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A DIRECT APPROACH TO QUATERNIONIC MANIFOLDS

GRAZIANO GENTILI, ANNA GORI, AND GIULIA SARFATTI

Abstract. The recent definition of slice regular function of several quaternionic variables
suggests a new notion of quaternionic manifold. We give the definition of quaternionic
regular manifold, as a space locally modeled on Hn, in a slice regular sense. We exhibit some
significant classes of examples, including manifolds which carry a quaternionic affine structure.

Mathematics Subject Classification (2010): 30G35, 53C15
keywords: Regular functions of quaternionic variables, quaternionic manifolds

1. Introduction

The definition of slice regular function of one quaternionic variable, given in [9], has origi-
nated a rich area of research that is producing a good quaternionic counterpart of the theory
of holomorphic functions. In this theory - whose status was recently presented in [8] - many
results hold in analogy with the complex case, while several properties show how deep the
differences between the complex and the quaternionic setting can be. Slice regular functions
play a fundamental role in surprising applications: one of them appears in differential geom-
etry, where slice regular functions can be used for the classification of Orthogonal Complex
Structures in certain subdomains of the space of quaternions, [6].

Let H denote the skew field of quaternions and let S ⊂ H denote the 2-dimensional sphere
of purely imaginary quaternions, S = {q ∈ H : q2 = −1}. Then H is decomposed in “slices”
as follows

H =
⋃
I∈S

R + RI

where each LI = R+RI is isomorphic to the complex plane C. Slice regularity in one variable
is then defined as follows (see [8]).

Definition 1.1. Let Ω be a domain in H and let f : Ω→ H be a function. For all I ∈ S, let
us denote LI = R + RI, ΩI = Ω ∩ LI and fI = f|ΩI

. The function f is called (slice) regular

if, for all I ∈ S, the restriction fI is holomorphic, i.e. the function ∂̄If : ΩI → H defined by

∂̄If =
1

2

(
∂

∂x
+ I

∂

∂y

)
fI

vanishes identically on ΩI .

This project has been supported by G.N.S.A.G.A. of INdAM - Rome (Italy), by MIUR of the Italian Gov-
ernment (Research Projects: PRIN “Real and complex manifolds: geometry, topology and harmonic analysis”
and FIRB “Geometric function theory and differential geometry”).
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The class of slice regular functions shares with the one-Century-old family of Fueter regular
functions (see [5]) the problem of not being closed under composition, but it has many nice
properties: probably the most important is the fact of including the natural polynomials and
power series of a quaternionic variable, [15].

The interest and the richness of the theory of holomorphic functions of several complex
variables immediately encourages the natural search for a quaternionic analog. Such a search
is also urged by the desire to define and study quaternionic manifolds. It turns out that, mainly
due to the lack of commutativity, slice regular functions of several quaternionic variables are
not easy to define. After different attempts, a recent and satisfactory approach is based on
the use of stem functions (see Definition 2.1) introduced in [5] by Fueter himself. Indeed
Fueter, after he gave his definition of quaternionic regularity in 1934, [5], envisaged a possible
different approach. It was only very recently, with the paper by Ghiloni and Perotti [11],
that this approach was fully understood and used to define slice regular functions of several
quaternionic variables (see Definition 2.4). It is worthwhile noticing that, in one quaternionic
variable, the definition of slice regularity made with the use of stem functions is a generalization
of the direct definition that we have presented above (see [10]).

How to give a “direct” definition of quaternionic manifold is an old, well motivated, problem
addressed by many authors. Indeed, several different definitions of quaternionic manifolds, as
spaces locally modeled on Hn, have been given, and have produced interesting theories. We
like to mention here, in particular, the results by Kulkarni, [13], and Sommese, [14]. Needless
to say, the recently defined class of slice regular functions of several quaternionic variables
encourges a further attempt to give a definition of quaternionic manifold. It is well known
that the main difficulty that one encounters in doing such an attempt is the fact that in
general slice regularity is not preserved by composition. For instance, in the one variable case,
the only classes of slice regular functions preserved by compositions are the class of affine
functions q 7→ qa+ b with a, b ∈ H, and the so called slice preserving functions, i.e. those slice
regular functions f : Ω → H such that f(ΩI) ⊆ ΩI , for all I ∈ S. As a consequence, natural
examples of quaternionic regular manifolds in dimension one are: the quaternionic tori studied
in [2] and the Hopf quaternionic manifolds considered in [14], whose transition functions are
quaternionic affine; the classical quaternionic projective space HP1, whose transition functions
are slice preserving.

The aim of this paper is to give a definition of (slice) quaternionic regular manifold in higher
dimension and provide some significant classes of examples.

Definition 1.2. A differentiable manifold M of 4n real dimensions is a quaternionic regular
manifold if it admits a differentiable atlas {(Ui, ϕi)}i, ϕi : Ui → Hn, whose transition functions

ϕij := ϕj ◦ ϕ−1i : Hn ⊇ ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj) ⊆ Hn,

ϕij : (q1, . . . , qn) 7→ (ϕ1
ij(q1, . . . , qn), . . . , ϕn

ij(q1, . . . , qn))

are such that each component ϕk
ij : ϕi(Ui∩Uj)→ H is a slice regular function of n quaternionic

variables.

It turns out that Sommese’s quaternionic manifolds, [14], including the quaternionic Iwasawa
manifold, are quaternionic regular.
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After presenting some preliminary results, we begin by proving, providing explicit coordi-
nates, that, for all n ∈ N, the quaternionic projective space HPn and the blow-up Bl0(Hn) of
Hn at 0 are quaternionic regular manifolds.

We then identify an important class of quaternionic regular manifolds that, following what
Kobayashi did in the complex case, [12], we call affine quaternionic manifolds, or manifolds
with an affine quaternionic structure. Examples of these manifolds are constructed as quotients
of Hn with respect to the action of subgroups of affine transformatons of Hn that act freely and
properly discontinuously. An exhaustive study of this class of manifolds will be the object of a
forthcoming paper. Paper [4] by Dı́az,Verjovsky and Vlacci is strictly related to this subject.

Then we pass to prove a few surgery-type results, concerning the connected sum of a
quaternionic regular manifold M with HPn, and the blow-up of M at a point p ∈M . Namely,
we prove the following result.

Theorem 1.3. If M is a regular quaternionic manifold of quaternionic dimension n, then the
connected sum of M and HPn is quaternionic diffeomorphic to the blow-up of M at a point
p ∈M . Moreover, both manifolds are quaternionic regular.

We conclude the paper by noticing that the Grassmannians of p-dimensional H-planes in
Hn are not quaternionic regular manifolds with respect to their natural atlases.

2. Preliminaries on regular functions of several variables

We report here for the convenience of the reader the definition of regular function of several
quaternionic variables. This notion was introduced by Ghiloni and Perotti in [11]. Let Rn

denote the real Clifford algebra of signature (0, n) generated by e1, . . . , en. Each element of Rn

is of the form x =
∑

K∈P(n) eKxK where P(n) is the powerset of {1, . . . , n}, eK = ek1 · · · eks
(with k1 < k2 < · · · < ks) are the basis element of Rn (for K = ∅ one gets the unit of Rn) and
xK are real numbers.

Definition 2.1. Let D be an open subset of Cn invariant with respect to complex conjugation
in each variable z1, . . . , zn. A continuous function F : D → H ⊗R Rn of the form F =∑

K∈P(n) eKFK is called a stem function if it is Clifford intrinsic, i.e. for any K ∈ P(n),

h ∈ {1, . . . , n} and z = (z1, . . . , zn) ∈ D the components FK : D → H satisfy

FK(z1, . . . , zh−1, z̄h, zh+1, . . . , zn) =

{
FK(z) if h /∈ K,
−FK(z) if h ∈ K.

Each stem function defined on D ⊆ Cn (open subset invariant by separate conjugation)
induces a slice function defined on the circular subset of Hn associated with D,

ΩD = {(q1, . . . , qn) ∈ Hn | qh = xh + yhJh, Jh ∈ S,∀h = 1, ..., n; (x1 + y1i, . . . , xn + yni) ∈ D}.
Definition 2.2. Let F : D → H ⊗R Rn, with F =

∑
K∈P(n) eKFK , be a stem function. We

define the left slice function I(f) : ΩD → H induced by F as

I(F )(x1 + y1J1, . . . , xn + ynJn) :=
∑

K∈P(n)

JKFK(x1 + y1i, . . . , xn + yni)

where

JK =
→∏

k∈K
Jk = Jk1 · · · Jks
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is the ordered product.

In order to give the definition of slice regular functions of several quaternionic variables, we
need to give a notion of holomorphicity for stem functions.

Definition 2.3. For any h = 1, . . . , n define the complex structure Jh on Rn as

Jh(eK) :=

{
−eK\{h} if h ∈ K,
eK∪{h} if h /∈ K,

Notice that J 2
h = −idRn , for any h = 1, . . . , n so that Jh defines an (almost) complex structure

on Rn. It is possible to extend any almost complex structure Jh to H⊗R Rn by setting

Jh(a⊗ x) = a⊗ Jh(x)

for any a ∈ H, x ∈ Rn.

Definition 2.4. Let D be an open subset of Cn invariant with respect to complex conjugation in
each variable, let F : D → H⊗RRn be a stem function of class C1 and let f = I(F ) : ΩD → H
be the induced slice function. F is called a holomorphic stem function if for any h = 1, . . . , n
and any fixed z0 = (z01 , . . . , z

0
n) ∈ D, the function

F z0

h : Dh → (H⊗R Rn,Jh), zh 7→ F (z01 , . . . , z
0
h−1, zh, z

0
h+1, . . . , z

0
n)

is holomorphic on a domain Dh of C containing zh. Equivalently, if

∂hF :=
1

2

(
∂F

∂xh
+ Jh

∂F

∂yh

)
= 0

on D for every h = 1, . . . , n.
If F is holomorphic, the induced function f = I(F ) is called a left slice regular function on

ΩD.

It is possible to give a “symmetric” definition, namely the definition of right slice regular
function.

Definition 2.5. Let F : D → H ⊗R Rn, with F =
∑

K∈P(n) eKFK , be a stem function. We

define the right slice function Ir(F ) : ΩD → H induced by F as

Ir(F )(x1 + y1J1, . . . , xn + ynJn) :=
∑

K∈P(n)

FK(x1 + y1i, . . . , xn + yni)JK

where

JK =

→∏
k∈K

Jk = Jk1 · · · Jks

is the ordered product.

Right slice regularity can be expressed in terms of the family of (almost) complex structures
(extended as before to H⊗R Rn) defined as follows.

Definition 2.6. For any h = 1, . . . , n define the complex structure J r
h on Rn as

J r
h (eK) := −(Jh(ecK))c,

where x 7→ xc denotes the Clifford conjugation in Rn.
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Definition 2.7. Let D be an open subset of Cn invariant with respect to complex conjugation in
each variable, let F : D → H⊗RRn be a stem function of class C1 and let f = Ir(F ) : ΩD → H
be the induced right slice function. F is called a right holomorphic stem function if

∂
r
hF :=

1

2

(
∂F

∂xh
+ J r

h

∂F

∂yh

)
= 0

on D for every h = 1, . . . , n.
If F is right holomorphic, the induced right slice function f = Ir(F ) is called a right slice

regular function on ΩD.

Example 2.8. Let us collect here some significant examples, referring to [11] for an extensive
description. We point out that the ordering of the variables is important for regularity:

• the function (q1, q2) 7→ q−11 q2 is left slice regular on H \ {0} ×H;
• the function (q1, q2) 7→ q2q1 is right slice regular on H×H;
• the function (q1, q2, q2) 7→ q2q1q3 is neither right nor left slice regular.

Definition 2.9. Let f = (f1, f2, . . . , fm) : ΩD → Hm be a differentiable function. We say
that f is slice regular if, and only if, each component fi is either a right or a left slice regular
function of n quaternionic variables.

3. Quaternionic regular manifolds

In this section, we give the announced definition of quaternionic regular manifold and we
exhibit several examples.

Definition 3.1. A differentiable manifold M of 4n real dimensions is a quaternionic regular
manifold if it admits a differentiable atlas {(Ui, ϕi)}i, ϕi : Ui → Hn, whose transition functions

ϕij := ϕj ◦ ϕ−1i : Hn ⊇ ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj) ⊆ Hn,

ϕij : (q1, . . . , qn) 7→ (ϕ1
ij(q1, . . . , qn), . . . , ϕn

ij(q1, . . . , qn))

are slice regular functions of n quaternionic variables. Such an atlas is called a regular atlas.

Definition 3.2. Let M and N be two quaternionic regular manifolds with regular atlases
{(Ui, ϕi)}i and {(Vj , ψj)}j respectively. A differentiable function f : M → N is called quater-
nionic regular at a point p ∈ M if, and only if, there exist two systems of local coordinates
{(Ui0 , ϕi0)} for p, and {(Vj0 , ψj0)} for f(p), so that ψj0 ◦f ◦ϕi0

−1 is slice regular. The function
f is called quaternionic regular if it is quaternionic regular at all p ∈M .

Notice that the quaternionic regular functions between manifolds, that appear in the examples
considered in this paper, have the property that their expressions are slice regular in all local
coordinates of the given regular atlases. However one cannot expect that this holds in general,
since composition of slice regular functions does not always maintain regularity.

3.1. Quaternionic projective spaces. Of course Hn is a quaternionic regular mani-
fold. If (q1, . . . , qn+1) ∈ Hn+1 \ {0}, then [q1, . . . , qn+1] denotes the (right) vector line
{(q1λ, . . . , qn+1λ) ∈ Hn+1 : λ ∈ H} of Hn+1. As usual HPn denotes the set of (right) vec-
tor lines in Hn+1. It is easy to see that the natural system of coordinates of a quaternionic
projective space endows HPn with a structure of quaternionic regular manifold: the usual
transition functions are easily seen to be slice regular.



6 GRAZIANO GENTILI, ANNA GORI, AND GIULIA SARFATTI

3.2. The blow-up of Hn. In order to prove that the blow-up of Hn is quaternionic regular,
we use the natural construction of a structure of differentiable manifold on the blow-up of Hn

at a point. To begin with, consider the projection onto the quotient space

ϕ : Hn \ {0} → HPn−1

defined, with classical notation, by

ϕ(q1, . . . , qn) = [q1, . . . , qn],

and set Γϕ ⊂ Hn ×HPn−1 to be the graph of the map ϕ, i.e. the set

Γϕ = {((q1, . . . , qn), [a1, . . . , an]) ∈ (Hn \ {0})×HPn−1 : (q1, . . . , qn) ∈ [a1, . . . , an]}.

Definition 3.3. The subset Bl0(Hn) = Γϕ ∪ ({0} × HPn−1) of the Cartesian product Hn ×
HPn−1, endowed with the natural induced topology, is called the blow-up of Hn at 0. The
subset {0} ×HPn−1 is called the exceptional set of Bl0(Hn).

The blow-up of Hn at 0 is a Hausdorff, paracompact and connected topological space, that
can be described as follows:

Proposition 3.4. The blow-up Bl0(Hn) of Hn at 0 can be globally described as the set

A = {((q1, . . . , qn), [a1, . . . , an]) ∈ Hn ×HPn−1 : (q1, . . . , qn) is in the line [a1, . . . , an]}.

Proof. The point 0 ∈ Hn belongs to all quaternionic 1-dimensional subspaces of Hn, and
hence ({0} × HPn−1) ∈ A. Moreover, for (q1, . . . , qn) 6= 0, we have that (q1, . . . , qn) belongs
to the quaternionic 1-dimensional subspace [q1, . . . , qn] of HPn−1. As a consequence Γϕ is also
contained in A. There are no other possible elements of A, which consequently coincides with
Bl0(Hn). �

We now state a couple of technical lemmas, which use the notion of Dieudonné determinant
of 2×2 matrices with quaternionic entries. As it is known, the Dieudonné determinant, defined
as

(3.1) detH

(
a b
c d

)
=
√
|a|2|d|2 + |c|2|b|2 −Re(cābd̄)

generalizes the notion of determinant to the case of quaternionic matrices (see, e.g. [3]).
Notice that a straightforward extension of the usual definition of determinant to matrices
with quaternionic entries does not maintain the key properties that one expects from the
determinant. For example, for a, c, λ quaternions, the two columns of the matrix(

a aλ
c cλ

)
are H−linearly dependent, but the Cayley determinant of the same matrix (see e.g. [1])
acλ − caλ does not vanish when ac 6= ca and λ 6= 0. Moreover, if ac 6= ca, then for λ =
c−1a−1ca 6= 1 we have that the two columns of the matrix(

a a
c cλ

)
are H−linearly independent but acλ− ca = 0.
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Lemma 3.5. The Dieudonné determinant detH has the following properties: For any λ, µ ∈ H

and any matrix X =

(
x y
z t

)
∈M(2,H) we have that

i) detH

(
x yλ
z tλ

)
= detH

(
xλ y
zλ t

)
= |λ|detH

(
x y
z t

)

ii) detH

(
µx µy
z t

)
= detH

(
x y
µz µt

)
= |µ|detH

(
x y
z t

)
iii) If the matrix Y is obtained from the matrix X by: (a) substituting to a row the sum

of the two rows, or (b) substituting to a column the sum of the two columns, then
detH(X) = detH(Y ).

Proof. A direct substitution and computation show the assertions (see also [3]). �

It is natural at this point to search for the inverse of a 2 × 2 quaternionic matrix having

nonvanishing Dieudonné determinant (see [3]). If the matrix A =

[
a b
c d

]
∈ M(2,H) is

right-invertible, then a 6= 0 or b 6= 0. If a 6= 0, then the right inverse of A is

(3.2)

[
x y
t z

]
=

[
a−1 + a−1b(d− ca−1b)−1ca−1 −a−1b(d− ca−1b)−1
−(d− ca−1b)−1ca−1 (d− ca−1b)−1

]
.

If instead we are in the case b 6= 0 then, the right inverse has the form

(3.3)

[
x y
t z

]
=

[
−(c− db−1a)−1db−1 (c− db−1a)−1

b−1 + b−1a(c− db−1a)−1db−1 −b−1a(c− db−1a)−1

]
.

As one may expect, when ab 6= 0 then the two forms (3.2) and (3.3) of the inverse of A do
coincide. If abcd 6= 0 then the inverse matrix of A assumes an even nicer form,

(3.4)

[
x y
t z

]
=

[
(a− bd−1c)−1 (c− db−1a)−1

(b− ac−1d)−1 (d− ca−1b)−1
]

which allows a Cramer-type rule to solve 2 × 2 linear systems with quaternionic coefficients
(see again [3]).

Lemma 3.6. Let (q1, . . . , qn) and (a1, . . . , an) be elements of Hn, with (a1, . . . , an) 6= 0. Then
there exists λ ∈ H such that (q1, . . . , qn) = (a1, . . . , an)λ if, and only if, the following system
of
(
n
2

)
equations is satisfied:

detH

(
qi ai
qj aj

)
= 0

for all 1 ≤ i < j ≤ n.

Proof. The proof is a consequence of Lemma 3.5. In fact if there is λ ∈ H such that
(a1, . . . , an)λ = (q1, . . . , qn), then by Lemma 3.5 iii), for all 1 ≤ i < j ≤ n, we get

detH

(
qi ai
qj aj

)
= detH

(
aiλ ai
ajλ aj

)
= |λ|detH

(
ai ai
aj aj

)
= |λ|detH

(
0 ai
0 aj

)
= 0.
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Conversely, if for all 1 ≤ i < j ≤ n,

detH

(
qi ai
qj aj

)
= 0,

then in particular (re-ordering the entries if necessary) we have a1 6= 0 and

(3.5) detH

(
q1 a1
qj aj

)
= 0

for all 1 < j ≤ n. If λ ∈ H is such that q1 = −a1λ, then again by Lemma 3.5

0 = detH

(
q1 a1
qj aj

)
= detH

(
q1 a1λ
qj ajλ

)
(3.6)

= detH

(
0 a1λ

qj + ajλ ajλ

)
=
√
|a1λ|2|qj + ajλ|2(3.7)

and hence either λ = 0 (and hence q1 = 0) and qj = 0, or qj + ajλ = 0 (for all 1 < j ≤ n). In
any case qj = −ajλ for all 1 < j ≤ n. We then conclude that (q1, . . . , qn) = (a1, . . . , an)λ. �

We can now prove

Theorem 3.7. The blow-up Bl0(Hn) of Hn at 0 is a quaternionic regular manifold of real
dimension 4n. Moreover the exceptional set {0}×HPn−1 is a quaternionic submanifold of real
dimension 4n− 4.

Proof. To begin with notice that the two natural projections

π1 : Bl0(Hn)→ Hn π1((q1, . . . , qn), [a1, . . . , an]) = (q1, . . . , qn)

π2 : Bl0(Hn)→ HPn−1 π2((q1, . . . , qn), [a1, . . . , an]) = [a1, . . . , an]

are continuous maps from Bl0(Hn) to Hn and HPn−1, respectively. If we use homogeneous co-
ordinates [a] = [a1, . . . , an] in HPn−1 and set q = (q1, . . . , qn) ∈ Hn then, using the Dieudonné
determinant (3.1), we can write

Bl0(Hn) = {(q, [a]) ∈ Hn ×HPn−1 : |qi|2|aj |2 + |qj |2|ai|2 −Re(qj q̄iaiāj) = 0, 1 ≤ i < j ≤ n}.
On HPn−1 we use the n natural systems of coordinates {(Ui, pi)}ni=1 where Ui = {[a] ∈ HPn−1 :
ai 6= 0} and where pi : Ui → Hn−1 is such that

(3.8) pi([a1, . . . , ai−1, ai, ai+1, . . . an]) = (a1a
−1
i , . . . , ai−1a

−1
i , ai+1a

−1
i , . . . , ana

−1
i )

In turn, a 4n dimensional, differentiable atlas {(Vi, ϕi)}ni=1 can be constructed on Bl0(Hn) by

considering the n open sets Vi = π−12 (Ui) that cover all of Bl0(Hn) and, for each i = 1, . . . , n,
the homeomorphism of Vi onto Hn defined by

ϕi(q, [a]) = (a1a
−1
i , . . . , ai−1a

−1
i , qi, ai+1a

−1
i , . . . , ana

−1
i )

whose inverse is

ϕ−1i (b1, . . . , bn) = ((b1bi, . . . , bi−1bi, bi, bi+1bi, . . . , bnbi), [(b1, . . . , bi−1, 1, bi+1, . . . , bn])

At this point, for 1 ≤ i 6= j ≤ n we can easily compute the change of coordinates

ϕj ◦ ϕ−1i (b1, . . . , bn) = ϕj((b1bi, . . . , bi−1bi, bi, bi+1bi, . . . , bnbi), [(b1, . . . , bi−1, 1, bi+1, . . . , bn])

= (b1b
−1
j , . . . , bi−1b

−1
j , b−1j , bi+1b

−1
j , . . . , bj−1b

−1
j , bjbi, bj+1b

−1
j , . . . , bnb

−1
j )
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that is clearly a diffeomorphism. To prove that π1 is differentiable it is enough to compute
explicitly the map π1 ◦ ϕ−1i : Hn → Hn

π1 ◦ ϕ−1i (b1, . . . , bn) = (b1bi, . . . , bi−1bi, bi, bi+1bi, . . . , bnbi)(3.9)

and see that this map is differentiable for every i = 1, . . . , n. Analogously, the fact that the
map pi ◦ π2 ◦ ϕ−1i : Hn → Hn−1

pi ◦ π2 ◦ ϕ−1i (b1, . . . , bn) = (b1, . . . , bi−1, bi+1, . . . , bn)

is differentiable for every i = 1, . . . , n proves that π2 is differentiable. The transition functions
ϕj ◦ ϕ−1i have components which are right or left slice regular, thus showing that Bl0(Hn) is
a quaternionic regular manifold.

To prove that the exceptional set is a quaternionic regular submanifold of real dimension
4n− 4, we can notice that, for i = 1, . . . , n, the intersection ({0} ×HPn−1)∩ Vi is mapped by
ϕi to the H−hyperplane bi = 0, which has real dimension 4n− 4. �

As in the case of Bl0(Hn), we can define the blow-up Bl0(B
n) of the closed unit ball Bn = Bn

of Hn at the point 0. The restriction to Bl0(B
n) of the charts of the atlas of Bl0(Hn) define

on Bl0(B
n) a natural structure of regular quaternionic manifold (with boundary).

3.3. Quaternionic affine manifolds. The Dieudonné determinant, that we have encoun-
tered in dimension 2, has been defined for any n × n quaternionic matrix A ∈ M(n,H) (see,
e.g. [7]). It can be used, in the usual fashion, to define the group of quaternionic n × n
invertible matrices GL(n,H). For Q = (q1, q2, . . . , qn) ∈ Hn, we can define the group of all
quaternionic affine transformations

A(n,H) = {Q 7→ QA+B : A ∈ GL(n,H), B = (b1, b2, . . . , bn) ∈ Hn}

which is included in the class of slice regular functions. In complete analogy with what
Kobayashi does in the complex case, [12], we give the following:

Definition 3.8. A differentiable manifold M of 4n real dimensions has a quaternionic affine
structure if it admits a differentiable atlas whose transition functions are restrictions of quater-
nionic affine functions of A(n,H).

In particular, differentiable manifolds endowed with a quaternionic affine structure are quater-
nionic regular. This can be used to construct a large class of quaternionic regular manifolds;
indeed, for any subgroup Γ ⊂ A(n,H) which acts freely and properly discontinuously on Hn,
the quotient space

M = Hn/Γ

admits an atlas whose transition functions are slice regular belonging to Γ ⊂ A(n,H), and
hence has a quaternionic affine structure. It is worthwhile noticing that the quaternionic
manifolds studied by Sommese in [14] all admit a quaternionic affine structure, and hence
many significant examples can be found in his paper.
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3.4. The connected sum of a quaternionic regular manifold M and HPn. In what
follows, the elements of the space Hn+1 are denoted by (w, q1, . . . , qn), and we set |q|2 =
q1q̄1 + · · ·+ qnq̄n = |q1|2 + · · ·+ |qn|2. We consider the quaternionic regular manifold HPn, and
the map

h : (HPn \ [1, 0, . . . , 0])→ Hn

defined by

h([w, q1, . . . , qn]) = (
q1
|q|2

w̄, . . . ,
qn
|q|2

w̄)

Let us notice that h is well defined, since

h([wλ, q1λ, . . . , qnλ]) = (
q1λ

|q|2|λ|2
λ̄w̄, . . . ,

qnλ

|q|2|λ|2
λ̄w̄)

= (
q1
|q|2

w̄, . . . ,
qn
|q|2

w̄) = h([w, q1, . . . , qn]),

for all non zero quaternions λ. It is straightforward to prove that h is differentiable, and we
have

Proposition 3.9. The map H : (HPn \ [1, 0, . . . , 0])→ Bl0(Hn) defined by

H([w, q1, . . . , qn]) = ((
q1
|q|2

w̄, . . . ,
qn
|q|2

w̄), [
q1
|q|2

, . . . ,
qn
|q|2

])(3.10)

is a diffeomorphism.

Proof. Since there exists i ∈ {1, . . . , n} such that qi 6= 0, then we can use the charts Ui+1 and
Vi, (see the proof of Theorem 3.7) and write the map H as

(w, q1, . . . , qi−1, qi+1, . . . , qn) 7→

7→ (w, q1, . . . , qi−1, 1, qi+1, . . . , qn) 7→ (q1, . . . , qi−1,
w̄

|q|2
, qi+1, . . . , qn).

As a consequence, the map H is differentiable. The inverse map

H−1 : Bl0(Hn)→ (HPn \ [1, 0, . . . , 0])

can be expressed as

H−1((b1u, . . . , bnu), [b1, . . . , bn]) = [ū,
b1
|b|2

, . . . ,
bn
|b|2

]

and, in coordinates on ϕi(Vi), i = 1, . . . , n,

(b1, . . . , bi−1, u, bi+1, . . . , bn) 7→
7→ ((b1u, . . . , bi−1u, u, bi+1u, . . . , bnu), [b1, . . . , bi−1, 1, bi+1, . . . , bn])

7→ [ū,
b1
|b|2

, . . . ,
bi−1
|b|2

,
1

|b|2
,
bi+1

|b|2
, . . . ,

bn
|b|2

]

7→ (ū|b|2, b1, . . . , bn).

Therefore H−1 is differentiable and H is a diffeomorphism. �

By simply restricting the map H, and with obvious notations, we obtain the following
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Corollary 3.10. The restriction of the map

H([w, q1, . . . , qn]) = ((
q1
|q|2

w̄, . . . ,
qn
|q|2

w̄), [
q1
|q|2

, . . . ,
qn
|q|2

])

to (HPn \ [1× Bn]) establishes a diffeomorphism between (HPn \ [1× Bn]) and Bl0(B
n).

In analogy with the real and complex cases, one can define the blow-up Blp(M) of a quater-
nionic regular manifold M of real dimension 4n, at a point p, as the manifold obtained from
M by substituting the point p with the set of all quaternionic (right) vector lines of the
tangent space TpM (i.e. with the HPn−1 obtained as the quaternionic projective space over
TpM ∼= Hn). After recalling that blowing-up at a point is a local operation we are able to
prove that

Theorem 3.11. Let M be a real 4n-dimensional differentiable manifold. The connected sum
of M and HPn is diffeomorphic to the blow-up of M at a point p ∈M .

Proof. As it is well known, to construct the connected sum described in the statement we can
start by considering, on one side, a chart (U,ϕ) of M such that ϕ(p) = 0 and that ϕ(U) ⊃ Bn.
In this way ϕ−1|∂Bn : ∂Bn → ϕ−1(∂Bn) is the “glueing diffeomorphism” of M \ ϕ−1(Bn) and
Bn along the boundaries ϕ−1(∂Bn) and ∂Bn. We need now to consider (HPn\ [1× Bn]), which
- by Corollary 3.10 - is a manifold with boundary diffeomorphic to Bl0(B

n). The projection
map π1 defined in Theorem 3.7 induces a diffeomorphism between (Bl0(B

n) \ {0} × HPn−1)
and Bn \ {0}, whose restriction

π1|∂Bl0(Bn) : ∂Bl0(B
n)→ ∂Bn

can be used to construct the glueing diffeomorphism

ϕ−1 ◦ π1|∂Bl0(Bn) : ∂Bl0(B
n)→ ϕ−1(∂Bn)

of the connected sum M# HPn. �

3.5. The blow-up of a quaternonic regular manifold at a point. It is easy to prove
the following consequence of Theorem 3.11.

Theorem 3.12. If M is a regular quaternionic manifold of quaternionic dimension n, then
the connected sum of M and HPn is quaternionic diffeomorphic to the blow-up of M at a point
p ∈M . Moreover, both manifolds are quaternionic regular.

Proof. It is enough to show that gluing the boundary of Bl0(B
n) with that of M \ ϕ−1(Bn)

we obtain a regular quaternionic manifold. To this aim, we can find an open neighborhood V
such that Bl0((1 + ε)Bn) \ {0×HPn−1} ⊆ V ⊆ Bl0(Hn) \ {0×HPn−1} and consider the map
ψ : V → M defined as in the preceding proof by ϕ−1 ◦ π1. Indeed, using the chart ϕi, (i =
1, . . . , n), of Bl0(Hn), see (3.9), and the chart ϕ of M we obtain that ϕ ◦ψ ◦ϕ−1i (q1, . . . , qn) =

ϕ◦ϕ−1 ◦π1 ◦ϕ−1i (q1, . . . , qn) = (q1qi, . . . , qi−1qi, qi, qi+1qi, . . . , qnqi) is a regular diffeomorphism
between open sets of Hn. Therefore (ϕ−1 ◦π1 ◦ϕi)

−1 is a compatible chart for the quaternionic
regular atlas of the connected sum of M and HPn. The assertion follows. �

For the sake of completeness, we recall here that the issue of orientation is important when
using the connected sum; for example, when considering the sum of two copies of HPn, one
of the copies has to be endowed with the reverse orientation with respect to the other. For
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this reason, to keep trace of the different orientation of the two copies, the connected sum is
classically denoted by HPn# HPn.

Corollary 3.13. The connected sum HPn# HPn is quaternionic diffeomorphic to the blow-up
of HPn at a point p ∈ HPn.

3.6. Quaternionic Grassmannians are not quaternionic regular manifolds. A natural
generalization of the quaternionic projective space HPn, n ∈ N, is the quaternionic Grassman-
nian Grn,p(H), p < n ∈ N. One may expect that the natural transition functions that one uses
to define the quaternionic Grassmannian of p−planes in Hn are slice regular functions. This is
not the case: in fact even the Grassmannian Gr2,4(H) of 2−planes in H4 is not a quaternionic
regular manifold with respect to the atlas of natural charts that one constructs. To see this,
consider the following transition function obtained when the Dieudonné determinant of the

matrix A =

[
a b
c d

]
∈M(2,H) is non zero and abcd 6= 0 (see (3.4)):

[
a b
c d

]
7→


1 0
0 1
a b
c d

 7→


1 0
0 1
a b
c d

[ a b
c d

]−1
=

=


(a− bd−1c)−1 (c− db−1a)−1

(b− ac−1d)−1 (d− ca−1b)−1
1 0
0 1

 7→ [
(a− bd−1c)−1 (c− db−1a)−1

(b− ac−1d)−1 (d− ca−1b)−1
]
.

In view of Definition 2.9, the function[
a b
c d

]
7→
[

(a− bd−1c)−1 (c− db−1a)−1

(b− ac−1d)−1 (d− ca−1b)−1
]

is not slice regular.
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