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Coarse-grained collisionless dynamics with long-range interactions

Guido Giachetti,1,2,* Alessandro Santini,3,† and Lapo Casetti 3,4,‡

1SISSA, via Bonomea 265, I-34136 Trieste, Italy
2INFN, Sezione di Trieste, via Valerio 2, I-34127 Trieste, Italy

3Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
4INFN, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy

and INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy

(Received 2 October 2019; accepted 26 May 2020; published 22 June 2020)

We present an effective evolution equation for a coarse-grained distribution function of a long-range-
interacting system preserving the symplectic structure of the noncollisional Boltzmann, or Vlasov, equation.
First, we derive a general form of such an equation based on symmetry considerations only. Then we explicitly
derive the equation for one-dimensional systems, finding that it has the form predicted on general grounds.
Finally, we use this equation to predict the dependence of the damping times on the coarse-graining scale and
numerically check it for some one-dimensional models, including the Hamiltonian mean-field model, a scalar
field with quartic interaction, a 1-d self-gravitating system, and a self-gravitating ring.
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I. INTRODUCTION

Long-range interactions, whose potential energy decays
with the distance r between interacting bodies slower than
r−d , where d is the dimension of space [1,2], are relevant
to astrophysics and plasma physics [3,4], since gravitational
and unscreened Coulomb forces are long-ranged, as well
as to condensed matter, given that dipolar interactions in
d = 3 or effective interactions between cold atoms in an
electromagnetic cavity [5,6] are long-ranged and occur also
in two-dimensional fluids [7]. Systems with long-range inter-
actions exhibit peculiar features both at equilibrium and out of
equilibrium [1,2,8,9]. In systems with long-range interactions,
the dynamics is dominated by collective effects, rather than
by binary collisions; as a consequence, the relaxation time
towards equilibrium τR diverges with the number of particles
N [3,10]. In the N → ∞ limit, or for times t < τR for finite N ,
the dynamics obeys the noncollisional Boltzmann, or Vlasov,
equation [1–3]. Introducing the single-particle Hamiltonian
for N particles (for simplicity, we assume identical particles
with unit masses),

H = p2

2
+ U (q, t ) , (1)
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where q = (q1, . . . , qd ), p = (p1, . . . , pd ), U is the self-
consistent potential

U (q, t ) =
∫

d p′ dq′ f (q′, p′, t )V (|q − q′|) , (2)

f (q, p, t ) is the single-particle distribution function, and V (r)
is the potential energy between two particles at distance r, we
can write the Vlasov equation as

∂ f

∂t
= {H, f } , (3)

where {·, ·} is the Poisson bracket, thus making ex-
plicit its symplectic structure. This has important conse-
quences [11–13], e.g., the Vlasov equation is time reversal
invariant and its dynamics is constrained by an infinite number
of conservation laws: the Casimirs

C[ f ] =
∫

dq d pC( f ) (4)

are conserved for any choice of C( f ). Remarkably, also the
Boltzmann entropy is a Casimir, corresponding to C( f ) =
− f ln f , so that it is a constant of motion and no H theorem
holds. All these properties seem to suggest that no relaxational
dynamics is possible: any time dependence of f should sur-
vive forever in the N → ∞ limit and at least up to t ≈ τR

when collisional effects set in for a large but finite system.
Numerical results depict a totally different scenario: starting
from a generic initial condition, a given observable exhibits
oscillations that damp out on a rather fast time scale not
dependent on N (at variance with τR) until it attains a nearly
constant value. The paradigmatic example is gravitational
collapse [14–16], where the relevant observable is either the
gravitational radius or the virial ratio, so that the damped
oscillations are termed “virial oscillations,” and this noncol-
lisional relaxation is referred to as “violent relaxation” [17].
Violent relaxation is a universal phenomenon, occurring in
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any long-range-interacting system; the state reached after
violent relaxation is referred to as a quasistationary state, may
be very far from thermal equilibrium [1,18–21], and in a finite
system will eventually relax to equilibrium for t > τR. Despite
many advances [1,2,8] a theory able to predict these states
given a generic initial condition is still missing. It is widely
believed that the mechanism of violent relaxation is similar
to Landau damping [13,22,23]. Basically this means that the
Vlasov dynamics never actually stops: rather it trickles down
towards smaller and smaller scales until it no longer affects
the behavior of any coarse-grained observable. Indeed, given a
coarse-grained distribution function f̃ , obtained by averaging
f over some finite volume �� in phase space, and any convex
function C(x), the corresponding Casimir C[ f̃ ] decreases in
time [24]. Despite this, a convincing quantitative picture of
this process is still missing: our aim is thus to contribute to
filling this gap by providing an effective evolution equation
for f̃ .

The paper is organized as follows. In Sec. II we propose
a general form of the effective evolution equation, up to
coefficients, based on symmetry considerations only. Then, in
Sec. III we explicitly perform the coarse graining and derive
the complete equation in the one-dimensional case. Section IV
is devoted to predicting the dependence of damping times
on the coarse-graining scale and checking the results against
numerical simulations of some one-dimensional models: the
Hamiltonian mean-field (HMF) model, a scalar field with
quartic interaction, a 1-d self-gravitating system, and a self-
gravitating ring (SGR). Finally, in Sec. V we comment on
the results we have obtained and discuss their relation to
other approaches, open problems, and future developments.
To ease the reading, some proofs and some further details on
the numerics are reported in Appendixes A–C.

II. SYMPLECTIC COARSE GRAINING

Many properties of an effective evolution equation for f̃
can be derived from symmetry considerations and very gen-
eral assumptions, which define what we refer to as symplectic
coarse graining. First, if f̃ is normalized to unity, then a
coarse-grained single-particle Hamiltonian H[ f̃ ] is defined as
in Eq. (1), with f̃ in place of f ; to ease the notation, we simply
write H in place of H[ f̃ ]. We then assume that the coarse-
graining procedure does not depend on the choice of the
canonical coordinates, preserving the symplectic structure;
therefore, the dynamical evolution of f̃ can be expressed in
terms of Poisson brackets. Moreover, we assume that Poisson
brackets contain functions of H and f̃ alone and are linear in
f̃ ; physically, this means that particles interact only via H , as
in the Vlasov equation, (3). These assumptions imply that

∂ f̃

∂t
= LH ( f̃ ) , (5)

where LH ( f̃ ) depends on H , it acts linearly on f̃ , and its
most general form is a linear combination of nested Poisson
brackets where f̃ appears only once, that is, of terms of the
form {λ1(H ), {λ2(H ), {. . . {λk (H ), f̃ } . . . }}}, where the λk’s
are generic functions of H . By repeatedly using the iden-
tity {λk (H ), ·} = λ′

k (H ){H, ·} and denoting by {H, ·}n f̃ the n

nested Poisson brackets, i.e.,

{H, ·}n f̃ = {H, {H, {. . . {H, f̃ } . . . }}}︸ ︷︷ ︸
n times

, (6)

we can thus write

∂ f̃

∂t
= {H, f̃ } +

∞∑
n=2

μn(H ){H, ·}n f̃ , (7)

where the μn’s are generic functions that absorb the coeffi-
cients of the linear combination. In Eq. (7) we have high-
lighted the first term of the sum, assuming μ1(H ) ≡ 1, as is
reasonable since f̃ → f and Eq. (7) must reduce to Eq. (3)
when1�� → 0. We note that both the normalization of f̃ and
the total energy E [ f̃ ] are conserved by Eq. (7), as required by
a physically sound evolution (see Appendix A1).

Equation (7) is the most general outcome of symplectic
coarse graining. The terms of the sum on the right-hand
side (r.h.s.) of Eq. (7) containing an odd number of Poisson
brackets do not break time-reversal invariance, so that they
renormalize the time-reversible Vlasov evolution, while those
containing an even number of brackets break the time-reversal
invariance and may account for dissipation. However, we
expect that not all the possible μn’s are physically admissible.
For instance, as already mentioned, all the convex Casimirs
defined by the coarse-grained distribution function f̃ must de-
crease with time. It is not easy to impose such a constraint on
Eq. (7), but the lowest-order truncation of the latter equation,
obtained by setting μn = 0 ∀ n > 2,

∂ f̃

∂t
= {H, f̃ } + μ2(H ){H, {H, f̃ }} , (8)

with the additional constraint μ2(x) > 0 ∀ x, does satisfy
this constraint (see Appendix A 2 a) and actually describes
a Vlasov-like evolution with added diffusive effects, hence
admitting a relaxational behavior. Indeed, {H, ·} is propor-
tional to the directional derivative along the Hamiltonian flow
generated by H , so that {H, {H, ·}} is a sort of anisotropic
Laplacian and the second term on the r.h.s. of Eq. (8) de-
scribes a diffusion taking place along the Hamiltonian flow,
whose strength depends on μ2, which in turn will depend
on the coarse-graining scale ��; this will become apparent
in the one-dimensional case that we tackle in the following.
Once �� is fixed, Eqs. (7) and (8) are expected to be ap-
propriate to describe the evolution of an observable which is
not sensitive to the structure of f on scales smaller than ��

itself. Choosing as �� the smallest scale the observable of
interest is sensitive to, the odd (conservative) terms in Eqs. (7)
and (8) will eventually relocate the dynamics on scales smaller
than ��, while the even (dissipative) terms will erase such
information in f̃ , thus effectively describing the dynamics of
the chosen observable.

1We implicitly assume that the sum of the contributions to Eq. (7)
with n � 2 vanishes when �� → 0.
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III. EFFECTIVE EQUATION FOR
ONE-DIMENSIONAL SYSTEMS

Let us perform a symplectic coarse graining and obtain
an explicit evolution equation for the coarse-grained f̃ in
the case of 1-d systems, bounded in space or with periodic
boundary conditions. In this case H has 1 degree of freedom,
so that, at a given time, it is integrable and a canonical trans-
formation, (p, q) �→ (J, ϑ ), exists, where (J, ϑ ) are action-
angle variables. H being time dependent in general, such
a transformation leads to a Hamiltonian independent of the
angle ϑ only at a given time t . The instantaneous flow will be
such as to keep J constant, and the angle will linearly evolve
in time,

ϑ (t + �t ) = ϑ (t ) + ω(J )�t , (9)

where ω(J ) = dH/dJ . Let us consider a (small) interval of
actions �J = J2 − J1, define ω as the frequency ω averaged
over �J ,

ω = 1

�J

∫ J2

J1

ω(J ′) dJ ′, (10)

and consequently δω = ω − ω, and a distribution function
coarse-grained along J as

f̄ (J, ϑ ) = 1

�J

∫ J2

J1

f (J ′, ϑ ) dJ ′ , (11)

where J is such that ω = ω(J ). To get a truly coarse-grained
distribution function one should average also over an interval
of angles �ϑ , but it is more convenient to consider such an
average as carried over a time interval �t , that is, to assume
that we are blind to changes of the coordinates of the particles
occurring on time scales smaller than �t . This means that we
neglect the time dependence of H on a time scale �t , and
we can use action-angle coordinates for times between t and
t + �t , defining a nonconstant coarse-graining scale on ϑ ,
namely, �ϑ = ω�t . Our coarse-grained distribution function
f̃ is then the function f̄ given by Eq. (11), further averaged
over an interval of angles of width �ϑ centered in ϑ . As a
consequence, we are not able to distinguish any change of
f̃ on scales smaller than �� = �ϑ�J . For times between
t and t + �t we have approximated the flow in phase space
with a stationary one, so that its evolution operator should be
written as

U�t = e�t{H,·} . (12)

The latter is not constant over ��, but within this volume
we can consider J and ϑ as uniformly distributed random
variables, so that (up to very unlikely initial conditions) we
can write

f̃t+�t = Ũ�t f̃t , (13)

where we have replaced the evolution operator U�t with the
coarse-grained one,

Ũ�t = 〈e�t{H,·}〉��. (14)

The evolution dictated by Eq. (14) satisfies the constraint on
the evolution of convex Casimirs (see Appendix A2b) and can
be translated into a differential equation for the coarse-grained

distribution function f̃ (t ). To derive this equation, we start by
writing the evolution operator in action-angle variables,

Ũ�t = 〈e�t{H,·}〉�� = 〈e−ω(J ′ )�t∂ϑ 〉�J . (15)

Then, since operators at the exponent evaluated at different
points commute, we can apply the usual cumulant expansion
and find

Ũ�t = exp

[ ∞∑
n=1

(−�t )n

n!
κn(ω) ∂n

ϑ

]
, (16)

where κn is the nth cumulant of the probability distribution of
the frequencies ω. The time evolution becomes

f̃t+�t = exp[�t ∂t ] f̃t = exp

[ ∞∑
n=1

(−�t )n

n!
κn(ω) ∂n

ϑ

]
f̃t ,

(17)
so that

∂ f̃

∂t
=

∞∑
n=1

(−1)n κn(ω)(�t )n−1

n!

∂n f̃

∂ϑn
. (18)

Let δω = ω − ω, where ω = ω(J ) = κ1(ω) is the average of
the distribution of the frequencies ω. Then κ1(δω) = 0 and
κn(δω) = κn(ω) for any n > 1, so that we can extract the first
term from the sum in Eq. (18) and obtain

∂ f̃

∂t
= −ω(J )

∂ f̃

∂ϑ
+

∞∑
n=2

(−1)nDn(J )
∂n

∂ϑn
f̃ , (19)

where we have introduced the diffusion coefficients

Dn(J ) = (�t )n−1

n!
κn(δω) . (20)

Equations (19) and (20) are written as such only at the time
t chosen to define the action-angle coordinates. However, we
can rewrite the equation in a coordinate-independent way, by
noting that −ω(J )∂ϑ = {H, ·}, so that Eq. (19) is nothing but
Eq. (7) with the coefficients μn(H ) explicitly given2 as

μn = Dn(J (H ))[ω(J (H ))]−n . (21)

Note that Eq. (20) implies that all the diffusion coefficients
vanish if ω does not depend on J: in this case f̃ obeys the
Vlasov equation as the fine-grained f does. This is coherent
with our picture, because no randomness is present if ω does
not depend on J and all the particles coherently drift in ϑ at
the same frequency. Indeed, in the harmonic case where H
is linear in J and ω is constant the motion can be described
in terms of normal coordinates without any damping. As
already discussed, the even terms are those responsible for the
breaking of the time-reversal symmetry; we can estimate their
order of magnitude as

D2n ∝ (�J )2n(�t )2n−1

22n(2n + 1)!
, (22)

while the odd coefficients are even more suppressed with n,
the distribution of δω being even at the leading order. Hence,

2Being that, at a given time t , H = H (J ), the action variable J is
implicitly a function of H .

023379-3



GIACHETTI, SANTINI, AND CASETTI PHYSICAL REVIEW RESEARCH 2, 023379 (2020)

as long as �J and �t are not too large, only the very first terms
of the sum in Eq. (19) will give a nonnegligible contribution.
To leading order in �J and �t the evolution equation for f̃ be-
comes a Fokker-Planck equation. Retaining only the lowest-
order terms in Eq. (19) we can write δω(y) = ω′(J )(y − J ),
where y is a random action uniformly distributed between
J − 1

2�J and J + 1
2�J; then δω is uniformly distributed

in the interval [− 1
2 |ω′(J )|�J, 1

2 |ω′(J )|�J] so that, denoting
by D0

n(J ) the leading-order approximation of the diffusion
coefficients, we have

D0
2(J ) = �t

2
κ2(δω) = 1

24
[ω′(J )�J]2�t, (23)

and the lowest-order truncation of Eq. (19) can be written as

∂ f̃

∂t
= −ω(J )

∂ f̃

∂ϑ
+ D0

2(J )
∂2 f̃

∂ϑ2
, (24)

where

D0
2(J ) = �t

[ω′(J )�J]2

24
(25)

and ω′ = dω/dJ . Being that μ2 = D0
2(J )ω−2 and

(dω/dJ )2ω−2 = (dω/dH )2, Eq. (24) can be cast in the
covariant form

∂ f̃

∂t
= {H, f̃ } + 1

24
�t (�J )2{ω(H ), {ω(H ), f̃ }} , (26)

which is a special case of Eq. (8). Equation (26) can be
interpreted in the corresponding Langevin formalism (see
Appendix B). Note that we have taken advantage of the
existence of action-angle coordinates (at least at a given time)
to derive our results, but then we have expressed them in a
covariant fashion, so that they do not depend on the choice of
coordinates.

IV. SCALING OF DAMPING TIMES

According to Eq. (24), the characteristic damping time of
f̃ is

τ = (
D0

2

)−1
. (27)

Let us now ask how τ depends on the coarse-graining
scale. In order for our coarse graining to be independent
of the choice of the coordinates in phase space we have
to define its scale in terms of phase-space volumes (i.e.,
surfaces since d = 1), which are invariant under canonical
transformations. Let �� = �J�ϑ , so that we may assume
that �J ∝ √

�� and �ϑ ∝ √
��. Equation (25) contains

�t instead of �ϑ , because of the way we have performed
the symplectic coarse graining; however, �t ∝ �ϑ ∝ √

��,
so that Eqs. (25) and (27) imply τ ∝ (��)−3/2. If S is the
smallest surface we want to probe, neglecting the dynamics
occurring on scales smaller that S, we have to choose �� ≈ S,
so that the damping time at scale S obeys the scaling relation

τ ∝ S−3/2 . (28)

The time given by (28) is the time after which the dynamics of
the fine-grained f has moved to scales smaller than S in phase
space, so that our coarse-grained description is no longer able
to detect it. One way to probe different scales is to look at the

Fourier components fk of the distribution function in phase
space, where k = (kp, kq ), with kq and kp its components
along any couple of canonical coordinates (p, q),

f (k, t ) =
∫

ei(kp p+kqq) f (p, q, t ) d p dq ; (29)

a given fk probes a strip in phase space of a width proportional
to k−1, where k = (k2

p + k2
q )1/2. Therefore, to describe the

evolution of fk we have to choose S ∝ k−1, and we expect
fk to damp out on the time scale

τk ∝ k3/2 . (30)

Numerical results

To check the scaling law, (30), we solved the Vlasov
equation for various one-dimensional models on an Nq × Np

grid with a time step �t until a maximum time t = tmax using
a semi-Lagrangian method [25,26], computing the evolution
of the fk starting from nonstationary configurations, and al-
ways finding good agreement between Eq. (30) and numerics.
Results are reported in the following subsections, while the
protocol to measure the damping times τk is described in
Appendix C.

1. Hamiltonian mean-field model

The HMF model [27] has been the workhorse of studies
on long-range-interacting systems in the last decades. The
Hamiltonian of the model is

H =
N∑

i=1

p2
i

2
− J

2N

N∑
i=1

N∑
j=1

cos(qi − q j ) , (31)

where qi ∈ [−π, π ] and pi ∈ R, for i = 1, . . . , N , are canon-
ically conjugated coordinates. This model can be seen ei-
ther as a system of globally coupled XY spins or as N
particles with unit mass moving on a ring interacting via
a cosine potential. In the following we use natural units to
obtain dimensionless quantities, setting J = 1, thus consid-
ering only attractive (ferromagnetic, in the spin language)
interactions. In the limit N → ∞, the dynamics of the one-
particle distribution function f (q, p, t ) is given by the Vlasov
equation

∂ f

∂t
+ p

∂ f

∂q
− dV [ f ]

dq

∂ f

∂ p
= 0, (32)

where

V [ f ](q) = −mx[ f ] cos q − my[ f ] sin q , (33a)

mx[ f ] =
∫

dq d p f cos q , (33b)

my[ f ] =
∫

dq d p f sin q . (33c)

In Fig. 1 we show τk as a function of k for 0 < k � 120
and the same numbers rescaled according to Eq. (30), for
“waterbag” initial conditions, i.e., q’s and p’s drawn from
a uniform distribution with compact support. While the τk’s
span three orders of magnitude, almost all the rescaled times
are O(1). Damping times depend on the initial conditions: as
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FIG. 1. HMF model: damping times of the Fourier components fk of the distribution function defined in Eq. (29). (a) Damping times as
a function of k. (b) Rescaled damping times τk/k3/2. Note the difference in scale between (a) and (b). The Vlasov equation was solved on an
Nq × Np = 1064 × 1248 grid with a time step �t = 2.5 × 10−3 until tmax = 4 × 103. Initial conditions: q’s and p’s uniformly distributed in
[−π/2, π/2] and [−0.25, 0.25], respectively.

an example, in Fig. 2 we show damping times and rescaled
damping times obtained starting from different initial condi-
tions with respect to the case shown in Fig. 1: here, positions
are still drawn from a uniform distribution with compact
support, but now the momenta are drawn from a Gaussian
distribution. The scaling law, (30), is in good agreement with
the data, although here the interval over which the rescaled
damping times are distributed is larger than in the previous
case (nonetheless, it is still 6 × 10−3 times the interval of the
values of the computed damping times).

In the following we consider three other models living
in one dimension: a one-dimensional scalar field interacting
via a mean-field quartic potential,3 a one-dimensional self-
gravitating system, and the so-called self-gravitating ring
model. All the models being one-dimensional, the Vlasov
equation is of the form of (32) for all of them, but the
self-consistent interaction potential V [ f (q)] will be different
for each model. The initial conditions will be the same in
all the examples we consider and will be equal to those
considered for the HMF model in the example reported in
Fig. 2, i.e., uniform on the segment [−1, 1] for the coordinates

3Note that the interaction in this model is not periodic in the
coordinates, at variance with all the other models.

and Gaussian, with zero mean and standard deviation equal to
0.1, for the momenta.

2. Scalar field with mean-field quartic interaction

The mean-field-interacting scalar-field model can be seen
as the continuum limit of the N-particle Hamiltonian

H =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i=1

N∑
j=1

1

4!
(qi − q j )

4, (34)

where qi ∈ R and pi ∈ R, for i = 1, . . . , N , are canonically
conjugated coordinates. In the Vlasov limit N → ∞ self-
consistent interaction potential is

V [ f ](q) =
∫

dq′d p′ (q − q′)4

4!
f (q′, p′, t ). (35)

An example of computed and rescaled damping times for
this model is shown in Fig. 3. The agreement between the
numerical data and the scaling law τk ∝ k3/2 is apparently
very good.

3. One-dimensional self-gravitating system

A one-dimensional self-gravitating system can be seen
as N infinite massive parallel planes, with a constant
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FIG. 2. As Fig. 1, with initial conditions such that the q’s are uniformly distributed in [−1, 1] and the p’s are normally distributed with
zero mean and standard deviation equal to 0.1; other simluation parameters are Nq × Np = 1000 × 1125, �t = 2 × 10−3, and tmax = 3 × 103.

surface mass density, moving in the direction orthogonal to the
planes themselves. Assuming periodic boundary conditions,
the gravitational interaction can be expanded in a Fourier se-
ries, so that the Hamiltonian can be written, after introducing
dimensionless variables, as

H =
N∑

i=1

p2
i

2
− 1

2

∞∑
n=1

1

n2

(
m2

x,n + m2
y,n

)
, (36)

where pi ∈ R, for i = 1, . . . , N , and

mx,n = 1

N

N∑
i=1

cos (nqi ) , (37a)

my,n = 1

N

N∑
i=1

sin (nqi ) , (37b)

with qi ∈ [−π, π ], for i = 1, . . . , N . Hence the self-
consistent potential entering the Vlasov equation for this
model is

V [ f ](q) = −
+∞∑
n=1

1

n2

[
m(n)

x cos(nq) + m(n)
y sin(nq)

]
, (38)

with

m(n)
x [ f ] =

∫
dq d p f (p, q, t ) cos(nq) , (39a)

m(n)
y [ f ] =

∫
dq d p f (p, q, t ) sin(nq) . (39b)

In practice, one can consider a large but finite number M of
Fourier modes of the interaction, so that the infinite series in
Eqs. (36) and (38) are replaced by finite sums, with n running
from 1 to M; we considered M = 250. Note that if we take
M = 1, we get back to the HMF model, whose interaction
can then be seen as the lowest-order Fourier approximation
of self-gravity in one dimension. An example of computed
and rescaled damping times for this model is shown in Fig. 4.
Again, the agreement between the numerical data and the
scaling law, (30), is very good.

4. Self-gravitating ring

Instead of working as in Sec. IV A 3 with low-dimensional
gravity, one can consider (softened) three-dimensional gravi-
tational forces but constrain the interacting particles to move
on a ring; the resulting model is referred to as the self-
gravitating ring, introduced in [28] and further studied in
[29–32]. The Hamiltonian, again expressed in dimensionless
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FIG. 3. As Fig. 1, for a scalar field with mean-field quartic interaction. Initial conditions are as in Fig. 2, and other simulation parameters
are Nq × Np = 512 × 1024, �t = 10−2, and tmax = 3 × 103.

variables, is

H =
N∑

i=1

p2
i

2
− 1

2
√

2N

N∑
i=1

N∑
j=1

[
1√

1 − cos(qi − q j ) + α

]
,

(40)
where qi ∈ [−π, π ] and pi ∈ R, for i = 1, . . . , N , are canon-
ically conjugated coordinates and α is a softening parameter,
regularizing the divergence of the gravitational interaction for
vanishing distance between the particles. It can be shown [29]
that the SGR reduces to the HMF in the limit α → ∞. The
self-consistent potential entering the Vlasov equation for this
model is written as

V [ f ](q) = − 1√
2

∫ π

−π

dq′
∫ ∞

−∞
d p′ f (q′, p′, t )√

1 − cos(q − q′) + α
.

(41)
This model is somewhat harder to solve numerically than
the previous ones, and numerical diffusion prevents reliable
results for Fourier component fk with large k’s, so that we had
to limit ourselves to shorter simulations and to damping times
corresponding to smaller wave vectors than in the previous

cases. This notwithstanding, we are able to see the good
agreement between the predicted scaling law τk ∝ k3/2 and
the numerical results also for the SGR (see Fig. 5).

V. CONCLUSIONS

We have derived an effective evolution equation for a
coarse-grained distribution function in the case of systems
whose dynamics obeys the Vlasov equation in the N → ∞
limit. A general form of the equation has been given based
on symmetry considerations, i.e., requiring the conservation
of the symplectic structure, and an explicit equation for 1-d
systems was derived independently of the general equation:
the fact that we indeed found an equation of the same form as
the general one is a nontrivial result and supports the validity
of our approach. The lowest-order term of the equation is a
diffusion along the Hamiltonian flow and becomes, if f is
stationary, a diffusion along the J = constant lines in phase
space. Diffusion in the stationary case (which implies a dy-
namics analogous to that dictated by a fixed external potential)
is due to the dependence on J of the frequency ω, which
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FIG. 4. As Fig. 1, for a one-dimensional self-gravitating system with periodic boundary conditions. Initial conditions are as in Fig. 2, and
other simulation parameters are Nq × Np = 1024 × 1024, �t = 2 × 10−3, and tmax = 3 × 103.

entails differential rotation in phase space, a filamentation of
f , and thus an effective mixing in phase space due to our
blindness to small scales after coarse graining. Indeed, and as
it should be, if ω does not depend on J as in the harmonic
case, no diffusion is present in our theory. Depending on
ω, diffusion may be either very effective (as happens close
to separatices) or not efficient at all. In the latter case our
theory may predict long-standing oscillations, which may
be an alternative outcome of violent relaxation instead of
damping to a quasistationary state [33–36]. Diffusion along
equal action lines has been shown to be effective for the
HMF model in the stationary case [37]: the latter results
are an independent, indirect check of the soundness of our
approach. Our results provide a solid quantitative picture of
the mechanism underlying violent relaxation and shed light
on the rôle of the coarse-graining scale: numerical results for
1-d systems are in very good agreement with our predictions.

We note that an effective equation with the same kind
of structure as the one presented here has been found for
suitable moments of the distribution function, at leading order
and based on heuristic considerations, in [21]. An effective
description that eliminates the small-scale Vlasov dynamics
appears in [38] and [39], where a phenomenological maxi-
mum entropy production principle is invoked to get a diffusion
in velocity space, which apparently does not conserve the
symplectic structure, at variance with our approach. In [40]
a deterministic coarse-graining procedure was introduced,
yielding a time-reversal-invariant effective evolution, at vari-

ance with the one we have derived here. As argued in [41],
a faster-than-collisional relaxation might also be induced by
a finite number of particles N ; however, such a mechanism
seems not to be relevant to violent relaxation, which occurs
in finite systems as well as in the Vlasov N → ∞ limit
and whose time scale does not depend on N . Although we
have explicitly derived the effective equation only in the 1-d
case, we expect the extension of our procedure to systems
with d > 1 that are integrable at a given time, e.g., the
self-gravitating case with imposed spherical symmetry, to be
possible. Moreover, one may think of applying a truncated
form of the general equation, e.g., Eq. (8), supplemented by
some ansatz for the unknown function μ2, to describe violent
relaxation in generic long-range-interacting systems.
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APPENDIX A: PROOFS OF SOME ANALYTICAL RESULTS

We present here proofs of some results put forward in
the paper. First, let us recall some properties of Poisson
brackets. We consider a Hamiltonian system with d degrees of
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freedom and Hamiltonian H (q1, . . . , qd , p1, . . . , pd ). Being,
by definition, that

{ f , g} =
d∑

j=1

(
∂ f

∂ p j

∂g

∂q j
− ∂ f

∂q j

∂g

∂ p j

)

=
d∑

j=1

∂

∂q j

(
∂ f

∂ p j
g

)
+

d∑
j=1

∂

∂ p j

(
− ∂ f

∂q j
g

)
, (A1)

which is a divergence in phase space, we have∫
{ f , g}d� = 0 (A2)

for any f and g decaying sufficiently rapidly for large
values of coordinates and momenta. In Eq. (A2) the inte-
gral is extended to the whole 2d-dimensional phase space
and we have used the shorthand notation d� = d p dq =∏d

i=1 d pi dqi, which we continue to use henceforth. From
Eq. (A2), considering three functions, f , g, and h, again
decaying sufficiently rapidly at infinity, and applying the
Leibnitz rule,

{ f , gh} = g{ f , h} + h{ f , g} , (A3)

we get the integration-by-parts formula∫
h{ f , g}d� = −

∫
g{ f , h}d� . (A4)

1. Conservation laws in coarse-grained evolution

a. Conservation of the norm of f

Using the identity

{M(H ), ·} = M ′(H ){H, ·}, (A5)

Eq. (7) becomes

∂ f̃

∂t
= {H, f̃ } +

∞∑
n=2

{Mn, {H, ·}n−1} f̃ , (A6)

where the Mn’s are such that M ′
n(H ) = μn(H ). Integrating

over the whole phase space and using Eq. (A2) we have∫
∂ f̃

∂t
d� = 0 , (A7)

and being that
∫

∂t f̃ d� = d
dt

∫
f̃ d�, Eq. (A7) implies the

conservation of the norm.

b. Conservation of the energy

Working in one dimension to ease the notation, the energy
of the system in a state defined by the coarse-grained distribu-
tion can be written as

E [ f̃ ] = 1

2

∫
p2 f̃ (p, q) d�

+ 1

2

∫∫
f̃ (p, q)V (q − q′) f̃ (p′, q′) d�d�′, (A8)
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leading to

δE

δ f̃
= p2

2
+

∫
V (q − q′) f̃ (q′, p′) d�′

= p2

2
+ Ũ (q) ≡ H[ f̃ ] . (A9)

The time derivative of the energy is

d

dt
E [ f̃ ] =

∫
δE

δ f̃

∂ f̃

∂t
d� , (A10)

so that Eq. (A9) implies

d

dt
E [ f̃ ] =

∫
H[ f̃ ]

∂ f̃

∂t
d� . (A11)

Using Eq. (A6) we have

H
∂ f̃

∂t
= 1

2
{H2, f̃ } +

∞∑
n=2

{Mn, {H, ·}n−1} f̃ , (A12)

where the Mn(H ) are such that M′
n(H ) = Hμn(H ); integrat-

ing the above equation over the whole phase space and using
Eq. (A11) we get dE/dt = 0.

2. Time evolution of convex Casimirs

The fine-grained Vlasov evolution has infinite conserved
quantities (Casimirs) obtained by integrating a generic func-
tion C( f ) of the distribution function f over the whole phase
space. Replacing f with a coarse-grained one the Casimirs
are no longer constant in motion. However, among all the
Casimirs defined using any coarse-graining distribution func-
tion f̃ , that is,

C[ f̃ ] =
∫

C( f̃ ) d� , (A13)

those corresponding to a convex C (which are referred to as
“convex Casimirs” henceforth) must be nonincreasing func-
tions of time [24]. In the case of one-dimensional systems,
considered below, we are able to prove that our version of the
coarse-grained dynamics does agree with such a constraint
(see Sec. A 2 b below). We did not succeed in proving this
result for the most general form, (7), of the coarse-grained
evolution equation, but we can show that convex Casimirs do
not increase with time if we restrict ourselves to the lowest-
order truncation of Eq. (7).

a. General case

Let us consider the lowest-order truncation of Eq. (7),
that is,

∂ f̃

∂t
= {H, f̃ } + μ2(H ){H, {H, f̃ }} , (A14)

provided that μ2(H ) � 0. Indeed,

d

dt
C[ f̃ ] =

∫
C′( f̃ )

∂ f̃

∂t
d� =

∫
C′( f̃ )

{
H, f̃

}
d�

+
∫

μ2(H )C′( f̃ ){H, {H, f̃ }} d� , (A15)

and using Eq. (A5), with μ2(H ) = M ′
2(H ), we get

d

dt
C[ f̃ ] =

∫
{H,C( f̃ )} d�+

∫
C′( f̃ ){M2(H ), {H, f̃ }} d� .

(A16)
The first integral on the r.h.s. of the above equation vanishes
due to Eq. (A2), while integrating by parts the second term
using Eq. (A4) we get

d

dt
C[ f̃ ] = −

∫
{M2(H ),C′( f̃ )}{H, f̃ } d�

= −
∫

μ2(H )C′′( f̃ ){H, f̃ }2d� ; (A17)

C( f̃ ) being convex, this implies Ċ[ f̃ ] � 0 provided that
μ2(H ) � 0. It is interesting to note that Eq. (A17) tells us
that C[ f̃ ] does not reach its minimum: its evolution eventually
stops when f̃ approaches a stationary solution, that is, such
that {H, f̃ } = 0. The latter is a necessary feature of a consis-
tent evolution, because it would not be possible, in general,
to reach a state where all the (infinite) convex Casimirs are si-
multaneously minimized (see also the discussion in Ref. [24]).

b. One-dimensional systems

Let us now show that the evolution defined by Eqs. (13)
and (14) fulfills the constraint on the evolution of convex
Casimirs. To this end we explicitly write down the average
in Eq. (14) in terms of action-angle variables at time t ,

〈e�t{H,·}〉�� = 1

�J�ϑ

∫
�J

dJ ′
∫

�ϑ

dϑ ′e−ω(J ′ )�t∂ϑ

= 1

�J

∫
�J

dJ ′ e−ω(J ′ )�t∂ϑ , (A18)

where we have dropped the average over the angle variable
since the integrand depends only on J ′. Being e−�tω(J )∂ϑ the
translation operator along the direction ϑ the time-evolved
f̃t+�t can be written in terms of f̃t as

f̃t+�t (ϑ, J ) = 1

�J

∫
�J

dJ ′ f̃ (ϑ − �tω(J ), J ) . (A19)

which in turn can be expressed as an average on the random
variabile J ,

f̃t+�t (ϑ, J ) = 〈 f̃ (ϑ − ω(J ′)�t, J )〉�J . (A20)

On the other hand, for any convex function C(x) and for any
random variable x,

C(〈x〉) � 〈C(x)〉 , (A21)

so that

C( f̃t+�t ) � 〈C( f̃ (ϑ − ω(J )�t, J ))〉�J (A22)

or, explicitly writing the average over �J once again,

C( f̃t+�t ) �
1

�J

∫
�J

dJ ′ C( f̃ (ϑ − ω(J ′)�t, J )) . (A23)

To obtain a condition on the Casimir functional at time t + �t
we have to integrate the above relation in ϑ and J all over the
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FIG. 6. HMF model. (a) Examples of |[ f (k, t ) − f qss(k)]/ f qss(k)| (see legend for the values of k), on a linear scale. (b) As (a), but on
a log-linear scale. The horizontal black line defines our threshold (equal to 1 here); the damping time τ is such that the curve is below the
horizontal line for any t > τ , and the values of τ obtained for the two cases plotted are reported in the legend. Simulation parameters are as in
Fig. 1, i.e., Nq × Np = 1064 × 1248, �t = 2.5 × 10−3, and tmax = 4 × 103.

phase space, obtaining

C[ f̃t+�τ ] � 1

�J

∫
�J

dJ ′
∫

dJ
∫

dϑ C( f̃ (ϑ − ω(J ′)�t, J )) ,

(A24)
but f̃ is a periodic function of ϑ , so that∫

dϑ C( f̃ (ϑ − ω(J ′)�t, J )) =
∫

dϑ C( f̃ (ϑ, J )), (A25)

which no longer depends on J ′; the average over �J is thus
trivial and Eq. (A24) becomes

C[ f̃t+�τ ] � C[ f̃t ], (A26)

that is, what we wanted to prove.

APPENDIX B: LANGEVIN EQUATION

It is interesting to note that the leading-order effective
evolution equation in the one-dimensional case, (26), can be
cast in the form of a Fokker-Planck equation and interpreted,
in turn, in the corresponding Langevin formalism. The nested
Poisson bracket in Eq. (26) can be written as

{ω(H ), {ω(H ), f̃ }} = ∂xi (vi∂x j (v j f )) , (B1)

where i = 1, 2, x1 = q, x2 = p, and vi = εi j∂xiω, with εi j the
totally antisymmetric Levi-Civita symbol, and we have used
the Einstein summation convention over repeated indices, so
that Eq. (26) becomes

∂ f̃

∂t
= −εi j∂xi

(
∂x j H f̃

) + 1

24
�t (�J )2∂xi

(
vi∂x j (v j f̃ )

)
, (B2)

in which we recognize the general form of a Fokker-Planck
equation with a nonisotropic and nonuniform diffusion coef-

ficient. This equation is in turn equivalent, in the Langevin
formalism, to the Stratonovich differential equation [42]

ẋi = εi j∂x j H + v jξ (t ), (B3)

ξ (t ) being a white noise with the correlation function

〈ξ (t )ξ (t ′)〉 = 1

24
�J2�t δ(t − t ′) . (B4)

Exploiting the definition of v j we can write

q̇ = ∂H

∂ p
+ ∂ω(H )

∂ p
ξ (t ) , (B5a)

ṗ = −∂H

∂q
− ∂ω(H )

∂q
ξ (t ) ; (B5b)

as expected, this pair of equations can be derived from the
stochastic Hamiltonian

H̃ = H + ω(H ) ξ (t ), (B6)

where once again we are using the Stratonovich formalism.

APPENDIX C: MEASURING DAMPING TIMES IN
NUMERICAL SIMULATIONS

We have defined the damping time τk as the time for which
the deviation of f (k, t ) from its asymptotic value f qss(k) is
definitively smaller than f qss(k) itself, that is, τk is such that∣∣∣∣δ f (k, t )

f qss(k)

∣∣∣∣ ≡
∣∣∣∣ f (k, t ) − f qss(k)

f qss(k)

∣∣∣∣ < 1, ∀ t � τk . (C1)

The asymptotic value f qss(k) is defined as the average of
f (k, t ) over the final part of the simulation, of duration t0 =
250. In Fig. 6 we report the time evolution of [ f (k, t ) −
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FIG. 7. Dependence of computed and rescaled damping times on the threshold used to define the damping time [see Eq. (C1)] for the HMF
model. We show here how the results reported in Fig. 1 are affected by the choice of different thresholds. (a–d) Plots of the damping times τ as
a function of k for four values of the threshold: 1.0 (a), 0.75 (b), 0.50 (c), and 0.25 (d). (e–h) Plots of the corresponding rescaled damping times
τ (k)/k3/2: values of the threshold are 1.0 (e), 0.75 (f), 0.50 (g), and 0.25 (h). Note the change of scale between (a)–(d) and (e)–(h). Simulation
parameters as in Fig. 6.

f qss(k)]/ f qss(k) for two particular Fourier components (ex-
tracted from the simulation used to obtain the results shown
in Fig. 1) to clarify the definition of the damping times.
The threshold we used, that is, the fact that the r.h.s. of the
inequality in Eq. (C1) equals 1, is somewhat arbitrary, and
any other number not as far from unity would make sense.
For this reason we show in Fig. 7 how the results presented in

Fig. 1 are affected by the choice of different threshold values.
It is apparent that a smaller threshold implies longer damping
times, but the damping times still follow the scaling τk ∝
k3/2 with more or less the same accuracy (perhaps getting
only slightly worse for smaller thresholds) for any choice
of threshold. In all the results presented in this paper the
threshold has been kept equal to 1 as in Eq. (C1).
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