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Abstract: Identification and classification of landslides is a preliminary and crucial work for 

landslide risk assessment and hazard mitigation. The exploitation of surface deformation velocity 

derived from satellite synthetic aperture radar interferometry (InSAR) is a consolidated and suitable 

procedure for the recognition of active landslides over wide areas. However, the calculated 

displacement velocity from InSAR is one-dimensional motion along the satellite line of sight (LOS), 

representing a major hurdle for landslide type and failure mechanism classification. In this paper, 

different velocity datasets derived from both ascending and descending Sentinel-1 data are 

employed to analyze the surface ground movement of the Huangshui region (Northwestern China). 

With global warming, precipitation in the Huangshui region, geologically belonging to the loess 

basin in the eastern edge of Qing-Tibet Plateau, has been increasing, often triggering a large number 

of landslides, posing a potential threat to local citizens and natural and anthropic environments. 

After processing both SAR data geometries, the surface motion was decomposed to obtain the two-

dimensional displacements (vertical and horizontal E–W). Thus, a classification criterion of the loess 

landslide types and failure mode is proposed, according to the analysis of deformation direction, 

velocities, texture, and topographic characteristics. With the support of high-resolution images 

acquired by remote sensing and unmanned aerial vehicle (UAV), 14 translational slides, seven 

rotational slides, and 10 loess flows were recognized in the study area. The derived results may 

provide solid support for stakeholders to comprehend the hazard of unstable slopes and to 

undertake specific precautions for moderate and slow slope movements. 

Keywords: loess landslides; differential synthetic aperture radar interferometry (DInSAR); 

interferometric vectors; two-dimensional deformation; landslide classification 
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1. Introduction 

Chinese loess landslides, mainly located in the upper and middle sectors of the Yellow River in 

Northwest China, are recurrent and prevalent phenomena on the Loess Plateau 1. A series of factors, 

involving geological, geomorphological, and hydro-geological properties of loess contributes to their 

erosion and thus to failure. According to previous statistics, 50% of large-scale landslides estimated 

have a direct relationship with rainfall [2,3]; in addition, more extreme rainfall events have given rise 

to increasing occurrence of landslides as feedback to environmental fluctuation, especially since the 

recent climate-change context [4,5]. Many researchers have reported that Qing-Tibet Plateau (QTP) 

has experienced warming and wetting trends, and the precipitation amount and the number of 

precipitation days have increased drastically during past decades [6,7]. For this reason, the upper 

reaches of the Yellow River-Huangshui Basin, located in the northeastern edge of QTP, became a 

disaster-prone region where numerous loess landslides occurred in recent years (Figure 1) [8]. 

 

Figure 1. Geographical setting of the study area. The study area is located in the northeastern of Tibet 

Plateau from E100°40′ to 103°03′ and N36°02′ to 37°25′. This loess area is specific since it is also a 

margin region between loess plateau and Tibet Plateau. 

Besides, under the implementation of the strategy for the infrastructure development of Western 

China, road and tunnel construction, mining activities, as well as cutting slopes involving the loess 

terrace were promoted, however very often triggering a large number of unstable slopes, due to 

incorrect land management. Moreover, other triggering factors including seismic activities and 

freeze–thawing effects also make the loess slopes unstable and more vulnerable to topple, fall, slides, 

and shallow flow, leading to numerous causalities, loss of economic resources, and even ecological 

and environmental issues [9–11]. Additionally, many studies have been conducted on hazard 

assessment and triggering mechanisms of landslides [12–18]. However, landslides inventory 

mapping (i.e., creation of a database with distribution, boundary, state of activity and type of 

phenomena) represents the primary and leading task for landslide hazard assessment and risk 

mitigation [19]. 

Over the past years, the Chinese government paid great attention to preventing soil loss and 

protecting the ecological environment; indeed, a full spectrum of loess-slope failures was completely 
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inventoried via multi-source technologies. Traditional field survey, as a primary tool for defining the 

location and failure types, has been widely applied in landslide inventory mapping [20,21]. However, 

this kind of investigation is time consuming, costly, and mostly focused on individual landslides or 

limited areas. Recent studies have increasingly utilized high-resolution remote sensing (RS) images 

and unmanned aerial vehicle (UAV) photogrammetry to delineate the spectral, textural, 

morphometric, and topographic properties of loess landslides in a wide region [22,23]. Although the 

general condition of these hazards (i.e., main scarp, fissures, flank, toe, etc.) can be obtained from 

optical images, it represents a qualitative analysis of the state-of-the-art and cannot reflect and help 

mapping and evaluating instability [24]. Interferometric synthetic aperture radar (InSAR) and a series 

of multi-temporal InSAR (MT-InSAR) techniques enable the measurement of millimetric ground 

displacements and analyze the distribution of active slope, the definition of moving boundaries, and 

the computation of cumulative movements [25,26]. However, the definition of the slope movements, 

either considering the rate and the type, is still challenging for local authorities and administrators, 

when they are in charge of taking early-warning actions. Loess slopes present different failure modes 

and the displacements vary according to several factors, such as type of movement, material size, 

geotechnical characteristics, etc. Generally, shallow movements of loess deposits can be grouped into 

two main categories: slides and flow-like phenomena. Translational and rotational slides, as defined 

by Cruden and Varnes scheme [27], generally involve large slope sectors and a large amount of 

material, with usually moderate velocities. By contrast, loess flows or flowslides occur in a very short 

time and evolve, generating catastrophic consequences, even when the initial deformation is 

relatively small [28,29]. Therefore, it is necessary and paramount to further put forward classification 

of these active slopes derived from InSAR results, with the purpose of understanding landslide 

kinetics and taking corresponding precautions accordingly to different landslide forms.  

Technically, differential synthetic aperture radar interferometry (DInSAR) sensors work 

regularly in side-looking geometry and the calculated displacement velocity is along the radar line 

of sight (LOS). For slightly small incidence angle (usually between 23° and 40°), the sensor is much 

more sensitive to vertical deformation than horizontal deformation [30]. Hence, the resulting datasets 

can estimate only a small component of the real motion of the landslide, i.e., the projection along the 

satellite LOS. This aspect may cause large errors of slope motion direction and misleading of the 

classification of slope movement types when using a one-dimensional component instead of real 

motion of the landslide. Fuhrmann et al. [31] assessed uncertainty of the horizontal and vertical 

motion and pointed out these errors are related to the magnitude of movement. Aiming at 

overcoming this limitation, the exploitation of multiple orbits, incidence angle, and different geodetic 

techniques has become increasingly popular. For example, the authors of [32–36] combined synthetic 

aperture radar (SAR) ascending and descending information to extract the vertical and horizontal 

components. Fialko [37] and Hu [38] calculated the three-dimensional displacement via integrating 

InSAR and Offset-tracking methods that can derive azimuth measurement. Vollrath et al. [39] 

proposed an effective fusion of InSAR and Global Position System (GPS) network to estimate 3-D 

movements. Even if each of the approaches has its strengths, there is no unique and well-developed 

strategy to recognize fully 3-D active landslides since different survey regions have various 

deformation features as well as different availability of SAR and external data [40]. 

In this paper, landslides were detected and classified according to the decomposition of 

interferometric vectors. Ascending and descending acquisitions of Sentinel-1 mission were combined 

to generate two-dimensional displacements and thus to detect and map active loess landslides. A 

further step of this work is represented by the identification of the type of loess landslides according 

to SAR data. The proposed procedure here presented includes four steps: (1) detection of unstable 

areas obtained by processing and interpreting Sentinel-1 data, based on the average deformation 

velocity of both orbit datasets; (2) 2D deformation distribution of the whole area, via decomposition 

from LOS displacement into vertical and east–west horizontal components; (3) classification scheme 

of loess slides according to different patterns of deformation recognized and ancillary information, 

where available; (4) landslide inventory map update by applying the proposed scheme at a regional 

scale. To further validate the proposed scheme, three case studies are presented, where DInSAR 
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information was integrated with UAV and field surveys carried out in the selected areas. This 

proposed scheme could represent a significant boost for rapid mapping, i.e., in case of emergency 

following earthquakes or extreme rainfall events, for quickly identifying and classifying landslides. 

In this way, priorities of interventions may be established, as well as a step forward to the 

comprehension of loess slopes dynamic can be obtained. 

2. Study Area 

The study area is a tectonic margin zone, covering about 1.6 × 104 km2, between the Tibet Plateau 

and Chinese Loess Plateau, where thrust and strike-slip fault systems developed during the Mesozoic 

and Cenozoic (Figure 2), indicating the northeastward growth of the Tibet [41]. Simultaneously, 

under the influence of a series of tectonic activities and surface erosion, sharp gorges and narrow 

river catchments consisting of Yellow river, Huangshui river, and Datong river catchments formed 

in different ages (Figure 2) [42]. The stratigraphic setting of this region is made of Proterozoic gneisses 

and schists, Cambrian gray limestones and green basalts, and Mesozoic clastic sediments. The 

lithology is comprised of red mudstones, sandstones, siltstones, and conglomerates [43]. From the 

hydrological point of view, the Huangshui River, 374 km long, originates in the north part of Tibet at 

an elevation of 4000 m, and flows eastwards into the Yellow River in Gansu Province, becoming a 

first-order tributary. The study area is characterized also by very steep slopes and narrow valleys, 

with height difference up to 900 m [8]. The regional climate is characteristically plateau arid and 

continental semi-arid with 34 °C during summer and −20 °C during winter on average. The mean 

annual precipitation is 496.7 mm, concentrated between June and September. However, considering 

the climate fluctuation during recent years, the rainfall rate has increased almost twice from 2015 to 

2019, according to the statistics of the meteorological station (Figure A1). This trend has induced an 

increase in the instability of the loess slopes of the Huangshui region, posing a serious threat to the 

local population and activities. 

 

Figure 2. General geomorphological feature distribution in the study area, along with the Sentinel-1 

dataset coverage. 
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3. Dataset and Methodology 

3.1. Dataset 

In order to cover the whole study area, 35 ascending images and 60 descending images with 

vertically transmitted vertically received (VV) polarizations data were acquired, spanning the time 

interval from January 2018 to March 2019. Since the region of interest is located at the boundary of 

two descending bursts, extra concatenate sequential bursts from Frame 466,471 were processed 

(Figure 2). Precise Orbit Ephemerides (POD) from ESA (https://qc.sentinel1.eo.esa.int/) were used to 

remove orbit errors and improve co-registration accuracy. Besides, an external shuttle radar 

topography mission (SRTM) digital elevation model (DEM) of 30 m resolution, downloaded from US 

Geological Survey’s EROS (Earth Resources Observation and Science) Data Center, was used to 

remove the topographic contribution and eliminate the noise. In order to validate our proposed 

classification, optical remote sensing images were downloaded from Google Earth, and field UAV 

investigations were carried out on 30 November 2019, to generate surface texture characteristics and 

digital surface models (DSMs) of typical loess failures. 

3.2. DInSAR Processing Chain 

DInSAR is a powerful monitoring technology used to detect ground displacement from 

centimeters to millimeters by calculating differential phases between two consecutive periods [44,45]. 

However, limited by systematic noise, atmospheric phase delay, and geometrical decorrelation, 

phase values between the sensors and target cannot be reliable, thus, a series of multi-temporal 

approaches were developed including Permanent Scatterers (PS) [46], small baseline subset (SBAS) 

[47], stable point network (SPN) [48], Standford Method for Persistent Scatters (StaMPS) [49], 

Coherent Pixels Technique (CPT) [50], Permanent Scatter Pairs (PSP) InSAR, and the SqueeSAR [51]. 

Among these advanced algorithms, PS and SBAS are two main categories in terms of selecting 

analysis targets. The focus of this work is to scan wide areas, to spot unstable, localized zones which 

could correspond to slope instabilities or ground subsidence. Considering the intermittent behavior 

of loess landslides, the unfriendly radar scenario (soft rocky outcrops and boundaries with rapid 

evolution) and the small size of occurring instabilities, the SBAS approach turned out to be the most 

suitable monitoring solution. Four main steps were followed: 

1. Generation of interferograms 

After preprocessing of Sentinel-1 Terrain Observation with Progressive Scan images (updating 

POD orbit parameter, burst extracting, and coregistration, etc.), a multi-looking of 10 × 2 was applied 

to reduce the speckle noise and produce a 25 × 25 m ground resolution cell. A temporal baseline 

threshold of 90 days and a spatial baseline threshold of 120 m were set, to generate interferograms 

for ascending and descending datasets from paths 128 and 135 by using commercial differential 

software, (Gamma Remote Sensing, Bern, Switzerland, https://www.gamma-rs.ch/software). 

2. Distributed Scatterers (DSs) Selection 

Since most of the unstable slopes in the study area are located in a rural environment, selecting 

high quality and density scatters is a challenging but crucial step for landslide detection. Groups of 

pixels with homogeneous radar reflectivity were selected. Such DSs represent the average phase of 

several objects with different scattering properties [52]. 

3. Estimation of mean deformation map 

The phase of DS points of each interferogram at time ta, tb consist of four main deformation 

compositions [47]:  

 4
( , )= ( ( , , ) ( , , )) ( , ) ( , ) ( , )b a top atm noisex r d t x r d t x r x r x r x r


   


        (1) 
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where λ is the radar wavelength, d(tb,x,r), d(ta,x,r), are the ground displacement of every distributed 

scatter pixel, Δφtop is the topographic phase error obtained from SRTM, Δφatm is the atmospheric phase 

delay, Δφnoise is the noise effect from systematic thermal noise, orbital and temporal decorrelation. In 

order to relieve topographical, atmosphere errors, and systematic noise in the time-series 

interferometric pairs, seeking a minimum norm least-squares using singular value decomposition 

(SVD) of DSs was utilized. Note that the atmospheric phase is mitigated by high-pass temporal and 

low-pass spatial filtering based on statistical patterns [53]. 

4. Decomposition of interferometric vectors 

The combination of ascending and descending data is a standard procedure to obtain the 

horizontal E–W and vertical displacement components (Figure 3) [31,32,54]. The two-dimensional 

velocities can be obtained by implementing a linear conversion, as indicated by the following 

equations [32,37]: 
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where Vasc, Vdec is the velocity from ascending and descending geometries. Vv, Vh is the vertical and 

east–west values, θasc, θdes are the incidence angles for the ascending and descending orbits (39.4° and 

41.5°, respectively). 

 

Figure 3. Decomposing from ascending and descending into horizontal (E–W) and vertical 

components, where θasc, θdes are incidence angles of both orbits, Vasc,Vdes are average deformation 

velocities, Vreal is the real slope velocity, and Vh, Vv are slope velocities along horizontal (E–W) and 

vertical directions. Note this decomposing figure is based on [32,37]. 

3.3. UAV Survey and Data Processing  

To acquire high-resolution optical images and detailed topographic features, a field survey was 

performed on 30 November 2019 using a DJ-Phantom 4 Pro aircraft (Dajiang Baiwang technology 

company, Shenzhen, China). The flight missions were pre-programmed through the open source 

Altizure software (https://altizure.com). A total of 1209 photos were captured with 10 cm ground 

sampling distance (GSD) over the three selected cases. Ground control points (GCPs) were not used 

in our survey, since precise surface elevation data were not necessary for the aimed scale of analysis. 

A bundle adjustment process using image match algorithms was applied for raw data, and 
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orthorectified images digital surface models (DSMs) were thus generated. All the processing 

procedure was performed by Pix4Dmapper photogrammetry software, (Pix4D company, Ecublens, 

Switzerland, https://www.pix4d.com/try-software).  

3.4. Classification Scheme of Loess Landslide 

A criterion to identify and classify landslide types occurring on loess slopes is here proposed, 

according to the analysis of deformation characteristics, such as deformation rates, main direction, 

and spatial distribution derived from DInSAR data (Table 1). Three main types of landslides can be 

distinguished on loess formations in Tibet: translational slides, rotational slides, and flows. It is worth 

mentioning that this distinction follows the Cruden and Varnes [27] scheme and it is based on basic 

assumptions derived from literature. According to the above-proposed scheme, three typical loess 

landslides can be detected and classified. A scheme summarizing the general idea of the classification 

scheme is in Figure 4, whilst the whole technical flowchart is shown in Figure 5. 

1. Translational slides: the major displacement direction is conventionally horizontal, the 

characteristic deformation rate is low, with slow and intermittent movements; the horizontal 

deformation is typically dominant, much higher than the vertical one, along the whole landslide 

body. This sort of slide can be usually distributed in slope sectors characterized by gentle 

topographic gradient.  

2. Rotational slides: these events are characterized by a balance between horizontal and vertical 

displacements, however, their distribution in the landslide body is different. The vertical 

movement is located mostly in the upper part of slopes, whilst the rest of the landslide moves 

with a direction usually parallel to the slope. This failure is prone to develop in steep slopes with 

arc-shaped rupture surface under unsaturated loess layers. Field investigation shows that many 

cracks can be often seen in the crown and shear deformation area, representing the rapid, and 

even surge sliding velocities. Besides, a large number of fissures, typically present in the middle 

or toe part of the slope, demonstrate that the deformation direction changes from vertical to 

horizontal.  

3. Loess Flows: theoretically, horizontal velocities are predominant, even though a vertical 

component is present, depending on the steepness of the slope; generally, flows are characterized 

by a more rapid motion with a very short time interval. However, differently from transitional 

and rotational slides, loess rapid flows are difficult to detect by single deformation characteristics, 

since abrupt movement cannot be detected by satellite imagery, therefore here only slow flows 

or intermittent phases are considered.  

Table 1. Classification scheme of loess landslides based on deformation characteristics. Note: H 

represents the horizontal direction; V represents the vertical direction; Vh represents the horizontal 

displacement velocities; Vv represents the vertical displacement velocities; High Vh represents high 

magnitudes velocities in the horizontal direction, High VV, Vh illustrates high velocities in both vertical 

and horizontal directions. 

Type Major Movement Direction Deformation Velocities Deformation Location 

Translational slides H High Vh  Whole landslide body 

Rotational slides V High Vv, Vh， Source area 

Loess flow H High Vh Parallel to the slope 



Remote Sens. 2020, 12, 1541 8 of 23 

 

 

Figure 4. Classification scheme according to the proposed procedure: (a) translational slide; (b) 

rotational slide; (c) flow. 

 

Figure 5. Flowchart of the procedure proposed in this paper. 
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4. Results 

4.1. Mean Deformation Velocities along the LOS 

Since ground-truth data are not available in the study area, the Minhe city buildings, in the 

center of the study area, were chosen as reference stable point. About 20 million distributed scatterers 

were extracted both from ascending (26,616,239) and descending (20,996,749) orbits, respectively. The 

maximum deformation velocities of the two orbits vary from −51 to 53 mm/year and −48 to 49 

mm/year, respectively (Figures A2 and A3). Note that the negative value indicates displacement 

away from the satellite view and positive values refer to displacements towards the sensors. Based 

on the standard deviation of deformation velocities, all the areas with displacement rate between 0–

7 mm/year, 7–15 mm/year, >15 mm/year, were defined, respectively, as stable areas, relative strong 

deformation areas (RSDA), and strong deformation areas (SDA). Thus, 98% of the study area can be 

considered as stable, 1.8% can be classified as RSDA, and the remaining 0.2% is SDA (Figure A2) 

Comparing with the ascending data, the results obtained with the descending orbit (97.5% of the 

study area is stable, 2.2% is RSDA, and 0.3% can be classified as SDA) show a higher concentration 

of unstable slopes in the study area (Figure A3). 

For evaluating the uncertainty of surface movements along LOS, the standard deviation of each 

distributed area was estimated under the assumption that a high standard deviation shows lower 

precision of the corresponding mean velocities and vice versa (Figure A4). The whole area has a 

general pattern of standard deviation below 5 mm/year as shown in regions A and C, indicating that 

the general deformation results are reliable. Only small regions (B from ascending and D from 

descending) have a high deviation value up to 8 mm/year, which may account for the low temporal 

coherence and abrupt deformation characteristic [54]. 

4.2. Horizontal and Vertical Deformation Velocities Distribution 

According to decomposing Equations (3)–(5), the horizontal and vertical deformation velocity 

maps were generated. As can be seen in Figure 6, approximately 98.3% of the points show 

displacements rates between −7 and 7 mm/year, which indicated the overall stability of the study 

area. About 30 slopes, with total areas of 48 km2 were identified as characterized by a clear horizontal 

motion. On the other hand, only 15 slopes, with total areas of 48 km2, were recognized as 

characterized by a major vertical direction motion (Figure 7). Accordingly, the whole deformation 

scenario in the Huangshui basin is slightly more prone to shallow horizontal movement than to 

vertical motion, being an area susceptible to soil erosion induced by rainfall. 
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Figure 6. (a) Horizontal displacement rate map from January 2018 to March 2019. Positive values refer 

to westwards movement while negative velocities indicate eastwards movements; (b–d) Three zones 

(A–C) in different parts of study area are zoomed in. Notably, No.1 in zoom C indicates the location 

of a translation landslides (see also Section 4.3.1). No.5 in zoom A shows a subsidence behavior with 

no distinct horizontal displacements. 

 

Figure 7. (a) Vertical displacement map of the study area from January 2018 to March 2019. Positive 

value refers to upward movements, while negative velocities means downward motion; (b,c) Two 

zones (A, B) in different parts of study area are zoomed in. Notably, No.2 and 3 show the location of 

a rotational slide and a loess flow, respectively, as described in Sections 4.3.2 and 4.3.3. No.4 shows a 

further subsidence area characterized by both horizontal and vertical displacements. 

4.3. Classification Scheme Validation 

In order to validate the proposed classification scheme, three different phenomena near MinHe, 

i.e., a translational slide, a rotational slide, and a flow, were selected for further UAV investigations, 

on 8 December 2019. 

 

 

 



Remote Sens. 2020, 12, 1541 11 of 23 

 

4.3.1. Translational Slide 

A translational slide has been identified in the area of GaJia valley (Figure 6). From the UAV 

image (Figure 8), the landslide is 1100 m long, 760 m wide, and has 200 m height difference and 20° 

of average slope degree. The whole topography has low energy relief, separated by deep gullies in 

the central part, and some cultivated lands. In terms of spatial coverage and magnitude of 

deformation velocities, horizontal displacement is larger than vertical, with maximum velocity 

reaching 30 mm/year (Figure 8). According to the profile analysis of horizontal deformation, the 

upper section of the landslide (0–500 m) is larger than the lower section. Comparing with horizontal, 

the vertical deformation has two distinct increasing trends downward at 100–300 m and 400–600 m, 

where typical geomorphological features (e.g., scarps or step terrace) can be observed (Figure 9). 

According to the two-direction displacements, the real displacements assumed as a slow creep 

behavior along the slope, and according to the geomorphological features, the landslide seems to be 

shallow. This motion behavior is very frequent in translational slides, according to the previous 

classification of loess landslides [21,55]. In terms of hazards, these kinds of movements are usually 

triggered by abundant rainfalls, posing a potential threat to the local villagers living beneath the loess hill. 

 

Figure 8. (a) Unmanned aerial vehicle (UAV) image of the GaJia Translational slide, taken on 8 

December 2019; (b) digital surface model (DSM) of the landslide with geographical textures and 

horizontal displacement areas distribution overlapped; (c) horizontal displacement rates; (d) vertical 

displacement rates. 
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Figure 9. A-A’ Cross-section analysis with mean deformation rate of horizontal and vertical 

components. According to displacement velocities and directions (horizontal and vertical), the real 

displacements, inferred by the two abovementioned vectors, is indicated by a black-dotted arrow. 

4.3.2. Rotational Slide 

The rotational slide, selected for the validation analysis, has been identified near Jianzi village 

(Figure 7c No.2). Based on the visual interpretation of Figure 10a, the slope is divided into four 

sectors: Sector A is located on the top of the slope, with a length of 600 m and a width of the main 

crown of about 20 m (Figures 10a and 11a,b). This sector is also characterized by the presence of loess 

debris that buried a road passing in the area (Figure 11b). Sector B is in the right flank of landslide, 

characterized by a higher slope angle. Sectors C and D, localized in the central part of the landslide, 

are characterized by the presence of numerous fissures and cracks. In terms of distribution and 

magnitude of deformation, vertical displacement velocities are predominant in this slope sector 

(Figure 10b), while horizontal deformation is higher in the two flanks and in the toe of the landslide 

(Figure 10c). From the profile analysis of B-B’, it is possible to observe that both vertical and horizontal 

deformational pattern have the same motion rate (Figure 10d), with maximum deformation rates 

located over the cracks identified in the field (2 m high) (Figure 11c). According to the synthesized 

real displacement, the rupture surface of this landslide can be shaped as deep-concave. The profile 

C-C’ (Figure 10e) highlights a main vertical component of the deformation. However, the motion 

trend of this part is discontinuous and can be divided into two independent parts. The first starts at 

200 m and terminates at the 500 m area, and it is characterized by vertical deformation rate up to 16 

mm/year. The lower part has a mean vertical motion displacement up to 12 mm/year. The area 

connecting Sections B and C is flat (the area estimated from distance 450–720 m), characterized by 

high horizontal motion along with the generation of large numbers of compressing fissures about 20 

cm wide (Figure 11d). Additionally, a group of compressing fissures with NW–SE direction and 

extensive fissures along NE–SW direction can be observed near the flatform (Figure 10a), implying 

that this gentle landscape prevented upper loess (Section C) movement forward, and rebalanced 

sliding surface from depth to near-surface. In the cross-section C-C’, both two flanks present concave 

terrains (0–230m, 380–630 m) where horizontal deformation is the major motion, while the middle 

landform (from 230 to 380 m) has relative gentle slope characterized by vertical motions increasing 

from 10 to 17 mm/year (Figure 10f). Therefore, the integration of the two-dimensional deformation 

results, UAV images, profile analysis, and previous studies on the loess landslide failure mode [56], 
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allowed to define this landslide as rotational slide with a strip-slip deformation slide rather than a 

long-term creep based on the previous conclusion. 

 

Figure 10. (a) UAV image of the landslide with the location of the four geomorphological features (P1, 

P2, P3, and P4) depicted in Figure 11; (b) vertical displacement of the slope; (c) horizontal 

displacement of the slope; (d) profile analysis of B-B’; (e) profile analysis of C-C’; (f) profile analysis 

of D-D’. 
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Figure 11. Field investigation of four points (P1, P2, P3, P4, respectively) of Figure 10. (a) The main 

scarp area; (b) close-up of failure that has blocked the road; (c) vertical cracks up to 2-m high; (d) 

horizontal fissures with 0.2 m of width. 

4.3.3. Loess Flow 

The flow-like landslide identified and selected for the validation analysis is located near the 

Chuang-Da expressway, in MinHe county (Figure 7c, No.3). The photo-interpretation and the field 

investigation showed that the sliding loess mass deposited in the lower part and blocked the gully in 

front of the slope (Figure 12a). Two-dimensional displacement InSAR measurements highlight that 

this slope has experienced both vertical and horizontal movement, particularly in the upper part of 

the body (Figure 12b,c). It can be also clearly seen from the profile analysis E-E’ that the deformation 

is increasing continuously proceeding downstream (Figure 12d). The vertical deformation increases 

suddenly from 2 to 12 mm/year, keeping such high velocity for about 300 m, as well as the horizontal 

movement. Besides, the cross-profile F-F’ illustrates that this western sector of the slope has both high 

horizontal and vertical displacement velocities, implying that deposited loess is susceptible to 

accumulate and flow along the channel (Figure 12e). It is worth noting that no clear horizontal 

displacement was detected in the toe, most likely due to very fast and large deformation, exceeding 

the monitoring capability of InSAR techniques. In order to analyze the slope behavior during August 

2018, coherence and phase were compared in the time spans August 6–18 and August 18–30. In the 

first period, coherence shows a generally high value and the interferometric phase seems stable 

(Figure A5a,b). However, in the following 12 days, the lower part of the slope presents lower 

coherence and its corresponding interferometric phase seems noisier (Figure A5c,d). Combining with 

the remote sensing images from Google Earth (Figure A5e,f), the change in such value can be 

explained with a flow event that occurred during 18–30 August 2018. 
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Figure 12. (a) UAV image of loess flow; (b) horizontal movement of the slope; (c) vertical movements 

of the slope; (d) the profile analysis of E-E’; (e) the profile analysis of E-E’. 

5. Discussion 

The occurrence of landslides in the Loess Plateau is increasing recently, triggered by more and 

more diffuse human activities and extreme weather conditions in Qing-Tibet Plateau. Therefore, the 

detection and the mapping of unstable slopes are significant tasks for stakeholders in landslide 

hazard assessment and risk mitigation. InSAR technology, with its large coverage and millimeter 

accuracy, is popularly applied in landslides monitoring and landslides inventory mapping. However, 

limited by a one-dimensional line of sight viewing geometry, the derived displacement results are 

not sufficient to capture fully slope movement, especially in the horizontal direction (N–S, and E–W), 

leading to difficult interpretations, estimation of displacement rates, and evolutions by end-users in 

charge of disaster prevention. The combination of descending and ascending acquisitions provides 

the opportunity to detect active phenomena and estimate the E–W and vertical components. Many 

authors have already used components of movement to characterize single slope [26,32,57]. In this 

work, a procedure based on the exploitation of both components was enhanced, and leveraging on 

the wide-area mapping capability of Sentinel-1, it was applied on a basin scale. The main idea is to 

exploit Sentinel-1 acquisition strategy and a simple post-processing approach to scan wide areas and 

to highlight unstable zones. Nevertheless, some slopes along the north–south direction are still 

difficult to detect owing to the inherent limitation of InSAR. 

In addition, a criterion to classify loess landslides by two-dimensional deformation velocities, 

sliding direction, and spatial distribution is proposed. Such classification is based on the 

decomposition of movement vectors derived by DInSAR information, which allows to obtain vertical 

and horizontal components of the movement occurring on the ground surface. Taking into account 

the prevalence or the balance between the two forces, according to their rates and to their spatial 

distribution, as well as to the basic knowledge on landslide-type features, three main types of 

landslides occurring on loess slopes were semi-automatically identified. Translational slides are 

mostly characterized by horizontal movements, and at times parallel to the slope, thus horizontal and 

vertical displacements have motion rates very comparable, with a slight prevalence of the first; 
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rotational slides present a major vertical displacement in the initiation area, while the rest of the 

landslide body moves parallel to the slope; flow-like landslides are characterized by generally higher 

velocities of displacement, very rarely with a major vertical component. In this way, a reliable 

landslide inventory map of the study area was obtained in a very rapid way.  

In Figure 13 a landslide inventory map, generated through the application of the proposed 

scheme, is depicted. It is made of 14 translational slides, seven rotational landslides, and 10 loess 

flows, detected according to the decomposition of interferometric vectors and following the proposed 

procedure. No human activities (e.g., excavations, loading, deforestation) were detected from 

historical Google Earth image archive, thus, slope movements most likely are triggered by the 

precipitations, as also stated by previous studies [58,59]. In terms of deformation magnitude, 

translational slides range from values of 4 to 30 mm/year along the horizontal direction. The average 

displacement is about 17 mm, indicating a slow-moving trend. Rotational slides have displacements 

values ranging from 16 to 20 and 8 to 15 mm/year in the vertical and horizontal directions, 

respectively. Considering the formation mechanism, the location of vertical deformation is prevalent 

in the source area. Loess flows are characterized by horizontal displacement rate varying from 10 to 

30 mm/year, while the average horizontal value is up to 23 mm/year, indicating a fast motion along 

the slope. It is worth noting that landslides occurring on loess slopes are generally characterized by 

continuous deformation trends, making our procedure, based on the average velocity information, 

very well-suited for the detection and the mapping of slow-moving phenomena; however, some loess 

slides or loess earth flows can be characterized by higher velocities, abrupt or intermittent motion, 

still representing a challenge for DInSAR approaches, especially during monitoring stages. Moreover, 

another main disadvantage influencing the disparity is the SAR geometric distortions, i.e., loess 

landslides located within “blind” areas caused by layover, shadow, or foreshortening of single 

ascending or descending observations [55]. This aspect would give rise to inconsistency in the 

deformation magnitude and direction from different observations, thus affecting the decomposition 

of interferometric vectors and classification results. Nonetheless, combining multi-sensor satellite 

SAR sensors with different incidence angle, flight direction, and resolution could further upgrade the 

reliability of the classification scheme [60].  
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Figure 13. Landslide inventory map after the application of the proposed classification scheme. 

Even though the achieved results are sensitive to side-look image geometry of SAR, the 

procedure presented here may demonstrate a very important tool for landslide management 

activities and for landslide inventory mapping, during early-warning phases, especially when 

dealing with large or inaccessible areas. Considering financial budgets, integration of DInSAR 

information with other sources may be an added value in order to have as more precise as possible 

information over entire regions, as proven in this work. However, DInSAR data have been repeatedly 

demonstrated to be a reliable, cost-effective, and time-saving source of information [18], since an in-

situ investigation over a large area such as this would have required much more time and a sensibly 

higher budget. Additionally, Sentinel-1 SAR products are freely accessible through the Sentinels 

Scientific Data Hub (https://scihub.copernicus.eu/), thus providing the scientific community, as well 

as public and private companies, with consistent archives of openly available radar data, suitable for 

monitoring applications. It is worth mentioning that vertical movements detected in flat areas, 

attributable to subsidence phenomena (Figure 6b, 7b No.5, Figure 7c No.4), were not considered in 

this work. However, it must be stated that this classification criterion is based exclusively on 

movement characteristics, rather than location of sliding/rupture surface, travel distance, volume of 

displaced mass, or failure mechanism [21]. This classification criteria may be an effective, low-cost, 

and rapid guide for the stakeholders to take specific actions, according to the detection of different 

phenomena. 
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6. Conclusions 

The aim of this paper was to provide a rapid and reliable tool capable of generating landslide 

inventory maps, with basic classification of the type of loess landslides, by applying simple and 

transferable differential interferometric synthetic aperture radar (DInSAR) processing and post-

processing procedures. Two-dimensional displacement velocities, both in horizontal and vertical 

directions, were extracted by computing and combining ascending and descending Sentinel-1 data, 

acquired over Huangshui region (Northwestern China). The classification scheme is based on basic 

knowledge of typical landslide mechanisms developing on loess formations. In particular, three types 

of landslides, very common and spread over loess slopes, were considered: translational slides, 

rotational slides, and flows. Translational slides are commonly characterized by prevalent horizontal 

and parallel to the slope movements, while rotational slides present a dominant vertical component in 

the source area. Flow-type landslides move parallel to the slope, with considerable velocities, generally 

higher than the abovementioned types. According to these basic rules, and after validating DInSAR-

derived data via field unmanned aerial vehicles (UAV) surveys on three test-areas, a general landslide 

inventory map of the Huangshui region was generated. In this way, more than 30 landslides were 

detected and distinguished. The obtained results confirmed the reliability of SAR interferometry for 

large areas monitoring, and the analysis of landslide mechanisms through the use of post-processing 

procedure is a valid and consolidated way of estimating the prevalent motion of a failure. Starting from 

these assumptions, the classification scheme proposed here may represent a valid and transferable way 

of generating rapid landslide inventory maps containing various information, including those about 

the type of landslide. The gathering of all this information may provide substantial and precious 

support to land management activities, in order to take precise and rapid mitigation actions. 
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Appendix A 

 

Figure A1. Rainfall distribution from January 2015 to March 2019. Data is collected from Minhe and 

Xining meteorological stations. 
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Figure A2. Mean deformation velocity map derived from the ascending images from January 2018 to 

March 2019. The purple line defines the study coverage. Four zones (A–D) were zoomed in order to 

distinguish the deformation variation. The black points represent main urban areas. 

 

Figure A3. Mean deformation velocity map derived from the descending images from January 2018 to 

March 2019. The purple line defines the study coverage. The black points represent the main urban areas. 

 

Figure A4. The standard deviation of the two orbits along line of sight (LOS). Note the left image is 

the ascending and right the descending. Four zones (A–D) in different parts of the study area were 

chosen to zoom up. Regions A and C show a standard deviation below 5 mm/year while B and D 

show a high standard deviation value up to 10 mm/year. 
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Figure A5. (a) Coherence image generated from differential interferograms in the time span 6–18 

August 2018; (b) differential interferometric phase between 6 and 18 August 2018; (c) coherence 

images of differential interferograms between 6 and 18 August 2018; (d) differential interferometric 

phase between August 6 and 18, 2018; (e,f) corresponding satellite optical images from Google Earth 

on 24 August 2018 and 3 October 2018, respectively. Note, the pink solid line in (c,d,f) represents the 

boundary of this loess flow, and blue dashed boundary in (c,d) is the deposited loess flow. 
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