
25 April 2024

Formalizing basic quaternionic analysis / Andrea Gabrielli; Marco Maggesi. - STAMPA. - 10499:(2017), pp.
225-240. (Intervento presentato al convegno ITP 2017 - Interactive Theorem Proving 2017 tenutosi a
Brasilia (Brasile) nel 26 - 29 settembre 2017) [10.1007/978-3-319-66107-0_15].

Original Citation:

Formalizing basic quaternionic analysis

Publisher:

Published version:
10.1007/978-3-319-66107-0_15

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1090335 since: 2021-03-23T23:04:54Z

Springer

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

Formalizing basic quaternionic analysis

Andrea Gabrielli1 and Marco Maggesi2

1 University of Florence, Italy
andrea.gabrielli@unifi.it

2 University of Florence, Italy
marco.maggesi@unifi.it

http://www.math.unifi.it/~maggesi/

Abstract We present a computer formalization of quaternions in the
HOL Light theorem prover. We give an introduction to our library for
potential users and we discuss some implementation choices.
As an application, we formalize some basic parts of two recently de-
veloped mathematical theories, namely, slice regular functions [5] and
PH-curves [3].

1 Introduction

Quaternions are a well-known and elegant mathematical structure which lies
in the intersection of algebra, analysis and geometry. They have a wide range
of theoretical and practical applications from mathematics, physics to CAD,
computer animations, robotics, signal processing and avionics.

Arguably, a computer formalization of quaternions can be useful, or even
essential, for further developments in pure mathematics or for a wide class of
applications in formal methods.

In this paper we present a formalization of quaternions in the HOL Light
theorem prover. The aim of this paper is to give a quick introduction of our
library to potential users and to discuss some implementation choices.

The structure of the paper is in two parts. First we describe the core of our
library, which is already available in the HOL Light distribution.

Next, we outline two applications to recently developed mathematical theo-
ries which should serve as further examples and as a testbed for our work. More
precisely, we give the basic definition and some basic theorems about slice-regular
quaternionic functions (Section 6) and pythagorean-hodograph curves (Section
7).

2 Background and related work

The HOL Light theorem prover furnishes an extensive library about multivariate
analysis [6] and complex analysis [7] which has been constantly and steadily
extended over the years by Harrison, the main author of the system.

? This work has been supported by GNSAGA-INdAM and MIUR.

Our aim is to try to further improve this work by adding contributions in
(hyper)complex analysis. One previous work along this line was the proof of the
Cartan fixed point theorems [1] by Ciolli, Gentili and the second author of this
paper.

In a broader context, quaternions are one of the simplest examples of geo-
metric algebra (technically, real Cli↵ord algebra). In this respect, we mention
two recent related e↵orts. Fuchs and Théry [4] devise an elegant inductive data
structure for formalizing geometric algebra. More recently, Ma et al. [8], provide
a formalization in HOL Light of Conformal Geometric Algebra. In principle,
these contribution can be integrated with our work, but at the present stage, we
focused entirely on the specific case of quaternions.

3 The core library

Quaternions were “invented” by Hamilton in 1843. From their very inception,
they was meant to represent, in an unified form, both scalar and vector quanti-
ties. Informally, a quaternion q is expressed as a formal combination

q = a+ b i+ c j+ dk 2 H a, b, c, d 2 R

where i, j,k are imaginary units. A product structure is induced by the following
identities

ij = k = �ji

jk = i = �kj

ki = j = �ik

i
2 = j

2 = k
2 = ijk = �1

which build the set H of quaternions into a skew field.
It turns to be useful to consider a number of di↵erent possible decompositions

for a quaternion q, as briefly sketched in the following schema (here I = R
3 can

be interpreted, depending on the context, as the imaginary part of H or the
3-dimensional space):

q = a|{z}
Re q

+ b i+ c j+ dk| {z }
Im q

2 H = R� I

= a|{z}
scalar

+ b i+ c j+ dk| {z }
3d-vector

2 R
4 = R� R

3

= a+ b i| {z }
z2C

+ (c+ d i)| {z }
w2C

j 2 H ' C� C

For the sake of consistency, whenever possible, our development mimics Har-
rison’s formalization of complex numbers present in the HOL Light standard
library [7]. Following this path, we define the data type ‘:quat‘of quaternions

as an alias for the type of 4-dimensional vectors ‘:real^4‘. This approach has
a fundamental benefit from the fact that the we inherit immediately from the
general theory of euclidean spaces the appropriate metric, topology, analytical
and real-vector space structure.

A set of auxiliary constants for constructing and destructing quaternions are
defined to setup a suitable abstraction barrier. They are listed in Table 3.

Table 1. Constructors and destructors for the ‘:quat‘ datatype

Constant name Type Description

Hx :real->quat Embedding R ! H

ii, jj, kk :quat Imaginary units i, j,k
quat :real#real#real#real->quat Generic constructor
Hv :real^3->quat Embedding R

3 ! H

Re :quat->real Real component
Im1, Im2, Im3 :quat->real Imaginary components
HIm :quat->real^3 Imaginary part
cnj :quat->quat Conjugation
real :quat->bool Whether a quaternion is

real

This can be summarized with the following theorem

QUAT_EXPAND
|- !q. q = Hx(Re q) + ii*Hx(Im1 q) + jj*Hx(Im2 q) + kk*Hx(Im3 q)

which is the quaternionic analogous of the following theorem for complex num-
bers

COMPLEX_EXPAND
|- !z. z = Cx(Re z) + ii*Cx(Im z)

With these notations in place, the multiplicative structure can be expressed
with an explicit formula

let quat_mul = new_definition
‘p * q =
quat
(Re p * Re q - Im1 p * Im1 q - Im2 p * Im2 q - Im3 p * Im3 q,
Re p * Im1 q + Im1 p * Re q + Im2 p * Im3 q - Im3 p * Im2 q,
Re p * Im2 q - Im1 p * Im3 q + Im2 p * Re q + Im3 p * Im1 q,
Re p * Im3 q + Im1 p * Im2 q - Im2 p * Im1 q + Im3 p * Re q)‘;;

the inverse of a quaternion is defined analogously. Moreover, we also provide
axiliary theorems that reduce the already defined additive and metric structure
in the same language, e.g.,

quat_add
|- p + q =

quat(Re p + Re q,Im1 p + Im1 q,Im2 p + Im2 q,Im3 p + Im3 q)

quat_norm
|- norm q =

sqrt(Re q pow 2 + Im1 q pow 2 + Im2 q pow 2 + Im3 q pow 2)

Notice that several notations (Re, ii, cnj, real, . . .) overlap in the complex
and quaternionic case and, more generally, with the ones of other number systems
(+, *, . . .). HOL Light disposes of an overloading mechanism that uses the type
inference to select the right constant associated to a given notation.

3.1 Computing with quaternions

After settling the basic definitions, we define a simple automated procedure for
proving quaternionic algebraic identities which consists in just two steps: (1)
rewrite the expression in real components, (2) use an automated procedure for
the real field (essentially one involving polynomial normalization, elimination of
fractions and Gröbner Basis):

let SIMPLE_QUAT_ARITH_TAC =
REWRITE_TAC[QUAT_EQ; QUAT_COMPONENTS; HX_DEF;

quat_add; quat_neg; quat_sub; quat_mul;
quat_inv] THEN

CONV_TAC REAL_FIELD;;

This approach, although very crude, allows us to prove directly nearly 60 basic
identities, e.g.,

let QUAT_MUL_ASSOC = prove
(‘!x y z:quat. x * (y * z) = (x * y) * z‘,
SIMPLE_QUAT_ARITH_TAC);;

and it is also occasionally useful to prove ad hoc identities in the middle of
more complex proofs. In this way, we quickly bootstrap a small library with the
essential algebraic results which needed for building more complex procedures
and theorems.

Next, we provide a conversion RATIONAL_QUAT_CONV for evaluating literal
algebraic expression. This is easily assembled from elementary conversions for
each basic algebraic operation (RATIONAL_ADD_CONV, RATIONAL_MUL_CONV, . . .)
using the well-know mechanism of higher-order conversionals. For instance, the
computation ✓

1 + 2i� 1

2
k

◆3

= �47

4
� 5

2
i+

5

8
k

is performed with the command

RATIONAL_QUAT_CONV
‘(Hx(&1) + Hx(&2) * ii - Hx(&1 / &2) * kk) pow 3‘;;

val it : thm =
|- (Hx(&1) + Hx(&2) * ii - Hx(&1 / &2) * kk) pow 3 =

-- Hx(&47 / &4) - Hx(&5 / &2) * ii + Hx(&5 / &8) * kk

Finally, we implement a procedure for simplifying quaternionic polynomial
expressions. HOL Light provides a general procedure for polynomial normal-
ization, which unfortunately works only for commutative rings. Hence we are
forced to code our own solution. In principle, our procedure can be general-
ized to work with arbitrary (non-commutative) rings. However, at the present
stage, it is hardwired to the specific case of quaternions. To give an example,
the computation

(p+ q)3 = p3 + q3 + pq2 + p2q + pqp+ qp2 + qpq + q2p

can be done with the command

QUAT_POLY_CONV ‘(x + y) pow 3‘;;
val it : thm =
|- (p + q) pow 3 =

p pow 3 + q pow 3 + p * q pow 2 + p pow 2 * q +
p * q * p + q * p pow 2 + q * p * q + q pow 2 * p

4 The geometry of quaternions

One well-know and simple fact, which makes quaternions useful in several phys-
ical and geometrical applications, is that the quaternionic product encodes both
the scalar and the vector product. More precisely, if q1 and q2 are purely imagi-
nary quaternions then we have

q1q2 = �hq1, q2i| {z }
scalar

product

+ q1 ^ q2| {z }
vector
product

2 R+ I

which can be easily verified by direct computation.
Moreover, it is possible to use quaternions to encode orthogonal transfor-

mations. We briefly recall the essential mathematical construction. For q 6= 0,
define the conjugation map

cq : H �! H

cq(x) := q�1 x q

An elementary remark is that the product of quaternions corresponds to the
composition of the respective conjugation map:

cq1 � cq2 = cq1q2

One important special case is when q unitary, i.e.,kqk = 1 for which we have
q�1 = q̄ and thus

cq(x) = q̄ x q

Now, we are ready to state some basic results, which we have formalized in
our framework.

Proposition 1. If q2 = �1 and �cq is the reflection w.r.t. q?.

Here is the corresponding statement proved in HOL Light

REFLECT_ALONG_EQ_QUAT_CONJUGATION
|- !v. ~(v = vec 0)

==> reflect_along v = \x. --HIm (inv (Hv v) * Hv x * Hv v)

The theorem of Cartan-Dieudonné asserts that any orthogonal transforma-
tion f : Rn �! R

n is the composition of at most n reflections. Using this and
the previous proposition we get the following result.

Proposition 2. Any orthogonal transformation f : R3 �! R
3 is of the form

f = cq or f = �cq, kqk = 1.

The corresponding formalization is the following

ORTHOGONAL_TRANSFORMATION_AS_QUAT_CONJUGATION
|- !f. orthogonal_transformation f

==> (?q. norm q = &1 /\
((!x. f x = HIm (inv q * Hv x * q)) \/
(!x. f x = --HIm (inv q * Hv x * q))))

5 Quaternionic Analysis

Passing from algebra to analysis, we need to prove a series of technical results
about the analytical behaviour of the algebraic operations. To give an idea, here
we report a statement about the uniform continuity of the quaternionic inverse
q 7! q�1.

UNIFORM_LIM_QUAT_INV
|- !net P f l b.

(!e. &0 < e
==> eventually (\x. !n. P n ==> norm (f n x - l n) < e)

net) /\
&0 < b /\
eventually (\x. !n. P n ==> b <= norm (l n)) net
==> (!e. &0 < e

==> eventually
(\x. !n. P n

==> norm (inv (f n x) - inv (l n)) < e)
net)

To explain the precise meaning of this statement, we should give more details
about the net topology implemented in HOL Light, which cannot be done here.

We conducted a systematic formalization of behaviour of algebraic operation
from the point of view of limits and continuity, which brought us to prove more
than fifty such theorems overall. Some of them are indeed trivial. For instance,
the uniform continuity of the product is a trivial consequence of a more general
results already available on bilinear maps. Some are less immediate and forced
us to dive into a technical ✏�-reasoning.

Next, we considered the di↵erential structure. Given a function f : Rn ! R
m

we denote by Dfx0(v) or
d
dxf(x)|x0(v) the (Frechét) di↵erential of f in x0 applied

to the vector v. When the di↵erential exists, it is the linear function from R
n to

R
m that “best” approximates the variation of f in a neighborhood of x0, i.e.,

f(x)� f(x0) ⇡ Dfx0(x� x0).

In HOL Light, the ternary predicate (f has_differential f’) (at x0) is
used to asserts that f is di↵erentiable at x0 and f 0 = Dfx0

We compute the di↵erential of the basic quaternionic operations. Notice that,
if f is a quaternionic valued function, the di↵erential Dfa0(x) is a quaternion (in
the modern language of Di↵erential Geometry this is the natural identification
of the tangent space Tf(a0)H ' H).

For instance, given two di↵erentiable functions f(q) and g(q), the di↵erential
of their product in q0 is

d
�
f(q)g(q)

�

dq
|q0(x) = f(q0)Dgq0(x) + Dfq0(x)g(q0).

In our formalism, the previous formula becomes the following theorem:

QUAT_HAS_DERIVATIVE_MUL_AT
|- !f f’ g g’ q.

(f has_derivative f’) (at q) /\ (g has_derivative g’) (at q)
==> ((\x. f x * g x) has_derivative

(\x. f q * g’ x + f’ x * g q)) (at q)

One consequence that will be useful later, is the following formula for the
power:

dqn

dq
|q0(x) =

that is, the HOL theorem

QUAT_HAS_DERIVATIVE_POW
|- !q0 n.

((\q. q pow n) has_derivative
(\h. vsum (1..n) (\i. q0 pow (n - i) * h * q0 pow (i - 1))))

(at q0)

which is easily shown by induction using the di↵erential of the product.
Finally, a straightforward but important observation for the next section is

the following. Let Rp : H ! H be the right multiplication by the quaternion p,
i.e., Rp(x) = xp. Since Rp is R-linear, we have DRp = Rp, that is

|- !net p. ((\q. q * p) has_derivative (\q. q * p)) net

6 Slice-regular functions

7 Pythagorean-Hodograph curves

Pythagorean-hodograph (PH) curves provide significant computational advan-
tages for computer-aided design (CAD) and robotics applications since, among
other things, their arc length can be computed precisely, i.e., without numerical
quadrature, and their o↵sets are rational curves.

Planar and spatial Pythagorean–hodograph curves are characterized by dif-
ferent approaches since Pythagorean polynomial triples and quadruples involve
disparate algebraic structures. An algebraic model for planar PH curves is based
on the properties of the complex numbers while spatial PH curves can be de-
scribed by quaternions. In our work we deal with spatial PH curves using our
HOL Light formalization of the quaternion algebra.

7.1 Basic definition and the spatial Hermite interpolation problem

A parametric polynomial curve r(t) = (x(t), y(t), z(t)) in R
3 is PH if and only if

its hodograph satisfies the pithagorean condition, i.e., exists a polynomial �(t)
such that

|r0(t)|2 = x2(t) + y2(t) + z2(t) = �2(t) (1)

In other words a curve r(t) is PH if and only if it is polynomial and the norm of
its hodograph |r0(t)| is also polynomial. So, the formal definition in HOL Light
is the following.

let is_ph_curve = new_definition
‘is_ph_curve r <=>
vector_polynomial_function r /\
real_polynomial_function
(\t. norm (vector_derivative r (at t)))‘;;

Such a curves, in the spatial case, can be succinctly expressed in terms of
the algebra of quaternions in fact, it is well know [3] that, regarding r(t) =
x(t)i+ y(t)jz(t)k as a pure vector in H, condition 1 holds if and only if exists a
quaternionic polynomial A(t) such that

r
0(t) = A(t)uĀ(t) (2)

where u is any fixed unit vector and Ā(t) is the usual quaternionic conjugate
of A(t). We prove formally the su�cient condition for a spatial curve to be PH
involving quaternions.

QUAT_PH_CURVE : thm =
|- !r A u.

(!t. r differentiable at t) /\
u pow 2 = --Hx (&1) /\
vector_polynomial_function A /\
(!t. vector_derivative r (at t) = A t * u * cnj (A t))
==> is_ph_curve r

In order to work always inside the type ‘:quat‘ 3 we consider vectors in R
3

(pure vectors) as quaternions with real part equal to zero. Unit vectors are, from
this point of view, quaternions such that its square is equal to minus one.

Note also that we have to take as hypothesis that the curve is di↵erentiable at
every point even if we know that its hodograph is polynomial. It happens because
HOL Light admits only total function so the derivative of non-di↵erentiable
functions is also defined but, in this case, it is an unknown object so we can’t
work with it. The other implication of the previous theorem, even if is true, is
more di�cult to formalize because involves formal properties of polynomials (as
division and factorization) that are very hard to implement.

Specifying A(t) in the Bernstein form

A(t) =
mX

i=0

Aib
m
i (t) (3)

with Ai 2 H and bmi (t) =
�m
i

�
(1 � t)m�iti we obtain PH cubics or PH quintics

if A(t) has degree 1 or 2, i.e. if it is of the following forms respectively.

–

A(t) = A0(1� t) +A1t (4)

–

A(t) = A0(1� t)2 +A1(1� t)t+A2t
2 (5)

Since PH curves have many good properties, from a computational and applica-
tive point of view, interpolation of first-order spatial Hermite data by PH cubics
or quintics is a very common problem. The question is: given the initial and
final point {pi,pf} and derivatives {di,df}, can we found a PH cubic or a PH
quintic that interpolates this data set? In other words, can we found a quater-
nionic polynomial A(t) of the form 4 or 5 such that the PH curve defined by the
hodograph 2 interpolates the given data set?

7.2 Solutions of the equation AuĀ = d

The computation of interpolant PH cubic or quntic, of a given data set, involves
in both cases equation of the form

AuĀ = d (6)

3 HOL Light doesn’t have subtypes so we can’t consider spatial vectors as quaternions
because an element can’t be of di↵erent types simultaneously.

where u is a unit vector and d is any non-zero vector not aligned with �u. It
turns out that the latter has no a unique solution but involves a one-parameter
family of solution (see [2], Section 2). The general form of these solutions is

A =
p
|d|n exp(�u) (7)

where exp(�u) = cos(�)+sin(�)u, n =
u+ d

|d|
|u+ d

|d| |
and � is a free angular parameter.

We prove formally a su�cient condition for a quaternion to be solution of 7.

QUAT_ROTATION_QUAT_SOLUTIONS : thm =
|- !u d A t.

u pow 2 = --Hx (&1) /\
(!a. ~(u = Hx a * d)) /\
~(d = Hx (&0)) /\
Re d = &0 /\
A = Hx (sqrt (norm d)) *

inv (norm (u + inv (norm d) % d)) %
(u + inv (norm d) % d) *
(Hx (cos t) + Hx (sin t) * u)

==> A * u * cnj A = d

Note that the universal quantification over ‘t:real‘ gives the expected one-
parameter family of solutions.

7.3 PH cubic interpolant

It is know that, given a data set {pi,pf ,di,df}, the ordinary cubic interpolant
is expressed, in the Bézier form, as

r(t) = pi + b30(t) + (pi +
1

3
di)b

3
1(t) + (pf � 1

3
df)b

3
2(t) + pfb

3
3(t) (8)

and its hodograph is

r
0(t) = dib

2
0(t) +wb21(t) + dfb

2
2(t) (9)

with w = 3(pf � pi)� (di + df).
Since a cubic curve is a PH curve if and only if its hodograph is of the form

r
0(t) = A(t)uĀ(t) for some quaternionic polynomial A(t) of the form 4, i.e. in
the Bézier form

r
0(t) = A0uĀ0b

2
0(t) +

1

2
(A0uĀ1 +A1uĀ0)b

2
1(t) +A1uĀ1b

2
2(t) (10)

we have that 8 is PH if the above hodograph agrees with 10. It turns out that
this happens if the following conditions hold (see [2], Section 5):

w · (�i � �f) = 0 (11)

and

w · �i + �f

|�i + �f |

!2

+
(w · z)2

|z|4 = |di||df | (12)

with �i =
di
|di| , �f = df

|df | and z = �i⇥�f
|�i⇥�f | . The above conditions 11 and 12 are

therefore su�cient for the ordinary Hermite interpolant cubic to be PH so we
have the following formal theorem.

PH_INTER_CUBIC
|- !Pf Pi di df:real^4.

let w = Hx(&3) * (Pf - Pi) - (di + df) in
let n = \v. Hx(inv(norm v)) * v in
let z = Hx(inv (norm (n di + n df))) *

Hv(HIm(n di) cross HIm(n df)) in
let r = \t. bernstein 3 0 (drop t) % Pi +

bernstein 3 1 (drop t) % (Pi + Hx(&1 / &3) * di) +
bernstein 3 2 (drop t) % (Pf - Hx(&1 / &3) * df) +
bernstein 3 3 (drop t) % Pf in

Re Pf = &0 /\ Re Pi = &0 /\ Re di = &0 /\ Re df = &0 /\
~(Hx(&0) = di) /\ ~(Hx(&0) = df) /\ (!a. ~(n di = Hx a * df))
==>
pathstart r = Pi /\ pathfinish r = Pf /\
pathstart (\t. vector_derivative r (at t)) = di /\
pathfinish (\t. vector_derivative r (at t)) = df /\
(w dot (n di - n df) = &0 /\
(w dot (n (n di + n df))) pow 2 +
inv(norm z) pow 4 * (w dot z) pow 2 =
norm di * norm df
==> is_ph_curve r)‘

7.4 PH quintic interpolant

As regard PH quintics things are very di↵erent. Integration of the hodograph
r
0(t) = A(t)uĀ(t) gives a generic PH quintic, in the Bézier form,

r(t) =
5X

i=0

pib
5
i (t) (13)

with control points

– p1 = p0 +
1
5A0uĀ0

– p2 = p1 +
1
10 (A0uĀ1 +A1uĀ0)

– p3 = p2 +
1
30 (A0uĀ2 +A1uĀ1 +A2uĀ0)

– p4 = p3 +
1
10 (A1uĀ2 +A2uĀ1)

– p5 = p4 +
1
5A2uĀ2.

and, unlike cubics, the right choice of the coe�cients of A(t) gives always an
Hermite interpolant. More precisely we obtain particular a two-parameter family
of interpolants (see [2], Section 6). Unfortunately, for reasons of space, we can’t
show the explicit expression of A0, A1 and A2.

So, also in this case, we prove formally a su�cient condition for a generic PH
quintic to be interpolant of a given data set but, unfortunately for reasons of
space, we can’t report the theorem (only the statement involves about 40 code
lines while the proof about 400 code lines) but the all code is available online
at the link · · · . However the proof is essentially an algebraic manipulation on
quaternions so our framework has been very useful to automate many calcula-
tions that was implicit also in the informal proof. Interesting further develop-
ments are about polynomials, as syntactic objects, in order to prove formally the
reverse of the theorem 2 so to use quaternions to characterize completely spatial
PH curves.

8 Conclusions

References

1. Ciolli, G., Gentili, G., Maggesi, M.: A certified proof of the cartan fixed point the-
orems. Journal of Automated Reasoning 47(3), 319–336 (2011)

2. Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Identification of spatial ph
quintic hermite interpolants with near-optimal shape measures. Computer Aided
Geometric Design 25(4), 274 – 297 (2008)

3. Farouki, R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable.
Geometry and Computing, Springer Berlin Heidelberg (2009)

4. Fuchs, L., Théry, L.: Implementing geometric algebra products with binary trees.
Advances in Applied Cli↵ord Algebras 24(2), 589–611 (2014)

5. Gentili, G., Stoppato, C., Struppa, D.: Regular Functions of a Quaternionic Variable.
Springer Monographs in Mathematics, Springer Berlin Heidelberg (2013)

6. Harrison, J.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.)
Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs
2005. Lecture Notes in Computer Science, vol. 3603, pp. 114–129. Springer-Verlag,
Oxford, UK (August 2005)

7. Harrison, J.: Formalizing basic complex analysis. In: Matuszewski, R., Zalewska, A.
(eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Studies
in Logic, Grammar and Rhetoric, vol. 10(23), pp. 151–165. University of Bia lystok
(2007), http://mizar.org/trybulec65/

8. Ma, S., Shi, Z., Shao, Z., Guan, Y., Li, L., Li, Y.: Higher-order logic formalization of
conformal geometric algebra and its application in verifying a robotic manipulation
algorithm. Advances in Applied Cli↵ord Algebras 26(4), 1305–1330 (2016)

