, see Proposition 2.1).
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� The derived stack RPerf.X/�0
L

is defined by the following homotopy cartesian diagram
in dStC:

RPerf.X/�0
L

//

��

RPerf.X/�0

det
��

Spec C
xL

// RPic.X/.

As above, we will write RPerf.X/�00 for RPerf.X/�0
OX

.

� The derived stack MX � RPerf.X/si;>0
L

is defined by the following homotopy cartesian
diagram in dStC:

RPerf.X/si;>0
L

//

��

RPerf.X/si;>0

det
��

Spec C
xL

// RPic.X/.

We will write RPerf.X/si;>0
0 for RPerf.X/si;>0

OX
.

Proposition 5.2. Let E be a perfect complex on X with determinant L, and

xE W Spec C ! RPerf.X/L

be the corresponding point. The tangent complex of RPerf.X/L at xE is

Cone.tr W REnd.E/! R�.X;OX //:

Proof. Let T denote the tangent complex of RPerf.X/L at the point xE . By definition
of RPerf.X/L, we have an exact triangle in the derived category D.C/ of C-vector spaces

T �! REnd.E/Œ1�
tr
�! R�.X;OX /Œ1�:

Note that if �.E/ ¤ 0, we have that

T ' REnd.E/0Œ1�;

the shifted traceless derived endomorphisms complex of E ([11, Definition 10.1.4]), so that

H i .REnd.E/0/ D ker.tr W Exti .E;E/! H i .X;OX //;

for any i . In fact the exact triangle in the proof above is split by �.E/�1id.

Remark 5.3. Since RPerf.X/�0
L

and RPerf.X/si;>0
L

are derived open substacks of
RPerf.X/L, Proposition 5.2 holds for their tangent complexes too.

5.1. On K3-surfaces. By using the derived determinant map and the derived stack of
perfect complexes, we are able to give another proof of a result by Inaba ([13, Theorem 3.2])
that generalizes an earlier work by Mukai ([22]). For simplicity, we prove this result for K3-
surfaces, the result for a general Calabi–Yau surface being similar.
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Let S be a smooth projective K3-surface, and let RPerf.S/si;>0 (Definition 5.1) be
the open derived substack of RPerf.S/ consisting of perfect complexes F on S for which
ExtiS .F; F / D 0 for i < 0, and the trace map

Ext0S .F; F /! H 0.S;OS / ' C

is an isomorphism. The truncation Perf.S/si;>0 of RPerf.S/si;>0 is a stack whose coarse
moduli space Perf.S/si;>0 is exactly the moduli space Inaba calls Splcpxét

S=C in [13, Section 3].
As in Section 4.2, we consider the projection prder of RPic.S/ onto its full derived factor

RPic.S/
prder
��! RSpec.Sym.H 0.S;KS /Œ1�//.

Definition 5.4. The reduced derived stack RPerf.S/si;red of simple perfect complexes
on S is defined by the following homotopy pullback diagram:

RPerf.S/si;red //

��

RPerf.S/si;>0

detS
��

RPic.S/
prder
��

Spec C
x0

// RSpec.Sym.H 0.S;KS /Œ1�//.

Since the truncation functor commutes with homotopy pullbacks, the truncation of the
stack RPerf.S/si;red is the same as the truncation of RPerf.S/si;>0, i.e. Perf.S/si;>0, therefore
its coarse moduli space is again Inaba’s Splcpxét

S=C ([13, Section 3]).

Theorem 5.5. The composite map

RPerf.S/si;>0 detS
���! RPic.S/

prder
��! RSpec.Sym.H 0.S;KS /Œ1�//

is smooth. Therefore the derived stack RPerf.S/si;red is actually a smooth, usual (i.e. under-
ived) stack, and

RPerf.S/si;red
' t0.RPerf.S/si;red/ ' Perf.S/si;>0:

Under these identifications, the canonical map RPerf.S/si;red ! RPerf.S/si;>0 becomes iso-
morphic to the inclusion of the truncation Perf.S/si;>0 ! RPerf.S/si;>0.

Proof. Let E be a perfect complex on S such that ExtiS .E;E/ D 0 for i < 0, and the
trace map Ext0S .E;E/! H 0.S;OS / ' C is an isomorphism. The homotopy fiber product
defining RPerf.S/si;red yields a distinguished triangle of tangent complexes

TERPerf.S/si;red
! TERPerf.S/si;>0

! H 0.S;KS /
_Œ�1�:

Since
TERPerf.S/si;>0

' REndS .E/Œ1�;

this complex is cohomologically concentrated in degrees Œ�1; 1�. Therefore, to prove the theo-
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rem, it is enough to show that the map (induced by the above triangle on H 1)

˛ W Ext2S .E;E/ ' H
1.TERPerf.S/si;>0/! H 0.S;KS /

_

is an isomorphism. If we denote by

˛0 W Ext2S .E;E/
˛
�! H 0.S;KS /

_ s
�!
�
H 2.S;OS /

(the isomorphism s given by Serre duality), the following diagram:

Ext2S .E;E/
s //

˛0

��

Ext0S .E;E/
_

tr_E
��

H 2.S;OS / s
// H 0.S;OS /

_

(where again, the s isomorphisms are given by Serre duality on S ) is commutative. But, by
hypothesis, trE is an isomorphism and we conclude.

The following corollary was first proved by Inaba [13, Theorem 3.2].

Corollary 5.6. The coarse moduli space Perf.S/si;>0 of simple perfect complexes on
a smooth projective K3-surface S is a smooth algebraic space.

Proof. The stack RPerf.S/si;red ' Perf.S/si;>0 is a Gm-gerbe ([35, Corollary 3.22]),
hence its smoothness is equivalent to the smoothness of its coarse moduli space (because the
map to the coarse moduli space is smooth, being locally for the étale topology, given by the
projection of Perf.S/si;>0 � BGm onto the first factor).

Remark 5.7. Inaba shows in [13, Theorem 3.3 ] (again generalizing earlier results by
Mukai in [22]) that the coarse moduli space Perf.S/si;>0 also carries a canonical symplectic
structure. In [27] it is shown that in fact the whole derived stack RPerf.S/ carries a natural
derived symplectic structure of degree 0, and that this induces on Perf.S/si;>0 the symplectic
structure defined by Inaba.

5.2. On Calabi–Yau 3-folds. In this section, for X an arbitrary complex smooth pro-
jective variety, we first elaborate on the map

A.n/X W RMg;n.X/! RPerf.X/

from Definition 3.9. This elaboration will give us a map C.n/
X;L

from a derived substack of
RMg;n.X/ to the derived stack RPerf.X/si;>0

L
, L being a line bundle on X (see Defini-

tion 5.1). When we specialize to the case whereX is a projective smooth Calabi–Yau 3-fold Y ,
we prove that RPerf.Y /si;>0

L
is quasi-smooth (Proposition 5.10), and that the map C.n/

Y;L
allows

us to compare the induced obstruction theories on the truncations of its source and target.
To begin with, let X be a smooth complex projective variety. First of all, observe that

taking tensor products of complexes induces an action of the derived group stack RPic.X/
on RPerf.X/

� W RPic.X/ �RPerf.X/! RPerf.X/:

Let xL W Spec C ! RPic.X/ be the point corresponding to a line bundle L on X .
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Definition 5.8. Let �L W RPic.X/! RPic.X/ be the composite

RPic.X/
.inv;xL/
�����! RPic.X/ �RPic.X/

�
�����! RPic.X/

where � (resp., inv) denotes the product (resp., the inverse) map in RPic.X/ (in other words,
�L.L1/ D L˝L�11 ).

� Define A.n/
X;L
W RMg;n.X/! RPerf.X/L via the composite

RMg;n.X/
.det ıA.n/X ;A.n/X /
����������! RPic.X/ �RPerf.X/

�L�id
����������! RPic.X/ �RPerf.X/

�
����������! RPerf.X/

(in short, A.n/
X;L

.E/ D E ˝ .detE/�1 ˝L).

� Define the derived open substack

RMg;n.X/
emb ,! RMg;n.X/

as �RMg;n.X/
.Mg;n.X/

emb/ (see Proposition 2.1) where Mg;n.X/
emb is the open sub-

stack of the stack Mg;n.X/ consisting of pointed stable maps which are closed immer-
sions.

� Define C.n/
X;L
W RMg;n.X/

emb ! RPerf.X/si;>0
L

via the composite

RMg;n.X/
emb ,��! RMg;n.X/

A.n/
X;L

���! RPerf.X/L

(note that this composite indeed factors through RPerf.X/si;>0
L

, since

tr W Ext0.Rf�OC ;Rf�OC / ' C

if the pointed stable map f is a closed immersion).

Remark 5.9. The map C.n/
X;L

is also defined on the a priori larger open derived substack
consisting (in the sense of Proposition 2.1) of pointed stable maps f such that the trace map
tr W Ext0.Rf�OC ;Rf�OC /! H 0.X;OX / ' C is an isomorphism.

We would like to use the map C.n/
X;L

to induce a comparison map between the induced
obstruction theories on the truncations of RMg;n.X/

emb and of RPerf.X/si;>0
L

.
This is possible when we take X to be a Calabi–Yau 3-fold Y . In fact:

Theorem 5.10. If Y is a smooth complex projective Calabi–Yau 3-fold, then the derived
stack RPerf.Y /si;>0

L
is quasi-smooth. Therefore, the closed immersion

j W Perf.Y /si;>0
L

,! RPerf.Y /si;>0
L

induces a Œ�1; 0�-perfect obstruction theory

j �TRPerf.Y /si;>0
L

! TPerf.Y /si;>0
L

:
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Proof. This is a corollary of Proposition 5.2. Let TE denote the tangent complex of
RPerf.Y /si;>0

L
at a point corresponding to the perfect complex E. Now Y is Calabi–Yau of

dimension 3, so
�3Y � KY ' OY I

but E is simple (i.e. the trace map Ext0.F; F /! H 0.X;OX / ' C is an isomorphism), so
Serre duality implies Exti .E;E/0 D 0 for i � 3 (and all i � 0). Therefore the perfect complex
TE is concentrated in degrees Œ0; 1�, and RPerf.Y /si;>0

L
is quasi-smooth. The second assertion

follows immediately from Proposition 1.2.

Remark 5.11. Note that the stack Perf.Y /si;>0
L

is not proper over Spec C. However it
receives maps from both Thomas moduli space In.Y Iˇ/ of ideal sheaves (whose sub-schemes
have Euler characteristic n and fundamental class ˇ 2 H2.Y;Z/) – see [31] – and from Pand-
haripande–Thomas moduli space Pn.Y Iˇ/ of stable pairs – see [26]. For example, the map
from Pn.Y Iˇ/ sends a pair to the pair itself, considered as a complex on Y . Moreover, at the
points in the image of such maps, the tangent and obstruction spaces of these spaces, as consid-
ered in [26], are the same as those induced from the cotangent complex of our RPerf.Y /si;>0

L

([26, Section 2.1]).

As showed in Section 1.2, the map

C.n/
Y;L
W RMg;n.Y /

emb
! RPerf.Y /si;>0

L

induces a comparison map between the two obstruction theories. More precisely, the commu-
tative diagram in dStC

Mg;n.Y /
emb

t0C.n/
Y;L

//
� _

jGW

��

Perf.Y /si;>0
L� _

jDT

��

RMg;n.Y /
emb

C.n/
Y;L

// RPerf.Y /si;>0
L

(where each j is the closed immersion of the truncation of a derived stack into the full derived
stack), induces a morphism of triangles

.t0C.n/
Y;L

/�j �DTLRPerf.Y /si;>0
L

//

��

.t0C.n/
Y;L

/�LPerf.Y /si;>0
L

//

��

.t0C.n/
Y;L

/�LRPerf.Y /si;>0
L

=Perf.Y /si;>0
L

��

j �GWLRMg;n.Y /emb
// LMg;n.Y /emb

// LRMg;n.Y /emb=Mg;n.Y /emb

– in the derived category of perfect complexes on Mg;n.Y /
emb – i.e. a morphism relating the

two obstruction theories induced on the truncations stacks Mg;n.Y /
emb and Perf.X/si;>0

L
. Note

that, for the object in the upper left corner of the above diagram, we have a natural isomorphism

.t0C.n/
Y;L

/�j �DTLRPerf.Y /si;>0
L

' j �GW .C
.n/
Y;L

/�LRPerf.Y /si;>0
L

:



Schürg, Toën and Vezzosi, Derived geometry, determinant and moduli of perfect complexes 37

A. Derived stack of perfect complexes and Atiyah classes

We explain here the relationship between the tangent maps associated to morphisms to
the derived stack of perfect complexes and Atiyah classes (of perfect complexes) used in the
main text (see Section 3.2). As in the main text, we work over C, even if most of what we say
below holds true over any field of characteristic zero. As usual, all tensor products and fiber
products will be implicitly derived, and we will simply write g� for the derived pullback Lg�,
and g� for the derived push-forward Rg�, for any map g below.

If Y is a derived geometric stack having a perfect cotangent complex ([36, Section 1.4]),
and E is a perfect complex on Y, then we will implicitly identify the Atiyah class map of E

atE W E ! LY ˝EŒ1�

with the corresponding map
TY ! E_ ˝EŒ1�

via the bijection

ŒTY ; E
_
˝EŒ1�� ' ŒTY ˝E;EŒ1�� ' ŒE;LY ˝EŒ1��

given by the adjunction .˝;RHom/, and perfectness of E and LY (where Œ�;�� denotes the
Hom set in the derived category of perfect complexes on Y).

We start with a quite general situation. Let Y be a derived geometric stack having a per-
fect cotangent complex, and RPerf the stack of perfect complexes (see Section 3). Then, giving
a map of derived stacks �E W Y ! RPerf is the same thing as giving a perfect complexE on Y,
and

� ��ETRPerf ' REndY.E/Œ1�,

� the tangent map to �E

T�E W TY ! ��ETPerf ' REndY.E/Œ1� ' E
_
˝EŒ1�

is the Atiyah class map atE of E.

Remark A.1. The second point above might be considered as a definition when Y is a
derived stack, and it coincides with Illusie’s definition ([12, Chapter 4, Section 2.3.7]) when
Y D Y is a quasi-projective scheme. In fact, in this case, the mapˆE factors through the stack
of strict perfect complexes; thus the proof reduces immediately to the case where E is a vector
bundle on Y , which is straightforward.

The above description applies in particular to a map of derived stacks of the form

ˆE W Y WD S �X ! RPerf

where X is a smooth projective scheme, S is a derived geometric stack having a perfect cotan-
gent complex, and E is a perfect complex on S �X : in the main text we are interested in
S D RMg.X/. Such a map corresponds, by adjunction, to a map

‰E W S ! RHOM.X;RPerf/ D RPerf.X/:
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The tangent map of ‰E fits into the following commutative diagram:

TS
T‰E //

can
��

‰�ETRPerf.X/
� // prS;�.E

_ ˝E/Œ1�

prS;�pr�
S

TS can
// prS;�.pr�

S
TS ˚ pr�XTX / �

// prS;�TS�X

prS;�.TˆE/

OO

where can denote obvious canonical maps, and we can identify prS;�.TˆE / with prS;�.atE /,
in the sense explained above. In other words, T‰E is described in terms of the relative Atiyah
class map

atE=X W pr�STS ' TS�X=X ! E_ ˝L EŒ1�

of E relative to X , as the composition

T‰E W TS

can
��! prS;�pr�STS

�
��! prS;�TS�X=X

prS;�.atE=X /
���������! prS;�.E

_
˝E/Œ1�.

Remark A.2. The map T‰E might be viewed at as a generalization of what is some-
times called the Kodaira–Spencer map associated to the S-family E of perfect complexes
over X (e.g. [15, formula (14)]).

In the main text, we are interested in the case S D RMg.X/, pr WD prS , and E perfect
of the form ��E , where

� W RCgIX ! RMg.X/ �X

is the universal map and E is a complex on RCgIX , namely E D ORCgIX . In such cases, if we
call .f W C ! X/ the stable map corresponding to the complex point x, we have a ladder of
homotopy cartesian diagrams

C
�f

//

f

��

RCgIX

�
��

X
x

//

q

��

RMg.X/ �X

pr
��

prX // X

q

��

Spec C
x

// RMg.X/ // Spec C

and the base-change isomorphism (true in derived algebraic geometry with no need of flatness)
gives us

x�E D x���E ' f��
�
f E:

For E D ORCgIX , we then get

x�E D x���ORCgIX ' f�OC :

Again by base-change formula, we get

x�pr� ' q�x
�;

and therefore the tangent map to AX WD ‰��ORCgIX
at the point x D .f W C ! X/ is the
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composition

TxAX W TxRMg.X/ ' R�.C;Cone.TC ! f �TX //

�! R�.X; x�TRMg.X/�X
/

R�.X;x�atE/
���������! REndX .Rf�OC /Œ1�' Tf�OCRPerf.X/:

The following is the third assertion in Proposition 3.6, Section 3.2.

Proposition A.3. The composition

R�.X; TX /
can
����! R�.X; f�f

�TX /

can
����! R�.X;Cone.f�TC ! f�f

�TX // ' TxRMg.X/

TxAX
����! x�A�XTRPerf.X/ ' Tf�OCRPerf.X/ ' REndX .f�OC /Œ1�

coincides with R�.X; atf�OC /.

Proof. We first observe that if F is perfect complex on X , and RAut.X/ is the derived
stack of automorphisms of X , there are obvious maps of derived stacks

�x W RAut.X/! RHOMdStC .C;X/

and
�F W RAut.X/! RPerf.X/

induced by the natural action of RAut.X/ by composition on maps and by pullbacks on per-
fect complexes, respectively. Moreover, the tangent map to �F at the identity Spec C-point
of RAut.X/

TidX�F W R�.X; TX / ' TidXRAut.X/! TF RPerf.X/ ' REndX .F /Œ1�

is R�.X; atF /, where atF is the Atiyah class map of F . Then we observe that, by taking

F WD x���ORCgIX

– which is, by base-change formula, isomorphic to f�OC – we get that the composition

kx W RAut.X/
�x
��! RHOMdStC .C;X/

can
��! RMg.X/

AX
��! RPerf.X/

coincides with �F . But the map in the statement of the proposition is just TidXkx , and we
conclude.
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