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The focus of this thesis is the study and the application of nonmonotone

strategies. These techniques are basically introduced to improve numerical

results of existing optimization algorithms. Their first aim is that of relaxing

the monotone requirement imposed by the globalization techniques. In fact,

these monotone conditions might slow down the convergence rate of inher-

ently nonmonotone optimization methods. This relaxation must not harm

global convergence results.

In this thesis we apply nonmonotone strategies to both line search and

trust-region globalization techniques. We first considered Generalized Nash

Equilibrium Problems (GNEPs) and their KKT reformulation into a highly

nonlinear constrained smooth system of equations. In order to obtain global

and fast local convergence, we take into account an existing trust-region

method that is locally superlinear under an error bound condition only. A

nonmonotone strategy has been applied, showing that the resulting algo-

rithm performs significantly better than the original one. Global conver-

gence properties have been proved for the new algorithm, while superlinear

convergence is directly inherited from the existing method. The resulting

algorithm is competitive with a standard software for nonlinear equations,

not only on GNEPs, but also on quasi-variational inequalities.

The second contribution of this thesis is the development of a framework

for nonmonotone line search based decomposition methods. This is the first

time in which nonmonotonicity is combined with decomposition methods for

general constrained problems. Note that the choice of the direction and the

line search are not fixed in advance, in fact the framework proves conver-

gence for all those combinations of directions and line searches that are able

to satisfy some mild assumptions. A specific realization of this abstract algo-

rithm has been implemented in two versions, monotone and nonmonotone.

The two algorithms have been compared on a set of network equilibrium

problems. Also on this application, the nonmonotone version outperformed

its monotone counterpart both on the total number of iterations and the

function evaluations.

In the end, a new family of nonmonotone techniques is proposed to build

algorithms that are able to control the amount of nonmonotonicity intro-

duced in each of the phases of the optimization procedure. This tool might

be very helpful to understand in which combination of methods, problems

and phases is more important to apply a nonmonotone strategy.
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Chapter 1

Introduction

Nonmonotone techniques are valuable tools for improving numerical results

of existing optimization methods. In particular, they are very well suited for

all those cases in which the trial step is showed to perform well when applied

directly, but the same good performances cannot be maintained when a

monotone globalization techniques is applied. On the other hand, without a

globalization strategy it would not be possible to prove global convergence

theorems for those methods. A nonmonotone technique is (generally) a small

modification on the globalization procedure whose aim is that of accepting

also trial steps that would result in an increase of the function value. Because

of that, the sequence of function values {f(xk)} usually would no more be

monotonically decreasing. There are in fact some specific problems, methods

or optimization phases on which nonmonotonicity can be very helpful to

improve the performances over their monotone counter-part.

1.1 The objective

The aim of this thesis is that of applying nonmonotone techniques to fields

in which this idea was still unexplored. The majority of the optimization

researchers are aware of the existence of such an extension, but there are

still some fields in which this powerful tool has never been tried or still

without enough effort/expertise. In general, this has happened and still

happens when researchers from other areas apply optimization methods to

solve problems that originate in their field. As it will be showed in Chapter

4, one example is that of network equilibrium problems. Another case is that

3



4 Introduction

of machine learning, in which nonmonotone techniques have been tried in the

past, but most of the state-of-the-art software has never taken into account

the possibility of extending their implementations to the use of nonmonotone

techniques. On the other side, thanks to some useful discussion with some

foreign colleagues we came to the knowledge that also between researchers

that are aware of the existence of this tool, there is some skepticism on its

actual value. One possible reason is the fact that nonmonotone techniques

has often been applied to improve numerical results of specific methods, but

not much has been done for understanding properly where they are actually

more useful. For instance, there are still two important elements missing

for obtaining a better comprehension of this field: a systematic literature

review and a common set of problems on which validate performances of

different nonmonotone techniques. Nonetheless, nonmonotone techniques

can be easily implemented in all the cases in which a globalization technique

is required, and this simple modification can greatly improve performances

in lot of circumstances.

1.2 Contributions

In this thesis we first apply nonmonotonicity to two fields in which this

idea was never exploited before: Generalized Nash Equilibrium Problems

(GNEPs) and Network Equilibrium (NE) problems. In both cases the non-

monotone version of the algorithm is able to outperform its monotone counter-

part. In the first case, nonmonotonicity was applied to a trust-region global-

ization technique, while in the second case to a line search. We thus studied

and extended existing monotone proofs and methods using both the glob-

alization techniques. The experience obtained on modeling a nonmonotone

algorithm, especially from the numerical point of view, was exploited in the

last of the three works. Differently from the previous projects, it mainly

focus on nonmonotonicity in general. The aim is that of providing a new

family of nonmonotone techniques which not only can improve existing non-

monotone performances, but might be also exploited to obtain useful insights

on the optimization procedure.

In Chapter 3 one of the first trust-region nonmonotone techniques [91]

is used as a tool to improve numerical results obtained by its monotone

counter-part [92]. Global convergence results have been extended to the

nonmonotone case. To the best of our knowledge, algorithm described in
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Chapter 3, based on [46], is the first that

• exploits nonmonotonicity to solve GNEPs,

• obtains superlinear convergence for GNEPs.

In fact, GNEPs might be reformulated to obtain a constrained smooth sys-

tem of equations which is often singular at the solutions. Thanks to the

recent paper [62], it was anyway possible to obtain an error bound condition

for GNEPs. For this reason, the method from [92] was chosen: it super-

linearly solves constrained system of smooth equations only under an error

bound condition. The direction employed in [92] is the convex combination

of a (projected) trust-region and (projected) anti-gradient that minimizes

the quadratic approximation of the merit function. For this reason it is very

important to accept the new step as often as possible, especially when the

trust-region direction is prevailing on the anti-gradient one, as in the late

phase of the optimization procedure.

In Chapter 4 the first nonmonotone line search [55] is applied in com-

bination with decomposition methods. This is the first time in which non-

monotonicity is theoretically studied together with a decomposition scheme

for a very general class of constrained optimization problems. Based on the

paper [45], this chapter extends the monotone decomposition framework [16]

to the nonmonotone case. Moreover, in the case of feasible sets defined by a

single equality and box constraints, global convergence is for the first time

proved for a direction with only two nonzero components selected with the

Gauss-Southwell rule. From the numerical point of view this is the first time

in which a nonmonotone technique is applied to solve NE problems. Non-

monotonicity is again exploited to accept as often as possible the new initial

step size, since in this application the Dafermos step [18] was proved to work

very well in practice when applied directly. In the end, a new nonmonotone

implementation is designed to obtain a consistent amount of nonmonotonic-

ity even on large-scale problems and in presence of numerical cancellation

errors.

In Chapter 5, nonmonotonicity is studied in a more general perspective.

As it will be clarified below, in the field of nonmonotone techniques a prac-

tical rule that helps researchers understand where nonmonotone techniques

should or should not be applied is still missing. In order to make a small step

in that direction, in Chapter 5, a new family of nonmonotone techniques is

proposed to better control the amount of nonmonotonicity introduced. In
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particular, thanks to this new idea it is possible to extract useful insights

on the amount of nonmonotone effect to be introduced in the various phases

of the optimization procedure. This process let us obtain benefits that go

beyond those already obtained by switching from a monotone condition to a

nonmonotone one. The numerical analysis have been conducted on the same

set of NE problems explored in Chapter 5. The origin of this idea comes

from the identification of a connection between two widely used nonmono-

tone techniques: [55] and [70]. This same idea was actually also exploited to

define the new nonmonotone implementation in Chapter 5.



Chapter 2

State of the Art

In this chapter we will revise literature on nonmonotone techniques. These

techniques have always been applied to improve numerical performances of

very specific methods. In fact they have been the perfect globalization tech-

nique for lot of different fast local procedures. On the other side, this wide

range of applications did not help achieving a systematic approach in the

study of these techniques. For this reason, it is hard to say that a proper

field of research on nonmonotone techniques is now existing. In addition, af-

ter more than thirty years from the first work on this field, lot of researchers

ignore or are skeptical about the importance of nonmonotone techniques.

A possible cause is the fact that nonmonotonicity is still not completely

understood. In particular, it is still not clear on which problems/method-

s/optimization phases nonmonotonicity is more/less useful. In this literature

review we focus on those papers that might be considered a proper contri-

bution to such an ethereal field. Papers are cited in a chronological order.

• Grippo et al. [55]: The first nonmonotone technique is introduced to ac-

cept unitary step on the Newton direction in the unconstrained setting.

They take inspiration from the nonmonotone watchdog technique [17],

but in (2.2) they simply extend Armijo monotone technique (2.1) to

accept also nonmonotone steps. In [55] they find some evidences re-

garding the fact that nonmonotone techniques are particularly valuable

for highly nonlinear functions with narrow curved valleys and in the

intermediate and in the final stages of the minimization process.

f(xk + αkdk) ≤ f(xk) + γαk∇f(xk)T dk, (2.1)

7
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f(xk + αkdk) ≤ fkmax + γαk∇f(xk)T dk, (2.2)

where xk, dk and αk respectively denotes iterate, direction and step

length at iteration k, ∇f(xk) is the gradient of f and γ ∈ (0, 1).

fkmax := max
0≤j≤min(k,W )

f(xk−j). (2.3)

• Grippo et al. [50]: The nonmonotone technique (2.2) is for the first

time applied to truncated Newton methods. They find some evidences

regarding the fact that nonmonotone strategies are helpful for solving

ill-conditioned problems.

• Grippo et al. [51]: They define a stabilization strategy flexible enough

to take into account various different causes of inefficiency. In partic-

ular it combines the nonmonotone line search technique (2.2) with the

watchdog technique of [17] and makes use of a step length (‖xk+1−xk‖)
acceptability criterion rather than controlling the function value. A

new nonmonotone strategy is introduced and fkmax is replaced by some-

thing different. Condition (2.4) often introduce less nonmonotonicity

than the original (2.2). On the other hand, they exploit a further relax-

ation of the monotonicity property: some steps can be automatically

accepted, provided that they are sufficiently short. The function value

is checked only every L iterations and xl(j) are reference iterations.

f(xk + αkdk) ≤Mk + γαk∇f(xk)T dk with

Mk = max
0≤i≤W

f(xl(j+1−i)) or

Mk = min

{
fkmax;

1

2
(M j−1 + f(xl(j+1)))

}
or

Mk = max

{
f(xl(j+1));

1

W + 1

W∑
i=0

f(xl(j+1−i))

} (2.4)

• Deng et al. [28]: a nonmonotone technique is for the first time de-

veloped for a trust-region method. They use (2.5) and they point out

that W and ∆max must be accurately chosen. They show that with the

new nonmonotone method it’s possible to save a considerable amount

of computation for problem with narrow valley. They also give a new

algorithm considering the connection with the nonmonotone strategy.
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We recall here the definition of actual (Aredk) and predicted (Predk)

reduction,

Aredk = f(xk)− f(xk+1) Predk = Φk(0)− Φk(dk),

where Φk is a quadratic approximation of f .

Aredk

Predk
≥ min

{
γ,
fkmax − f(xk)− ρ∆k‖∇f(xk)‖

−Predk

}
, (2.5)

where ρ > 0 and ∆k > 0 is the trust-region radius.

• Zhou and Tits [105]: a new nonmonotone line search mapping (2.6) is

applied on sequential quadratic programming for minimax problems.

In particular the decrease of the objective function is checked with re-

spect to a quadratic term. If the condition is not satisfied using the

initial step size, an arc line search is instead used to compute the step

length. In this field, the event in which the line search prevent the

superlinear convergence to take place is called Maratos effect. Con-

vergence is proved and the Maratos effect avoided. In this application

they use W = 2.{
f(xk + αkdk) ≤ fkmax + αkdk

T
Hkdk if αk0 is accepted,

f(xk + αkdk + αk
2
d̃k) ≤ fkmax + γαkdk

T
Hkdk otherwise,

(2.6)

where d̃k is a corrective direction and H is a matrix that approximates

the Hessian of f .

• Ferris and Lucidi [40]: a new stabilization strategy similar to that

of [51] is applied together with a nonmonotone technique to solve sys-

tems of nonlinear nonsmooth equations. This is the first time in which

a nonmonotone technique is applied to nonsmooth equations. They

claim that the monotone requirement can be even more harmful for

systems of nonlinear equations. In fact in this case there is no longer

a strong connection between the merit function and the original prob-

lem. For this reason, a good algorithm should use the structure of the

original problem as much as possible (e.g., use the unit step size along

the original Newton-type direction). Assumptions are given on general

merit and auxiliary functions.
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• Liu et al. [75]: the original nonmonotone technique (2.2) is applied

on the top of a new theoretical framework that encapsulates many

different line searches: exact, Curry-Altman’s, Armijo’s, Goldstein’s,

Wolfe’s, De Leone-Grippo-Lucidi’s. They employ a L-BFGS method.

• Kanzow [63]: the original nonmonotone technique (2.2) is applied on

the squared norm merit function of linear complementarity problems.

The algorithm is called noninterior continuation method. An interest-

ing aspect here is the fact that the nonmonotone line search perform

better than its monotone counterpart, even if the merit function is not

too nonlinear.

• De Luca et al. [27]: the original nonmonotone technique (2.2) is ap-

plied on the semismooth reformulation of nonlinear complementarity

problems. In those problems nonmonotone techniques are very well

suited because the monotone line search often leads to very small step

sizes.

• Toint [90]: a new nonmonotone technique (2.7) is applied to truncated

Newton method. In particular he proposes to control the amount of

nonmonotonicity by a measure indicating how well adapted the trun-

cated Newton step is to the true objective function. This adequacy is

measured by examining how close are the past step sizes to 1. Thanks

to the numerical results assessed in [90] various observations are pre-

sented:

– it is often advantageous to enforce monotonicity in the first few

iterations;

– the differences in CPU time between monotone and nonmonotone

methods are most important for large problems;

– when function evaluations is considered the gain provided by some

of the analyzed nonmonotone methods is consistent, regardless of

problem size;

– in the absence of preconditioning, the new proposed variant ap-

pears to yield the highest potential for substantial efficiency gains

while best limiting the probability of not solving problems.
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f(xk + αkdk) ≤ f(xk) +

 jk∏
j=1

αk(l−j)

 1

jk

· (fkmax − f(xk))

+ γαk∇f(xk)T dk,

where jk := arg max
0≤j≤min(k,W )

f(xk−j).

(2.7)

• Ferris et al. [41]: they use the stabilization strategy from [51] for a

negative curvature direction together with a curvilinear line search.

Thanks to this strategy they are able to employ a high amount on

nonmonotonicity.

f(xk + αk
2
sk + αkdk) ≤

fkmax + γαk
2
(
∇f(xk)T sk +

1

2
dk
T∇2f(xk)dk

)
,

(2.8)

where sk is a Newton-type direction, dk is a negative curvature direc-

tion and ∇2f is the Hessian of f .

• Toint [91]: he proposes a new nonmonotone strategy (2.9) for trust-

region methods. In this new technique, coherence on the nonmonotone

trust-region approach is enforced by comparing both the achieved and

predicted reductions for the last jk iterations. Moreover, he investi-

gates the importance of the nonmonotone window W , finding out that

in some cases an infinite W might be the best choice. For this rea-

son he also proposes a new strategy that should fix W in an adaptive

way. This idea of adapting W has been very popular in many papers

that followed [91]. In the first experiments he uses a delay on the

nonmonotone effect, but keeping track of fkmax from the beginning.

max

{
Aredk

Predk
;
fkmax − f(xk + dk)∑jk

i=0 Pred
k−i

}
≥ γ. (2.9)

• Raydan [82]: the original nonmonotone line search (2.2) is employed

to globalize the Barzilai-Borwein method. In fact for this method it

is only possible to obtain global convergence in the two dimensional

quadratic case, while it needs a globalization technique to be glob-

ally convergent in the general case. Barzilai-Borwein usually is highly

nonmonotone and forcing monotonicity would reduce the method to
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a steepest descent. This is one of the most successful applications of

nonmonotone strategies. From the numerical experiments, he observes

that in general the choice of W does not have a great influence on

results. The opposite is instead happening on problems with singular

or very ill-conditioned Hessian at the solution. He claims that in these

cases the choice of the parameter W is a delicate issue.

• Facchinei and Kanzow [33]: a Levenberg-Marquardt method for a

semismooth equation reformulation of nonlinear complementarity prob-

lems. Global convergence is ensured by a nonmonotone line search (2.2)

in which the reference iteration has been adapted in a similar way to

the one proposed in [91]: keep W fixed as long as the algorithm seems

to make progress and modify it only if for a certain prefixed number

of consecutive steps the function values increase.

• Zhang and Chen [103]: in this paper the nonmonotone technique (2.2)

is applied to globalize a Levenberg-Marquardt method for nonlinear

least squares problems. A second nonmonotone strategy is also de-

veloped to obtain a higher degree of nonmonotonicity. In particular,

they use the classical diagonal matrix employed to better invert the

Levenberg-Marquardt equation, also in the quadratic approximation

of f and thus in the predicted reduction.

• Lucidi et al. [77]: this paper extends the approach proposed in [41] to

large-scale optimization problems. In particular, they show that it is

possible to weaken the assumptions on the negative curvature direc-

tions to prove same convergence properties of the general stabilization

framework from [41]. The curvilinear line search used is (2.8).

• Li and Fukushima [70]: a L-BFGS method that approximate Gauss-

Newton direction is applied to solve symmetric nonlinear equations. A

new line search (2.10) is applied to the merit function of the nonlin-

ear equation and the resulting method possess only approximate norm

descent property. This is the first time in which a user-defined {εk}
sequence is exploited in a line search. In this case εk is not introduced

to avoid the monotonic decrease of f , but instead to obtain the approx-

imate norm descent property. Authors never cite [55] nor any other
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nonmonotone works.

f(xk + αkdk) ≤f(xk)− 2σ1‖αkdk‖2 − σ2α
kf(xk) + εkf(xk),

∞∑
k=0

εk < ε <∞.
(2.10)

where σ1 > 0, σ2 > 0 and f is the merit function of the nonlinear

equation.

• Birgin et al. [11]: this work is the extension of [82] to the convex

constrained case. In fact, instead of the spectral gradient (Barzilai-

Borwein method) a projected spectral gradient direction is employed.

Note that the method appears to be a generalized steepest descent

method, but it is clear from its derivation that it is related to the quasi-

Newton family of methods through an approximated secant equation.

This paper is another very successful application of the nonmonotone

technique (2.2).

• Li and Fukushima [71]: this work is the extension to [70] in which the

new Derivative Free (DF) line search (2.11) is used to achieve a norm

descent property. In particular the term εkf(xk) is introduced to to

obtain a well-defined line search.

f(xk + αkdk) ≤f(xk)− 2σ1‖αkdk‖2 + εkf(xk),
∞∑
k=0

εk < ε <∞.
(2.11)

• Dai and Zhang [24]: starting from [82] it was pointed out the impor-

tance of the choice of W . Thus in [24] they propose an adaptive way

to update W . They take inspiration from [91] and his adaptive choice,

but their rule is more elaborated.

• Ulbrich [94]: a new nonmonotone trust-region condition (2.12) is devel-

oped for box-constrained semismooth system of equations. He claims

that nonmonotonicity helps preventing convergence to local nonglobal

solutions, especially in the case of problems with a least-squares-like

objective function. The new condition (2.12) requires that the f in

new point is either less than f(xk) or less than a weighted mean of last
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function values (note that scalars are chosen by the user).

max
{
f(xk),

∑jk

i=0 λif(xk−i)
}
− f(xk + dk)∑jk

i=0 Pred
k−i

≥ γ,
jk∑
i=0

λi = 1 (2.12)

• Zhang and Zhang [101]: in this paper on the sequential quadratic pro-

gramming is applied the original nonmonotone technique (2.2). In

particular, they apply it to a curvilinear line search exploiting a very

weak degree of nonmonotonicity (W = 1).

• Dai [19]: various global and local convergence results are assessed in

the case of unconstrained optimization and unspecified direction. He

suggests to use a different nonmonotone strategy (2.13). In particular,

whenever the initial step size has good properties it should be accepted

as often as possible, but whenever (2.2) is not satisfied, he claims that

there is no reason to obtain αk by employing (2.2) and not (2.1). He

states that when the function is not highly nonlinear one could prefer

the monotone condition. He shows the good performance of the modi-

fied strategy with respect to the original (2.2) on some of the problems.{
(2.2) if αk0 is accepted,

(2.1) otherwise.
(2.13)

• Dai et al. [23]: they propose two new initial step sizes for the algorithm

from [82]. Also here the original nonmonotone line search (2.2) is used

to globalize the method. Note that the nonmonotone line search is not

exactly quadratic, since only the norm of the step is squared, while not

the step size.

• Grippo and Sciandrone [53]: a new nonmonotone globalization scheme

is developed for Barzilai-Borwein method. In particular, it is defined a

new class of methods that employ watchdog techniques together with

the line search (2.14). The unmodified Barzilai-Borwein is applied lo-

cally and the actual reduction obtained is checked with respect to some

reference value. When the step is rejected, the method backtracks to a

previous iterate and from there the nonmonotone line search technique

(2.14) is employed.

f(xk + αkdk) ≤ fkmax + γ1α
k∇f(xk)T dk − γ2(αk‖dk‖)2, (2.14)
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where 0 ≤ γ1 < 1, 0 ≤ γ2 and 0 < γ1 + γ2.

• Sun et al. [88]: a new nonmonotone generalization framework is devel-

oped. Armijo, Goldstein and Wolfe line searches are showed to belong

this class of line searches (2.15).

f(xk + αkdk) ≤ fkmax − σ(tk), (2.15)

where σ is a forcing function and tk = −∇f(xk)T dk

‖dk‖ .

• Facchinei et al. [34]: they use the stabilization technique from [51] to

globalize a truncated Newton method for large-scale bound constrained

problems. Thanks to the proposed algorithm is possible to obtain a

sequence of unfeasible points. The merit function on which the non-

monotone line search is applied also takes into account the feasibility

of the solution.

• Yu and Gao [96]: as in [105] nonmonotone line search (2.6) is applied

to globalize sequential quadratic programming on minmax problems.

This paper is extending [105] to the constrained case thanks to the use

of a merit function.

• Plagianakos and Magoulas [80]: a new nonmonotone line search is ap-

plied to the batch training of multi-layer perceptron. The original non-

monotone technique (2.2) is applied together with a strategy to adapt

the nonmonotone window W k (2.16) on the base of a local approxima-

tion of the Lipschitz constant Lk. Experiments show that nonmono-

tonicity is valuable in the training of neural networks because, very

often, the method escapes from local minima and flat valleys, whereas

other methods are trapped.

W k =


W k−1 + 1 Lk < Lk−1 < Lk−2,

W k−1 − 1 Lk > Lk−1 > Lk−2,

W k−1 otherwise.

(2.16)

• Birgin et al. [12]: they extend [11] to an inexact-projection version of

the method, to be applied when the feasible set is not an easy set. The

original (2.2) is employed also here.
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• La Cruz and Raydan [68]: in this paper the nonmonotone spectral gra-

dient from [82] is extended for solving large-scale nonlinear equations.

They are the first to use the directions dk = ±F (xk) in a systematic

way, where F (x) = 0 is the system of nonlinear equations. As in [82],

Barzilai-Borwein initial step size is combined with the original non-

monotone line search (2.2). The resulting algorithm has been called

Spectral Algorithm for Nonlinear Equations (SANE).

• Zhang and Zhang [102]: for the first time a nonmonotone technique

is applied to an adaptive trust-region method. These methods are

characterized by the fact that the trust-region radius depends on the

gradient of the function in xk. To the best of our knowledge this

is the first time that the nonmonotone technique (2.17) is employed.

Nonmonotone adaptive trust-region method will become very popular

in papers that followed [102].

fkmax − f(xk + dk)

Predk
≥ γ. (2.17)

• Zhang and Hager [100]: a new nonmonotone technique (2.18) is pro-

posed to solve some potential drawbacks of the original (2.2):

– the use of the max function might discard a good reference value

f(xk);

– in some cases numerical results are highly dependent on the choice

of W ;

– as pointed out in [19], for R-linearly convergent sequence obtained

when minimizing uniformly convex functions, it is in general not

possible to prove that (2.2) is satisfied for any bounded fixed W .

Note that in the case of Q-linearly convergent subsequence this is

instead possible.

The new proposed technique (2.18) does no more require a decrease

w.r.t. fkmax, but instead w.r.t. a convex combination of all the past

function values. The parameter ηk controls how to combine these func-

tion values. If ηk = 1 the convex combination boils down to a simple

mean of all the past function values. The new nonmonotone technique

(2.18) has become very popular in papers that followed [100].
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Thanks to (2.17) they are able to avoid the third drawback described

above, even it is hard to consider it a real issue for a successful ap-

plication of a nonmonotone technique. On the other hand, ignoring a

good function value f(xk) might be considered a proper weakness of

(2.2) and the new technique (2.18) actually fixes this issue when f(xk)

has enough weight in the convex combination. In fact as W , also ηk

is an important parameter to be chosen, even if ηk has probably less

influence on the overall outcome. On the other side, W and more so

ηk, have high impact on the results only on some particular problems,

for most of the application both are very indirect parameter to con-

trol nonmonotonicity (see Chapter 5 for an accurate discussion on the

topic).

f(xk + αkdk) ≤ Ck + δαk∇f(xk)T dk

Qk+1 = ηkQk + 1, Ck+1 =
ηkQkCk + f(xk)

Qk+1
,

C0 = f(x0), Q0 = 1.

(2.18)

• Sun [87]: the technique (2.17) was been already developed in [102], even

if he claims to be the first to employ it as a nonmonotone condition.

Theoretical results are given in a different way, since the focus in [87]

is the relationship between the trust-region method and line search

approach.

• Dai and Fletcher [20]: they show that even nonmonotone line searches

(in particular (2.2)) may significantly degrade the performances of the

projected Barzilai-Borwein method. Moreover they show that even

with a much larger W , performances are still degraded. As observed

in [43], Barzilai-Borwein method is in fact very nonmonotone even at

the beginning of the optimization procedure. This issue cannot be

solved by increasing W , since by using (2.2) it is not possible to accept

an iterate xk for which we have f(xk) > f(x0) (see Chapter 5). On the

other side, they also show an example in which the original method

without line search may not converge: it cycles between several points.

For this reason they suggest to include a line search that would not

degrade the performance of the unmodified method. In particular, they

define a new strategy to adapt the reference iteration, in a similar way

to that used in [91], and that allows f(xk) > f(x0) on some iterates.

Box constrained quadratic programming is assessed in this paper.
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• Fu and Sun [44]: as in [102] they focus on unconstrained optimiza-

tion problems applying a nonmonotone adaptive trust-region method.

Differently from [102] they employ (2.19) instead of (2.17) and they

approximately solve the trust-region subproblem in a different way.

fkmax − f(xk + dk)

fkmax − Φk(0)− Φk(dk)
≥ γ. (2.19)

• Zanni [99]: to solve constrained quadratic programming and the train-

ing of SVM as a particular case, he employs a decomposition approach

and a spectral projected gradient in each subproblems. To the best of

our knowledge it is the first time in which a nonmonotone technique

is combined with a decomposition method. In particular he employs

(2.2) together with the adaptive reference update by [20].

• Hager and Zhang [58]: as often happens in presence of Barzilai-Borwein

methods, also in this work a high amount of nonmonotonicity is needed

in the early stage of the optimization procedure. Condition (2.2) is in

fact too strict because it enforces f(xk) > f(x0). Convergence proof is

obtained for general active set algorithms combined with line searches

that can ensure that the function value in the reference iteration is

infinitely often less or equal than fmax. In the appendix they define

a new nonmonotone strategy for an adaptive reference iteration based

on the minimum f found and the amount of iterations in which the

initial step size αk0 is first accepted.

• La Cruz et al. [67]: in this paper a DF extension of SANE [68] is de-

veloped. A new nonmonotone strategy (2.20) that sum together the

original fkmax and εk from (2.10) is developed. Weak global conver-

gence is obtained by additionally assuming that limit points for which

we have ∇f(xk)TF (xk) = 0 are not solutions of the nonlinear equa-

tions. Also in this application of a spectral method a high amount of

nonmonotonicity is very helpful in all the stages of the optimization

procedure.

f(xk + αkdk) ≤fkmax + εk + γαk∇f(xk)T dk,
∞∑
k=0

εk < ε <∞.
(2.20)
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• Dai et al. [22]: they propose an adaptive way to decide the length

of the cycle of cyclic Barzilai-Borwein. The nonmonotone strategy is

the same from [24], which is also adaptively modifying the reference

iteration.

• Dai and Fletcher [21]: based on [20] they propose a new nonmonotone

strategy for adapting the reference iteration. In addition they use an

exact line search whenever the nonmonotone condition is not satisfied.

Single equality box-constrained quadratic programming are considered

in this paper. {
(2.2) if αk0 is accepted,

Exact otherwise.
(2.21)

• Shi and Shen [85]: they propose a new nonmonotone line search (2.22)

that sums the classical fmax to a quadratic term. Since (2.22) is now

highly nonmonotone they use a very small nonmonotone window W =

3.

f(xk + αkdk) ≤ fkmax + γαk∇f(xk)T dk +
1

2
αk

2
dk
T
Bkdk, (2.22)

where Bk is an approximation of the Hessian matrix.

• Sun and Zhou [89]: in this paper they generalize the second order

Goldstein line search to the nonmonotone case (2.23). In particular

(sk, dk) is a descent pair of direction, e.g., a Newton and a negative

curvature direction.

f(xk + αk
2
sk + αkdk) ≤

fkmax + γ1α
k2
(
∇f(xk)T sk +

1

2
dk
T∇2f(xk)dk

)
,

f(xk + αk
2
sk + αkdk) ≥

f(xk) + γ2α
k2
(
∇f(xk)T sk +

1

2
dk
T∇2f(xk)dk

)
.

(2.23)

• Mo et al. [78]: they propose a new nonmonotone technique for trust-

region (2.24). They adapt (2.18), originally proposed for line search,

to the trust-region globalization technique.

Ck − f(xk + dk)

Φk(0)− Φk(dk)
≥ γ with Ck from (2.18). (2.24)
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• Serafini et al. [83]: they use a nonmonotone spectral projected gradient

method for solving constrained quadratic programming and training

of SVMs as a special case. In particular (2.2) is the nonmonotone

line search employed. Moreover they develop a method for alternating

between two different spectral step sizes.

• Gu and Mo [57]: a new nonmonotone technique for trust-region is pro-

posed. In (2.25) there is a simple combination between f(xk) and the

previous Dk. If a trial step is not accepted, the algorithm performs

the nonmonotone line search to find an iterative point instead of solv-

ing the trust-region subproblem. Both trust-region and line search are

nonmonotone. In the numerical results they modify ηk dynamically.

In particular, they use values closer to 1 (more nonmonotonicity) when

iterates are far away from the optimum and closer to 0 (less nonmono-

tonicity) when iterates approach the solution.{
Dk−f(xk+dk)
Φk(0)−Φk(dk)

≥ γ if dk0 is accepted,

f(xk + αkdk) ≤ Dk + δαk∇f(xk)T dk otherwise.

where Dk =

{
f(xk) k = 1

ηkDk−1 + (ηk − 1)f(xk) k > 1

(2.25)

• Yu and Pu [98]: in the framework proposed by [88] they show that

using the nonmonotone technique (2.12) (adapted to the line search

case) it is possible to obtain global convergence without the classical

condition that relates the norm of the direction and the norm of the

gradient (‖dk‖ ≤ c1‖∇f(xk)‖). It is interesting to point out that (2.12)

is not as nonmonotone as (2.2).

• Shi and Guo [84]: they propose a new nonmonotone technique (2.26)

that exploits Lk, an approximation of the Lipschitz constant. Various

possible choices are given to approximate it.

f(xk + αkdk) ≤ fkmax + γαk
(
∇f(xk)T dk +

1

2
αkLk‖dk‖2

)
. (2.26)

• Su and Pu [86]: to solve equality constrained optimization problems the

nonmonotone idea is also applied to the filter algorithm. Thus, a new

step is either accepted when the objective or the violation function
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decrease. Exploiting (2.27), a modified version of (2.12), the filter

condition needs to be satisfied only every W iteration.

max
{
f(xk);

∑W
i=0 λif(xk−i)

}
Predk

≥ γ. (2.27)

• Ahookhosh and Amini [1]: in this work an effective adaptive trust-

region rule is combined with the simple nonmonotone technique (2.17),

giving birth to an algorithm that received attentions from papers that

followed.

• Hu et al. [61]: starting from the idea of [100], they propose a new

nonmonotone technique (2.28) in which the convex combination of the

function values is limited to a finite number of previous iterations.

f(xk + αkdk) ≤ Ck + δαk∇f(xk)T dk,

Qk+1 = 1 + ηk
W∑
i=0

ηk−i,

Ck+1 =
ηk
∑W
i=0 η

k−if(xk−i) + f(xk)

Qk

(2.28)

• Zhang and Huang [104]: an existing smoothing-type algorithm for solv-

ing systems of inequalities is extended to the use of the nonmonotone

line search (2.18) and to the case of equalities together with inequali-

ties.

• Ahookhosh et al. [2]: this paper is very similar to [57], both adaptive

trust-region methods for unconstrained optimization, both use exactly

(2.25). In the numerical results of [2] they also compare with [57],

but they never explain the differences with their implementation. The

claim that [100] proved that best convergence results are obtained by

stronger nonmonotone strategy when iterations are far from the opti-

mum, and by weaker nonmonotone strategy when iterations are close

to it. This conclusion does not take into account statements in many

other works that claim the exact opposite.

• Fletcher [42]: even if he does not make uses of any common globaliza-

tion techniques, function values in each internal phase (a “sweep”) can

increase. He also claims that for some application Barzilai-Borwein
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method was both used with W = 2, 3 or W = 20, 50. He concludes

that the best choice of W is problem dependent.

• Zhou [106]: this is a small note for the globalization of the PRP method

using (2.10). In the paper it is only showed weak convergence to sta-

tionary points.

• Grippo and Rinaldi [52]: to the best of our knowledge this is the first

nonmonotone theoretical framework for DF optimization. They first

extend known methods like Hooke-Jeeves and Rosenbrock to the non-

monotone case, then they develop a new algorithm based on the rota-

tion of the coordinate axes. Nonmonotone technique (2.2) is combined

with a quadratic line search to avoid the use of the gradient.

• Li et al. [69]: for solving equality constrained minimization problems

they combine for the first time an augmented Lagrangian multiplier

method together with a nonmonotone line search (2.18). In this case,

the nonmonotonicity is employed to quickly accept large steps on the

“hard” direction. Note that f may not be differentiable with respect

to one block of variables.

• Liu and Ma [76]: they introduce a new nonmonotone technique (2.29)

that combines the ratio between actual and predicted reduction to the

line search mapping as it has been done in (2.25). Instead of using only

the first order information in the line search, they sum a quadratic term

that additionally exploits an approximation of the Lipschitz constant

Lk.
Dk−f(xk+dk)
Φk(0)−Φk(dk)

≥ γ if dk0 is accepted,

f(xk + αkdk) ≤ Dk

+δαk∇f(xk)T dk + 1
2α

kLk‖dk‖2 otherwise.

where Dk =

{
f(xk) k = 1

ηkDk−1 + (ηk − 1)f(xk) k > 1

(2.29)

• Amini et al. [4]: they propose a new nonmonotone technique (2.30)

that simply combines fkmax and f(xk). The value ηk is adapted during

the optimization process, using a higher amount of nonmonotonicity in

the beginning and decreasing it in later iterations. Theory is developed
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without fully characterizing the direction, but in the experiment they

use 3 different optimization methods: Barzilai-Borwein, L-BFGS and

truncated Newton. They compare their new technique with [55,100].

f(xk + αkdk) ≤ Rk + γαk∇f(xk)T dk,

Rk := ηkfkmax + (1− ηk)f(xk).
(2.30)

• Ahookhosh et al. [3]: they propose two new nonmonotone techniques

that compute a convex combination of function value, as in [100], but

taking into account only last W values. The only difference between

the two techniques is how to handle iterations k with k < W . They

compare their two techniques with [2, 4, 55,100].

f(xk + αkdk) ≤ T k + γαk∇f(xk)T dk,

T k := (1− ηk−1)f(xk) + ηk−1(1− ηk−2)f(xk−1) + . . .

+ ηk−1 · . . . · ηk−W f(xk−W ).

(2.31)

• Nosratipour et al. [79]: they propose two new adaptive nonmonotone

rules based on the morphology of the objective function. One of the

techniques exploits (2.2) and adaptively updates W almost as in (2.16),

but instead of using the approximated Lipschitz constant to control it,

they use the norm of the gradient (2.32). The other technique computes

a convex combination of function value as in [3], but the distribution

of weights is obtained differently. They compare their two techniques

with [4, 55,80,100].

W k =


W k−1 + 1 10−1 < ‖∇f(xk)‖∞,
W k−1 10−3 ≤ ‖∇f(xk)‖∞ ≤ 10−1,

W k−1 − 1 otherwise.

(2.32)

In Table 2.1, a summary of all the papers cited in this chapter is re-
ported. For each of them we gave a fast reference to the method used, the
nonmonotone technique employed and the application for which it has been
designed.
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Paper Method Application Cond.

[55] Newton + Armijo Unconstrained (2.2))

[50] TN + Armijo Unconstrained (2.2)

[51] Unspecified + Armijo Unconstrained (2.4)

[28] TR Unconstrained (2.5)

[105] SQP + Armijo/Arc Minimax (2.6)

[40] Newton + Armijo NLE (2.2)

[75] L-BFGS + General Framework Unconstrained (2.2)

[63] Newton + Armijo LCP (2.2)

[27] SS Newton+Armijo/Quadratic NCP (2.2)

[90] CG + Armijo Unconstrained (2.7)

[41] Negative Curvature+Curvilinear Unconstrained (2.8)

[91] TR Convex Set (2.9)

[82] BB + Armijo Unconstrained (2.2)

[33] NS LM + Armijo/Quadratic NCP (2.2)

[103] LM Least Squares (2.2)

[77] Negative Curvature+Curvilinear Unconstrained (2.8)

[70] Approximated GN + Quadratic Symmetric NLE (2.10)

[11] SPG + Armijo Convex Set (2.2)

[71] Broyden QN + Quadratic NLE (2.11)

[24] BB + Armijo Unconstrained (2.13)

[94] TR + Projected Newton SS NLE+Box+Equality (2.12)

[101] SQP+Curvilinear Constrained (2.2)

[19] Unspecified + Armijo Unconstrained (2.13)

[23] BB + Quadratic Unconstrained (2.2)

[53] BB Armijo+Quadratic Unconstrained (2.14)

[88] General Framework Unconstrained (2.15)

[34] Active-set + Armijo Box (2.2)

[96] SQP+Armijo/Curvilinear Minimax Constrained (2.6)

[80] BB + Armijo Neural Nets (2.2)

[12] SPG + Armijo Convex Set (2.2)

[68] SANE NLE (2.2)

[102] Adaptive TR Unconstrained (2.17)

[100] L-BFGS + Wolfe Unconstrained (2.18)

[87] TR Unconstrained (2.17)

[20] BB + Armijo QP + Box (2.2)

[44] Adaptive TR Unconstrained (2.19)

[99] Decomposition + Inner SPG QP (SVM) (2.2)

[58] Projected Gradient + Armijo Box (2.2)

[22] Cyclic BB + Armijo Unconstrained (2.13)
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[21] Secant Approximation + Exact QP+Box+Equality (2.21)

[85] Specific Unconstrained (2.22)

[89] Negative Curvature+Goldstein Unconstrained (2.23)

[78] TR Unconstrained (2.22)

[83] SPG + Armijo QP (SVM) (2.2)

[57] TR + Specific Unconstrained (2.25)

[98] Unspecified+(2.15) Unconstrained (2.12)

[84] CG + Specific Unconstrained (2.26)

[86] Filter + TR Equality Constrained (2.27)

[1] Adaptive TR Unconstrained (2.17)

[61] Unspecified + Wolfe Unconstrained (2.28))

[104] Smoothing + Armijo NLE + Inequalities (2.18)

[2] Adaptive TR + Armijo Unconstrained (2.25)

[42] BB + Specific Unconstrained No

[69] (AD + BB) + Armijo NS + Equality (2.18)

[76] Unconstrained (2.18)

[106] PRP + Quadratic Unconstrained (2.10)

[52] DF + Quadratic Unconstrained (2.2)

[4] Unspecified + Armijo Unconstrained (2.30)

[3] Unspecified + Armijo Unconstrained (2.31)

[79] Unspecified + Armijo Unconstrained (2.32)

Table 2.1: A summary of all the papers cited in this chapter, giving a fast

reference to the method used, the nonmonotone technique employed and the

application for which it has been designed.
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Chapter 3

A Nonmonotone Trust-Region

Method for Generalized Nash

Equilibrium Problems

Generalized Nash equilibrium problems (GNEPs) are often diffi-

cult to solve by Newton-type methods since these problems tend

to have locally nonunique solutions. Here we take an existing

trust-region method which is known to be locally fast convergent

under an error bound condition, and modify this method by a

nonmonotone strategy in order to obtain a more reliable and ef-

ficient solver. The nonmonotone trust-region method inherits

the nice local convergence properties of its monotone counter-

part and is also shown to have the same global convergence prop-

erties. Numerical results indicate that the nonmonotone trust-

region method is significantly better than the monotone version,

and is at least competitive to an existing software applied to the

same reformulation used within our trust-region framework. Ad-

ditional tests on Quasi-Variational Inequalities (QVI) are also

presented to validate the efficiency of the proposed extension.1

1This chapter has been published as “A Nonmonotone Trust-Region Method for Gen-

eralized Nash Equilibrium and Related Problems with Strong Convergence Properties” in

Computational Optimization and Application vol. 69, iss. 3, pp. 629-652, 2018 [46].
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A Nonmonotone Trust-Region Method for Generalized Nash

Equilibrium Problems

3.1 Introduction

The aim of this chapter is to construct an efficient method for the solution of

generalized Nash equilibrium problems (GNEPs for short). These problems

have a wide range of applications in economics, operations research, com-

puter science, telecommunications etc. The interested reader is referred to

the survey papers [35,38] for more details regarding applications, theoretical

results and numerical approaches for the solution of GNEPs.

The main difficulty with GNEPs is that these problems tend to have

solution sets which are even locally nonunique. This means that standard

Newton-type schemes typically do not work very well. This is also illustrated,

for example, in the more general context of quasi-variational inequality prob-

lems by the semismooth Newton method from [36] which works extremely

well for some examples, but fails for quite a few other test problems. On

the other hand, there exist some very reliable methods with nice global

convergence properties like the interior-point-type scheme from [32] or the

augmented Lagrangian-type method from [64], but they are not locally fast

convergent, and might even have problems in getting high accuracy of the

solutions.

In order to obtain a globally and locally superlinearly convergent method

for GNEPs, we are therefore urged to apply suitable methods which also

work for nonunique solutions. Fortunately, in the meantime, there exist

a few methods for optimization problems and nonlinear systems of equa-

tions which have this desired property under an error bound condition, see,

e.g., [25, 35, 39, 65, 95] for some attempts in this direction. Moreover, there

also exist some recent papers that provide error bounds for GNEPs [31,62].

However, these error bounds depend on the particular reformulation of the

GNEP. The most prominent reformulations take the KKT conditions of the

players, concatenate all KKT conditions into a larger system and apply,

e.g., the Fischer-Burmeister function in order to get a semismooth system

of equations. Unfortunately, it turns out to be difficult to find Newton-type

methods for nonsmooth systems of equations which converge locally super-

linearly under an error bound condition without any further assumptions,

see, for example, the discussion in [59].

We therefore use a smooth reformulation of the GNEP with some simple

bound constraints for which a suitable error bound is available from [31].

Moreover, we take the trust-region method from [92] which works precisely

in our situation where we have a smooth constrained system of equations and
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which is locally superlinearly convergent under an error bound condition.

In order to improve the practical convergence of the trust-region method

from [92], we introduce a nonmonotone variant of that method in such a

way that it is still globally convergent and inherits the local properties of the

original method.

The chapter is therefore organized in the following way: Section 3.2

presents our algorithmic scheme. There we first recall the (monotone) trust-

region method from [92] and then derive the necessary modifications for

a nonmonotone version with the same local convergence properties. The

global convergence of the nonmonotone trust-region method is shown in Sec-

tion 3.3. The details for the application of this method applied to GNEPs

are presented in Section 3.4. The corresponding numerical results are given

in Section 3.5, together with some additional tests on Quasi-Variational In-

equalities (QVIs for short). We then conclude with some final remarks in

Section 3.6.

Notation: Rn denotes the n-dimensional Euclidean vector space, Rn+ is its

subset in which vectors have only nonnegative components, the symbol ‖ · ‖
is the Euclidean vector norm, G′ is the Jacobian of a generic differentiable

mapping G, ∇G is its transposed and ∇zνG is the same, but with respect

to the variables zν , where zν typically indicates a suitable subvector of z.

The symbol Br(z) denotes the (Euclidean) ball of radius r > 0 around a

given point z, while PΩ(z) stands for the (Euclidean) projection of z onto a

nonempty, closed and convex set Ω. Iterates of the algorithms are denoted

by xk.

3.2 Trust-Region Methods

Let F : Rn → Rn be a given function and Ω ⊆ Rn be a nonempty set.

We consider the problem of finding a solution of the constrained nonlinear

system of equations

F (x) = 0, x ∈ Ω (3.1)

which is of much interest for its own since problems of this kind arise in

many situations. The GNEP discussed in some more detail in Section 3.4 is

only one of the possible applications for which the original problem might

be reduced to solve 3.1. The solution set of (3.1) will be denoted by X∗.
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3.2.1 The Monotone Trust-Region Method

In this section we report the trust-region method by Tong and Qi [92], for-

mulated in a way such that its generalization to a nonmonotone framework

will be easy to state with just some minor modifications.

We first recall or state the assumptions that are assumed to hold for

problem (3.1) in order to get global and local fast convergence of the trust-

region method.

Assumption 1. (a) F is continuously differentiable with F ′ being locally

Lipschitzian.

(b) Ω is nonempty, closed, and convex.

(c) The solution set X∗ is nonempty.

(d) ‖F (x)‖ provides a local error bound in a neighborhood of a solution

x∗ ∈ X∗, i.e. there exists constants δ > 0 and γ > 0 such that

dist(x,X∗) ≤ γ‖F (x)‖ ∀x ∈ Ω ∩Bδ(x∗).

Note that the central condition in Assumption 1 is part (d) where the usual

nonsingularity condition of F ′(x∗) is replaced by a (weaker) error bound.

This condition is only required in the local analysis in order to prove local

fast convergence properties.

In order to describe the trust-region method, let us introduce the merit

function

Ψ(x) :=
1

2
‖F (x)‖2

associated to (3.1). Since X∗ is nonempty, x∗ solves (3.1) if and only if x∗

is a solution of the optimization problem

min
x

Ψ(x) s.t. x ∈ Ω. (3.2)

We call x∗ a stationary point of (3.1) if x∗ is a stationary point of the

corresponding optimization problem (3.2), i.e. if

∇Ψ(x∗)T (x− x∗) ≥ 0 ∀x ∈ Ω;

recall that this is equivalent to x∗ satisfying the fixed-point equation

x∗ = PΩ

(
x∗ − γ∇Ψ(x∗)

)
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for an arbitrary constant γ > 0.

To deal with locally nonunique solutions, the trust-region method con-

siders a subproblem where the objective function involves an additional reg-

ularization term. More precisely, the regularized trust-region subproblem at

a current iterate xk is given by

min Φk(d) :=
1

2
‖F (xk) + F ′(xk)d‖2 +

1

2
µk‖d‖2

s.t. ‖d‖ ≤ ∆,
(3.3)

where ∆ > 0 denotes the trust-region radius and µk > 0 is a suitable constant

depending on the iteration index k. This notation allows us to state the

following trust-region method which corresponds to the method from [92],

except that we leave the choice of an appropriate scalar r̂k unspecified for

the moment.

Let us give a few comments to explain Algorithm 1: in our convergence

analysis we always assume implicitly that the termination criterion in Step

1 does not hold after finitely many iterations. Hence we assume in our

theoretical analysis of Algorithm 1 that none of the iterates xk is an exact

stationary point of problem (3.2), so that PΩ

[
xk − ∇Ψ(xk)

]
− xk 6= 0 or,

equivalently, that d̄kG(∆) 6= 0 holds for all k. The remainder of Step 1 initial-

izes some parameters for the inner iteration starting in Step 2 In particular,

we reset the trust-region radius ∆k by taking its projection onto the interval

[∆min,∆max].

Step 2 then computes a projected gradient direction which, more or less,

is responsible for the global convergence of Algorithm 1. The projected

trust-region step from Step 3, on the other hand, is the main ingredient to

verify local fast convergence under an error bound assumption. In Step 4, a

convex combination of these two directions is taken which yields the smallest

objective function of the standard quadratic approximation of the mapping

Ψ. Note that the optimal t∗(∆) in this step can be computed analytically.

In fact, it is not difficult to see that it has the closed form expression

t∗(∆) = max
{

0,min{1, t(∆)}
}
,



32
A Nonmonotone Trust-Region Method for Generalized Nash

Equilibrium Problems

Algorithm 1: Trust-Region Framework

Input: x0 ∈ Ω starting point and constants 0 < α1 < 1 < α2, 0 < ρ1 < ρ2 <

1, η ∈ (0, 1), σ ∈ (0, 1), C > 0, ∆0 > 0, ∆max > ∆min > 0. Set k := 0.

1 If xk is a stationary point of the optimization problem (3.2): STOP. Otherwise

set ∆k := min
{

∆max,max{∆min,∆
k}
}
, ∆ := ∆k, µk := C‖F (xk)‖ .

2 Projected Gradient Direction: Compute

dkG(∆) := −
( ∆

∆max

)
γk∇Ψ(xk), (3.4)

d̄kG(∆) := PΩ

[
xk + dkG(∆)

]
− xk, (3.5)

with γk := min

{
1,

∆max

‖∇Ψ(xk)‖
,

ηΨ(xk)

‖∇Ψ(xk)‖2

}
.

3 Projected Trust-Region Direction: Solve the trust-region subproblem (3.3) by a

suitable algorithm and denote its solution by dktr(∆). Then compute

d̄ktr(∆) := PΩ[xk + dktr(∆)]− xk.

4 Optimal Combined Direction: Compute

d̄k(∆) := t∗(∆)d̄kG(∆) +
(
1− t∗(∆)

)
d̄ktr(∆),

where t∗(∆) ∈ [0, 1] is an optimal solution of the problem

min
t∈[0,1]

qk∆(t) :=
1

2

∥∥F (xk) + F ′(xk)
(
td̄kG(∆) + (1− t)d̄ktr(∆)

)∥∥2
,

5 Updates: Define the actual and predicted reductions by

Aredk(∆) := Ψ
(
xk + d̄k(∆)

)
−Ψ(xk),

P redk(∆) :=
1

2

∥∥F (xk) + F ′(xk)d̄k(∆)
∥∥2 −Ψ(xk),

respectively, and choose a suitable scalar r̂k. If the following two conditions

−Predk(∆) ≥ −σ∇Ψ(xk)T d̄kG(∆) (3.6)

r̂k ≥ ρ1 (3.7)

hold, set

xk+1 := xk + d̄k(∆), ∆k+1 :=

{
∆ if ρ1 ≤ r̂k < ρ2,

α2∆ if r̂k ≥ ρ2,

define ∆k∗ := ∆ as the trust-region radius that allowed xk + d̄k(∆) to be

accepted, set k ← k + 1, and go to Step 1. Otherwise set ∆ := α1∆, and go to

Step 2.
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where t(∆) is the solution of ∇qk∆(t) = 0 and is given by

t(∆) =



−(F (xk)+F ′(xk)d̄ktr(∆))
T
F ′(xk)(d̄kG(∆)−d̄ktr(∆))

‖F ′(xk)(d̄kG(∆)−d̄ktr(∆))‖2

if F ′(xk)d̄kG(∆) 6= F ′(xk)d̄ktr(∆),

any number in (−∞,+∞)

if F ′(xk)d̄kG(∆) = F ′(xk)d̄ktr(∆).

In Step 5, we first compute the actual and predicted reductions at the current

point. The subsequent update rule in Step 5 depends on the suitable choice of

r̂k. The standard choice corresponding to the monotone trust-region method

from [92] is

r̂k :=
Aredk(∆)

Predk(∆)
(3.8)

and completely specifies Algorithm 1. The updates in Step 5 are then simi-

lar to a standard trust-region update except that the new point is accepted

only if the two conditions (3.6) and (3.7) hold. This second condition, which

is standard for monotone trust-region method, will be relaxed in our non-

monotone version. The reason for having the additional criterion from (3.6)

comes from the fact that we need to have the predicted reduction to be a

negative number whenever we leave the inner iteration. This property is not

clear a priori, but will be a consequence of Lemma 1 below.

Note that, by construction, all iterates xk generated by Algorithm 1

belong to the feasible set Ω. Furthermore, let us recall from [92] that Algo-

rithm 1 with the standard choice of r̂k from (3.8) is

• well-defined, in particular, for each outer iteration k, the number of

inner iterations between Step 2 and 5 is finite,

• globally convergent in the sense that every accumulation point is a

stationary point of (3.2), and

• locally fast convergent under the relatively weak error bound condition

from Assumption 1.

For the details, we refer the reader to [81,92].

We close this section by stating two results that were given for a somewhat

different active-set-type trust-region method in [81], but whose statements

also hold for the above (monotone) trust-region method. These results will
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be used in our subsequent convergence analysis. For the sake of complete-

ness, we provide the full proofs in an appendix. The first of these results

corresponds to [81, Lemma 4.3].

Lemma 1. Consider the trust-region method from Algorithm 1 with the

update r̂k from (3.8). Then, for all k ∈ N and all ∆ ∈ (0,∆max], it holds

that

∇Ψ(xk)T d̄kG(∆) ≤ −
(

∆

∆maxγk

)∥∥d̄kG(∆max)
∥∥2
.

Note that this result implies that the predicted reduction is a negative num-

ber whenever we leave the inner iteration in Algorithm 1, i.e. we always have

Predk(∆k∗) < 0, (3.9)

cf. (3.6).

We next state a technical result which is the counterpart of [81, Propo-

sition 4.1] and whose proof is also given in the appendix.

Proposition 1. Consider the monotone trust-region method from Algo-

rithm 1 with the update r̂k from (3.8). Suppose that x∗ is an accumulation

point of a subsequence {xk}k∈K . If x∗ is not a stationary point, then there

exist an index k̂ > 0 and a constant ∆̄ > 0 such that, for all k ∈ K with

k ≥ k̂, (3.6) and (3.7) hold for all ∆ ∈ (0, ∆̄).

3.2.2 The Nonmonotone Trust-Region Method

Here we present a nonmonotone version of Algorithm 1. The main idea is

to accept also suitable points which do not necessarily reduce the objective

function value. This is achieved by accepting the new step d̄k(∆) more

frequently. To this end, we relax condition (3.7). The strategy is inspired by

the work [91] by Toint. We will see in Section 3.5 that the nonmonotonicity

improves the numerical behavior of the trust-region method.

To give a precise statement of the nonmonotone trust-region method, let

us introduce one further parameter W ∈ N. We then define

Ψk
max := max

k−W≤i≤k
Ψ(xi) (3.10)

as the largest function value among the last few iterations, where, formally,

we set x−1 := x−2 := . . . := x−W := x0 (or, alternatively, we can replace

W by W k := min{k,W}). Since we are interested in the behavior of an
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infinite sequence, we may assume without loss of generality that we always

have k ≥W . Furthermore, let us define

r(k) ≤ k as the (say, largest) iteration index such that Ψ(xr(k)) = Ψk
max holds.

(3.11)

We then define a modified (nonmonotone) actual reduction at iteration k by

Aredk
′
(∆) := Ψ

(
xk + d̄k(∆)

)
−Ψk

max. (3.12)

Using an elementary calculation, we obtain the representation

Aredk
′
(∆) = Ψ

(
xk + d̄k(∆)

)
−Ψk

max

= Ψ
(
xk + d̄k(∆)

)
−Ψ(xr(k))

= Ψ
(
xk + d̄k(∆)

)
−Ψ(xk) +

k−1∑
i=r(k)

[
Ψ(xi+1)−Ψ(xi)

]
= Ψ

(
xk + d̄k(∆)

)
−Ψ(xk) +

k−1∑
i=r(k)

[
Ψ
(
xi + d̄i(∆

∗
i )
)
−Ψ(xi)

]
= Aredk(∆) +

k−1∑
i=r(k)

Aredi(∆
∗
i ),

where ∆∗i is defined as in Step 5 of Algorithm 1. This representation moti-

vates to define a corresponding modified (nonmonotone) predicted reduction

by

Predk
′
(∆) := Predk(∆) +

k−1∑
i=r(k)

Predi(∆
∗
i ). (3.13)

The idea is then to replace (3.7) by the condition

max

Aredk(∆)

Predk(∆)
,
Aredk

′
(∆)

Predk
′
(∆)

 ≥ ρ1. (3.14)

Hence, the nonmonotone trust-region method is fully specified by Algo-

rithm 1 with the choice

r̂k := max

Aredk(∆)

Predk(∆)
,
Aredk

′
(∆)

Predk
′
(∆)

 , (3.15)
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in Step 5. Since (3.14) is a relaxation of the corresponding monotone con-

dition from (3.7), and all other parts in Algorithm 1 remain unchanged (in

particular, we still use the condition from (3.6)), it follows that the non-

monotone trust-region method from Algorithm 1 with the update of r̂k from

(3.15) is also well-defined (in particular, the inner loop at each outer iter-

ation k is always finite) and also inherits the local convergence properties

from the monotone method and, therefore, the fast convergence rate under

the error bound condition from Assumption 1. Hence, it remains to show

that our nonmonotone modification does not destroy the global convergence.

This is the aim of the next section.

Concerning the fast convergence rate under the error bound condition

of Assumption 1, we observe that it has been proved in [92] for the mono-

tone algorithm by showing that the trial direction d̄k(∆k) satisfies condition

(3.6) and (3.7) for k sufficiently large. In our nonmonotone version of the

algorithm, condition (3.7) is relaxed. As a consequence, the trial direction

d̄k(∆k) is again accepted for k sufficiently large, and the fast local conver-

gence directly follows from the results stated in [92].

3.3 Global Convergence

Here we want to show that every accumulation point of a sequence gener-

ated by the nonmonotone trust-region method from Algorithm 1 with the

specification of r̂k from (3.15) is still a stationary point of the corresponding

optimization problem (3.2). A central step in this direction is contained in

the following result. Recall that, also in this section, we assume implicitly

that our method does not terminate after finitely many iterations with an

exact stationary point.

Lemma 2. Let {xk} be a sequence generated by Algorithm 1 with r̂k defined

by (3.15). Then the inequality

Ψ(x0)−Ψ(xk+1) ≥ −ρ1

k∑
l=0

Predl(∆
∗
l ) (3.16)

holds for every k ∈ N.
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Proof. Let k ≥ 0 be fixed. Then we define an index

p(k + 1) :=

 k, if
Aredk(∆k∗)

Predk(∆k∗)
≥ Aredk

′
(∆k∗)

Predk
′
(∆k∗)

,

r(k), otherwise,

where r(k) denotes the index defined in (3.11). We call the corresponding

iterate xp(k+1) the “predecessor” of xk+1. We then construct a sequence of

strictly increasing iteration counters{
k0, k1, k2, k3, . . .}

in such a way that ki = p(ki+1) for all i = 1, 2, . . ., i.e. xki is the predecessor

of xki+1 . Recursively, this means that ki−1 = p(ki) = p(p(ki+1)) and so on,

until we get down to the index k1 such that the starting point x0 is the

predecessor of xk1 , i.e. k0 := 0 := p(k1). By definition, for each i ∈ N, we

either have ki = p(ki+1) = ki+1 − 1 or ki = p(ki+1) = r(ki+1 − 1).

Now, consider the iterate xk+1, and let xkl be the corresponding prede-

cessor for some l ∈ N. Then, we can write

ψ(x0)− ψ(xk+1) = ψ(x0)− ψ(xk1) (3.17)

+

l−1∑
i=1

[
ψ(xki)− ψ(xki+1)

]
(3.18)

+ψ(xkl)− ψ(xk+1). (3.19)

We next take a closer look at each of the three terms (3.17)–(3.19).

First consider the term (3.18) and choose an arbitrary (but fixed) index

i ∈ {1, . . . , l− 1}. We distinguish two situations: if ki = p(ki+1) = ki+1 − 1,

we have Aredki(∆
∗
ki

)/Predki(∆
∗
ki

) ≥ ρ1. Since the denominator is negative

in view of (3.9), we therefore get

ψ(xki)− ψ(xki+1) = ψ(xki)− ψ(xki+1)

= −Aredki(∆∗ki)
≥ −ρ1Predki(∆

∗
ki)

= −ρ1

ki+1−1∑
j=ki

Predj(∆
∗
j ).

On the other hand, if ki = p(ki+1) = r(ki+1 − 1), we have

Ared ′ki+1−1(∆∗ki+1−1) ≤ ρ1Pred
′
ki+1−1(∆∗ki+1−1)
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because of (3.13) and (3.9). We then obtain

ψ(xki)− ψ(xki+1) = ψ(xr(ki+1−1))− ψ(xki+1)

= ψki+1−1
max − ψ(xki+1)

= −Ared ′ki+1−1(∆∗ki+1−1)

≥ −ρ1Pred
′
ki+1−1(∆∗ki+1−1)

= −ρ1

ki+1−1∑
j=r(ki+1−1)

Predj(∆
∗
j )

= −ρ1

ki+1−1∑
j=p(ki+1)

Predj(∆
∗
j )

= −ρ1

ki+1−1∑
j=ki

Predj(∆
∗
j ).

In a similar way, we can deal with the two terms from (3.17) and (3.19),

respectively, and obtain that

ψ(x0)− ψ(xk1) ≥ −ρ1

k1−1∑
j=0

Predj(∆
∗
j )

and

ψ(xkl)− ψ(xk+1) ≥ −ρ1

k∑
j=kl

Predj(∆
∗
j ).

The assertion follows by inserting the last three estimates into (3.17)–(3.19).

The previous result allows us to prove global convergence of the nonmonotone

trust-region method.

Theorem 1. Let {xk} be the sequence generated by Algorithm 1 with r̂k

defined by (3.15). Then every accumulation point of {xk} is a stationary

point of (3.2).

Proof. Let x∗ be an accumulation point of {xk} and let

lim
k∈K, k→∞

xk = x∗
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be a convergent subsequence. By contradiction, suppose that x∗ is not a

stationary point of problem (3.2). Then

γ∗ := lim
k∈K, k→∞

γk = min

{
1,

∆max

‖∇Ψ(x∗)‖
,

ηΨ(x∗)

‖∇Ψ(x∗)‖2

}
is a positive number. The definition of d̄kG(∆) via (3.4) and (3.5) together

with the continuity of the projection operator then implies∥∥d̄kG(∆max)
∥∥→ ∥∥PΩ[x∗ − γ∗∇Ψ(x∗)]− x∗

∥∥ > 0 as k ∈ K, k →∞,

where the right-hand side is positive since γ∗ > 0 and x∗ is not a stationary

point. Hence, there exist an index k̃ > 0 and a constant b > 0 such that∥∥d̄kG(∆max)
∥∥ ≥ b ∀k ∈ K, k ≥ k̃. (3.20)

Moreover, using Proposition 1, there exist k̂ and ∆̄ such that, for all k ∈
K, k ≥ k̂, and all ∆ ∈ (0, ∆̄), the two conditions (3.6) and (3.14) are satisfied.

Let us define k̂ := max{k̂, k̃}.
Let k ∈ K and k ≥ k̂. Using the previous observation together with the

updating rule of the trust-region radius in Algorithm 1, it follows that

∆k∗ > α1∆̄, (3.21)

so we have a uniform lower bound on the size of ∆k∗ for all sufficiently large

k ∈ K. Taking into account Lemma 2, inequalities (3.9) and (3.6) as well as

Lemma 1, we obtain for all k ∈ K, k ≥ k̂ that

Ψ(x0)−Ψ(xk+1) ≥ −ρ1

k∑
l=0

Predl(∆
∗
l )

≥ −ρ1

k∑
l∈K, l≥k̂

Predl(∆
∗
l )

≥ −ρ1σ

k∑
l∈K, l≥k̂

∇Ψ(xl)
T d̄Gl (∆∗l )

≥ ρ1σ

k∑
l∈K, l≥k̂

( ∆∗l
∆maxγl

)
‖d̄Gl (∆max)‖2

≥ ρ1σ

k∑
l∈K, l≥k̂

( ∆∗l
∆max

)
b2.

(3.22)
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where the last inequality follows from (3.20) and the fact that γk ≤ 1. Taking

k → ∞ with k ∈ K, the right-hand side of (3.22) goes to infinity because

of (3.21), while the left-hand side is bounded since Ψ(x) ≥ 0 for all x ∈ Rn.

This contradiction completes the proof.

3.4 Application to Generalized Nash Equilib-

rium Problems

As noted in the introduction, a typical class of problems which often have

nonunique solutions are the so-called Generalized Nash Equilibrium Prob-

lems (GNEPs). Let N be the number of players (or agents) ν of the GNEP

(ν = 1, ..., N). Each agent’s problem then consists of an optimization prob-

lem of the form

min
zν

θν(zν , z−ν) s.t. gν(zν , z−ν) ≤ 0, (3.23)

where zν ∈ Rnν represents the variables which are controlled by the ν-th

player, z−ν ∈ Rn−nν express the remaining ones he cannot control, θν :

Rn → R is his objective (or utility) function, while gν : Rn → Rmν describes

his constraints and defines the possible strategies of player ν. Note that both

θν and gν depend on all variables, but that (3.23) is an optimization problem

in zν only (parameterized by z−ν).

The ν-th player controls nν variables and the total number of variables

of the problem, grouped under the name z, is n := n1 + · · ·+ nN . Without

loss of generality, we assume that players’ options are only constrained by

inequalities. The decision of player ν is affected by mν inequalities, and the

total number of inequalities of the problem is m := m1 + · · ·+mN .

A solution of a GNEP is called generalized Nash equilibrium and is reached

when none of the N agents is able to obtain a better value for his utility

function by unilaterally changing his strategy. This means that z∗ ∈ Rn is

a generalized Nash equilibrium if, for all ν = 1, ..., N , it holds that

gν(z∗ν , z
∗
−ν) ≤ 0 and θν(z∗ν , z

∗
−ν) ≤ θν(zν , z

∗
−ν)

∀zν ∈ Rnν : gν(zν , z
∗
−ν) ≤ 0.

We assume the following properties to hold for all θν and gν .

Assumption 2. Functions θν and gν are twice continuously differentiable

with locally Lipschitz continuous second order derivatives for all ν = 1, ..., N .



3.4 Application to Generalized Nash Equilibrium Problems 41

Assumption 3. The GNEP is player-convex, i.e. θν(·, z−ν) and gν,i(·, z−ν)

are convex functions for every ν = 1, ..., N , i = 1, ...,mν and z−ν .

Note that the player-convex case is typically the most general class of GNEPs

considered in the literature and, in particular, allows much more freedom

than the jointly-convex case, cf. [35] for more details.

The Lagrangian function related to the ν-th optimization problem (3.23)

is

Lν(z, λν) := θν(zν , z−ν) +

mν∑
i=1

λν,igν,i(zν , z−ν),

where λν ∈ Rmν is the vector of Lagrange multipliers of player ν. If we

concatenate all the multipliers, all the constraints, and all the gradients of

the Lagrangian, we obtain

λ :=
(
λν
)N
ν=1

, H(z, λ) :=
(
∇zνLν(z, λν)

)N
ν=1

, g(z) :=
(
gν(z)

)N
ν=1

.

Let z be a solution of (3.23). If we assume any standard constraint quali-

fication to hold for every player ν = 1, . . . , N , it follows that there exists a

vector λ ∈ Rm such that the following (concatenated) KKT-system holds:

H(z, λ) = 0, λ ≥ 0, g(z) ≤ 0, λT g(z) = 0. (3.24)

Conversely, any solution of the system yields a solution of the GNEP (with-

out any constraint qualification) due to the assumed player-convexity prop-

erty.

We, therefore, focus on solving (3.24) in order to obtain a solution of

the original problem (3.23). The mixed system (3.24), in turn, might be

reformulated in different ways, but for reasons explained in the introduction,

we concentrate on a simple, smooth reformulation as a constrained nonlinear

system of equations: introducing slack variables w ∈ Rm+ and using the

Hadamard product (the component-wise product (w ◦ λ)i := wiλi for all

i = 1, . . . ,m), we obtain the following box-constrained system of equations:

F (x) :=

 H(z, λ)

g(z) + w

w ◦ λ

 = 0, s.t. x := (z, λ, w) ∈ Ω := Rn × Rm+ × Rm+ .

(3.25)

We assume that the corresponding solution set X∗ := {x ∈ Ω : F (x) = 0} is

nonempty.
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Then we are precisely in the situation described in (3.1). Since Ω is

defined by some nonnegativity constraints only, the projections onto Ω are

easy to compute. Assumption 1 (a)-(c) also hold in our GNEP-setting. Fur-

thermore, also the local error bound condition from (d) of this assumption

was shown to be satisfied under suitable assumptions in [31]. In particular,

these assumptions do not require that the Jacobian of F is nonsingular at a

solution. In fact, even nonisolated solutions are allowed. We do not recall

the precise conditions here and refer the interested reader to [31] for more

details.

3.5 Numerical Results

In this section we report some numerical results of computational experi-

ments performed in order to evaluate the effectiveness of the proposed non-

monotone algorithm. To this end, we first recall that our method is par-

ticularly designed to solve difficult problems with high accuracy under a

relatively weak (error bound) condition. For those examples which satisfy

stronger assumptions like a nonsingularity condition, one has to expect that

other Newton-type schemes are more efficient. Nevertheless, the overall re-

sults indicate that our method is very competitive.

Our first aim is to compare the numerical behavior of our method on a

larger set of examples. To this end, we use the following three algorithms:

1. Algorithm 1 with rk defined in (3.8): the original Monotone Trust-

Region (MTR) framework by Tong and Qi [92];

2. Algorithm 1 with rk defined in (3.15): the Nonmonotone Trust-Region

(NTR) framework extending MTR;

3. STRSCNE [7, 8], a specific solver for nonlinear, box-constrained sys-

tems of equations.

MTR and NTR have been implemented in MATLAB, the same program-

ming language used also for the STRSCNE code. The algorithms terminate

successfully when

‖F (xk)‖∞ ≤ ε1, with ε1 = 10−4. (3.26)

For the algorithms, the maximum numbers of function evaluations and Jaco-

bian evaluations have been fixed equal to 100,000. The termination criterion
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described in Algorithm 1 (‖d̄kG(∆)‖ < ε2) and used in our theoretical in-

vestigation has not been employed in our implementation since STRSCNE

does not use any similar criterion. Regarding nonmonotone window, above

results are obtained with W = 50, thus NTR might be considered strongly

nonmonotone.

The three methods have been tested on a dataset of 35 different GNEPs

[32]. The total number of runs is 57 because multiple starting points have

been used for some of the problems (see Table 5.1 of [32] for more details).

We first compare the number of failures obtained by the three algorithms:

• 9 for STRSCNE;

• 12 for MTR;

• 7 for NTR.

From the above comparison, we might see that the adoption of the nonmono-

tone strategy yields significant advantages in terms of computed global solu-

tions, with respect to the original monotone version of Algorithm 1 (MTR).

In fact, MTR seems to converge more frequently to nonoptimal stationary

points. Furthermore, Algorithm NTR also outperforms STRSCNE.

The algorithms have been numerically compared using performance pro-

files [30]. In Figure 3.1 we show results obtained employing the following

measures:

- total number of function evaluations (Figure 3.1(a));

- total number of Jacobian evaluations (Figure 3.1(b));

- actual computational time, estimated by tic toc MATLAB function

(Figure 3.1(c)).

Note that in order to obtain reliable measurements on computational time,

experiments have been repeated several times, choosing the minimum ob-

tained results as the final one. In addition, algorithms are considered to be

equivalent on this metric, if the difference between their measures is smaller

than 10−3 s. Moreover, note that scale used for all the metrics in Figure 3.1

is logarithmic since results are sometimes pretty close.

Figure 3.1 clearly shows the good performances of the proposed algorithm

with respect to all the employed metrics. Again, it may be observed that the

employment of the nonmonotone strategy leads to a significant improvement
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Table 3.1: Detailed numerical results for problem A11.

k ‖F (x)‖∞ ‖d̄kG(∆k∗)‖2 ∆k

0 1.00e+02 1.1e-01 5.00

1 5.65e+01 2.0e-01 10.00

2 1.56e+01 2.6e-01 20.00

3 3.85e+00 1.5e-01 40.00

4 9.48e-01 1.5e-01 80.00

5 2.22e-01 4.2e-02 160.00

6 4.33e-02 1.1e-02 320.00

7 4.44e-03 2.0e-03 640.00

8 7.38e-05 5.2e-05 1000.00

Final 2.20e-08 3.1e-08

of the performances of the original monotone version of the algorithm. The

proposed algorithm may be considered at least competitive with a sound and

efficient code as STRSCNE.

An illustrative example

Here, we illustrate the performance obtained by NTR on a specific GNEP

from [32]: example A11. As presented in Example 1 from [31], this is a

peculiar problem because the error bound condition for (3.25) is proven to

be valid for the whole solution set, while the Jacobian of F is singular at all

solutions. This means that local fast convergence for classical Newton-like

methods cannot be expected here, while MTR and NTR are proven to be

locally superlinearly convergent.

In Table 3.1 we present the iteration history obtained by NTR where the

columns show, for each iteration, {‖F (xk)‖∞}, {‖d̄kG(∆k∗)‖2} and the initial

trust-region radius ∆k.

From Table 3.1 we may observe the two phases of the algorithm: the

globalization strategy might be considered active between iterations 0 and

4, as the measure of stationarity ‖d̄kG(∆k∗)‖ is not sufficiently small and

not always decreasing. Starting with iteration 5, the norm of the projected

gradient is decreasing rapidly, following the typical behavior of superlinear

convergence.
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Figure 3.1: Performance profiles between STRSCNE (black dotted line),

MTR (blue dashed line) and NTR (red solid line) on GNEP library.
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3.5.1 Experiment on Quasi-Variational Inequalities

In this subsection, we present some additional numerical experiments on a

different class of problems, QVIs. QVIs are similar to GNEPs in many sense.

First of all, a GNEP might be reformulated as a QVI under some convexity

assumptions. The feasible set of both problems is not known in advance:

it changes with respect to values of some variables of the problem. From a

practical point of view, QVI might be reformulated using KKT in a way that

is similar to that expressed in Section 3.4. As described in detail in Section 2

from [37], this procedure leads to a nonlinear system of equations that has

the same structure of (3.25): this is the system on which the three algorithms

NTR, MTR and STRSCNE are going to be tested in this subsection.

On the other hand, from the theoretical point of view, there is also an

important difference between these two classes of problems: no local error

bound results have been proven for QVIs. For the class of QVIs, superlinear

convergence is only proven under some nonsingularity assumptions. Thus,

when this assumption is satisfied, all other Newton-type schemes are able to

obtain fast local convergence.

In this subsection, we consider a set of QVIs which is taken from a library

called QVILIB [37]. QVILIB is composed by 55 different problems. For

each of them, two (in few cases more than two) different starting points are

available, leading to a total of 116 different executions. In this work, we

focus on the subset of QVIs for which the associated KKT system is smaller

than 10000 equations: reaching high accuracy on big problems might be

considered a totally different topic and it goes beyond the scope of this

work. The total number of executions in the new set is, thus, reduced to 98.

The setting used to face QVIs is exactly the same as the one used for

GNEPs, except for 2 elements: an additional termination criterion that

checks the maximum computational time (1 hour) and a difference in the

dimension of the nonmonotone window. In fact in this case, best results

are obtained with W = 10. Thus, NTR might be considered lightly non-

monotone. Algorithms terminate successfully exactly as described in (3.26).

In Figure 3.2, we show performance profiles obtained employing the same

measures as in Figure 3.1. The total number of failures obtained by the three

algorithms is:

• 26 for STRSCNE;
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Figure 3.2: Performance profiles between STRSCNE (black dotted line),

MTR (blue dashed line) and NTR (red solid line) on QVI library.
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• 33 for MTR;

• 29 for NTR.

Figure 3.2, together with the above summary, clearly shows that NTR out-

performs MTR with respect to all measures we considered and with respect

to the number of failures. Thus, even with a small window, the nonmono-

tone extension proposed has been showed to be crucial in order to avoid

nonoptimal critical points and improve performances.

Regarding comparison with STRSCNE, we might note that NTR per-

forms better on the majority of the problems, both with respect to function

and Jacobian evaluations, till τ ≤ 4. On time evaluation the two methods

have similar performances, again till τ ≤ 4. When we take into account

greater τ , considering stability of the method, STRSCNE seems to be more

reliable. This is actually supported also by the comparison on the total

number of failures.

On the other hand, as already observed in the latter, in the field of QVI

there aren’t results that prove a local error bound condition, while Tong and

Qi’s method have been mainly taken into account in order to achieve fast

convergence under such a condition only. On the contrary, STRSCNE is a

stable software that often exploits direct Newton steps and does not cope

with error bound conditions.

In conclusion, regarding the overall number of failures, recall that QVIs

is a class of problems which is known to be very difficult to solve, especially

by Newton-type methods and similar, as the three algorithms above.

3.6 Conclusions

This work modifies a (monotone) trust-region method for constrained sys-

tems of equations by introducing a suitable nonmonotonicity criterion. The

corresponding nonmonotone trust-region method is shown to be globally con-

vergent to stationary points and locally fast convergent under an error bound

condition. Numerical results obtained for a suitable reformulation of gener-

alized Nash equilibrium problems indicate that the nonmonotone method is

both more reliable and more efficient than its monotone counterpart. Fur-

thermore, some additional tests performed on quasi-variational inequalities

confirm aforementioned improvements of the nonmonotone extension. A pre-

liminary testing shows that the numerical behavior can still be improved if
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one simply skips the additional criterion (3.6) from Algorithm 1. Part of our

future research is, therefore, to investigate whether this condition can (at

least) be relaxed in an appropriate way. Regarding QVIs, the lack of a local

error bound result might actually be something that deserves some attention

in our future researches.

3.7 Proofs of Lemma 1 and Proposition 1

We first recall some elementary properties of the projection operator.

Lemma 3. The following statements hold:

(a)
(
PΩ(z)− z)T

(
PΩ(z)− x

)
≤ 0 ∀x ∈ Ω, ∀z ∈ Rn;

(b) ‖PΩ(x2)− PΩ(x1)‖ ≤ ‖x2 − x1‖ ∀x1, x2 ∈ Rn.

(c) Given x, d ∈ Rn, the function

θ(t) :=

∥∥PΩ(x+ td)− x
∥∥

t
, t > 0,

is nonincreasing.

The first two properties in Lemma 3 are a well-known characterization of the

projection, whereas the third property was shown, e.g., in [10] in the context

of a suitable globalization of a projected gradient method.

Proof. of Lemma 1: Let k ∈ N be fixed, choose ∆ > 0, and define

zk := xk + dkG(∆) = xk − ∆

∆max
γk∇Ψ(xk)

for the sake of notational convenience. Then an elementary calculation yields

∇Ψ(xk)T d̄kG(∆) = ∇Ψ(xk)T
(
PΩ(zk)− xk

)
=

∆max

∆ · γk
(
xk − zk

)T (
PΩ(zk)− xk

)
=

∆max

∆ · γk
(
PΩ(zk)− zk

)T (
PΩ(zk)− xk

)
+

∆max

∆ · γk
(
xk − PΩ(zk)

)T (
PΩ(zk)− xk

)
≤ − ∆max

∆ · γk
∥∥d̄kG(∆)

∥∥2
,
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where the inequality follows from Lemma 3 (a), the definition of d̄kG(∆), and

the feasibility of xk. On the other hand, Lemma 3 (c) with d := −∇Ψ(xk)

implies that ∥∥d̄kG(∆)
∥∥

∆
=

∥∥PΩ

(
xk − ∆

∆max
γk∇Ψ(xk)

)
− xk

∥∥
∆

≥
∥∥PΩ

(
xk − γk∇Ψ(xk)

)
− xk

∥∥
∆max

=

∥∥d̄kG(∆max)
∥∥

∆max

holds for all 0 < ∆ ≤ ∆max. Combining the last two inequalities yields the

assertion.

Proof. of Proposition 1: Since xk → x∗ for k ∈ K and k →∞, the continuity

of F ′ implies that there is a constant b1 such that ‖F ′(xk)‖ ≤ b1 for all k ∈ K.

Using (3.4), (3.5), and Lemma 3 (b), we therefore obtain for all k ∈ K∥∥F ′(xk)d̄kG(∆)
∥∥ =

∥∥F ′(xk)(PΩ[xk + dkG(∆)]− xk)
∥∥

≤
∥∥F ′(xk)

∥∥∥∥xk + dkG(∆)− xk
∥∥

≤ ∆γk

∆max

∥∥F ′(xk)
∥∥∥∥∇Ψ(xk)

∥∥
≤ b1∆,

(3.27)

where the last inequality follows from the definition of γk in Step 2.

Since x∗ is not a stationary point by assumption, we can follow the argu-

ment from the first part of the proof of Theorem 1 in order to see that there

is a constant b > 0 such that

∥∥d̄kG(∆max)
∥∥ ≥ b ∀k ∈ K, k ≥ k̂. (3.28)

Let

∆̃ = min

{
∆max,

(1− σ)b2

b21∆max

}
. (3.29)

We first prove that (3.6) holds for all k ∈ K, k ≥ k̂ and all ∆ ∈ (0, ∆̃]. From
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the definition of d̄k(∆), we get that

Predk(∆) =
1

2

∥∥F (xk) + F ′(xk)d̄k(∆)
∥∥2 −Ψ(xk)

≤ 1

2

∥∥F (xk) + F ′(xk)d̄kG(∆)
∥∥2 −Ψ(xk)

= ∇Ψ(xk)T d̄kG(∆) +
1

2

∥∥F ′(xk)d̄kG(∆)
∥∥2

= σ∇Ψ(xk)T d̄kG(∆) + (1− σ)∇Ψ(xk)T d̄kG(∆)

+
1

2

∥∥F ′(x)d̄kG(∆)
∥∥2

≤ σ∇Ψ(xk)T d̄kG(∆)− (1− σ)
( ∆

∆maxγk

)∥∥d̄kG(∆max)
∥∥2

+
1

2
b21∆2

≤ σ∇Ψ(xk)T d̄kG(∆)− b21∆∆̃ +
1

2
b21∆2

≤ σ∇Ψ(xk)T d̄kG(∆),

where the second inequality follows directly from Lemma 1 and (3.27), the

third inequality follows from (3.28) and (3.29) and recalling that 0 < γk ≤ 1,

while the last inequality holds since ∆ ≤ ∆̃.

In order to prove that (3.7) holds for k ∈ K and k sufficiently large and

for ∆ belonging to an interval (0, ∆̄], we will first show that

−Predk(∆) ≥ β∆, (3.30)

and

Aredk(∆)− Predk(∆) ≤ c1∆2 (3.31)

hold for suitable constants β > 0 and c1 > 0

First we show that (3.30) holds. To this aim, taking ∆ ∈ (0, ∆̃], using
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Lemma 1 and (3.27), we can write

1

2

∥∥F (xk) + F ′(xk)d̄kG(∆)
∥∥2

=
1

2
‖F (xk)‖2 +∇Ψ(xk)T d̄kG(∆)

+
1

2

∥∥F ′(xk)d̄kG(∆)
∥∥2

≤ Ψ(xk)−
( ∆

γk∆max

)∥∥d̄kG(∆max)
∥∥2

+
1

2
b21∆2

≤ Ψ(xk)−
( ∆

γk∆max

)∥∥d̄kG(∆max)
∥∥2

+
1

2
∆
b2(1− σ)

∆max

≤ Ψ(xk)−
( ∆

γk∆max

)∥∥d̄kG(∆max)
∥∥2

+
1

2
∆

∥∥d̄kG(∆max)
∥∥2

γk∆max

= Ψ(xk)−
( ∆

2γk∆max

)∥∥d̄kG(∆max)
∥∥2
,

where the second inequality follows from (3.29), and the third holds recalling

that (1− σ) < 1, γk ≤ 1, and (3.28). Consequently, we have

Predk(∆) ≤ 1

2

∥∥F (xk) + F ′(xk)d̄kG(∆)
∥∥2 −Ψ(xk)

≤ −
(

∆

2γk∆max

)∥∥d̄kG(∆max)
∥∥2
< 0,

where the first inequality follows from the definitions of d̄k and t∗(∆) in

Step 4 Thus, using (3.28) and recalling again that γk ≤ 1, we obtain that

there exists β > 0 such that (3.30) is satisfied for all k ∈ K, k ≥ k̂ and all

∆ ∈ (0, ∆̃].

Now we prove (3.31). From Lemma 3 (b), recalling the definitions of

dkG(∆), d̄kG(∆) and γk, we have∥∥d̄kG(∆)
∥∥ ≤ ∥∥dkG(∆)

∥∥ ≤ ∆, ∀∆ ∈ (0,∆max].

From the definition of d̄ktr(∆), using Lemma 3 (b) again, and recalling that

dktr(∆) is the trust-region solution, we have∥∥d̄ktr(∆)
∥∥ ≤ ∥∥dktr(∆)

∥∥ ≤ ∆, ∀∆ ∈ (0,∆max].
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Consequently, from the last two inequalities we get ‖d̄k(∆)‖ ≤ ∆. Since F ′ is

locally Lipschitzian, it is globally Lipschitz on compact sets. Consequently,

∇Ψ is also globally Lipschitz on compact sets. Since xk → x∗ for k ∈ K

and d̄k(∆) is bounded for all ∆ ∈ (0,∆max], we can apply the Mean Value

Theorem and obtain the existence of suitable numbers θk ∈ (0, 1) and a

Lipschitz constant L > 0 such that

Ψ
(
xk + d̄k(∆)

)
−Ψ(xk)−∇Ψ(xk)T d̄k(∆) = ∇Ψ

(
xk + θkd̄k(∆)

)T
d̄k(∆)

−∇Ψ(xk)T d̄k(∆)

≤ L∆‖d̄k(∆)‖

for all k ∈ K and all ∆ ∈ (0,∆max], where the last inequality takes into

account the Cauchy-Schwarz inequality. Hence, we can write

Aredk(∆)− Predk(∆) = Ψ
(
xk + d̄k(∆)

)
− 1

2

∥∥F (xk) + F ′(xk)d̄k(∆)
∥∥2

= Ψ
(
xk + d̄k(∆)

)
−Ψ(xk)−∇Ψ(xk)T d̄k(∆)

− 1

2
d̄k(∆)TF ′(xk)TF ′(xk)d̄k(∆)

≤ L∆
∥∥d̄k(∆)

∥∥− 1

2
d̄k(∆)TF ′(xk)TF ′(xk)d̄k(∆)

≤ L∆2 + c2
∥∥d̄k(∆)

∥∥2

≤ c1∆2

for suitable constants c1, c2 > 0.

Finally, exploiting (3.30) and (3.31), it follows that there exists ∆̄ > 0

such that

r̂k = 1− Aredk(∆)− Predk(∆)

−Predk(∆)
≥ ρ1, ∀k ∈ K, k ≥ k̂ and ∀∆ ∈ (0, ∆̄].

This concludes the proof.
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Chapter 4

A Unified Convergence

Framework for Nonmonotone

Inexact Decomposition Methods

In this chapter we propose a general framework that provides a

unified convergence analysis for nonmonotone decomposition al-

gorithms. The main motivation to embed nonmonotone strategies

within a decomposition approach lies in the fact that enforcing the

reduction of the objective function could be unnecessarily expen-

sive, taking into account that groups of variables are individually

updated. We define different search directions and line searches

satisfying the conditions required by the presented nonmonotone

decomposition framework to obtain global convergence. We em-

ploy a set of large-scale network equilibrium problems as a com-

putational example to show the advantages of a nonmonotone

algorithm over its monotone counterpart. In conclusion, a new

smart implementation for decomposition methods has been de-

rived to solve numerical issues on large-scale partially separable

functions.1

1This chapter has been published as “A Unified Convergence Framework for Nonmono-

tone Inexact Decomposition Methods” in Computational Optimization and Application

vol. 75, iss. 1, pp. 113-144. 2019 [45].
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4.1 Introduction

Let us consider the problem

min
x
f(x),

s.t. x ∈ F = F1 ×F2 × · · · × FL ⊂ Rn,
(4.1)

where f : Rn → R is a continuously differentiable function, Fh ⊆ Rnh , with

h ∈ {1, . . . , L}, are compact, nonempty and convex sets, with n1 + · · ·+nh+

· · ·+ nL = n. Note that x(h) ∈ Rnh denotes the h-th block component of x,

i.e.,

x =
(
x(1), x(2), . . . , x(h), . . . , x(L)

)T
.

We say that a point x? ∈ F is a critical point for problem (4.1) if

∇f(x?)T (x− x?) ≥ 0 ∀x ∈ F .

We assume that the dimension nh of each block h is very large, so that we

are interested in studying decomposition methods, whose strategy is that of

iteratively solving a sequence of smaller and simpler subproblems.

Convergence theory for decomposition methods is consolidated when the

feasible set is the Cartesian product of closed, nonempty convex subsets (see

[9]). More recently, decomposition methods have been studied and designed

for some specific classes of optimization problems like Network Equilibrium

(NE) problems [29] and training of Support Vector Machines (SVM) [60,72].

The most common decomposition algorithm is the Gauss-Seidel method,

where each h-th block component of each iterate xk is sequentially consid-

ered: at each iteration, xk(h) is updated by solving the corresponding sub-

problem

xk+1
(h) ∈ arg min

ξ(h)∈Fh
f(xk+1

(1) , x
k+1
(2) , . . . , ξ(h), x

k
(h+1), . . . , x

k
(L)).

In principle, the method requires to solve exactly each subproblem, but this

may be expensive or prohibitive whenever the closed-form solution of the

subproblem is not available or the objective function is nonconvex. To over-

come this computational issue, block-descent methods have been proposed

(see, e.g., [56], [14]). In particular, to update each block component xk(h)

they employ one or more iterations of a line search based algorithm. In

contrast to the original Gauss-Seidel method, these methods are called “in-

exact” because the requirement of computing the global minimum point of

each subproblem is relaxed.
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In block-descent methods, starting from a feasible initial step length, the

backtracking line search procedure reduces the step length until a condition

of sufficient reduction of the objective function is satisfied. Thus, the objec-

tive function is forced to decrease at each iteration. However, the condition

of monotone decrease may frequently lead to not accept a “good” initial step

length, i.e., a step length that is showed to obtain good performances in prac-

tice. In turn, this often reduces the effectiveness and the efficiency of the

method, especially when the problem is highly nonlinear. This motivates

the adoption of nonmonotone strategies, where the condition of sufficient

reduction is relaxed to accept more frequently a good initial step length.

Note that the literature on nonmonotone methods is wide and con-

cerns several classes of optimization problems including unconstrained prob-

lems [53,55,82]), convex constrained problems [11], equality-constrained non-

smooth problems [69], nonlinear complementary problems [27], generalized

Nash equilibrium problems [46], derivative-free problems [54].

In this work, we focus on the design and the development of nonmonotone

decomposition methods. The main motivations to couple nonmonotone and

decomposition strategies are the following:

• the block components are individually updated according to a decom-

position strategy. In fact in each block update, it could be unfruitful

and unnecessarily expensive to enforce a strict reduction of the objec-

tive function, especially when the current iterate is far from a station-

ary point;

• as already said, the nonmonotone strategy may improve the effective-

ness and the efficiency of the method used to solve inexactly the gen-

erated subproblems.

In the literature, nonmonotone strategies have already been applied to-

gether with decomposition methods to face some specific problems, e.g.,

training of Support Vector Machines [83, 99]. To the best of our knowl-

edge, this is the first work in which decomposition methods and nonmono-

tone strategies are combined in a globally convergent framework built in

the context of general constrained optimization. The proposed nonmono-

tone framework extends the existing monotone decomposition framework

presented in [16]. In that work, different line search based methods can be

embedded and possibly combined with a column generation strategy2. Col-

2The column generation is the technique that lets optimization algorithms keep only a
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umn generation strategies are not considered here, since the focus of this

work is the definition of a nonmonotone decomposition framework; however,

the theory developed here might be easily extended to the use of a column

generation technique thanks to few modifications presented in [16].

The contributions of the present work are the following:

(i) a unifying nonmonotone decomposition framework has been defined;

(ii) new convergence results have been stated for decomposition methods

applied to a specific class of optimization problems: problems with a

single linear equality constraint and box constraints;

(iii) a smart implementation of nonmonotone line search methods has been

suitably defined. In particular, the aim is facing numerical issues arising

in the optimization of large-scale partially separable ( [48,49]) problems.

Regarding point (ii), convergence results are stated for decomposition

methods that employ a search direction based on the Gauss-Southwell rule

[93]: a search direction with only two nonzero components, the pair of com-

ponents that mostly violates the optimality conditions. Similar convergent

decomposition methods based on inexact line searches have been recently

proposed in [29] and [13]. Concerning point (iii), we observe that large-scale

problems often come together with a consistent loss of significant digits, due

to operations computed in floating-point arithmetic. For example, subtract-

ing two big and nearly similar numbers might lead to a significant loss of

precision called catastrophic cancellation. We present some numerical tricks,

for the monotone and nonmonotone case, to take into account these issues

and to reduce the loss of precision. The nonmonotone trick was never pro-

posed in the literature before, and allowed us to obtain relevant benefits both

in terms of computational time and numerical precision.

The chapter is organized as follows: in the next section a simplified ver-

sion of the monotone framework from [16] is derived to understand from

which point the new theory will start off; in Section 4.3 the whole new

framework is described and, in particular, Subsection 4.3.1 and 4.3.2 are

respectively dedicated to line search mappings and direction choices; in Sec-

tion 4.4 the derivation of the new numerical technique is fully presented; in

Section 4.5 we take into account a set of large-scale NE problems as an illus-

trative example to show two facts: the numerical advantages obtained by the

subset of variables in memory, while new variables are iteratively added when needed to

reach optimality. See [47] for more details.
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nonmonotone algorithm over its monotone counterpart and a detailed anal-

ysis of the advantages achieved by employing the new numerical technique;

conclusions are outlined in Section 4.6.

4.2 The Original Monotone Decomposition

Framework

In this section we report a simplified version of the framework from [16].

The Inexact Decomposition Algorithm (IDA) is sketched below, note that

the column generation (Step 4 of the original Algorithm 1 from [16]) has been

removed. The main idea behind [16] is that of proving global convergence

Algorithm 2: Inexact Decomposition Algorithm (IDA)

Input: x0 ∈ F starting point

1 k = 0

2 while stopping criterion is not fulfilled do

3 choose hk ∈ {1, . . . , L}
4 define a feasible descent direction such that dk(h) = 0(h) ∀h 6= hk

5 compute a feasible step length αk by means of a suitable line

search along the direction dk

6 xk+1 = xk + αkdk

7 k = k + 1

without directly defining each step of Algorithm 2. In fact, Algorithm 2 is

fully characterized when Steps 3 - 5 are defined to satisfy Assumptions 4 - 6

below.

Assumption 4. There exists an integer M > 0 such that, for all k ≥ 0 and

for all h ∈ {1, . . . , L}, we can find an index l(k) with 0 ≤ l(k) ≤ M , such

that at Step 3 we have hk+l(k) = h.

Assumption 5. At every iteration k, the line search procedure computes a

value αk such that

f(xk + αkdk) ≤ f(xk).

Furthermore, if {xk} is a sequence of feasible points convergent to a point x̄
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and

lim
k→∞

f(xk)− f(xk + αkdk) = 0,

then we have both

lim
k→∞

∇f(xk)T dk = 0, and lim
k→∞

αk‖dk‖ = 0 (4.2)

Assumption 6. Let {xk}K be a subsequence of feasible points convergent

to a point x∗, such that hk = h ∀k ∈ K. If

lim
k∈K,k→∞

∇f(xk)T dk = 0,

we obtain

∇(h)f(x∗)T
(
x(h) − x∗(h)

)
≥ 0 ∀x(h) ∈ Fh.

Proposition 2. Let {xk} be the sequence generated by IDA. Suppose that

Assumptions 4 - 6 are satisfied. Then {xk} admits limit points and each

limit point is a critical point for the problem (4.1).

See Proposition 1 from [16] for the complete proof. In practice, the above

three assumptions are related to one or more steps of Algorithm 2 and require

it to have some specific behaviors:

• Assumption 4 is satisfied by defining a suitable decomposition scheme

(Step 3). In particular, it requires that each block h is periodically

taken into account. In the proofs below, this is one of the ingredi-

ents that ensures that the discussion made on a single block might be

extended to all the others;

• Assumption 5 is satisfied by defining a suitable line search mapping

(Step 5) and a suitable descent direction (Step 4). This assumption

ensures that the chosen combination between line search and direction

is able to force directional derivative goes to zero. Moreover, it also

guarantees that the distance between two consecutive iterates goes

to zero. This is the second ingredient for extending a single-block

discussion to the multi-block case;

• Assumption 6 is satisfied by defining a suitable descent direction (Step

4) and exploiting Assumption 5. This assumption requires that the

sequence {dk} is gradient-related [10]. The properties of the direction

are needed to obtain this condition.
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4.3 The Nonmonotone Extended Framework

The first important point to notice, taking a closer look at the proof of Propo-

sition 1 from [16], is that the monotonicity requirement f(xk+1) ≤ f(xk) is

not really needed. In fact, the rest of the proof does only exploit condi-

tions contained in (4.2) without a precise interest in how they are obtained.

For this reason we might think of relaxing Assumption 5 and use instead As-

sumption 7 below. Thanks to this relaxation, Algorithm 2 might be extended

to the use of nonmonotone line search mappings. Note that the following

assumption permits that the sequence of the objective function values may

be nonmonotone, but ensures that the points generated by the algorithm

belong to the compact zero level set L0 = {x ∈ F : f(x) ≤ f(x0)}.

Assumption 7. At every iteration k, the line search procedure computes a

value αk such that

f(xk + αkdk) ≤ f(x0).

Furthermore, if {xk} is a sequence of feasible points convergent to a point

x̄, then we have

lim
k→∞

αk‖dk‖ = 0 (4.3)

and

lim
k→∞

∇f(xk)T dk = 0. (4.4)

The new convergence result is stated in Theorem 2.

Theorem 2. Let {xk} be the sequence generated by Algorithm 2. Suppose

that Assumptions 4, 6 and 7 are satisfied. Then {xk} admits limit points

that belong to L0 and each limit point is a critical point for problem (4.1).

Proof. The sequence {xk} of generated points is such that, for all k, xk ∈ F
since αk and dk are obtained by ensuring that the updated point is feasible

(Step 4 and Step 5 of Algorithm 2). F is compact, thus {xk} admits limit

points. Let x∗ be a limit point of {xk}, i.e., there exists an infinite subset

K ⊂ N such that

lim
k∈K,k→∞

xk = x∗.

By Assumption 7 we have that {xk} ⊂ L0 and we obtain that

lim
k∈K,k→∞

∇f(xk)T dk = 0, and lim
k∈K,k→∞

αk‖dk‖ = ‖xk+1 − xk‖ = 0.



62
A Unified Convergence Framework for Nonmonotone Inexact

Decomposition Methods

By induction, for every l ∈ N, we can write

lim
k∈K,k→∞

xk+l = x∗, (4.5)

lim
k∈K,k→∞

∇f(xk+l)T dk+l = 0. (4.6)

From Assumption 4 we have that for all h ∈ {1, . . . , L} there exists an index

0 ≤ j(k) ≤ M such that hk+j(k) = h. Thus, together with (4.5) and (4.6),

we obtain that

lim
k∈K,k→∞

xk+j(k) = x∗,

lim
k∈K,k→∞

∇f(xk+j(k))T dk+j(k) = 0.

In conclusion, from the above two limits and Assumption 6, we have that

∇(h)f(x∗)T
(
x(h) − x∗(h)

)
≥ 0 ∀x(h) ∈ Fh.

This inequality holds for every h ∈ {1, . . . , L} and hence the proposition is

proved.

In the remaining of this section, we are going to prove that different

nonmonotone line search mappings (Subsection 4.3.1) and direction choices

(Subsection 4.3.2) do satisfy Assumptions 6 and 7. Note that in [16], non-

monotone line searches were not addressed and the direction defined by the

Gauss-Southwell rule was not proved to obtain convergence. As it will be

clearer in the following, Theorem 2 proves convergence for some combina-

tion of directions and line searches: Gauss-Southwell-rule-based & (non-

monotone) Quadratic, Frank-Wolfe & (nonmonotone) Quadratic, projected

gradient & (nonmonotone) Quadratic and projected gradient & (nonmono-

tone) Armijo. All the four combinations need to prove Lemma 4 below and

to satisfy Assumption 6 and 7 to obtain convergence. As for its monotone

counterpart, Assumption 7 is not only employed in the final proof (of Theo-

rem 2), but it is also required to satisfy Assumption 6.

4.3.1 Nonmonotone Line search mappings

In this subsection we are going to present two nonmonotone line search

mappings that, together with a suitable direction, might be employed to

satisfy Assumption 7: Armijo (see [5], Algorithm 3) and Quadratic (see [26],
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Algorithm 4) line searches. Both line searches will be extended to accept

a nonmonotone step thanks to the original strategy introduced in [55]. In

order to guarantee theoretical properties by either Armijo or Quadratic line

search we need to ensure that the sequence of descent directions is uniformly

bounded in F (Assumption 8 (b) or Assumption 9 (b)). Moreover, to obtain

global convergence, as usual in the contexts of decomposition methods and

nonmonotone strategies, we also need to ensure that the distance between

consecutive iterates goes to 0. In turn, to obtain this, the Armijo line search

requires Assumption 8 (a) and the Quadratic one requires instead the weaker

Assumption 9 (a).

Given a point xk ∈ F and a feasible direction dk at xk, we indicate by

βk the maximum feasible step length along dk, i.e.,

xk + βdk ∈ F ∀β ∈ [0, βk] and xk + βdk /∈ F ∀β > βk.

As it will be clearer from Proposition 3 and 4, from the line search properties

it is only possible to obtain (4.11) (or the corresponding (4.13)), i.e., the

product between the directional derivative and βk goes to 0. To obtain

global convergence we need to ensure that the directional derivative alone is

going to 0, but this is not straightforward as in the unconstrained case where

βk is always bounded from below. For this reason, also in this step of the

global convergence proof, we need to exploit some additional characteristics

of the direction.

Let W > 0 be the nonmonotone window, then we define

fkmax := max
k−W≤i≤k

f(xi) (4.7)

as the largest function value among the last few iterations, where, formally,

we set x−1 := x−2 := . . . := x−W := x0 (or, alternatively, we can replace W

by W k := min{k,W}). Furthermore, let us define

r(k) ≤ k as the (largest) iteration index such that f(xr(k)) = fkmax holds.

(4.8)

Definition 1. A function σ : R+ → R+ is called forcing function if for each

sequence {tk} with tk ∈ R+ we have that

lim
k→∞

σ(tk) = 0 ⇒ lim
k→∞

tk = 0.
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Lemma 4. Suppose that L0 is compact. Let {xk} be a sequence of points

such that xk ∈ F and

f(xk+1) ≤ fkmax − σ(‖xk+1 − xk‖), (4.9)

where σ is a forcing function, then we have

(a) xk ∈ L0;

(b) {fkmax} and {fk} converge to the same limit;

(c) lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

‖αkdk‖ = 0.

Thus, if the line search condition might be written as in (4.9), the limit

(4.3) of Assumption 7 is obtained directly from Lemma 4 (see Lemma 2

of [53]). Note that this Lemma ensures that the sequence {xk} of points

generated by the algorithm belongs to the compact set L0. In turn, this

means that {xk} admits limit points and the function value in each of them

is less or equal than f(x0).

Armijo Line Search

Let us first consider a nonmonotone Armijo line search mapping. Algorithm 3

Algorithm 3: nonmonotone Armijo Line search

Input: xk, dk, βk(maximum feasible step length),

λ > 0, δ ∈ (0, 1), γ ∈ (0, 1),W ∈ N
Output: αk

1 α = min{βk, λ}
2 while f(xk+1) > fkmax + γα∇f(xk)T dk do

3 α = δα

4 αk = α

acceptance condition is

f(xk+1) ≤ fkmax + γαk∇f(xk)T dk. (4.10)

In order to write (4.10) as in (4.9) we need the following assumption.

Assumption 8. Let {dk} be a sequence of feasible search directions. As-

sume that
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(a) ∃ c1 > 0 such that ∀ k we have ∇f(xk)T dk ≤ −c1‖dk‖2,

(b) ∀ k we have ‖dk‖ ≤M for a given number M > 0.

Since (4.10) is a relaxed version of the original monotone Armijo condi-

tion, under Assumption 8 (a) we have that Algorithm 3 terminates finitely

(see [5]).

Remark 1. From (4.10) and (a) of Assumption 8 we have that

f(xk+1) ≤ fkmax − γc1αk‖dk‖2 ≤ fkmax −
γc1
λ
‖αkdk‖2.

Thus, condition (4.9) of Lemma 4 holds if the forcing function is defined by

σ(t) = γc1
λ t2.

The following proposition shows that if we employ a Nonmonotone Armijo

Line Search together with a search direction that satisfies Assumption 8 we

obtain that the product between the directional derivative and the maximum

feasible step length βk goes to 0. Its proof is an adapted version the one of

Proposition 4 from [16] (see Appendix 4.8).

Proposition 3. Let {dk} be a sequence of search directions satisfying As-

sumption 8. Let {xk} be a sequence of points generated by equation

xk+1 = xk + αkdk,

where αk is obtained by the Nonmonotone Armijo Line Search (Algorithm

3). Then, if {xk} converges to x̄, we have

lim
k→∞

βk∇f(xk)T dk = 0. (4.11)

Quadratic Line Search

Now we take into account a nonmonotone Quadratic line search mapping.

Algorithm 4: nonmonotone Quadratic Line search

Input: xk, dk, βk(maximum feasible step length),

λ > 0, δ ∈ (0, 1), γ ∈ (0, 1),W ∈ N
Output: αk

1 α = min{βk, λ}
2 while f(xk+1) > fkmax − γ‖αdk‖2 do

3 α = δα

4 αk = α
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Algorithm 4 acceptance condition is

f(xk+1) ≤ fkmax − γ‖αkdk‖2. (4.12)

In this case, we need something weaker than Assumption 8 to write (4.12)

as in (4.9).

Assumption 9. Let {dk} be a sequence of feasible search directions. As-

sume that

(a) ∀ k we have ∇f(xk)T dk < 0;

(b) ∀ k we have ‖dk‖ ≤M for a given number M > 0.

Since (4.12) is a relaxed version of the original Quadratic monotone con-

dition, under Assumption 9 (a) we have that Algorithm 4 terminates finitely

(see Proposition 4.1 from [56]).

Remark 2. Note that condition (4.9) of Lemma 4 if the forcing function is

defined by σ(t) = γt2.

The following proposition shows that if we employ a Nonmonotone Quadratic

Line Search together with a search direction that satisfies Assumption 9 we

obtain that the product between the directional derivative and the maximum

feasible step length βk goes to 0. Its proof of the following proposition is

similar to the one of Proposition 5 from [16] (see Appendix 4.9).

Proposition 4. Let {dk} be a sequence of search directions satisfying As-

sumption 9. Let {xk} be a sequence of points generated by equation

xk+1 = xk + αkdk,

where αk is obtained by the Nonmonotone Quadratic Line Search (Algorithm

4). Then, if {xk} converges to x̄, we have

lim
k→∞

βk∇f(xk)T dk = 0. (4.13)

4.3.2 Suitable Direction Choices

In Proposition 5, 6 and 7 we will respectively show that projected gradient

direction, Frank-Wolfe direction and the sparse direction based on the Gauss-

Southwell rule (in the case of single equality and box-constrained problems)
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satisfy Assumptions 6 and 7. Thus, from Assumption 7 we have that the

direction should be gradient-related. While to satisfy Assumption 6, the

direction needs to be combined with a line search mapping to first obtain

Proposition 3 (or 4). In turn, the hypothesis of Proposition 3 (or 4) is

Assumption 8 (or Assumption 9), which again needs to be satisfied exploit-

ing the definition of the direction. We will show that Frank-Wolfe and the

Gauss-Southwell-rule-based directions satisfy Assumption 9 (respectively in

Proposition 6 and 7), while projected gradient direction satisfies both As-

sumption 8 and Assumption 9 (in Proposition 5).

As it will be clearer from the definitions, both projected gradient (4.14)

and Frank-Wolfe (4.15) directions are always feasible. Furthermore, the max-

imum feasible step length βk is always bounded from below (βk ≥ 1). Thus

from Proposition 3 (or 4) is straightforward to obtain Assumption 7. On

the other hand, for the Gauss-Southwell-rule-based direction (4.17)-(4.18)

Assumption 7 is not that easy to be obtained. In this work we prove that

if Fh has a certain structure we might exploit the property of the Gauss-

Southwell rule in order to obtain Assumption 7. In the following we will

implicitly assume that, if ∇f(xk)T dk ≥ 0, then we will consider a null step

along the search direction, that is αk = 0.

Projected Gradient Direction

Given hk ∈ {1, . . . , L} the selected block at iteration k, the projected gradi-

ent direction is defined by

dk(h) =

{
PFh [xk(h) −∇(h)f(xk)]− xk(h), hk = h,

0, hk 6= h,
(4.14)

where PFh [·] is the projection operator on the set Fh. From the convexity

of F it follows that xk +dk ∈ F , so that we have that the maximum feasible

step length βk is greater or equal to 1. The proof of the following proposition

is an adapted version of the one from Proposition 4 of [16] (see Appendix

4.10).

Proposition 5. Let {dk} be a sequence of search directions defined as in

(4.14). Let {αk} be a sequence of step lengths defined by an Armijo (or

Quadratic) Line search. Then, Assumptions 6 and 7 are satisfied.



68
A Unified Convergence Framework for Nonmonotone Inexact

Decomposition Methods

Frank-Wolfe Direction

Given hk ∈ {1, . . . , L} the selected block at iteration k, the Frank-Wolfe

direction might be defined by

dk(h) =

{
x̂k(h) − x

k
(h), hk = h,

0, hk 6= h,
(4.15)

where x̂k(h) ∈ arg min
x(h)∈Fh(x)

∇(h)f(xk)Tx(h).

Again, from the convexity of F it follows that xk + dk ∈ F , so that we have

that the maximum feasible step length βk is greater or equal to 1. The proof

of the following proposition is an adapted version of the one from Proposition

5 of [16] (see Appendix 4.11).

Proposition 6. Let {dk} be a sequence of search directions defined as in

(4.15). Let {αk} be a sequence of step lengths defined by a Quadratic Line

search. Then, Assumptions 6 and 7 are satisfied.

Gauss-Southwell-rule-based Direction

In this subsection, our analysis is limited to the case in which the factor sets

Fh of problem (4.1) are defined as follows

Fh =
{
x(h) ∈ Rnh : aT(h)x(h) = b(h), l(h) ≤ x(h) ≤ u(h)

}
, (4.16)

where we assume that a(h),i 6= 0 for i ∈ {1, . . . , nh}. There are many prob-

lems for which Fh has the structure (4.16), e.g., Network Equilibrium prob-

lems (NE) [29], training of Support Vector Machines (SVM) [73,74], portfolio

selection problems [66] and optimal control problems [6].

In the context of (4.16), a common approach in the literature (i.e., [29,72,

74]) has been that of selecting only 2 nonzero components of each block. This

idea, suggested by the structure of the problem, is very well suited for large-

scale problems, in which each step is reduced to a very simple operation. In

order to select the two components it is usually employed a Gauss-Southwell

rule which picks the couple of components that mostly violates optimality.

We first recall the following index sets definitions. Given a point x ∈ F
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and an index h ∈ {1, . . . , L}, with x(h),i the i-th component of x(h), we define

Lh(x) =
{
i ∈ {1, . . . , nh} : x(h),i = l(h),i

}
,

L−h (x) =
{
i ∈ Lh(x) : a(h),i < 0

}
,

L+
h (x) =

{
i ∈ Lh(x) : a(h),i > 0

}
,

Uh(x) =
{
i ∈ {1, . . . , nh} : x(h),i = u(h),i

}
,

U−h (x) =
{
i ∈ Uh(x) : a(h),i < 0

}
,

U+
h (x) =

{
i ∈ Uh(x) : a(h),i > 0

}
,

Rh(x) = L+
h (x) ∪ U−h (x) ∪

{
i ∈ {1, . . . , nh} : l(h),i < x(h),i < u(h),i

}
,

Sh(x) = L−h (x) ∪ U+
h (x) ∪

{
i ∈ {1, . . . , nh} : l(h),i < x(h),i < u(h),i

}
.

Given a point xk ∈ F we also define

Ih(xk) =

{
i ∈ {1, . . . , nh} : i ∈ arg max

i∈Rh(xk)
−
∇(h),if(xk)

a(h),i

}
,

Jh(xk) =

{
j ∈ {1, . . . , nh} : j ∈ arg min

j∈Sh(xk)
−
∇(h),jf(xk)

a(h),j

}
.

Now, given a selected block h ∈ {1, . . . , L} and a component of this block

p ∈ {1, . . . , nh}, we define

di,j(h),p =


1

a(h),p
, p = i,

− 1
a(h),p

, p = j,

0, otherwise.

(4.17)

Thus, the direction at iteration k, is

dk(h) =

{
d
ikh,j

k
h

(h) , h = hk,

0, otherwise,
(4.18)

where ikh ∈ Ih(xk), jkh ∈ Jh(xk). Given an index h ∈ {1, . . . , L} and x̄(h) ∈
Fh, we also define Dh(x̄(h)) as the set of feasible directions at x̄ with respect

to Fh and DRS
h (x̄(h)) the set

DRS
h (x̄(h)) =

⋃
i∈Rh(x̄)
j∈Sh(x̄)
i6=j

di,j(h).
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Let us first recall Proposition 6 and Proposition 7 from [16] and Proposition

3.3 from [74]. In the following they are called Lemma 5, 6 and 7.

Lemma 5. Let {xk} be a sequence of feasible points for problem (4.1),

with factor sets Fh of the form (4.16), convergent to a point x̄, and let

h ∈ {1, ..., L}. Then for sufficiently large values of k we have

Rh(x̄) ⊆ Rh(xk) Sh(x̄) ⊆ Sh(xk).

Lemma 6. Let x be a feasible point of problem (4.1), with factor sets Fh
of the form (4.16) and let h ∈ {1, . . . , L}. Then

∇(h)f(x)T
(
y(h) − x(h)

)
≥ 0 ∀ y(h) ∈ Fh,

if and only if

max
i∈Rh(x)

{
−
∇(h),if(x)

a(h),i

}
≤ min
j∈Sh(x)

{
−
∇(h),jf(x)

a(h),j

}
.

Lemma 7. Given h ∈ {1, . . . , L} and x̄(h) ∈ Fh, we have

cone{DRS
h (x̄(h))} = Dh(x̄(h)),

where, given Y a set of m vectors (yi ∈ Rn), we define

cone(Y ) := {y ∈ Rn : y =

m∑
l=1

µlyl, µl ≥ 0, l = 1, . . . ,m}.

In the following, we will use Lemma 6 and 7 to prove that Assumptions

6 and 7 are satisfied. Note that the following proof differs from the one

given in [29] since it does not only consider simplexes, but box-constrained

problems, and does also differ from the one given in [74] since it does not

consider exact line searches, but inexact ones.

Proposition 7. Let {dk} be a sequence of search directions defined as in

(4.18). Let {αk} be a sequence of step lengths defined by a Quadratic Line

search. Then, Assumption 6 and 7 are satisfied.

Proof. We assume that xk is not a stationary point. Thus, from Lemma 6

and definition (4.18) we have that

∇f(xk)T dk =
∇(h),ikh

f(xk)

a(h),ikh

−
∇(h),jkh

f(xk)

a(h),jkh

< 0.
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Again by definition (4.18) we have that ‖dk‖ =
√

2 ∀k. Thus, Assumption

9 is proven.

Now let us prove Assumptions 7. Let {xk} be a sequence convergent to

x̄. By contradiction assume that there exists a convergent subsequence K

such that

lim
k∈K,k→∞

∇f(xk)T dk = −µ < 0,

which means that there exist at least a block ĥ and at least a couple of

components ī ∈ Rĥ(x̄) and j̄ ∈ Sĥ(x̄) for which

1

a(ĥ),̄i

· ∂f(x̄)

∂x(ĥ),̄i

<
1

a(ĥ),j̄

· ∂f(x̄)

∂x(ĥ),j̄

. (4.19)

By Step 3 of Algorithm 2 we have that hk ∈ {1, . . . , L}. For each k ∈ K, let

Γk1 , . . .Γ
k
L be defined as follows

Γkh =
{
i ∈ {0, . . . , (2n+ 1)M} : hk+i = h, k ∈ K

}
.

From Assumption 4 we have that every M iterations each block is considered

at least once. Every 2M iterations each block is considered at least 2 times,

thus, repeating the argument till 2n + 1, we have that every (2n + 1)M

iterations each block is considered at least (2n + 1) times. Thus, together

with the fact that |Γk1 |+ · · ·+ |ΓkL| = (2n+ 1)M , we have that each of those

sets contains at least 2n + 1 indexes and in particular |Γk
ĥ
| ≥ 2n + 1. Now

we have 2 cases:

Case (I) If there exists a set of constants {M1, . . . ,ML} such that ∀ k ∈ K
there exists a limited 0 < mh(k) < Mh such that

hk+mh(k) = ĥ and αk+mh(k) < βk+mh(k). (4.20)

Case (II) If this set does not exist, at least one of those constants does not

exist, w.l.o.g. assume that Mĥ does not exist, which means that

hk+m = ĥ and αk+m = βk+m, ∀k ∈ K, ∀ m ∈ Γk
ĥ
.

Let us start with Case (I). From (4.20) we might exploit a failure in the line

search procedure, which means that for block ĥ we have

f(xk+mĥ(k) +
αk+mĥ(k)

δ
dk+mĥ(k)) > f

k+mĥ(k)
max − γ‖α

k+mĥ(k)

δ
dk+mĥ(k)‖2

≥ f(xk+mĥ(k))− γ‖α
k+mĥ(k)

δ
dk+mĥ(k)‖2.
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From the Mean Value Theorem, applied on the above inequality, we obtain

that

∇f(zk+mĥ(k))T dk+mĥ(k) > −γ
δ
αk+mĥ(k)‖dk+mĥ(k)‖2, (4.21)

where zk+mĥ(k) = xk+mĥ(k) + θk+mĥ(k) α
k+m

ĥ
(k)

δ dk+mĥ(k), with

θk+mĥ(k) ∈ [0, 1]. Since mĥ(k) < Mĥ we have that

lim
k→∞,k∈K

xk+mĥ(k) = x̄. (4.22)

Thus, from Lemma 4 we also get that {zk+mĥ(k)} converges to x̄. Now,

since ik+mĥ(k) and jk+mĥ(k) belong to a finite set {1, . . . , L} we can extract

a further subset K, that we relabel again K, such that

ik+mĥ(k) = î and jk+mĥ(k) = ĵ and hk+mĥ(k) = ĥ ∀k ∈ K. (4.23)

Then

lim
k→∞,k∈K

∇f(zk+mĥ(k))T dk+mĥ(k) =
1

a(ĥ),̂i

· ∂f(x̄)

∂x(ĥ),̂i

− 1

a(ĥ),ĵ

· ∂f(x̄)

∂x(ĥ),ĵ

= ν.

Now, from (4.21), (b) of Assumption 9 and (c) of Lemma 4, we get that that

lim
k→∞,k∈K

γ

δ
αk+mĥ(k)‖dk+mĥ(k)‖2 = 0 ≤ ν. (4.24)

From Lemma 5 and (4.22) we have that

Rĥ(x̄) ⊆ Rĥ(xk), Rĥ(x̄) ⊆ Rĥ(xk+mĥ(k)) and

Sĥ(x̄) ⊆ Sĥ(xk), Sĥ(x̄) ⊆ Sĥ(xk+mĥ(k)),

thus, ∀k ∈ K sufficiently large, we have that

ī ∈ Rĥ(xk+mĥ(k)) and j̄ ∈ Sĥ(xk+mĥ(k)),

which means that

1

a(ĥ),̂i

· ∂f(xk+mĥ(k))

∂x(ĥ),̂i

≤ 1

a(ĥ),̄i

· ∂f(xk+mĥ(k))

∂x(ĥ),̄i

and
1

a(ĥ),ĵ

· ∂f(xk+mĥ(k))

∂x(ĥ),ĵ

≥ 1

a(ĥ),j̄

· ∂f(xk+mĥ(k))

∂x(ĥ),j̄

,
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thus we can write

1

a(ĥ),̄i

· ∂f(xk+mĥ(k))

∂x(ĥ),̄i

− 1

a(ĥ),j̄

· ∂f(xk+mĥ(k))

∂x(ĥ),j̄

≥

1

a(ĥ),̂i

· ∂f(xk+mĥ(k))

∂x(ĥ),̂i

− 1

a(ĥ),ĵ

· ∂f(xk+mĥ(k))

∂x(ĥ),ĵ

,

from which, takings limits and using (4.24), we obtain that

1

a(ĥ),̄i

· ∂f(x̄)

∂x(ĥ),̄i

− 1

a(ĥ),j̄

· ∂f(x̄)

∂x(ĥ),j̄

≥

1

a(ĥ),̂i

· ∂f(x̄)

∂x(ĥ),̂i

− 1

a(ĥ),ĵ

· ∂f(x̄)

∂x(ĥ),ĵ

≥ 0,

which is absurd by (4.19).

Let us now consider Case (II). For all m ∈ Γk
ĥ

we have that at least one

of the possible two cases holds:

ik+m

ĥ
∈ Rĥ(xk+m) ik+m

ĥ
6∈ Rĥ(xk+m+1) (4.25)

jk+m

ĥ
∈ Sĥ(xk+m) jk+m

ĥ
6∈ Sĥ(xk+m+1), (4.26)

where ik+m

ĥ
∈ Iĥ(xk+m), jk+m

ĥ
∈ Jĥ(xk+m). Now we define 2 sets Γk

ĥ

′
and

Γk
ĥ

′′
in which (4.25) and (4.26) are respectively satisfied, and Γk

ĥ

′∪Γk
ĥ

′′
= Γk

ĥ
.

Thus, one of them contains more than n indexes, and, w.l.o.g, we assume

that |Γk
ĥ

′| > n. Thus, there exists î ∈ {1, . . . , n}, and l(k),m(k) such that

k ≤ l(k) < m(k) ≤ k + 2nM

and

il(k) = im(k) = î and hl(k) = im(k) = ĥ.

Since K is infinite and n is limited, we can define a subset K1 ⊆ K such

that the previous argument is valid on î for each ki ∈ K1, thus we have

il(ki) = im(ki) = î and hl(ki) = hm(ki) = ĥ

with

ki ≤ l(ki) < m(ki) ≤ ki + 2nM.

Thus, ∀ ki ∈ K1, from (4.17) we have that there exists an index p(ki), with

ki ≤ l(ki) < p(ki) < m(ki) ≤ ki + 2nM and hp(ki) = ĥ, in which x(ĥ),̂i is
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moved away from its previous bound, between iterations l(ki) and m(ki),

i.e.,

î 6∈ Rĥ(xp(ki)) î ∈ Rĥ(xp(ki)+1). (4.27)

Thus, from the Gauss-Southwell rule we have that

1

a(ĥ),̂i

· ∂f(xp(ki))

∂x(ĥ),̂i

≥ 1

a(ĥ),j

· ∂f(xp(ki))

∂x(ĥ),j

∀j ∈ Sĥ(xp(ki)), (4.28)

and also

1

a(ĥ),̂i

· ∂f(xl(ki))

∂x(ĥ),̂i

≤ 1

a(ĥ),i

· ∂f(xl(ki))

∂x(ĥ),i

∀i ∈ Rĥ(xl(ki)). (4.29)

As p(ki)− ki ≤ 2nM and l(ki)− ki ≤ 2nM , we can write

lim
ki∈K1,k→∞

xp(ki) = x̄ = lim
ki∈K1,k→∞

xl(ki). (4.30)

From (4.28), (4.29) and (4.30) we obtain that

max
i∈Rĥ(x̄)

{
− 1

a(ĥ),i

· ∂f(x∗)

∂x(ĥ),i

}
= min
j∈Sĥ(x̄)

{
− 1

a(ĥ),j

· ∂f(x∗)

∂x(ĥ),j

}

= − 1

a(ĥ),̂i

· ∂f(x∗)

∂x(ĥ),̂i

,

which contradicts (4.19) since ī ∈ Rĥ(x̄) and j̄ ∈ Sĥ(x̄), proving Assumption

7.

Now let us prove Assumption 6. Let {xk}K be a sequence convergent to

x∗ for which hk = h ∀k ∈ K and

lim
k∈K,k→∞

∇f(xk)T dk = 0. (4.31)

Assume by contradiction that ∃ x̂(h) ∈ Fh such that

∇(h)f(x∗(h))(x̂(h) − x∗(h)) < 0. (4.32)

Let us define d̂(h) := x̂(h) − x∗(h). From Lemma 7, we have that

d̂(h) =

|DRSh (x∗(h))|∑
l=1

d̂(h),lµl,
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where µl ≥ 0 and d̂(h),l ∈ DRS
h (x∗(h)). From µl ≥ 0 and (4.32) there must

exists at least a direction d̂(h),l̂ for which ∇(h)f(xk)T d̂(h),l̂ < 0. From the

definition of Gauss-Southwell-rule-based direction (4.18) we have that

∇f(xk)T dk = ∇(h)f(xk)T dk(h) ≤ ∇(h)f(xk)T d̂(h),l̂ < 0,

which means that the sequence {∇f(xk)T dk} is bounded away from 0, which

is absurd from (4.31).

4.4 On some Numerical Issues

Let us consider a constrained problem in which the objective function is

partially separable, i.e.,

min f(x) =

N∑
h=1

fh(x)

s.t. x ∈ X ⊆ Rn,

(4.33)

where f : X → R and each individual fh(x) is a function depending on

some of the components xi, i ∈ Ih for some index sets Ih ⊆ {1, . . . , n},
h = 1, . . . , N .

For a given working set w ⊆ {1, . . . , n}, we define an index set Hw ⊆
{1, . . . , N} of function fh(x) dependent on one or more components xi be-

longing to w, that is, Hw = {h ∈ {1, . . . , N} | w ∩ Ih 6= ∅}. Given Hw, we

can easily define the objective function part fw related to w ⊆ {1, . . . , n} as

follows

fw(x) =
∑
h∈Hw

fh(x). (4.34)

In the same manner, we can define the complementary part fw̄ of fw

fw̄(x) =
∑

h∈{1,...,N}\Hw

fh(x) (4.35)

such that

f(x) = fw̄(x) + fw(x), ∀ x ∈ X,∀ w ⊆ {1, . . . , n} . (4.36)

In order to show how to take advantage of using fw(x) in place of f from

both the computational and numerical points of view we assume that
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• computing fw is far less expensive than computing the whole f ,

• given a suitable w ⊆ {1, . . . , n} we have

f(x)� fw(x). (4.37)

Those assumptions are often satisfied when facing large-scale problems, in

fact, the working sets w are usually built to deal with dimensions which are

much smaller than the originals.

4.4.1 The Monotone Numerical Trick

In this subsection we formalize and generalize a smart numerical trick that

is part of the common knowledge in various specific fields (for instance see

Remark 2 from [15]). We approach (4.33) using a decomposition framework

together with a line search. That is, at each iteration k, the working set

wk ⊆ {1, . . . , n} is considered and the point xk is updated as follows

xk+1 = xk + αkdk,

where dk 6= 0 is a feasible direction and dki = 0, ∀ i /∈ wk, and αk is the step

along dk obtained by means of a line search procedure. Now, from (4.34),

(4.35) and (4.36), we have

f(xk+1) = fw̄k(xk+1) + fwk(xk+1).

From the definition of Hw and dk, it holds that fw̄k(xk+1) = fw̄k(xk), thus

we have

f(xk+1) = fw̄k(xk) + fwk(xk+1) =

= fw̄k(xk) + fwk(xk) + fwk(xk+1)− fwk(xk) =

= f(xk) + fwk(xk+1)− fwk(xk).

(4.38)

It is easy to see that f(xk+1) can be updated evaluating only fwk , more

precisely, it is updated adding the reduction of fwk obtained by the line

search. As f is much more expensive than fwk , a relevant computational

saving can be obtained.

From a numerical point of view, since f(x) � fw(x) and consequently

fw̄(x) � fw(x), the evaluation of the sufficient reduction performed by the
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line search could be fairly noisy. In particular, in later stages of the opti-

mization, it might hold that

f(xk+1) ≈ f(xk) (4.39)

from a numerical point of view. The monotone numerical trick exploits the

definition of f in (4.36). For example, using a quadratic line search rule as

the following

f(xk+1) ≤ f(xk)− γ‖αkdk‖2,

from (4.36) we have

fw̄k(xk+1) + fwk(xk+1) ≤ fw̄k(xk) + fwk(xk)− γ‖αkdk‖2,

then, since fw̄k(xk+1) = fw̄k(xk), we obtain

fw̄k(xk) + fwk(xk+1) ≤ fw̄k(xk) + fwk(xk)− γ‖αkdk‖2

and finally

fwk(xk+1) ≤ fwk(xk)− γ‖αkdk‖2. (4.40)

Using (4.40), the noisy comparison between f(xk+1) and f(xk) can be avoided.

In the illustrative example reported in Section 4.5 we will show that the com-

putation of the monotone line search step length is much more accurate than

that of using f , as well as the computational savings obtained with fwk .

4.4.2 The Nonmonotone Numerical Trick

To the best of our knowledge, the nonmonotone numerical trick derived in

this subsection was never proposed in the literature before. Let us now

assume that the line search rule is nonmonotone. For instance, we employ

the classical nonmonotone strategy from [55] on the quadratic line search

f(xk+1) ≤ fkmax − γ‖αkdk‖2 (4.41)

where fkmax is defined in (4.7).

Conversely from what happens in the monotone case, since fkmax is gen-

erally related to a past iteration, the term fw̄k(xk) can’t be deducted from

both sides as in (4.40). However, removing f(xk) from both sides in (4.41),

we obtain

f(xk+1)− f(xk) ≤ fkmax − f(xk)− γ‖αkdk‖2
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and from (4.38) we have

fwk(xk+1)− fwk(xk) ≤ fkmax − f(xk)− γ‖αkdk‖2

and finally

fwk(xk+1) ≤ fwk(xk) + ∆k
max − γ‖αkdk‖2, (4.42)

where

∆k
max = fkmax − f(xk) (4.43)

is the maximum distance between f(xk) and any objective function value

seen in the past W iterations. In case W = 1, we get back to the monotone

case (4.40) and ∆k
max = 0.

In (4.42), the numerical raw comparison between f(xk+1) and f(xk) is

again avoided and the achieved computational benefit is the same as in the

monotone case. However, the computation of ∆k
max is critical from a numer-

ical point of view, as it is a difference between fkmax and f(xk) which are

generally close since the nonmonotone window W is finite and assumption

(4.37) holds. This will lead to a catastrophic cancellation due to the lack of

significant digits in the finite real-value floating-point representation.

If the numerical issue of computing ∆k
max is not addressed properly, the

nonmonotone behavior may end after a few iterations, as it happens in prac-

tice. For this reason, the following nonmonotone numerical trick has been

designed. We recall that r(k) is the index of the nonmonotone window cor-

respondent to fkmax defined in (4.8). The term ∆k
max is then obtained as

follows

∆k
max = fkmax − f(xk) =

= f(xk−r(k))− f(xk) =

= f(xk−r(k))− f(xk−r(k)+1) + f(xk−r(k)+1)− f(xk) =

= f(xk−r(k))− f(xk−r(k)+1) + f(xk−r(k)+1)− . . .+
− f(xk−1) + f(xk−1)− f(xk) =

=
∑

i=1,...,r(k)

f(xk−i)− f(xk−i+1).

Finally, since it holds that

f(xk)− f(xk+1) = fwk(xk)− fwk(xk+1),
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from (4.38), we obtain

∆k
max =

∑
i=1,...,r(k)

f(xk−i)− f(xk−i+1) =

=
∑

i=1,...,r(k)

fwk−i(x
k−i)− fwk−i(xk−i+1).

(4.44)

From (4.44), the computation of ∆k
max needs only to store the reductions

of subsequent line searches optimizations, exploiting the structure of f and

the definition of the sets Hw, w ⊆ {1, . . . , n}. The computation of ∆k
max is

more robust than that of using fkmax and f(xk). Moreover, the numerical

consistency in terms of useful significant digits scales suitably in accordance

with the order of magnitude of subsequent line search reductions, as Section

4.5 will show.

4.5 A Class of Large-Scale Problems

As an illustrative example, we show the numerical efficiency of the proposed

nonmonotone algorithm on a set of large NE problems. Let G = (N,A) be a

graph, where N is the set of nodes and A is the set of arcs. Let P ⊆ N ×N
be the set of all Origin/Destination (O/D) pairs (|P | = L). For each h ∈ P ,

a travel demand Dh > 0 is defined. Each block h ∈ {1, . . . , L} is here related

to one O/D pair h ∈ {1, . . . , |P |}. Given such a network, the NE problem

concerns the forecasting of the flow on each arc. We take into account the

path-based formulation of the NE (see [29] for a complete description), where

the problem structure is exactly the one from (4.1). In particular, indicated

by x the vector of path flows, the objective function is a smooth, convex

function defined by

f(x) =
∑
a∈A

∫ va(x)

0

sa(t) dt,

where va(x) is the total flow on arc a and sa(·) is the arc-separable cost, and

the factor sets are defined by

Fh = {x(h) ∈ Rnh :
∑

i∈{1,...,nh}

x(h),i = Dh, x(h) ≥ 0}. (4.45)

In (4.45), for each O/D pair h ∈ {1, . . . , L}, x(h) ∈ Rnh represents the vector

of flows on the paths insisting on h. Note that the above formulation might
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be considered “virtual”, since the total number of paths is exponential in

the dimension of the network. For this reason we define a restricted set

Fh(xk) ⊆ Fh, in which only paths with nonzero flow are considered. Then,

variables are iteratively added by means of a column generation technique.

To solve the NE problem, Algorithm 2 was implemented by employing

the Gauss-Southwell-rule-based direction with 2 nonzero components in Step

4 and a (nonmonotone) Quadratic line search in Step 5. The external de-

composition (Step 3) simply iterates through the O/D pairs, which means

that Assumption 4 holds with M = L. The column generation scheme is

periodically applied to find the shortest paths to be added to the working

set.

As regards the computation of the initial step length along the search di-

rection, a commonly used choice [18] is the one obtained by minimizing the

quadratic approximation of f along the direction. Taking into account that

the direction has only 2 nonzero components and that the partial derivatives

of f represent the costs of the corresponding paths, the closed-form solution

of the above step length can be easily and efficiently calculated. This step

length was showed to perform well in practice if employed directly, but to

ensure global convergence a line search mapping is needed. In the monotone

setting, it might happen that a sufficient decrement is not obtained employ-

ing this step, resulting in at least one reduction of it. This is the precise

context for which nonmonotone strategies were designed: accepting as often

as possible a good initial step without reducing it.

In this context we compare Algorithm 2 in which Step 5 is a nonmonotone

Quadratic line search (Nonmonotone IDA, NIDA) with its monotone coun-

terpart (IDA). Different executions are compared w.r.t. several values of the

relative gap, a well-known measure of convergence in NE problems (see [29]).

All the test problems used for the experiments are freely available at the web

page http://www.bgu.ac.il/~bargera/tntp/ and are described in Table

4.1. Both algorithms have been implemented in C++, the shortest path al-

gorithm employed is Dijkstra from the C++ Boost libraries and parameters

chosen for both the line searches are

λ = 1, δ = 0.5, γ = 10−2, W = 10.

The two algorithms have been compared on the following measures: total

number of iterations (Table 4.2) and total number of evaluations of the objec-

tive function (Table 4.3) w.r.t. several levels of the relative gap, from a rough

equilibrium solution (10−4) to a more accurate one (10−7). From Table 4.2

http://www.bgu.ac.il/~bargera/tntp/
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Network Label # links # nodes # centroids # O/D pairs

Sioux-Falls SF 76 24 24 528

Winnipeg W 2,535 1,067 154 4,345

Barcelona B 2,522 1,020 110 7,922

Chicago-Sketch CS 2,950 933 387 93,135

Berlin-Center BC 28,376 12,981 865 49,688

Philadelphia P 40,003 13,389 1,525 1,149,795

Chicago-Regional CR 39,018 12,982 1,790 2,296,227

Sydney S 75,379 33,113 3,264 3,340,619

Table 4.1: Network datasets details

Dataset Algorithm 10−4 10−5 10−6 10−7

SF monotone 2.69e+03 7.54e+03 2.23e+04 3.72e+04

nonmonotone 1.98e+03 5.11e+03 1.12e+04 1.76e+04

W monotone 2.56e+04 3.93e+04 159289 2.32e+05

nonmonotone 1.07e+04 2.02e+04 6.89e+04 1.08e+05

B monotone 3.87e+04 9.83e+04 279352 6.38e+05

nonmonotone 1.06e+04 1.61e+04 4.68e+04 1.50e+05

CS monotone 1.65e+05 2.50e+05 3.86e+05 6.72e+05

nonmonotone 9.40e+04 1.23e+05 1.41e+05 2.27e+05

BC monotone 8.63e+03 1.21e+04 1.90e+04 2.15e+04

nonmonotone 5.04e+03 6.26e+03 8.86e+03 1.09e+04

P monotone 1.08e+07 3.43e+07 9.88e+07 2.28e+08

nonmonotone 4.03e+06 7.41e+06 1.75e+07 5.39e+07

CR monotone 1.99e+07 3.53e+07 8.88e+07 1.36e+08

nonmonotone 8.406e+06 1.47e+07 3.64e+07 6.01e+07

S monotone 5.72e+06 8.57e+06 1.56e+07 2.40e+07

nonmonotone 3.13e+06 3.42e+06 4.35e+06 6.72e+06

Table 4.2: Total number of iterations required by the monotone (IDA) and

nonmonotone (NIDA) algorithm with respect to the relative gap.

and 4.3 it is possible to observe that the nonmonotone algorithm outperforms

the original monotone version with respect to both number of iterations and

function evaluations. In fact, NIDA obtains better performances than IDA

for the whole optimization procedure. Moreover at a relative gap equal to

10−7, the number of iterations (Table 4.2) of NIDA is always from twice to
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Dataset Algorithm 10−4 10−5 10−6 10−7

SF monotone 2.82e+05 8.95e+05 2.76e+06 4.47e+06

nonmonotone 1.04e+04 3.35e+04 7.25e+04 1.16e+05

W monotone 6.69e+06 1.09e+07 4.90e+07 7.00e+07

nonmonotone 1.67e+05 4.48e+05 1.69e+06 2.90e+06

B monotone 1.66e+07 5.06e+07 1.61e+08 3.76e+08

nonmonotone 5.82e+05 1.32e+06 6.27e+06 2.74e+07

CS monotone 2.61e+07 4.89e+07 8.51e+07 1.54e+08

nonmonotone 9.39e+05 1.84e+06 2.48e+06 5.58e+06

BC monotone 2.03e+06 3.62e+06 6.41e+06 7.42e+06

nonmonotone 1.26e+04 5.71e+04 7.86e+04 8.02e+04

P monotone 3.24e+09 1.30e+10 3.62e+10 5.83e+10

nonmonotone 8.60e+07 3.19e+08 1.12e+09 3.74e+09

CR monotone 3.11e+09 6.48e+09 1.52e+10 1.93e+10

nonmonotone 2.70e+07 1.35e+08 5.62e+08 9.48e+08

S monotone 1.19e+09 2.46e+09 5.66e+09 8.76e+09

nonmonotone 8.49e+06 2.10e+07 1.09e+08 3.20e+08

Table 4.3: Total number of function evaluations required by the monotone

(IDA) and nonmonotone (NIDA) algorithm with respect to the relative gap.

four times lower than IDA’s.

The gain in terms of function evaluations (Table 4.3) is even grater,

because the nonmonotone strategy is designed to relax the line search con-

dition, accept more often the new step and, thus, reduce the number of

function evaluations in each line search call.

Note that it was possible to preserve a remarkable gain also for higher

accuracy only thanks to the numerical framework proposed in Section 4.4.

Note that both IDA and NIDA employ a decomposition on the O/D pairs

and iteratively equilibrates only two paths. This means that the working

set wk is made of only two variables. Thus, the portion of network edges

affected by the equilibration is small enough to have that fwk � f as in

(4.37). Moreover, the equilibrium problem objective function is the sum

of negative strictly increasing functions, one for each edge of the network

(see [29]).

In the following we show the benefits of employing the numerical tech-

niques discussed in Section 4.4 on two small-medium networks, Winnipeg

and ChicagoSketch.
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In Figure 4.1 the time needed to reach several levels of the relative gap

using fwk and f is reported, where a logarithmic scale on the CPU time

has been employed in order to properly compare f and fwk . From Figure
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Figure 4.1: Computational comparison between the use of f and fwk in the

line search procedure. CPU time (s).

4.1, it is clear that using fwk leads to a relevant save of time. However, we

need to show that the computation of fwk is at least as accurate as f from

a numerical point of view. In order to compare the robustness of both fwk

and f , we evaluate the numerical error with respect to the evaluation of the

objective function using the quadruple precision floating-point representation

(128-bit), while standard computations are in double precision (64-bit).

Such reference value denoted with f∞ is considered as the ground truth
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Figure 4.2: Objective function evaluation error with f and fwk in the line

search procedure through iterations.

value and the error ε(f) of an evaluation is computed as follows

ε(f) =
|f∞ − f |
f∞

.

In Figure 4.2 we can observe that using fwk leads to more accurate evalu-

ations than that of f . As a consequence, with a robust evaluation of the
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monotone line search rule accomplished by the use of fwk described in Sec-

tion 4.4.1, the precision of the step αk is greater than that of using f , as it

is reported in Figure 4.3, where ε(α) is computed as follows

ε(α) =
|α∞ − α|
α∞

and α∞ is obtained using f∞ in the line search procedure. Note that in
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Figure 4.3: Linesearch step computation error with f and fwk in the line

search procedure through iterations.
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Figure 4.3 a few error spikes can be observed even when employing fwk ,

in correspondence with the higher ones obtained by employing f . This be-

havior could be a consequence of the use of the quadruple precision as the

ground truth of the step length value. In fact, it may perform a few more

reductions of α due to the large amount of significant digits provided by the

representation.

In the nonmonotone case, the line search step precision is affected by the

precision of ∆k
max defined in (4.43). In Figure 4.4, it is reported the error

ε(∆max) =
|∆∞max −∆max|

∆∞max

obtained using the standard ∆max = fkmax − f(xk) and the optimized one

from (4.44), where ∆∞max is obtained by means of quadruple precision evalu-

ations. From Figure 4.4, we can observe that using the standard ∆max leads

quickly to noisy values affected by the cancellation error that occurs when

computing the difference between two closed values in terms of significant

digits. With the optimized ∆max given in (4.44), the obtained precision

is high even in later iterations, allowing the nonmonotone strategy to be

employed in a robust manner.

As a consequence, the error of the nonmonotone step αk computation

behaves accordingly with the ∆max precision, as it is widely confirmed in

Figure 4.5. Using fw(x) in a separable function like the one considered in

this section leads to relevant benefits both in terms of computational time

and numerical precision, in fact allowing the exploiting of the nonmonotone

strategy even in large-scale problems.

Note that the effect of the numerical tricks described in Section 4.4 is

greater as the network size increases. That’s why we were able to perform

experiments on large networks such as Philadelphia, ChicagoRegional and

Sydney where even monotone methods have to face with numerical issues

in later stages of the optimization. However, we were not able to show the

numerical advantages on these networks due to the high computational effort

required by the quadruple precision floating-point representation, which is

software simulated.

4.6 Conclusions

In this work, a general nonmonotone decomposition framework was defined

for smooth constrained optimization problems. The need of adopting non-
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Figure 4.4: Standard and optimized ∆k
max computation error in the non-

monotone line search procedure through iterations.

monotone strategies within a decomposition framework is motivated by the

fact that block of variables are individually updated, so that, it could be

computationally advantageous to avoid of enforcing a monotone reduction

at each iteration. The main contributions of the chapter are: 1) the devel-

opment of a unified convergence theory that, with respect to [16], includes

the possibility of adopting nonmonotone line search mappings; 2) the defini-

tion of a nonmonotone Gauss-Soutwell decomposition algorithm for classes

of problems with a single equality constraint and box constraints that arise

in several contexts; 3) the definition of a nonmonotone decomposition tech-

nique for facing the numerical issues arising in the context of large-scale
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Figure 4.5: Line search step computation error with standard and optimized

∆k
max in the nonmonotone line search procedure through iterations.

problems with partially separable objective functions. The numerical exper-

iments performed on large-scale network equilibrium problems have shown

the efficiency of the nonmonotone strategy with respect to the standard

monotone counterpart, and the importance of employing the proposed non-

monotone techniques for dealing with numerical errors.
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4.7 Appendix: Proof of Lemma 4

Proof. First, we show that the sequence {fkmax} is monotonically nonincreas-

ing. Let us recall here that condition (4.9) might be written as

f(xk+1) ≤ f(xr(k))− σ(‖xk+1 − xk‖), (4.46)

where r(k) is defined in (4.8). Since min(k+1,W ) ≤ min(k,W )+1, we have

f(xr(k+1)) = max
0≤j≤min(k+1,W )

f(xk−j+1)

≤ max
0≤j≤min(k,W )+1

f(xk−j+1)

= max{f(xr(k)), f(xk+1)} = f(xr(k)),

where last equality follows from (4.46). Since {f(xr(k))} is nonincreasing

and xr(0) = x0, we have that f(xk) ≤ f(x0) ∀k, which proves (a).

Since f is limited from below, the monotone nonincreasing sequence

{f(xr(k))} admits a limit W ∗ for k → ∞. By induction on j, with 1 ≤
j ≤W + 1, let us prove that the two limits below are satisfied:

lim
k→∞

‖xr(k)−j+1 − xr(k)−j‖ = 0 (4.47)

lim
k→∞

f(xr(k)−j) = lim
k→∞

f(xr(k)) (4.48)

where k is assumed to be large enough to have r(k) ≥ k −W > 1.

If j = 1, using (4.46) with k = r(k)− 1, we have

f(xr(k)) ≤ f(xr(r(k)−1))− σ(‖xr(k) − xr(k)−1‖).

Thus, together with convergence of {f(xr(k))}, we obtain

lim
k→∞

‖xr(k) − xr(k)−1‖ = 0

From Lipschitz continuity of f and the above limit we obtain that

lim
k→∞

f(xr(k)−1) = lim
k→∞

f(xr(k)),

which means that induction has been proved for the case j = 1.

Now assume that (4.47) and (4.48) are valid for a given j. From (4.46)

used with

k = r(k)− j − 1, we have that

f(xr(k)−j) ≤ f(xr(r(k)−j−1))− σ(‖xr(k)−j − xr(k)−j−1‖).
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Thus, together with (4.48), we obtain that

lim
k→∞

‖xr(k)−j − xr(k)−j−1‖ = 0.

From the limit above, Lipschitz continuity of f and again (4.48) we obtain

that

lim
k→∞

f(xr(k)−j−1) = lim
k→∞

f(xr(k)),

which means that induction has been proved from a generic j to j + 1.

In particular (4.47) and (4.48) are also valid if we replace r(k) with

R(k) := r(k +W + 1). Now, for k sufficiently large, we have that

xR(k) = xk + (xk+1 − xk) + · · ·+ (xR(k) − xR(k)−1)

= xk +

R(k)−k∑
j=1

(
xR(k)−j+1 − xR(k)−j

) (4.49)

Since r(k+W + 1) ≤ k+W + 1, we have R(k)− k ≤W + 1 and, thus, from

(4.49) and (4.47) used replacing r(k) with R(k), we obtain

lim
k→∞

‖xk − xR(k)‖ = 0.

From convergence of {f(xr(k))} and Lipschitz continuity, it follows that

lim
k→∞

f(xk) = lim
k→∞

f(xR(k)) = lim
k→∞

f(xr(k+W+1)) = W ∗,

which complete proof of (b). Thesis (c) follows from (b) and (4.46).

4.8 Appendix: Proof of Proposition 3

Proof. By contradiction assume that there exists an infinite subset K such

that for all k ∈ K we have

βk∇f(xk)T dk ≤ −ν < 0. (4.50)

Assume that there exists an infinite subsequence K1 ⊆ K such that

∀ k ∈ K1 we have that αk = βk. From (a) and (c) of Lemma 4 we have that

lim
k→∞,k∈K1

βk∇f(xk)T dk = 0,
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which contradicts (4.50).

Assume now that there exists a k̂ such that ∀ k ∈ K, k > k̂ we have that

αk < βk. Thus, from the line search instructions, we have that

f(xk +
αk

δ
dk) > fkmax + γ

αk

δ
∇f(xk)T dk ≥ f(xk) + γ

αk

δ
∇f(xk)T dk.

From the Mean Value Theorem, applied on the above inequality, we obtain

that

−γ∇f(xk)T dk > −∇f(zk)T dk, (4.51)

where zk = xk + θk α
k

δ d
k, with θk ∈ [0, 1]. From Lemma 4 we get that if

{xk} converges to x̄, also {zk} converges to x̄. Since {dk} is bounded (by

Assumption 8), we get that there exists a subsequence, redefined {dk}, that

converges to d̄. Then, taking the limits for k ∈ K and k →∞, we obtain

(1− γ)∇f(x̄)T d̄ ≥ 0,

and this contradicts (4.50) being βk > 0.

4.9 Appendix: Proof of Proposition 4

Proof. By contradiction assume that there exists an infinite subset K such

that for all k ∈ K we have

βk∇f(xk)T dk ≤ −ν < 0. (4.52)

Assume that there exists an infinite subsequence K1 ⊆ K such that

∀ k ∈ K1 we have that αk = βk. From (a) and (c) of Lemma 4 we have that

lim
k→∞,k∈K1

βk∇f(xk)T dk = 0,

which contradicts (4.52).

Assume now that there exists a k̂ such that ∀ k ∈ K, k > k̂ we have that

αk < βk. Thus, from the line search instructions, we have that

f(xk +
αk

δ
dk) > fkmax − γ‖

αk

δ
dk‖2 ≥ f(xk)− γ‖α

k

δ
dk‖2.

From the Mean Value Theorem, applied on the above inequality, we obtain

that
γ

δ
αk‖dk‖2 > −∇f(zk)T dk (4.53)
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where zk = xk + θk α
k

δ d
k, with θk ∈ [0, 1]. From Lemma 4 we get that if

{xk} converges to x̄, also {zk} converges to x̄. Since {dk} is bounded (by

Assumption 9), we get that there exists a subsequence, redefined {dk}, that

converges to d̄. Then, taking the limits for k ∈ K and k →∞, we obtain

∇f(x̄)T d̄ ≥ 0,

and this contradicts (4.52) being βk > 0.

4.10 Appendix: Proof of Proposition 5

Proof. From the properties of the projection mapping we get that

‖dk‖ = ‖PF
hk

[xk(hk) −∇(hk)f(xk)]− xk(hk)‖ ≤ ‖∇(hk)f(xk)‖ ≤ ‖∇f(xk)‖

and

∇f(xk)T dk ≤ −‖PF
hk

[xk(hk) −∇(hk)f(xk)]− xk(hk)‖
2 = −‖dk‖2. (4.54)

These inequalities, together with compactness of F prove that Assumptions

8 and 9 are satisfied. Let {xk} be a convergent sequence, from Proposition

3 (or 4) and the fact that βk ≥ 1, we have that Assumption 7 is satisfied.

Now let us prove Assumption 6. Let {xk} be a subsequence convergent

to x∗. From the continuity of the projection operator, Assumption 7 and

(4.54) we get that

lim
k→∞

−∇f(xk)T dk ≥ ‖PFh [x∗(h) −∇(h)f(x∗)]− x∗(h)‖ = 0,

which implies that

x∗(h) = PFh [x∗(h) −∇(h)f(x∗)]

and, in turn, that

∇(h)f(x∗)T
(
x(h) − x∗(h)

)
≥ 0 ∀x(h) ∈ Fh.

4.11 Appendix: Proof of Proposition 6

Proof. Since F is compact, ‖dk‖ = ‖x̂k(hk)−x
k
(hk)‖ is always bounded. From

(4.15) we also have that

∇f(xk)T dk = ∇(hk)f(xk)T
(
x̂k(hk) − x

k
(hk)

)
< 0,
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otherwise a null step will be instead considered. This proves that Assumption

9 is satisfied.

Let {xk} be a convergent sequence, from Proposition 4 and the fact that

βk ≥ 1 we get that Assumption 7 is satisfied.

Now let us prove Assumption 6. Let {xk} be a subsequence convergent

to x∗. The direction dk is such that, for every x(h) ∈ Fh

∇(h)f(xk)T dk ≤ ∇(h)f(xk)T
(
x(h) − xk(h)

)
.

Thus, from the continuity of the gradient and Assumption 7, we get that

∇(h)f(x∗)T
(
x(h) − x∗(h)

)
≥ 0, ∀x(h) ∈ Fh.
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Chapter 5

Controlling nonmonotonicity: a

new line search family

In this chapter we design a new family of nonmonotone line

searches that has direct control over the degree of nonmonotonic-

ity introduced. This new idea comes from the identification of

a significant connection between the nonmonotone technique by

Grippo, Lampariello and Lucidi [55] and the more recent one by

Li and Fukushima [70]. The proposed framework combines the

two strategies to obtain the best from both of them: a technique

that has direct control over the amount of nonmonotonicity, but

which is still easy to be designed. The numerical analysis con-

ducted on a set of large-scale network equilibrium problems shows

an example in which controlling the amount of nonmonotonicity

is very helpful for both improving results and obtaining a better

understanding on the preferred paths of the optimization proce-

dure.1

1This chapter is based on a paper which is now under review “Controlling the degree of

nonmonotonicity: a new line search framework combining two nonmonotone techniques”

in Operational Research Letters.
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5.1 Introduction

Let us consider the problem

min
x
f(x),

s.t. x ∈ Rn,
(5.1)

where f : Rn → R is a continuously differentiable function. We focus on

solving (5.1) with a line search based optimization method. Without loss

of generality we assume to employ a Newton-like method globalized by an

Armijo line search (see Algorithm 5). Note that the choices of the direction

Algorithm 5: Line search based Algorithm

Input: x0 ∈ Rn starting point

1 k = 0

2 while stopping criterion is not fulfilled do

3 define a descent direction dk (e.g. a Newton direction)

4 compute a step length αk by means of a suitable line search (e.g.

Armijo line search) along dk,

5 xk+1 = xk + αkdk

6 k = k + 1

and of the line search are not crucial for the aim of this work, since the focus

here is on nonmonotone techniques. For sake of simplicity we’ll focus on

unconstrained optimization, but extending the discussion to the constrained

case is very easy.

The first nonmonotone technique was proposed by Grippo, Lampariello,

Lucidi [55] to globalize the Newton method without enforcing monotonicity

on the resulting {f(xk)} sequence. In fact, the monotone requirement might

slow the speed of convergence of many fast local optimization methods, spec-

tral gradient (or Barzilai-Borwein) in [82], spectral projected gradient in [11],

sequential quadratic programming in [105], Polak-Ribière-Polyak in [106].

This is the reason why nonmonotone techniques are very well suited for all

those combinations of directions and initial step sizes that are showed to

work really well in practice, e.g. Newton direction and unit step size, anti-

gradient and spectral step size, etc. In concrete, nonmonotone strategies help

avoid the reduction of the step size caused by the monotone requirement in

backtracking line searches. Nonmonotone line searches are in fact designed
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to accept the initial step size more often than their monotone counter-part.

Thus, the nonmonotonicity is the tool given to algorithm developers to in-

fluence how often accept an initial step size.

In the field of nonmonotone techniques, it is still not clear in which phase

of the optimization process nonmonotonicity should be empathized or re-

duced. In [55] they claim that nonmonotonicity is particularly valuable in

intermediate and final stages. This is not in contrast with [90, 91] in which

nonmonotonicity is not applied in the first iterations. On the other side,

in [2, 100] they claim that in the beginning there is need for more non-

monotonicity while the opposite happens when the algorithm approaches a

solution. This is also supported for instance by [57, 78]. Another different

point of view is that of [20, 54, 58, 67], in which nonmonotonicity is needed

both in the beginning and in the end of the optimization procedure.

The above different conclusions suggest that the amount of nonmono-

tonicity required is highly dependent on the application and on the opti-

mization method. On the other hand, it is also clear that a lot more can

be done in this field, since nonmonotone techniques have often been applied

just to improve existing results, but not much has been done in trying to

understand in which applications/methods/phases nonmonotonicity is more

needed. This systematic approach is probably missing because of the lack

of three elements: a review on nonmonotone techniques, a common set of

test problems on which to compare them and an easy interpretable tool that

might be exploited to point out common behaviors. In this work we will

focus on the third of these elements: providing a new family of nonmono-

tone techniques that has direct control over the degree of nonmonotonicity

w.r.t. the optimization phase. This idea originates from the identification of

a significant connection between two very popular nonmonotone techniques:

the original one from [55] and the more recent one from [70].

To the best of our knowledge, the theme of controlling the degree of

nonmonotonicity is central only in another recent work [79]. In particular

they propose two adaptive nonmonotone rules based on the morphology of

the objective function. One of the techniques adaptively updates W almost

as in [80], while the other one computes a convex combination of function

value, as in [100], but taking into account only a subsequence of {f(xk)}.
As a matter of fact, the focus of [79] is mainly on obtaining a more efficient

algorithm, rather than studying which is degree of nonmonotonicity that is

more appropriate in each phase of the optimization process.
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In the next section we will first show the connection between [55] and [70],

then we will derive the new family of nonmonotone strategies. In Section

5.3 the global convergence result is discussed. An illustrative example of the

application of such a framework to a set of network equilibrium problems is

presented in Section 5.4. Conclusions are drawn in Section 5.5.

Regarding notation, with ‖.‖ we indicate the Euclidean norm, L0 = {x ∈
Rn : f(x) ≤ f(x0)} is the 0-level set, R+ is the positive orthant, σ : R+ → R+

is a forcing function, i.e., for each sequence {tk} with tk ∈ R+ we have that

lim
k→∞

σ(tk) = 0 ⇒ lim
k→∞

tk = 0.

5.2 A new family of nonmonotone techniques

Given δ ∈ (0, 1) and αk0 the initial step size at iteration k, the monotone

Armijo line search finds the largest αk ∈ {αk0 , αk0δ, αk0δ2, . . . } such that the

following monotone condition is satisfied

f(xk + αkdk) ≤ f(xk) + γαk∇f(xk)T dk, (5.2)

where γ ∈ (0, 1) and dk is the direction computed at iteration k. Now, let

W > 0 be the nonmonotone window, then we define

fkmax := max
k−W≤i≤k

f(xi) (5.3)

as the largest function value among the last few iterations, where, formally,

we set x−1 := x−2 := . . . := x−W := x0 (or, alternatively, we can replace W

by W k := min{k,W}). Furthermore, let us define

r(k) ≤ k as the (largest) iteration index such that f(xr(k)) = fmax (5.4)

holds. The aim of a nonmonotone technique applied on Armijo line search

is that of relaxing condition (5.2). In particular in [55], it was proposed to

replace f(xk) with fkmax and obtain

f(xk + αkdk) ≤ fkmax + γαk∇f(xk)T dk. (5.5)

The degree of nonmonotonicity in (5.5) is controlled by the parameter W .

Numerical results obtained by employing (5.5) on some specific problems

might be highly influenced by the choice of W ( [55, 82, 90]). But W is a

pretty indirect way to control nonmonotonicity. For instance whenever a
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high amount of nonmonotonicity is needed in the early stage of the opti-

mization procedure, modifying W would not be of any help: by definition,

no f(xr(k)) can be greater than f(x0). In fact, (5.5) and the majority of

nonmonotone techniques ( [20,80,90,97,100]) enforces {xk} to remain in L0,

while the starting point x0 might be an arbitrary bad guess from which to

start. On the other side in the late phase of the optimization procedure,

fkmax might be too big or too close to f(xk). This issue is also very difficult

to be solved by only controlling W , especially if a single W needs to be

chosen for a whole set of problems.

To solve the limitation of keeping {xk} within L0, in [54] and [58] are

developed algorithms that give {xk} a lot more freedom. In particular, (5.5)

(or similar) is not checked at each iteration, but only every L > 0 iterations.

Let us call zj all those points on which condition (5.5) is not checked: the

algorithm exploits zj to explore regions which do not belong to L0. In [54],

to ensure strong global convergence properties, a backtracking procedure

is needed to come back to a “safe” iterate xk. Thanks to the change of

notation (exploration points zj are not saved in the sequence {xk}), the

algorithm proposed in [54] is also able to keep {xk} within L0.

Another nonmonotone technique that is numerically very interesting was

originally proposed in [70] and the modified condition is the following

f(xk + αkdk) ≤ f(xk) + εk + γαk∇f(xk)T dk, (5.6)

where {εk} is a positive sequence satisfying

∞∑
k=0

εk < ε <∞. (5.7)

If we employ (5.6), it is still possible to obtain strong global convergence

results and {xk} might be proved to belong to L0+ε = {x ∈ Rn : f(x) ≤
f(x0) + ε}. In this case, the ε-sequence is defined by the user and the only

requirement is (5.7). This means that there is an high control over the degree

of nonmonotonicity that can be introduced in each phase. This great amount

of freedom is also the biggest drawback of (5.6). In fact, it is very hard to

design an ε-sequence that has the right amount of nonmonotonicity in each

phase. This is totally unpractical when a single sequence has to be designed

for a whole set of problems.

A different point of view on (5.5) is now discussed. The idea is looking

at the sequence {fkmax − f(xk)} as a particular {εk} sequence. Let us define
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∆k := fkmax − f(xk) and write again (5.5) using ∆k:

f(xk + αkdk) ≤ f(xk) + ∆k + γαk∇f(xk)T dk. (5.8)

Note that ∆k ≥ 0, by definition. Condition (5.8) looks exactly like (5.6),

except from the fact that the sequence {∆k} is automatically derived from

the algorithm and it self-adapts to each run, while {εk} is a sequence defined

by the user. This connection between [55] and [70] can be exploited to define

a new family of nonmonotone techniques that combines both of them.

To have direct control over the degree of nonmonotonicity, a modification

on (5.8) is now proposed. Let us define the function g : R+ → R+ as follows

g(t) =

{
tβ t > 1,

t
1
β t ≤ 1,

(5.9)

where β > 0. The new condition can be defined as follows

f(xk + αkdk) ≤ f(xk) + g(∆k) + γαk∇f(xk)T dk. (5.10)

Thanks to (5.10) is now possible to control this, for instance if the application

requires an high degree of nonmonotonicity we can for example use β = 2.

This for instance would give the algorithm enough freedom to avoid the

limitation of keeping {xk} within L0, requirement that is not relaxed in

[79, 80, 100]. On the other hand, if the nonmonotone effect required is low

we can for example use β = 0.5. The constant β has in fact a direct effect on

the amount of nonmonotonicity we intend to employ. Thanks to this idea

we have great freedom for designing the controlling sequence {g(∆k)}, but

at the same time the nonmonotone effect now directly depends on f(xk). In

Section 5.4 we will discuss how to use (5.10) to both improve performances of

the nonmonotone algorithm and extract interesting insights on the amount

of nonmonotonicity needed in the different phases.

Note that if we directly employ g with β = 2, global convergence is not

guaranteed. In the following section we will focus on some theoretical aspects

related to (5.10), starting from original results obtained for (5.5) and (5.6).

5.3 Global Convergence

To prove global convergence of Algorithm 5 in which (5.5) or (5.6) is em-

ployed on Step 4, we need the following assumption on the direction.
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Assumption 10. Let {dk} be a sequence of feasible search directions. As-

sume that

(a) ∀ k we have ∇f(xk)T dk ≤ −c1‖∇f(xk)‖2 for a given constant c1 > 0,

(b) ∀ k we have ‖dk‖ ≤ c2‖∇f(xk)‖ for a given constant c2 > 0.

Two key results to obtain convergence using (5.5) or (5.6) are respectively

Lemma 8 and Lemma 9.

Lemma 8. Suppose that L0 is compact. Let {xk} be a sequence of points

such that

f(xk+1) ≤Mk − σ(‖xk+1 − xk‖), (5.11)

where f(xk) ≤Mk ≤ fkmax and σ is a forcing function, then we have

(a) xk ∈ L0;

(b) {fkmax} and {fk} converge to the same limit;

(c) lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

‖αkdk‖ = 0.

See Lemma 1 of [54] for the proof. Note that (5.11) is more general than

(5.5), not only because ∇f(xk)T dk is replaced by σ(‖xk+1 − xk‖), but in

particular because Mk is any value between f(xk) and fkmax.

Lemma 9. Suppose that L0+ε is compact. Let {xk} be a sequence of points

such that

f(xk+1) ≤ f(xk) + εk − σ(‖xk+1 − xk‖), (5.12)

where
∑∞
k=0 ε

k < ε <∞. and σ is a forcing function, then we have

(a) xk ∈ L0+ε;

(b) lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

‖αkdk‖ = 0.

In most of the nonmonotone settings one key result is lim
k→∞

‖xk+1−xk‖ =

0. The main difference between Lemma 8 and Lemma 9 lies in the way this

result is obtained: using (5.5) we first need to prove that {fkmax} and {fk}
converge to the same limit, while using (5.6) the result directly follows from

(5.7). To prove Lemma 8 it is very important to have f(xr(k)) ≥ f(xk+1),

while we do not have a similar result for the case of (5.6). On the other side,

(5.7) and the fact that {εk} is user-defined make Lemma 9 almost a trivial

result. The next result is the main convergence theorem.
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Theorem 3. Let {dk} be a sequence of search directions satisfying Assump-

tion 10 and assume that L0+ε is compact. Let {xk} be a sequence of points

generated by Algorithm 5, in which line search condition of Step 4 is either

(5.11) or (5.12). Then, if {xk} converges to x̄, we have

lim
k→∞

∇f(xk) = 0. (5.13)

Now that existing results have been recalled for both conditions (5.5)

and (5.6), we can discuss how to obtain global convergence also for (5.10).

From definition of W k in (5.11) we directly have convergence also for (5.10)

whenever (5.9) is employed with β ≤ 1. In addition, the same convergence

properties are directly achieved for an arbitrary function g : R+ → R+,

whenever g(t) ≤ t. On the other hand, if we employ a function g in which

g(t) > t (i.e., g defined in (5.9) with β > 1), to obtain convergence we need

some additional assumptions (see for instance [67]).

To avoid any additional assumptions and still get the same result, a

simpler way is instead that of embedding (5.10) into (5.6). Consider for

instance the sequence

εk = min{g(∆k),
B

ωk
}, (5.14)

where B > 0 is a large constant, ω > 1 is a constant close to 1 and g is

defined by (5.9) with β = 2. Thanks to the fact that there exists an ε > 0

such that
∞∑
k=0

B

ωk
=

B

1− ω
≤ ε <∞,

we have that (5.7) is satisfied. Thus, global convergence is proved for Algo-

rithm 5 if in Step 4 it is employed the condition

f(xk+1) ≤ f(xk) + min{g(∆k),
W

ωk
} − σ(‖xk+1 − xk‖), (5.15)

where g : R+ → R+ is an arbitrary function.

Remark 3. Note that condition (5.15) is ensuring that {xk} is kept within

L0+ε and not within L0. The same might be said for the original condition

(5.6), which was showed to achieve good numerical performances when the

{εk} sequence is well designed. In addition, if the objective function f is

convex, it can easily be proved that both (5.6) and (5.15) lead limit points

of {xk} to belong to L0.
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Remark 4. As anticipated, Theorem 3 is obtained in the case of uncon-

strained optimization. The result might be extended to the constrained case

as follows:

• the initial step size αk0 is assumed to be feasible;

• defined βk the maximum feasible step size along the direction dk, from

Theorem 3 we now get something weaker than (5.13): lim
k→∞

βk∇f(xk)T dk =

0;

• to obtain (5.13) we need to exploit some addition properties on the

direction (e.g., if the direction is always feasible we get that βk is

limited from below ⇒ (5.13)).

5.4 Illustrative example

In this section we report an illustrative example of the use of (5.15) on a

class of convex problems: Network Equilibrium (NE) problems. This class

has attracted the attentions of many researchers in the optimization field

because they are nonacademic large-scale problems in which the accuracy of

the solutions is often very important. Note that the results below are not

presented to show the supremacy of the proposed condition (5.15) in a general

setting. The aim is rather that of showing an example in which having great

freedom in designing (5.15) is helpful not only to improve results, but also

to extract interesting insights on the application.

Let G = (N,A) be a graph, where N is the set of nodes and A is the set

of arcs. Let P ⊆ N × N be the set of all Origin/Destination (O/D) pairs

(L := |P |). For each h ∈ P , a travel demand Dh > 0 is defined. Given such

a network, the NE problem concerns the forecasting of the flow on each arc.

We take into account the path-based formulation of the NE (see [29] for a

complete description). In particular, indicated by x the vector of path flows,

the objective function is a smooth, convex function defined by

f(x) =
∑
a∈A

∫ va(x)

0

sa(t) dt,

where va(x) is the total flow on arc a and sa(·) is the arc-separable cost. The



104 Controlling nonmonotonicity: a new line search family

resulting optimization problem is the following

min f(x),

s.t. x ∈ F1 × · · · × FL,

where, given the O/D pair h, Fh = {x(h) ∈ Rnh :
∑
i∈{1,...,nh} x(h),i =

Dh, x(h) ≥ 0}, nh is the total number of paths insisting on h and x(h),i is

the flow on the i-th path of h. Note that the above formulation might be

considered “virtual”, since the total number of paths is exponential in the

dimension of the network. For this reason it is usually defined a restricted

set in which only paths with nonzero flow are considered. Then, variables

are iteratively added by means of a column generation technique.

To solve the NE problem, Algorithm 5 is modified by considering a de-

composing method along each O/D pair and including the above discussed

column generation technique. Step 3 is defined considering only 2 nonzero

components: respectively the path with the highest and lowest cost. Flow

will be removed from the first path and added to the second. In Step 4 we

employ condition (5.15), where various implementations for g are considered

and defined below.

As regards the computation of the initial step length along the search di-

rection, a commonly used choice [18] is the one obtained by minimizing the

quadratic approximation of f along the direction. Taking into account that

the direction has only 2 nonzero components and that the partial derivatives

of f represent the costs of the corresponding paths, the closed-form solution

of the above step length can be easily and efficiently calculated. This step

length was showed to perform well in practice if employed directly, but to

ensure global convergence a line search mapping is needed. In the mono-

tone setting, it might happen that a sufficient decrement is not obtained

employing this step, resulting in at least one reduction of it. This is the

precise context for which nonmonotone techniques were designed: accepting

as often as possible a good initial step without reducing it.

The test problems used for the experiments are freely available at the web

page http://www.bgu.ac.il/~bargera/tntp/ and are described in Table

5.1. All the algorithms have been implemented in C++ and parameters chosen

for the line searches are

δ = 0.5, γ = 10−2, W = 10.

Since numerically we have that k <∞, we can chose W to be very large

http://www.bgu.ac.il/~bargera/tntp/
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and ω to be very close to 1. Thus, in practice we can obtain

εk = min{g(∆k),
B

ωk
} = g(∆k),

by setting for example ω = 1 + 10−8 and B = 1010.

Network Label # links # nodes # centroids # O/D pairs

Sioux-Falls SF 76 24 24 528

Winnipeg W 2,535 1,067 154 4,345

Barcelona B 2,522 1,020 110 7,922

Chicago-Sketch CS 2,950 933 387 93,135

Berlin-Center BC 28,376 12,981 865 49,688

Philadelphia P 40,003 13,389 1,525 1,149,795

Chicago-Regional CR 39,018 12,982 1,790 2,296,227

Sydney S 75,379 33,113 3,264 3,340,619

Table 5.1: Network datasets details

In this context we compare Algorithm 5 (slightly modified as described

above) where in Step 4 the implementations of g are the following:

• MONotone (MON): g(t) = 0,

• Original NonMonotone (ONM): g(t) = t,

• Strongly NonMonotone (SNM): g(t) as in (5.9), with β = 2,

• Weakly NonMonotone (WNM): g(t) as in (5.9), with β = 1
2 .

Note that SNM is always introducing more nonmonotonicity than ONM,

while WNM is always reducing it. Now, to understand in which phases and

how often we have

∆k = fkmax − f(xk) ≤ 1, (5.16)

executions of ONM have been checked:

• in the initial phase of the optimization process (first 1000 iterations),

(5.16) is never satisfied in more than 7% of the iterations (in most of

the executions less than 1%);

• in the late phase of the optimization process (last 1000 iterations),

(5.16) is always satisfied in the 100% of the iterations;
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Figure 5.1: Performance profiles between MONotone (black), Original Non-

Monotone (blue) and Squared NonMonotone (red) and Rooted NonMono-

tone (green) on a set of NE problems.

• in the intermediate phase of the optimization process (after first 1000

iterations and before last 1000 ones), (5.16) is satisfied in the majority

of the iterations (in most of the executions more than 80%).

Note that giving a formal definition of initial, intermediate and late phases

of the optimization procedure is very hard. In this application a threshold

of 1000 iterations has been a natural choice. Moreover, changing this value

with another reasonable choice, would not change conclusions that might be

drawn from the observations below.

The algorithms have been compared using performance profiles [30] on

the following two measures: total number of iterations (Figure 5.1(a) and
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5.1(b)) and total number of evaluations of the objective function (Figure

5.1(c) and 5.1(d)). All the executions have been stopped using 2 different

values of the relative gap2:

• 10−2: a very rough solution (Figure 5.1(a) and 5.1(c));

• 10−7: an accurate solution (Figure 5.1(b) and 5.1(d)).

First thing to notice from Figures 5.1(a)-5.1(d) is that all the nonmonotone

version of g are outperforming the monotone counter-part (MON) on both

the measures. Second observation that can be pointed out is the fact that

SNM is always outperforming both WNM and ONM. This make us hypothe-

size that for solving a NE problem efficiently with the above algorithm there

is always a need for an high amount of nonmonotonicity in all the phases of

the optimization procedure.

As anticipated, it is hard to formally define a separation between phases.

For this reason Figures 5.1(a) and 5.1(c) are focusing on both initial and

intermediate phases3. Figures 5.1(b) and 5.1(d) are instead focusing on the

whole optimization procedure. Now, since the gap between SNM and ONM

is way less prominent in Figures 5.1(a) and 5.1(c) w.r.t. that of Figures

5.1(b) and 5.1(d), it is not clear if an high amount of nonmonotonicity is

also really needed in the initial phase. From the gap between SNM and

WNM, it is safer to conclude that even in the initial phase the degree of

nonmonotonicity should not be too low. On the other hand, from Figures

5.1(a)-5.1(d) and especially from Figures 5.1(b) and 5.1(d) we can conclude

that a consistent amount of nonmonotonicity in the intermediate and late

phase is helpful for solving a NE problem efficiently.

Finally it is interesting to underline that by only modifying W on ONM

it was never possible to obtain results as good as those achieved by SNM.

In particular in the late phase of the optimization procedure the objective

function decreases very slowly. For this reason it is almost unpractical to

find a nonmonotone window W (even if adaptive) that let us reach an fkmax
which has enough nonmonotonicity as the one easily achieved by SNM. All

the techniques defined in [79,80,100] are affected by this issue.

On the other hand, designing an {εk} sequence which has the right degree

of nonmonotonicity in the late phase of the optimization procedure is another

2A well-known measure of convergence in NE problems (see [29]).
3Note that the relative gap in x0 is always around 10−1 and the total number of

iterations needed to reach a relative gap of 10−2 is way more than 1000.
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very hard task. In addition, even if we can find an {εk} sequence which is

working for one network, it is hard that the same {εk} is also helpful for

some others. Networks are in fact very different in dimensions (see Table

5.1) and it is very common that the amount of nonmonotonicity designed

for one network would not fit the nonmonotone effect required for others.

The proposed framework (5.15) is instead self adapting to each single run

and to the precision needed in each different phases. To design such a family

we just need to understand the amount of nonmonotonicity required in the

different phases. As a buy product, this study would also give us some useful

insights on the preferred paths of the optimization procedure on this class

of problems.

5.5 Conclusions

In this work it was first identified a significant connection between two very

popular nonmonotone techniques: the original one from [55] and the more

recent one from [70]. This connection was exploited to develop a new family

of nonmonotone techniques that is able to obtain the best from both worlds.

In particular it is easy to be designed (as [55]) and has strong control over the

degree of nonmonotonicity introduced (as [70]). Moreover, the new family

directly inherits global convergence properties from [70], while numerically it

self adapts to each problem/phase/method on which is applied to (like [55]).

Numerical results on a set of large network equilibrium problems support the

thesis that controlling the amount of nonmonotonicity can be very helpful to

improve performances (even beyond benefits obtained by the original [55]).

In conclusions, these results show how the new general nonmonotone tech-

nique can be easily implemented on a very specific application. A possible

future research would be that of identifying a wide set of other classes of

problems in which nonmonotonicity has been shown to be helpful. Once ob-

tained this set of problems, it would be interesting to apply the new tool on

each of them to obtain a systematic study on the amount of nonmonotonicity

actually needed.
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Conclusion

In this thesis, nonmonotone techniques have been successfully applied to

both trust-region and line search globalization strategies. Original mono-

tone methods have been extended to the nonmonotone case and new global

convergence results have been proved under the same original conditions.

Numerical results always showed the supremacy of the nonmonotone version

over their monotone counter-part, both on GNEPs and NE problems. A

smart implementation was designed for large-scale problems to maintain the

nonmonotone effect even in case of cancellation errors. Moreover, a new fam-

ily of nonmonotone techniques pushed even further benefits already obtained

by switching from a monotone condition to a nonmonotone one.

As a future research our aim is that of synthesizing a practical rule for let-

ting researchers apply nonmonotone techniques with awareness and a deeper

understanding of this strategy. To do so, we will first focus on a systematic

literature review on the most important papers that exploit a nonmonotone

technique. In addition, we will apply the last developed nonmonotone family

to a wider range of problems to understand if it is possible to extract some

common patterns of best-practice. Finally, as a special case, we will fo-

cus on the application of nonmonotone techniques on optimization methods

exploited in state-of-art machine learning softwares, like truncated Newton

methods.
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Appendix A

Publications

This research activity has led to several publications in international journals.

These are summarized below.1

International Journals

1. L. Galli, C. Kanzow, M. Sciandrone. “A nonmonotone trust-region method

for generalized Nash equilibrium and related problems with strong conver-

gence properties”, Computational Optimization and Applications, vol. 69,

iss. 3, pp. 629–652, 2018. [DOI:10.1007/s10589-017-9960-3]

2. L. Galli, A. Galligari, M. Sciandrone. “A Unified Convergence Framework

for Nonmonotone Inexact Decomposition Methods”, Computational Opti-

mization and Applications, vol. 75, iss. 1, pp. 113-144, 2019.

Submitted

1. L. Galli, “Controlling the degree of nonmonotonicity: a new line search

framework combining two nonmonotone techniques”, Operational Research

Letters, 2019.

1The author’s bibliometric indices are the following: H -index = 1, total number of

citations = 2 (source: Scopus on Month October, 2019).
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