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1 Introduction and Related Work

Autonomous cars rely on a plethora of sensors to understand the environment they
move in. Several cues are fused to feed the decision process leading to path planning
comprising obstacle avoidance and emergency maneuvers. While depth is often
acquired through the non exclusive combination of stereo vision and active sensors,
the main cue to compute free space, predict danger and plan future commands
is a pixel-wise semantic map. Such maps are usually extracted combining pixel
level predictions [5] with instance based segmentations [15], depth may be fused to
enhance the performance [28, 30].

Recently, image generation has become an important component of autonomous
vehicle system development. Generating images allows to avoid costly acquisitions
and possibly the simulation of unlikely but relevant events. Images generation is
a pixel-wise operation in which an unseen image is created from a source. Source
and target domains may be the same, e.g. RGB → RGB or not C → RGB,
where C indicates the pixel semantic label. Datasets are often acquired in certain
lighting and weather conditions. Simulating a different weather or time of day for
the same sequences gives access to a wider set of training samples [35]. In certain
cases games have been used for such task [24], the advantage of generating synthetic
images through a 3D engine is the ready and precise availability of semantic and
depth ground truth data.
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A variety of computer vision applications can be seen as image-to-image
translation problems between two domains [9, 11, 13, 14, 16, 18, 19, 22, 26, 32, 35].
Most approaches work with RGB images, typically augmenting or restoring them.
Notable examples are super-resolution [16], artifact removal [11], style transfer [14]
and multiple time of day generation [26]. On the other hand multimodal trans-
lations are possible, where RGB images are translated to edges [32], depth and
surfaces [9] or segmentation maps [9, 18]. Recent image-to-image techniques based
on Generative Adversarial Networks (GAN) [12], used in a conditional setting,
have provided more flexible architectures capable of addressing many translation
tasks [13, 35] such as semantic segmentation to RGB, season change, sketch to
RGB, aerial images to maps and style transfer.

Image inpainting [4, 17, 22, 33, 34], refers to the task of predicting missing or
damaged parts of an image, by inferring them from contextual information. Put in
the framework of image transformation, inpainting can be seen as a special case
of image-to-image translation with an additional constraint on where to restore the
image. Inpainting has a large variety of applications, spanning from image editing
and restoration to the more complex semantic inpainting [22], where large image
crops are reconstructed thanks to high level semantics of scene and objects. A recent
trend has seen GANs as the main protagonists of image inpainting [33, 34], however
existing methods focus on completing natural scene images and are limited to RGB
images.

In the automotive scenario, image generation has been mainly used as an
augmentation procedure[23, 29]. Nonetheless one of the main component of an
autonomous driving system is trajectory planning and estimation [10, 20]. For
a proper motion planning, agents must know their surroundings. This is often
obtained through a combination of feature based localization and 3D point-cloud
registration [31]. Knowledge of surroundings is mandatory to obtain physical
constraints to be added to the trajectory prediction and planning problem.

In this work we tackle the novel problem of semantic image inpainting, in which
source images are obtained by an automatic algorithm [5]. Semantic segmentation
has only been used in the task of inpainting [27] to guide the RGB generation
and obtain more pleasant reconstructions to the human eye. On the contrary, we
completely discard the RGB content and focus on the semantics to reconstruct
the signal hidden in the image itself, rather than its texture. The motivation rises
from the need to precisely comprehend the structure of what is occluded when
appearance is of relatively low importance compared to raw structure. This is of
particular interest for autonomous driving where clutter and occlusion are frequent,
posing a threat to safety. Specifically, we want to understand the static layout of the
scene by removing dynamic objects. Once such a layout is recovered it is possible
to derive physical constraints from the scene that can be used in all reasoning
tasks regarding own and other behaviors, such as path planning and more effective
obstacle avoidance.

To the best of our knowledge, we are the first to propose a segmentation
inpainting method to reconstruct the hidden semantics of a scene using GANs.
Despite being different in spirit, the closest approach to ours is [19] which casts
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the problem of future anticipation in automotive as a segmentation-to-segmentation
task. However, apart from not performing inpainting, they focus on moving objects,
while we want to recover static components of the environment.

The advantages of using semantic segmentations rather than RGB are twofold:
on the one hand it allows us to identify dynamic objects at a pixel-level and
localize occlusion; on the other hand it directly yields a complete understanding
of the image. Moreover, RGB inpainting methods still provide images which may
be imprecise and of difficult interpretation. Our method instead is capable of
inpainting directly the category of the restored pixels, excluding any uncertainty
in the reconstruction.

2 Semantic Segmentation Inpainting

In this paper we propose to inpaint dynamic objects in semantic segmentations of
ego-vehicle images to recover the static road layout. Given a set of visual categories
C = S ∪ D, composed by a subset of static and dynamic classes S and D, we
convert a segmentation I with values in C, into O with values in S . In Fig. 1 are
shown examples of inputs and outputs of our method, along with the binary masks
that guide the inpainting of dynamic objects.

Our proposed model follows a Generative Adversarial Network paradigm: a
generator is trained to generate plausible inpaintings and fool a discriminator,
which is trained to recognize whether an image belongs to the real or reconstructed
distributions of data. In this paper we modify this architecture to work with N-
dimensional data instead of just RGB images. The input segmentation mask is fed
to the network as a one-hot encoded tensor I ∈ {0, 1}W×H×|C| of the class labels

Fig. 1 Input and output segmentations of our method along with the inpainting mask of
the dynamic object to remove. Left: input. Center: dynamic objects mask. Right: inpainted
segmentation
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in the semantic map, where W is the width of the image, H its height and |C| the
number of classes. In the same way we train the network to output a new tensor
O ∈ {0, 1}W×H×|S| with the same width and height but containing only categories
belonging to the static set S .

We extend the Generative Inpainting Network of [34], where a coarse-to-
fine approach is followed to generate RGB images. To adapt the network to a
segmentation inpainting task, we changed the �1 pixel-wise reconstruction loss to
a softmax cross-entropy loss, casting the problem as a classification task instead
of a regression one. This choice makes every class independent and forces a hard
class assignment on the output, opposed to classical inpainting scenarios where a
perceptually close RGB value is acceptable.

The authors of [34] introduced an attention layer to transform contextual regions
into convolutional filters and estimate the correlation between background and
foreground patches. This contextual attention is used to learn where to borrow image
content and use it to guide the inpainting process. Since the reconstruction involves
a certain degree of uncertainty, the model is trained with a spatially discounted loss,
which avoids to penalize pixels far from the boundaries of the region to inpaint.

Both stages of the generator proposed by Yu et al. [34] are constituted by 17
convolutional layers: 6 standard convolutional layers, with downsampling, are used
first, then 4 atrous convolutional layers followed by 2 standard ones with a final
upsampling block of 5 layers. Attention is used only in the second stage generator
right after the atrous convolutional block.

We train our model using the manually annotated semantic segmentations of the
Cityscapes dataset [7]. For each image we consider a 256 × 128 × |C| crop and
randomly sample a rectangular binary mask of maximum size 64×64 within it. The
portion of the input covered by the mask is then blacked out and reconstructed by
the generator. The discriminator is fed with both original and reconstructed patches
and trained to discriminate between them.

3 Experimental Evaluation

We trained our model on Cityscapes [7], an urban driving dataset with 30 pixel-wise
annotated categories. We have chosen the Cityscapes dataset since it contains a high
variability of both static and dynamic categories and can therefore be adapted also to
datasets comprising less categories. In our experiments we divided the classes into
the dynamic and static subcategories, clustering together similar ones. The resulting
12 categories are the following.

D = {Person, Car, Truck and Bus, Two Wheeled Vehicle}

S = {Road, Sidewalk and Parking, Building, Wall and Fence, Traffic Sign,

Vegetation and Terrain, Sky, Unlabeled}
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At test time, we mask out all pixels belonging to dynamic classes and process the
whole image in order to remove these objects. As a source of data for the semantic
segmentations, we use both at training and testing time the manually annotated
segmentations provided with the dataset. A qualitative evaluation on the Cityscapes
dataset is shown in Fig. 2. Nonetheless we show how our method can also be applied
to outputs of semantic segmentation methods such as Deeplab [5] in Sect. 3.4.

Images captured in the real world such as the Cityscapes dataset are hardly
paired with exact copies of the scene that do not include occluding dynamic objects.
This would require to collect pictures from the exact position and viewpoint of
the original images, when no moving object is present. Moreover, to obtain a
perfect pixel-wise alignment of the two images would require an image registration
algorithm which would possibly lead to noise and empty regions. Due to this
limitation, quantitatively assessing the quality of our inpainting model compared
to other methods is not possible on natural images.

3.1 MICC-SRI Semantic Road Inpatining Dataset

To overcome the quantitative evaluation problem on real world images, we gener-
ated an auxiliary dataset using CARLA [8], an open-source urban driving simulator
built under the Unreal Engine. Apart from providing a sandbox for autonomous
driving algorithms, it offers functionalities for recording sequences varying the
number of dynamic objects such as cars, pedestrians and two wheeled vehicles.
The sequences can be acquired as almost photo-realistic RGB videos or converted
on the fly into depth or semantic segmentation maps. Thanks to this functionality we
are able to programmatically generate perfectly aligned pairs of pixel-wise semantic
maps with and without dynamic objects. This allows us to produce a ground truth
reconstruction that would be impossible to obtain from real world images. Whereas
CARLA generated RGB images are obviously distinguishable from natural images,
semantic segmentations are instead very close to data acquired from real urban
scenarios thanks to the lack of texture. The obtained pairs can therefore be used
for quantitatively evaluating the models on the inpainting task.

In our work we used CARLA 0.8.2 which includes only cars and pedestrians
as moving vehicles. Since release 0.8.3, the simulator also includes two wheeled
vehicles such as bikes and motorbikes, but are reportedly still unstable and therefore
we did not include them in our dataset.

To collect data we used autopilot simulations with CARLA in both its maps
(Town01 and Town02), starting from all of their spawning points. The two maps
have respectively 152 and 83 spawning points and for each simulation we gathered
1000 frames ran at 3 FPS (the minimum available rate) to increase variability, for a
total of approximately 22 h of driving simulation. The data has then been sampled
at 0.3 FPS to remove redundancies. Note that the data acquisition process time has
a 1:1 dependency with the simulation time.
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Fig. 2 Qualitative results on the Cityscapes dataset. NN inpainting is shown as comparison
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All the simulations are run twice, once with dynamic objects and once without.
To be able to obtain two matching versions of the same footage in both modalities
we first ran the autopilot simulation with the map populated with dynamic objects
and serializing all the commands given by the autopilot. In the second empty map
simulation, instead on relying on the autopilot we load the driving commands
previously acquired and make the ego vehicle follow the same exact path as before.
For both simulations we save automatically generated semantic segmentations and
RGB frames for reference, both at a resolution of 800 × 600 pixels.

Since CARLA is not fully deterministic we experienced a slight drift of the
vehicle position with respect to the two versions of the same simulation. This drift
appears to be triggered by rare events such as stopping and starting the car or by
nondeterministic behaviors when getting close to other objects’ colliders in the
game engine. This drift becomes significant after 1000 frames, which is why we
are collecting multiple short simulations rather than a few long runs. To correct the
small misalignment due to this issue, we look for unmatched pixels belonging to
static classes in the images with dynamic objects and replace them with the correct
class. In order to remove trivial images with empty roads we consider only frames
where the number of pixels belonging to moving objects is higher than 5000, i.e.
approximately 0.001% of the image.

This data acquisition process led to 11,913 pairs of perfectly aligned frames with
and without dynamic objects. We refer to this novel dataset as MICC Semantic
Road Inpainting dataset (MICC-SRI) and we released it for download at www.micc.
unifi.it/resources/datasets/semantic-road-inpainting/. A sample of paired semantic
segmentations from our dataset is shown in Fig. 3.

Fig. 3 In the MICC-SRI dataset we collected pixel-wise aligned segmentations with and without
dynamic objects
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Thanks to this correspondence between occluded and non occluded pixels in the
two versions of the image, we are now able to evaluate our method. We report per-
pixel accuracy on the MICC-SRI dataset.

Since CARLA provides labels for fewer classes than CityScapes, we group
together similar classes and remove the ones that are not present. The new set of
classes used for experiments on the MICC-SRI dataset are the following:

D = {Person, Car}

S = {Road, Sidewalk, Building, Fence, Pole, Vegetation, Unlabeled}

3.2 Baselines

We propose several baselines, all performing both inpainting in the RGB and
segmentation domain. Since to the best of our knowledge we are the first to perform
inpainting in the semantic segmentation domain, we aim at demonstrating that
traditional approaches for inpainting are not well suited for working directly with
segmentations. This is due to the fact that inpainting methods often rely on image
traits inside semantically correlated image regions such as textures or gradients. This
information though is lost outside of the RGB domain. The baselines we propose
are the following:

Nearest Neighbor (NN) For each masked pixel we retrieve the spatially closest
pixel belonging to a static class and simply assign its class. In the presence of
isolated small objects or uniform background this method can be quite effective to
recover the rough geometry of the scene. On the other hand it is likely to fail when
the scene is crowded and with complex backgrounds, especially when many region
boundaries are occluded at the same time. We also inspect its variant in the RGB
domain, transferring the color value instead of the class label among pixels. This
approach is much less reliable due to the high variability of pixel values, leading to
noisy reconstructions.

Navier-Stokes [3] Initially proposed as an RGB inpainting method, the Navier-
Stokes approach is based on differential equations of fluid dynamics, posing an
analogy between pixel intensities and two-dimensional fluid stream functions. It
follows the edges of known portions of the image up to the inpainted region and
extends isophotes, i.e. edges with the same intensity, by matching gradient vectors
on the inpainted region boundaries. Once the edges are connected from one part to
another of the region, the internal pixels are filled in order to minimize variance
within the area they belong to. The choice of this method was dictated by its
nature of following contours rather than textures, which well adapts to semantic
segmentations.
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PatchMatch [2] The algorithm establishes correspondences between patches in
the image and attempts to replace the inpainted patch with the most relevant
one. The matching process is based on a randomized algorithm to approximate
Nearest Neighbors between two patches. After a random initial guess for the cor-
respondence, the algorithm alternates between propagating good correspondences
to close patches and sampling the neighboring regions. For the experiments using
the PatchMatch algorithm we adopted the implementation available in the content-
aware feature of Photoshop CC combined with its scripting functionalities.

3.3 Ground Truth Segmentations

The first row of Table 1 shows a comparison of our method against all the
proposed baselines on the MICC-SRI dataset. Here we use as input the ground truth
automatically acquired with the CARLA simulator. All pixels belonging to dynamic
classes are used to mask the image and inpaint it in one single step. A schematic
representation of our model is depicted in Fig. 4a. We report pixel wise accuracy
measured within the inpainted mask, i.e. the percentage of correctly inpainted pixels
in each mask averaged across images. Our method outperforms by a large margin
all the baselines, proving that RGB inpainting methods are not suitable for images
without textures. Nearest-Neighbor performs reasonably well compared to the other
baselines, yet fails to grasp the layout of the scene since no reasoning is involved in
the generation process. To better understand strengths and flaws of all the methods,
in Fig. 5 a qualitative comparison is given.

Nearest-Neighbor tends to hallucinate roads in sidewalks when removing cars
and heavily distorts the overall layout at the horizon. Navier-Stokes manages to
join edges across the inpainting masks but at the same time the reconstructions
it provides are extremely noisy, adding noise patterns to the filled regions. If this
is acceptable in RGB images, noise in semantic segmentations translates to a
misclassification of pixels and therefore a lack of understanding of the scene.

The quality of results for the PatchMatch baseline may vary a lot depending on
the input image. When the layout is simple and the algorithm can easily establish

Table 1 Per-pixel accuracy on the MICC-SRI dataset

Inpainting method

Input Pre-process Mask source NN NS [3] PM [2] GAN

GT – GT 68.41 29.18 19.32 81.94
RGB DeepLab DeepLab 61.41 30.41 21.33 70.58
RGB – DeepLab 38.04 51.97 63.82 59.77

Each row is relative to a different processing pipeline of our method, as shown in the three models
of Fig. 4. For each variant, the inpainting module can be performed by our method (GAN) or one of
the proposed baselines: Nearest Neighbor (NN), Navier-Stokes [3] (NS) and PatchMatch [2] (PM).
The best result for each method is highlighted in bold.
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Inpainting

GroundTruth Output

Mask  generation
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(DeepLab)

Inpainting DeepLab

RGB Prediction Output

(a)

(b)

(c)

Fig. 4 Pipeline of the variants of our architecture. Note that the inpainting step can be performed
either by our model or by one of the proposed baselines. (a) Ground truth model: the ground
truth segmentation is fed to the inpainting module using pixels belonging to dynamic classes as the
inpainting mask. (b) Segmentation model: the input segmentation is obtained using DeepLab [6].
The inpainting mask is obtained from DeepLab’s predictions. (c) RGB model: the inpainting is
performed on the RGB before applying DeepLab to get the final segmentation. A preliminary
segmentation must be obtained to know where to inpaint
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Fig. 5 MICC-SRI qualitative results. Ground Truth segmentations are used as input
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Fig. 6 Class accuracy confusion matrix for our method over GT segmentations. True labels on the
y-axis, predicted ones on the x-axis

correspondences with the background, the reconstructions are reasonable. Instead
when there are too many structural elements in the scene the algorithm tends to
copy them into unnatural positions, for instance adding trees and traffic signs in
the middle of the road. Again, this is a behavior that is suitable for highly textured
regions, whereas flat regions as semantic segmentations should just be filled with an
uniform pattern depending on the expected layout.

In Fig. 6 we report the confusion matrix for our method to provide insights on
how it is performing. Interestingly the Road class is almost perfectly reconstructed,
but at the same time the Sidewalk class is sometimes confused with Road, probably
due to close proximity in the data. The Unlabeled class is, on average, the most
common among the wrongly-predicted classes which is a reasonable outcome given
that Unlabeled is used as a catch-all class for everything that does not fit in the other
classes, such as the sky, small objects, and urban design elements.

3.4 Predicted Segmentations

Our method is made to aid autonomous driving agents, which will require to under-
stand the scene as they are deployed on the street. Therefore in a real case scenario,
our method cannot rely on manually annotated or automatically generated semantic
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segmentations and an alternative source will have to be exploited. Many semantic
segmentation algorithms have been proposed in literature [1, 5, 6, 18, 21, 25], often
with a special attention to autonomous driving applications. Here we show how
our method can be also effectively applied on generated semantic segmentations as
source instead of ground truth annotations. In our experiments we use predictions
from DeepLab-v3+ [6], which we trained on segmentations generated with CARLA
to obtain a compatible mapping with the categories we want to predict. Experimental
results are reported in Table 1.

We report two variants of our experiments, depending on the order in which we
apply our building blocks. In one case we first apply DeepLab on the RGB image
to obtain the segmentations and then we inpaint the resulting map to remove pixels
classified as dynamic classes. This model is shown in Fig. 4b. In the other case we
perform the inpainting step in the RGB domain and then we apply DeepLab on the
inpainted image. The RGB inpainting requires two segmentation steps: the first one
is applied on the RGB source and is needed to localize dynamic object pixels and
create an inpainting mask, the second one is applied on the inpainted RGB and is
necessary to obtain the final segmentation output. The pipeline for this variant of the
model is shown in Fig. 4c.

Results on the MICC-SRI dataset for the segmentation and RGB inpainting
pipelines are reported in Table 1 in the second and third row, respectively. When
replacing ground truth segmentations with automatically generated segmentations,
our method still performs better than the baselines reconstructing reasonable lay-
outs. Segmented regions produced by DeepLab tend to exhibit smoother boundaries
than the ground truth, often turning straight contours into noisy and curved lines.
This makes the inpainting task harder since less natural boundaries are more difficult
to follow and join together over the inpainted region. To evaluate the accuracy in
this case we adopt as ground truth the outputs generated by DeepLab on the static
version of the frames. This introduces a further level of uncertainty in the evaluation
due to the aforementioned fluctuations of region boundaries. With Navier-Stokes
and PatchMatch instead the usual pathological behaviors are present, keeping the
results low as in the ground truth version. Qualitative results are shown in Fig. 7.

The opposite trend can be observed when the inpainting is made on RGB images
and DeepLab is applied on the resulting image. In this case instead of our method
for inpainting images we use the original formulation of the Generative Inpainting
model of Yu et al. [34]. All the RGB inpainting methods perform roughly on par,
with the exception of Nearest Neighbor which drops 20 points below the others
since it generates unnatural reconstructions. Overall though, RGB methods provide
much lower accuracy in the final segmentations compared to our semantic inpainting
model. Qualitative results are shown in Fig. 8.

We report the confusion matrix for our method over DeepLab segmentations
in Fig. 9. Here, similarly to Fig. 6, the Road class performs well, and so do the
other classes that are easily picked up by DeepLab due to their size in the image
(Building, Sidewalk, Unlabelled). The accuracy of classes that have finer, smaller
objects (Fence, Pole) drops dramatically since the DeepLab segmentation fails over
them.
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Fig. 7 MICC-SRI qualitative results. DeepLab segmentations are used as input
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Fig. 8 MICC-SRI qualitative results. The inpainting is done on RGB image and the output is then
segmented using DeepLab
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Fig. 9 Class accuracy confusion matrix for our method over DeepLab segmentations. True labels
on the y-axis, predicted ones on the x-axis

4 Conclusions

In this paper we presented a segmentation-to-segmentation inpainting model to
recover the layout of an urban driving scenario. To the best of our knowledge we
are the first to propose a model for inpainting semantic segmentations. The model
we presented is a Generative Adversarial Network architecture capable of removing
dynamic objects from the scene and reconstruct occluded views. We showed the
effectiveness of the model both on Cityscapes and on a novel synthetically generated
dataset obtained with the CARLA simulator and freely available online. Along
with our method we presented several baselines working both in the RGB and the
segmentation domain. The comparisons of the different methods highlighted the
benefits of working directly with segmentations rather than segmenting inpainted
images. We also showed that classic RGB inpainting methods are not suitable when
working outside from the highly structured and textured domain of natural images.
We believe that being able to infer occluded regions in autonomous driving systems
is a key component to achieve a full comprehension of the scene and will allow
better planning of the ego-vehicle trajectories in crowded urban scenarios.

Acknowledgements We gratefully acknowledge the support of NVIDIA Corporation with the
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