
25 November 2024

Private types in Higher Order Logic Programming / Marco Maggesi;
Enrico Tassi. - ELETTRONICO. - (2020), pp. 1-2.

Original Citation:

Private types in Higher Order Logic Programming

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1200453 since: 2020-07-08T19:28:52Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

Submitted to:
TASE-LP

c© M. Maggesi & E. Tassi
This work is licensed under the
Creative Commons Attribution License.

Private types in Higher Order Logic Programming

Marco Maggesi
Università degli Studi di Firenze, Italy

Marco.Maggesi@unifi.it

Enrico Tassi
Inria, Université Côte d’Azur, France

Enrico.Tassi@inria.fr

We report on ongoing work on introducing a mechanism for private types in a higher-order logic
programming language such as λProlog.

1 Private types in OCaml and their application

Algebraic data types are pervasive in both logic programming (LP) and functional programming, even
more, they are one of the characterizing features of these families of languages. When developing large
or critical software, the programmer often needs to hide the actual definition of a type, in order to gain
modularity or ensure invariants by construction. Both families of languages provide ways to seal type
declarations in a module signature. We are mostly interested in enforcing invariants in the context of
symbolic computation. A typical example of code we are interested in is the kernel (trusted component)
of a prover, the use case that motivated sealed types in ML in the first place.

There is a tension between ease of use of algebraic types, e.g., language support for matching or
unification, and sealed types that can only be built via an API of constructors or inspected via an API of
views. OCaml provides an elegant compromise: private types [1, Section 8.3]. We illustrate their use in
the following code snippet taken from the kernel of HOL Light.

1 module Hol : sig

2

3 type term = private

4 | Comb of term * term

5 | ...

6

7 val mk_comb : term * term -> term

8 val dest_comb : term -> term * term

9

10 end = struct

11

12 let mk_comb (f,a) =

13 match type_of f with

14 | Tyapp("fun",[ty;_]) when compare ty (type_of a) = 0 -> Comb(f,a)

15 | _ -> failwith "mk_comb: types do not agree"

16

17 let dest_comb t =

18 match t with

19 | Comb(f,a) -> f, a

20 | _ -> failwith "dest_comb: not an application"

21

22 end

The code defines the datatype of terms that are well-typed by construction. The mk_comb function
is the only constructor for application (named combination in HOL) and enforces that the type of the

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Private types in λProlog

argument matches the type expected by the function. In order to prevent the client from building an
application without calling mk_comb, one could seal the type term in the signature by hiding its con-
structors. However, one would also be forced to define APIs such as dest_comb to let the client actually
do something useful with terms. In OCaml, making the type private is sufficient to enforce that ex-
pressions of type term can only be built by using the API in the module signature but does not prevent
the client from inspecting terms using the match-with linguistic construct. As a consequence, the API
dest_comb at line 8, is superfluous, strictly speaking. We now give two simple examples of OCaml code
featuring allowed and forbidden language constructs outside the defining module Hol.

1 (* accepted: pattern matching is allowed on private constructors *)

2 let operand t =

3 match t with

4 | Hol.Comb(f,x) -> x

5

6 (* rejected: Hol.Comb is a private constructor *)

7 let apply_twice f x = Hol.Comb(f, Hol.Comb(f, x))

8

9 (* accepted: uses the safe constructor "mk_comb" that checks at

10 run time the well-formedness of "f (f x) " *)

11 let apply_twice f x = mk_comb(f, mk_comb(f, x))

We stress that the mechanism of private types is different from the one of opaque types which forbids
the use of constructors for both pattern matching and term building outside the defining module. To the
best of our knowledge only opaque types have been considered in the context of logic programming.

2 Private types in LP based on modes and type checking

The implementation of private types in functional programming languages reposes essentially on the fact
that the operations of constructing terms and matching (or destructing) terms are syntactically distinct.
The occurrence of Comb at line 14 constructs a term while the occurrence at line 19 inspects a term.
When a type is private, the former operation is only allowed in the module in which the type is defined,
Hol in the example. Instead, destruction of terms is allowed everywhere.

In contrast, in LP languages, the action of inspecting data and building data are conflated into unifi-
cation, which is a cornerstone of the relational semantics of logic programming. Still, many LP systems
let the user annotate predicates with their intended modes. As shown in [2, Section 3], in then the execu-
tion of a well-moded program unification is equivalent to matching if this condition holds: (*) the query
arguments in input position are ground. This observation suggests a way to introduce private types in LP
based on the well-understood mechanisms of modality and typing.

Definition 1 (private type) A type T is private in a module M, if all clauses p A1 . . .An← H in M are
such that constructors of T : (1) do not occur in the premise H and (2) if they occur in argument Ai to the
predicate p in the head of the clause, then the i-th argument of p is declared to be an input.

The notion of private type given by conditions (1), (2) and (*), is purely syntactical and can be
enforced at type-checking. In particular, this notion enjoys two fundamental properties: (i) it does not
introduce a computational cost at runtime; (ii) it does not change the declarative semantics of programs.

3 Work in progress: Higher Order features

The syntactic criteria 1) and 2) do not trivially transfer to the higher order case, as shown by this example:

M. Maggesi & E. Tassi 3

1 type comb tm -> tm -> tm. % the private constructor

2 type mk-comb tm -> tm -> tm. % the safe constructor

3

4 mk-comb F A (comb F A) :- type-of F (tyapp "fun" [S,_]), type-of A S.

5

6 evil T :-

7 pi f\ type-of f (tyapp "fun" [nat,nat]) =>

8 pi a\ type-of a nat =>

9 mk-comb f a (Leak f a),

10 T = Leak z z.

In the code of the predicate evil there is no occurrence of the private constructor comb, but it still
manages to synthesize an ill-typed term T (the application of z, a term of type nat, to itself). Higher-order
unification at line 9 extracts the head symbol out of a well-typed term built using the safe constructor
mk-comb. Indeed the variable Leak gets assigned the value comb at run time. The question we hope to
answer to is: can we find a static criteria to implement private types in higher-order logic programming?

References
[1] The OCaml system release 4.10. Documentation and user’s manual. https://caml.inria.fr/pub/docs/

manual-ocaml/privatetypes.html. Accessed: 2020-03-02.
[2] K.R. Apt & E. Marchiori (1994): Reasoning about Prolog programs: From modes through types to assertions.

Formal Aspects of Computing 6, pp. 743–765, doi:https://doi.org/10.1007/BF01213601. Available at https:
//link.springer.com/article/10.1007/BF01213601.

https://caml.inria.fr/pub/docs/manual-ocaml/privatetypes.html
https://caml.inria.fr/pub/docs/manual-ocaml/privatetypes.html
http://dx.doi.org/https://doi.org/10.1007/BF01213601
https://link.springer.com/article/10.1007/BF01213601
https://link.springer.com/article/10.1007/BF01213601

	Private types in OCaml and their application
	Private types in LP based on modes and type checking
	Work in progress: Higher Order features

