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A HOMOGENEOUS DECOMPOSITION THEOREM

FOR VALUATIONS ON CONVEX FUNCTIONS

ANDREA COLESANTI, MONIKA LUDWIG, AND FABIAN MUSSNIG

ABSTRACT. The existence of a homogeneous decomposition for continuous and epi-translation invariant

valuations on super-coercive functions is established. Continuous and epi-translation invariant valuations

that are epi-homogeneous of degree n are classified. By duality, corresponding results are obtained for

valuations on finite-valued convex functions.

2000 AMS subject classification: 52B45 (26B25, 52A21, 52A41)

1. INTRODUCTION

Given a space of real-valued functions X , we consider real-valued valuations on X , that is, functionals

Z: X → R such that

(1) Z(u ∨ v) + Z(u ∧ v) = Z(u) + Z(v)

for every u, v ∈ X with u ∨ v and u ∧ v ∈ X , where ∨ and ∧ denote the point-wise maximum and

minimum, respectively. For X , the space of indicator functions of convex bodies (that is, compact

convex sets) in R
n, we obtain the classical notion of valuation on convex bodies. Here strong structure

and classification theorems have been established over the last seventy years (see [1, 2, 6, 7, 19–21, 28]

for some recent results and [22, 23, 36] for information on the classical theory). The aim of this article

is to obtain such results also in the functional setting. In particular, we will establish a homogeneous

decomposition result à la McMullen [30].

Valuations on function spaces have only recently started to attract attention. Classification results

were obtained for Lp and Sobolev spaces [24–27, 29, 38, 39], spaces of quasi-convex functions [12, 13],

of Lipschitz functions [17], of definable functions [4] and on Banach lattices [37]. Spaces of convex

functions play a special role because of their close connection to convex bodies. Here classification

results were obtained for SL(n) invariant and for monotone valuations in [8, 14, 15, 32–34] and the

connection to valuations on convex bodies was explored by Alesker [3]. While the theory of translation

invariant valuations is well developed for convex bodies, for convex functions the corresponding theory

did not exist till now. We introduce the notion of epi-translation invariance to build such a theory. In

particular, we will show that on the space of super-coercive convex functions there is a homogeneous

decomposition for continuous and epi-translation invariant valuations and there exist non-trivial such

valuations for each degree of epi-homogeneity while on the larger space of coercive convex functions all

continuous and epi-translation invariant valuations are constant.

The general space of (extended real-valued) convex functions on R
n is defined as

Conv(Rn) = {u : Rn → R ∪ {+∞} : u is convex and lower semicontinuous, u 6≡ +∞}.

It is equipped with the topology induced by epi-convergence (see Section 2.2). Continuity of valuations

defined on Conv(Rn), or on subsets of Conv(Rn), will be always with respect to this topology. The space

Conv(Rn) is a standard space in convex analysis (see [35]) and important in many applications. As we
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will show, Conv(Rn) is too large for our purposes. We will be mainly interested in two of its subspaces.

The first is formed by coercive functions,

Convcoe(R
n) =

{

u ∈ Conv(Rn) : lim
|x|→+∞

u(x) = +∞

}

,

where |x| is the Euclidean norm of x ∈ R
n. The second is formed by super-coercive functions,

Convsc(R
n) =

{

u ∈ Conv(Rn) : lim
|x|→+∞

u(x)

|x|
= +∞

}

.

The space of super-coercive convex functions is related to another subspace of Conv(Rn), formed by

convex functions with finite values,

Conv(Rn;R) =
{

v ∈ Conv(Rn) : v(x) < +∞ for all x ∈ R
n
}

.

Indeed, v ∈ Conv(Rn;R) if and only if its standard conjugate or Legendre transform v∗ belongs to

Convsc(R
n) (see Section 1.3).

1.1. One of the most important structural results for valuations on convex bodies is the existence of a

homogeneous decomposition for translation invariant valuations. It was conjectured by Hadwiger and

established by McMullen [30] (see Section 2.1). Our first aim is to establish such a result for valuations

on convex functions. We define epi-multiplication by setting for u ∈ Conv(Rn) and λ > 0,

λ u(x) = λ u
(x

λ

)

for x ∈ R
n. From a geometric point of view, this operation has the following meaning: the epigraph

of λ u is obtained by rescaling the epigraph of u by the factor λ. We extend the definition of epi-

multiplication to 0 u(x) = 0 if x = 0 and 0 u(x) = +∞ if x 6= 0. It is easy to see that u ∈ Convsc(R
n)

implies λ u ∈ Convsc(R
n) for λ ≥ 0. A functional Z : Convsc(R

n) → R is called epi-homogeneous of

degree α ∈ R if

Z(λ u) = λα Z(u)

for all u ∈ Convsc(R
n) and λ > 0. Here and in the following corresponding definitions will be used for

Conv(Rn) and its subspaces.

We call Z : Convsc(R
n) → R translation invariant if Z(u ◦ τ−1) = Z(u) for every u ∈ Convsc(R

n)
and every translation τ : Rn → R

n. If u ∈ Convsc(R
n) then u ◦ τ−1 ∈ Convsc(R

n) as well. We say that

Z is vertically translation invariant if

Z(u+ α) = Z(u)

for all u ∈ Convsc(R
n) and α ∈ R. If Z is both translation invariant and vertically translation invariant,

then Z is called epi-translation invariant. As we will see, the set of continuous, epi-translation invariant

valuations on Convsc(R
n) is non-empty. Note that a functional Z is epi-translation invariant if for all

u ∈ Convsc(R
n) the value Z(u) is not changed by translations of the epigraph of u.

The following result establishes a homogeneous decomposition for continuous and epi-translation

invariant valuations on Convsc(R
n).

Theorem 1. If Z : Convsc(R
n) → R is a continuous and epi-translation invariant valuation, then there

are continuous and epi-translation invariant valuations Z0, . . . ,Zn : Convsc(R
n) → R such that Zi is

epi-homogeneous of degree i and Z = Z0+ · · ·+ Zn.

We will see that this theorem is no longer true if we remove the condition of vertical translation

invariance (see Section 8). We will also see that the set of continuous and epi-translation invariant

valuations is trivial on the larger set of coercive convex functions (see Section 9). Hence the assumption

of super-coercivity is in some sense necessary.
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Milman and Rotem [31] discuss the problem to find a functional analog of Minkowski’s mixed volume

theorem. In particular, they point out that such a result is not possible on Conv(Rn) for inf-convolution

as addition and the volume functional u 7→
∫

Rn e
−u(x) dx. Instead, they define a new addition for convex

functions to obtain a functional mixed volume theorem. A consequence of Theorem 1 is that continuous

and epi-translation invariant valuations are multilinear on Convsc(R
n) with respect to inf-convolution and

epi-multiplication (see Theorem 21). Thus, for all such valuations, a functional analog of Minkowski’s

mixed volume theorem is obtained on Convsc(R
n) with inf-convolution as addition.

1.2. The following result gives a characterization of continuous and epi-translation invariant valuations

on Convsc(R
n), which are epi-homogeneous of degree n. For u ∈ Convsc(R

n), we denote by dom(u)
the set of points of Rn where u is finite and by ∇u the gradient of u. Note that by standard properties

of convex functions, ∇u(x) is well defined for a.e. x ∈ dom(u). Let Cc(R
n) be the set of continuous

functions with compact support on R
n.

Theorem 2. A functional Z: Convsc(R
n) → R is a continuous and epi-translation invariant valuation

that is epi-homogeneous of degree n, if and only if there exists ζ ∈ Cc(R
n) such that

Z(u) =

∫

dom(u)

ζ(∇u(x)) dx

for every u ∈ Convsc(R
n).

We will also obtain a classification of continuous and epi-translation invariant valuations that are epi-

homogeneous of degree 0. These are just constants. As a consequence of these results and Theorem 1,

we obtain the following complete classification in dimension one.

Corollary 3. A functional Z: Convsc(R) → R is a continuous and epi-translation invariant valuation,

if and only if there exist a constant ζ0 ∈ R and a function ζ1 ∈ Cc(R) such that

Z(u) = ζ0 +

∫

dom(u)

ζ1(u
′(x)) dx

for every u ∈ Convsc(R).

1.3. As mentioned before, there exists a bijection between Conv(Rn;R) and Convsc(R
n) given by the

standard conjugate, or Legendre transform, of convex functions. For u ∈ Conv(Rn), we denote by u∗ its

conjugate, defined by

u∗(y) = supx∈Rn (〈x, y〉 − u(x))

for y ∈ R
n, where 〈x, y〉 is the inner product of x, y ∈ R

n. Note that u ∈ Convsc(R
n) if and only if

u∗ ∈ Conv(Rn;R) (see, for example, [35, Theorem 11.8]).

Let Z be a continuous valuation on Conv(Rn;R). It was proved in [16] that Z∗ : Convsc(R
n) → R,

defined by

Z∗(u) = Z(u∗),

is a continuous valuation as well. This fact permits to transfer results for valuations on Conv(Rn;R) to

results valid for valuations on Convsc(R
n) and vice versa. We call Z∗ the dual valuation of Z.

A valuation Z on Conv(Rn;R) is called homogeneous if there exists α ∈ R such that

Z(λv) = λα Z(v)

for all v ∈ Conv(Rn;R) and λ ≥ 0. We say that Z is dually translation invariant if for every linear

function ℓ : Rn → R

Z(v + ℓ) = Z(v)

for every v ∈ Conv(Rn;R). Let ℓ(y) = 〈y, x0〉 for x0, y ∈ R
n. As (v + ℓ)∗(x) = v∗(x − x0) for

v ∈ Conv(Rn;R), we see that Z is dually translation invariant if and only if Z∗ is translation invariant. We
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define vertical translation invariance for valuations on Conv(Rn;R) in the same way as on Convsc(R
n).

We say that Z is dually epi-translation invariant on Conv(Rn;R) if it is vertically and dually translation

invariant. Note that a functional Z is dually epi-translation invariant, if for all v ∈ Conv(Rn;R), the

value Z(v) is not changed by adding an affine function to v.

Let Z be a valuation on Conv(Rn;R). We note the following simple facts. The valuation Z is vertically

translation invariant if and only if Z∗ has the same property. The valuation Z∗ is epi-homogeneous of

degree α if and only if Z is homogeneous of degree α.

Hence we obtain the following result as a consequence of Theorem 1.

Theorem 4. If Z : Conv(Rn;R) → R is a continuous and dually epi-translation invariant valuation,

then there are continuous and dually epi-translation invariant valuations Z0, . . . ,Zn : Conv(Rn;R) → R

such that Zi is homogeneous of degree i and Z = Z0+ · · ·+ Zn.

Alesker [3] introduced the following class of valuations on Conv(Rn;R). Given real symmetric n×n
matrices M1, . . . ,Mn, denote by det(M1, . . . ,Mn) their mixed discriminant. Let i ∈ {1, . . . , n} and

write det(M [i],M1, . . . ,Mn−i) for the mixed discriminant in which the matrix M is repeated i times.

Let A1, . . . , An−i be continuous, symmetric n× n matrix-valued functions on R
n with compact support

and ζ ∈ Cc(R
n). Given a function v ∈ Conv(Rn;R) ∩ C2(Rn), set

(2) Z(v) =

∫

Rn

ζ(x) det(D2v(x)[i], A1(x), . . . , An−i(x)) dx

where D2v is the Hessian matrix of v. Alesker [3] proved that Z can be extended to a continuous valuation

on Conv(Rn;R). Valuations of type (2) are homogeneous of degree i and dually epi-translation invariant.

This implies in particular that the set of valuations with these properties is non-empty. Clearly, the dual

functional Z∗ is a continuous, epi-translation invariant, epi-homogeneous valuation on Convsc(R
n).

Next, we state the counterpart of Theorem 2 for valuations on Conv(Rn;R). Let Θ0(v, ·) be the

Hessian measure of order 0 of a function v ∈ Conv(Rn;R) (see Section 4 for the definition).

Theorem 5. A functional Z: Conv(Rn;R) → R is a continuous and dually epi-translation invariant

valuation that is homogeneous of degree n, if and only if there exists ζ ∈ Cc(R
n) such that

Z(v) =

∫

Rn×Rn

ζ(x) dΘ0(v, (x, y))

for every v ∈ Conv(Rn;R).

In the special case of dimension one, we obtain the following complete classification theorem.

Corollary 6. A functional Z: Conv(R;R) → R is a continuous and dually epi-translation invariant

valuation, if and only if there exist a constant ζ0 ∈ R and a function ζ1 ∈ Cc(R) such that

Z(v) = ζ0 +

∫

R×R

ζ1(x) dΘ0(v, (x, y))

for every v ∈ Conv(R;R).

The plan for this paper is as follows. In Section 2, we collect results on convex bodies and functions

needed for the proofs of the main results. In Section 3, an inclusion-exclusion principle is established

for valuations on convex functions and in Section 4, the existence and properties of the valuations in

Theorem 2 and Theorem 5 are deduced by using results on Hessian valuations. Theorem 1 is proved in

Section 5. As a consequence the polynomiality of epi-translation invariant valuations is obtained and a

connection to the valuations introduced by Alesker is established in Section 6. The proof of Theorem 2 is

given in Section 7. In the final sections, the necessity of the assumptions in Theorem 1 is demonstrated.
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2. PRELIMINARIES

We work in n-dimensional Euclidean space R
n, with n ≥ 1, endowed with the Euclidean norm | · |

and the usual scalar product 〈·, ·〉.

2.1. A convex body is a nonempty, compact and convex subset of Rn. The family of all convex bodies

is denoted by Kn. A polytope is the convex hull of finitely many points in R
n. The set of polytopes,

denoted by Pn, is contained in Kn. We equip both Kn and Pn with the topology coming from the

Hausdorff metric.

A functional Z : Kn → R is a valuation if

Z(K ∪ L) + Z(K ∩ L) = Z(K) + Z(L)

for every K,L ∈ Kn with K ∪ L ∈ Kn. We say that Z is translation invariant if Z(τK) = Z(K) for all

translations τ : Rn → R
n and K ∈ Kn. It is homogeneous of degree α ∈ R, if Z(λK) = λα Z(K) for

all K ∈ Kn and λ ≥ 0.

The following result by McMullen [30] establishes a homogeneous decomposition for continuous and

translation invariant valuations on Kn.

Theorem 7 (McMullen). If Z : Kn → R is a continuous and translation invariant valuation, then there

are continuous and translation invariant valuations Z0, . . . ,Zn : Kn → R such that Zi is homogeneous

of degree i and Z = Z0+ · · ·+ Zn.

We recall two classification results for valuations on convex bodies. First, we note that it is easy to

see that every continuous and translation invariant valuation that is homogeneous of degree 0 is constant.

The classification of continuous and translation invariant valuations that are n-homogeneous is due to

Hadwiger [22]. Let Vn denote n-dimensional volume (that is, n-dimensional Lebesgue measure).

Theorem 8 (Hadwiger). A functional Z: Kn → R is a continuous and translation invariant valuation

that is homogeneous of degree n, if and only if there exists α ∈ R such that Z = αVn.

2.2. Given a subset A ⊂ R
n, let IA : R

n → R ∪ {+∞} denote the (convex) indicatrix function of A,

IA(x) =

{

0 if x ∈ A,

+∞ if x /∈ A.

Note that for a convex body K, we have IK ∈ Convsc(R
n).

We equip Conv(Rn) with the topology associated to epi-convergence. Here a sequence uk ∈ Conv(Rn)
is epi-convergent to u ∈ Conv(Rn) if for all x ∈ R

n the following conditions hold:

(i) For every sequence xk that converges to x, we have u(x) ≤ lim infk→∞ uk(xk).
(ii) There exists a sequence xk that converges to x such that u(x) = limk→∞ uk(xk).

The following result can be found in [35, Theorem 11.34].

Proposition 9. A sequence uk of functions from Conv(Rn) epi-converges to u ∈ Conv(Rn) if and only if

the sequence u∗
k epi-converges to u∗.

If u ∈ Convcoe(R
n), then for t ∈ R the sublevel sets {u ≤ t} = {x ∈ R

n : u(x) ≤ t} are either

empty or in Kn. The next result, which follows from [15, Lemma 5] and [5, Theorem 3.1], shows that

on Convcoe(R
n) epi-convergence is equivalent to Hausdorff convergence of sublevel sets, where we say

that {uk ≤ t} → ∅ as k → ∞ if there exists k0 ∈ N such that {uk ≤ t} = ∅ for k ≥ k0.

Lemma 10. If uk, u ∈ Convcoe(R
n), then uk epi-converges to u if and only if {uk ≤ t} → {u ≤ t} for

every t ∈ R with t 6= minx∈Rn u(x).
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2.3. A function v ∈ Conv(Rn;R) is called piecewise affine if there exist finitely many affine functions

w1, . . . , wm : Rn → R such that

(3) v =

m
∨

i=1

wi.

The set of piecewise affine functions will be denoted by Convp.a.(R
n;R). It is a subset of Conv(Rn;R).

We recall that epi-convergence in Conv(Rn;R) is equivalent to uniform convergence on compact

sets (see, for example, [35, Theorem 7.17]). Hence the following proposition follows from standard

approximation results for convex functions.

Proposition 11. For every v ∈ Conv(Rn;R), there exists a sequence in Convp.a.(R
n;R) which epi-

converges to v.

We also need to introduce a counterpart of Convp.a.(R
n;R) in Convsc(R

n). For given polytopes

P, P1, . . . , Pm ∈ Pn, the collection {P1, . . . , Pm} is called a polytopal partition of P if P =
⋃m

i=1 Pi and

the Pi’s have pairwise disjoint interiors. A function u ∈ Convsc(R
n) belongs to Convp.a.(R

n) if there

exists a polytope P and a polytopal partition {P1, . . . , Pm} of P such that

u =
m
∧

i=1

(wi + IPi
)

where w1, . . . , wm : Rn → R are affine.

By [35, Theorem 11.14], a function u is in Convp.a.(R
n) if and only if u∗ is in Convp.a.(R

n;R). Hence,

we obtain the following consequence of Proposition 9 and Proposition 11.

Corollary 12. For every u ∈ Convsc(R
n), there exists a sequence in Convp.a.(R

n) which epi-converges

to u.

Since Convsc(R
n) is a dense subset of Convcoe(R

n), it is easy to see that the statement of Corollary 12

also holds if Convsc(R
n) is replaced by Convcoe(R

n).

3. THE INCLUSION-EXCLUSION PRINCIPLE

It is often useful to extend the valuation property (1) to several convex functions. For valuations on

convex bodies, this is an important tool and a consequence of Groemer’s extension theorem [18]. For

m ≥ 1 and u1, . . . , um ∈ Conv(Rn), we set uJ =
∨

j∈J uj for ∅ 6= J ⊂ {1, . . . , m}. Let |J | denote the

number of elements in J .

Theorem 13. If Z : Conv(Rn) → R is a continuous valuation, then

(4) Z(u1 ∧ · · · ∧ um) =
∑

∅6=J⊂{1,...,m}

(−1)|J |−1 Z(uJ)

for all u1, . . . , um ∈ Conv(Rn) and m ∈ N whenever u1 ∧ · · · ∧ um ∈ Conv(Rn).

Note that Convcoe(R
n) and Convsc(R

n) are closed under the operation of taking maxima. Hence

Theorem 13 also holds with Conv(Rn) replaced by one of these spaces.
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Let
∧

Conv(Rn) denote the set of finite minima of convex functions from Conv(Rn). It is easy to see

that
∧

Conv(Rn) is a lattice. If Z is a valuation on a lattice, a simple induction argument shows that the

inclusion-exclusion principle (4) holds. Hence Theorem 13 is a consequence of the following extension

result.

Theorem 14. A continuous valuation on Conv(Rn) admits a unique extension to a valuation on the

lattice
∧

Conv(Rn).

We identify a convex function with its epigraph. Let Cn+1
epi be the set of closed convex sets in R

n+1

that are epigraphs of functions in Conv(Rn) and equip this set with the Painlevé-Kuratowski topology,

which corresponds to the topology induced by epi-convergence (see, for example, [35, Definition 7.1]).

A slight modification of Groemer’s extension theorem [18] (or see [36, Theorem 6.2.3] or [23]) shows

that the following statement is true (we omit the proof). Here
⋃

Cn+1
epi is the set of all finite unions of

elements from Cn+1
epi . Theorem 14 is equivalent to Theorem 15.

Theorem 15. A continuous valuation on Cn+1
epi admits a unique extension to a valuation on the lattice

⋃

Cn+1
epi .

We require the following simple consequence of the inclusion-exclusion principle, Theorem 13 and of

Corollary 12.

Lemma 16. Let Z be a continuous valuation on Convsc(R
n) (or on Convcoe(R

n)). If

(5) Z(w + IP ) = 0

for every affine function w : Rn → R and for every polytope P , then Z ≡ 0.

Proof. By Corollary 12 (and the remark following it), it suffices to prove that Z(u) = 0 for

u ∈ Convsc(R
n) (or u ∈ Convcoe(R

n)) that is piecewise affine. So, let u =
∧m

i=1(wi + IPi
) with

w1, . . . , wm affine and P1, . . . , Pm ∈ Pn. By Theorem 13 (and the remark following it), it is enough to

show that

Z

(

∨

j∈J

(wj + IPj
)

)

= 0

for every ∅ 6= J ⊂ {1, . . . , m}. This follows from (5) as
∨

j∈J(wj + IPj
) is a piecewise affine function

restricted to a polytope. �

4. HESSIAN MEASURES AND VALUATIONS

For u ∈ Conv(Rn) and x ∈ R
n, we denote by ∂u(x) the subgradient of u at x, that is,

∂u(x) = {y ∈ R
n : u(z) ≥ u(x) + 〈z − x, y〉 for all z ∈ R

n}.

We set

Γu = {(x, y) ∈ R
n × R

n : y ∈ ∂u(x)}.

In other words, Γu is the generalized graph of ∂u.

Next, we recall the notion of Hessian measures of a function u ∈ Conv(Rn). These are non-negative

Borel measures defined on the Borel subsets of Rn × R
n, which we will denote by Θi(u, ·) with i =

0, . . . , n. Their definition can be given as follows (see also [10,11,16]). Let η ⊂ R
n ×R

n be a Borel set

and s > 0. Consider the following set

Ps(u, η) = {x+ sy : (x, y) ∈ Γu ∩ η}.
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It can be proven (see Theorem 7.1 in [16]) that Ps(u, η) is measurable and that its measure is a polynomial

in the variable s, that is, there exists (n+ 1) non-negative coefficients Θi(u, η) such that

Hn(Ps(u, η)) =
n
∑

i=0

(

n

i

)

siΘn−i(u, η).

Here Hn is the n-dimensional Hausdorff measure inRn, normalized so that it coincides with the Lebesgue

measure in R
n. The previous formula defines the Hessian measures of u; for more details we refer the

reader to [10, 11, 16].

According to Theorem 8.2 in [16], for every v ∈ Conv(Rn;R) and for every Borel subset η of Rn×R
n

(6) Θi(v, η) = Θn−i(v
∗, η̂),

where η̂ = {(x, y) ∈ R
n × R

n : (y, x) ∈ η}.

We require the following statement for Hessian valuations for i = 0. As the proof is the same for all

indices i, we give the more general statement. Let [D2v(x)]i be the i-th elementary symmetric function

of the eigenvalues of the Hessian matrix D2v.

Theorem 17. Let ζ ∈ C(R× R
n × R

n) have compact support with respect to the second variable. For

i ∈ {0, 1, . . . , n},

(7) Z(v) =

∫

Rn×Rn

ζ(v(x), x, y) dΘi(v, (x, y))

is well defined for every v ∈ Conv(Rn;R) and defines a continuous valuation on Conv(Rn;R). More-

over,

(8) Z(v) =

∫

Rn

ζ(v(x), x,∇v(x)) [D2v(x)]n−i dx

for every v ∈ Conv(Rn;R) ∩ C2(Rn).

We use the following result.

Theorem 18 ([16], Theorem 1.1). Let ζ ∈ C(R × R
n × R

n) have compact support with respect to the

second and third variables. For every i ∈ {0, 1, . . . , n}, the functional defined by

v 7→

∫

Rn×Rn

ζ(v(x), x, y) dΘi(v, (x, y))

defines a continuous valuation on Conv(Rn). Moreover,

(9) Z(v) =

∫

Rn

ζ(v(x), x,∇v(x)) [D2v(x)]n−i dx

for v ∈ Conv(Rn) ∩ C2(Rn).

Proof of Theorem 17. Since ζ has compact support with respect to the second variable, there is r > 0
such that ζ(t, x, y) = 0 for every y ∈ R

n with |y| ≥ r and (t, x) ∈ R × R
n. Let v, vk ∈ Conv(Rn;R)

be such that vk epi-converges to v. Since the functions are convex and finite this implies uniform con-

vergence on compact sets, in particular on Br := {x ∈ R
n : |x| ≤ r}. Moreover, the sequence vk is

uniformly bounded on Br and uniformly Lipschitz. Hence, there exists c > 0 such that

|vk(x)| ≤ c, |v(x)| ≤ c, |y| ≤ c

for all k ∈ N, x ∈ Br and y ∈ ∂vk(x) ∪ ∂v(x).
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Next, let η : Rn → R be smooth with compact support such that η(y) = 1 for all y ∈ R
n with |y| ≤ c

and define ζ̃ ∈ C(R× R
n × R

n) by

ζ̃(t, x, y) = ζ(t, x, y) η(y).

The function ζ̃ satisfies the conditions of Theorem 18 and ζ(v(x), x, y) = ζ̃(v(x), x, y) for all x ∈ R
n,

y ∈ ∂v(x) and ζ(vk(x), x, y) = ζ̃(vk(x), x, y) for all x ∈ R
n, y ∈ ∂vk(x) and k ∈ N. Hence, by

Theorem 18,

∫

Rn×Rn

ζ(vk(x), x, y) dΘi(vk, (x, y)) =

∫

Rn×Rn

ζ̃(vk(x), x, y) dΘi(vk, (x, y))

−→

∫

Rn×Rn

ζ̃(v(x), x, y) dΘi(v, (x, y)) =

∫

Rn×Rn

ζ(v(x), x, y) dΘi(v, (x, y))

as k → ∞. Since v and vk were arbitrary this shows that (7) is well defined and continuous. Since such

a function ζ̃ can especially be found for any finite number of functions in Conv(Rn;R), this also proves

the valuation property. Property (8) follows from (9). �

As a simple consequence of Theorem 17 we obtain the following statement.

Proposition 19. For ζ ∈ Cc(R
n), the functional Z: Conv(Rn;R) → R, defined by

(10) Z(v) =

∫

Rn×Rn

ζ(x) dΘ0(v, (x, y)),

is a continuous, dually epi-translation invariant valuation which is is homogeneous of degree n.

Proof. By Theorem 17 the map defined by (10) is a continuous valuation on on Conv(Rn;R). It remains

to show dually epi-translation invariance. For v ∈ Conv(Rn;R) ∩ C2(Rn) it follows from (8) that

Z(v) =

∫

Rn

ζ(x) det(D2v(x)) dx

which is clearly invariant under the addition of constants and linear terms. The statement now easily

follows for general v ∈ Conv(Rn;R) by approximation. �

By the considerations presented in Section 1.3, (6) and Proposition 19 lead to the following result.

Proposition 20. For ζ ∈ Cc(R
n), the functional Z: Convsc(R

n) → R, defined by

Z(u) =

∫

Rn×Rn

ζ(y) dΘn(u, (x, y)),

is a continuous and epi-translation invariant valuation on Convsc(R
n) which is epi-homogeneous of

degree n.

Note, that if Z is as in Proposition 20, then

Z(u) =

∫

Rn×Rn

ζ(y) dΘn(u, (x, y)) =

∫

dom(u)

ζ(∇u(x)) dx

for every u ∈ Convsc(R
n). See also [16, Section 10.4].
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5. PROOF OF THEOREM 1

For y ∈ R
n, define the linear function ℓy : R

n → R as

ℓy(x) = 〈x, y〉.

For K ∈ Kn, the function ℓy + IK belongs to Convsc(R
n).

Claim. The functional Z̃y : K
n → R, defined by

Z̃y(K) = Z(ℓy + IK),

is a continuous and translation invariant valuation.

Proof. i) The valuation property. Let K,L ∈ Kn be such that K ∪ L ∈ Kn. Note that

(ℓy + IK) ∨ (ℓy + IL) = ℓy + IK∩L; (ℓy + IK) ∧ (ℓy + IL) = ℓy + IK∪L.

Hence the valuation property of Z implies that Z̃y is a valuation.

ii) Translation invariance. Let x0 ∈ R
n. For every x ∈ R

n we have

ℓy(x) + IK+x0
(x) = 〈x, y〉+ IK(x− x0)

= 〈x− x0, y〉+ IK(x− x0) + 〈x0, y〉

= ℓy(x− x0) + IK(x− x0) + 〈x0, y〉.

In other words, the functions ℓy + IK+x0
and ℓy + IK differ only by a translation of the variable and by

an additive constant. Using the epi-translation invariance of Z we get

Z̃y(K + x0) = Z(ℓy + IK+x0
) = Z(ℓy + IK) = Z̃y(K).

iii) Continuity. By Lemma 10, a sequence of convex bodies Ki converges to K if and only if ℓy + IKi

epi-converges to ℓy + IK . Hence the continuity of Z implies that of Z̃y. �

Let y ∈ R
n be fixed. By the previous claim and Theorem 7, there exist continuous and translation

invariant valuations Z̃y,0, . . . , Z̃y,n on Kn such that Z̃y,j is j-homogeneous and

Z̃y =
n
∑

j=0

Z̃y,j .

Let K ∈ Kn. For λ ≥ 0, we have λ (ℓy + IK) = ℓy + IλK . Therefore we obtain, for every λ ≥ 0,

Z(λ (ℓy + IK)) =

n
∑

j=0

Z̃y,j(K)λj.

We consider the system of equations,

(11) Z(k (ℓy + IK)) =

n
∑

j=0

Z̃y,j(K)kj, k = 0, 1, . . . , n.

Its associated matrix is a Vandermonde matrix and invertible. Hence there are coefficients αij for i, j =
0, . . . n, such that

Z̃y,i(K) =
n
∑

j=0

αij Z(k (ℓy + IK)), i = 0, . . . , n.

Note that the coefficients αij are independent of y and K.
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For i = 0, . . . , n, we define Zi : Convsc(R
n) → R as

Zi(u) =
n
∑

j=0

αij Z(j u).

In general, if Z is a continuous, epi-translation invariant valuation on Convsc(R
n) and λ ≥ 0, then the

functional u 7→ Z(λ u) is a continuous, epi-translation valuation as well. Hence Zi is a continuous,

epi-translation invariant valuation on Convsc(R
n), for every i = 0, . . . , n.

By (11) and the definition of Zi, for every y ∈ R
n and K ∈ Kn we may write

Zi(ℓy + IK) = Z̃y,i(K).

Therefore

Z(ℓy + IK) =

n
∑

i=0

Zi(ℓy + IK).

Moreover, by the homogeneity of the Zy,i we have, for λ ≥ 0,

Zi(λ (ℓy + IK)) = Z̃y,i(λK) = λi Z̃y,i(K) = λi Zi(ℓy + IK).

As a conclusion, we have the following statement: there exist continuous and epi-translation invariant

valuations Z0, . . . ,Zn on Convsc(R
n) such that, for every y ∈ R

n and for every K ∈ Kn, setting u =
ℓy + IK , we have

Z(u) =

n
∑

i=0

Zi(u),

and, for every λ ≥ 0,

Zi(λ u) = λi Zi(u).

The same statement holds if we replace u = ℓy + IK by u = ℓy + IK + α, for any constant α ∈ R as all

valuations involved are vertically translation invariant.

If we apply Lemma 16 to

Z−
n
∑

i=0

Zi,

we get that this valuation vanishes on Convsc(R
n), so that

Z(u) =
n
∑

i=0

Zi(u)

for every u ∈ Convsc(R
n). For λ ≥ 0, the same lemma applied to the valuation on Convsc(R

n) defined

by

u 7→ Zi(λ u)− λi Zi(u),

shows that this must be identically zero as well, that is, Zi is epi-homogeneous of degree i. The proof is

complete.
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6. POLYNOMIALITY

In this section we establish the polynomial behavior of continuous and epi-translation invariant val-

uations on Convsc(R
n). This corresponds to the polynomiality of translation invariant valuations on

convex bodies stated by Hadwiger and proved by McMullen [30]. We start by recalling the defini-

tion of inf-convolution (see, for example, [35, 36]). For u, v ∈ Conv(Rn), we define the function

u� v : Rn → [−∞,+∞] by

u� v(z) = inf{u(x) + v(y) : x, y ∈ R
n, x+ y = z}

for z ∈ R
n. This operation can be extended to more than two functions with corresponding coefficients.

The inf-convolution has a straightforward geometric meaning: the epigraph of u � v is the Minkowski

sum of the epigraphs of u and v.

By [36, Section 1.6], for every α, β > 0 and for every u, v ∈ Conv(Rn), we have

α u � β u ∈ Conv(Rn), if this function does not attain −∞. Moreover, in this case we have the

following relation (see for instance [9, Proposition 2.1]):

(α u� β v)∗ = (αu∗ + βv∗).

This shows in particular that if u, v ∈ Convsc(R
n) then α u � β v ∈ Convsc(R

n). Indeed, in this case

u∗ and v∗ belong to Conv(Rn;R) and so does their usual sum. Consequently, its conjugate belongs to

Convsc(R
n). We say that Z is epi-additive if

Z(α u� β v) = α Z(u) + β Z(v)

for all α, β > 0 and u, v ∈ Convsc(R
n).

Let Z: Convsc(R
n) → R be a continuous, epi-translation invariant valuation that is epi-homogeneous

of degree m ∈ {1, . . . , n}. For u1 ∈ Convsc(R
n), we consider the functional Zu1

: Convsc(R
n) → R

defined by

Zu1
(u) = Z(u� u1).

The functional Zu1
is a continuous and epi-translation invariant valuation on Convsc(R

n). Indeed, the

valuation property, continuity and vertical translation invariance follow immediately from the corre-

sponding properties of Z. As for translation invariance, let x0 ∈ R
n and τ : Rn → R

n be the translation

by x0, that is, τ(x) = x+ x0. We have

(u ◦ τ−1)� u1 =
(

(u ◦ τ−1)∗ + u∗
1

)∗
= (u∗ + 〈·, x0〉+ u∗

1)
∗ = (u� u1) ◦ τ

−1.

Hence the epi-translation invariance of Zu1
follows from the epi-translation invariance of Z. Therefore,

we may apply Theorem 1 to obtain a polynomial expansion

Z((λ u)� u1) = Zu1
(λ u) =

n
∑

i=0

λi Zu1,i(u)

for λ ≥ 0 and u ∈ Convsc(R
n), where the functionals Zu1,i are continuous, epi-translation invariant

valuations on Convsc(R
n) that are epi-homogeneous of degree i ∈ {0, . . . , n}.

Similarly, for fixed ū ∈ Convsc(R
n) one can show that v 7→ Zv,i(ū) defines a continuous and epi-

translation invariant valuation on Convsc(R
n). Hence, as in the proof of Theorem 6.3.4 in [36], we may

repeat this argument to obtain the following statement.
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Theorem 21. Let Z: Convsc(R
n) → R be a continuous and epi-translation invariant valuation that is

epi-homogeneous of degree m ∈ {1, . . . , n}. There exists a symmetric function Z̄ : (Convsc(R
n))m → R

such that for k ∈ N, u1, . . . , uk ∈ Convsc(R
n) and λ1, . . . , λk ≥ 0,

Z(λ1 u1 � · · ·� λk uk) =
∑

i1,...,ik∈{0,...,m}
i1+···+ik=m

(

m

i1 · · · ik

)

λi1
1 · · ·λik

k Z̄(u1[i1], . . . , uk[ik]),

where uj[ij ] means that the argument uj is repeated ij times. Moreover, the function Z̄ is epi-additive in

each variable. For i ∈ {1, . . . , m} and ui+1, . . . , um ∈ Convsc(R
n), the map u 7→ Z̄(u[i], ui+1, . . . , um)

is a continuous, epi-translation invariant valuation on Convsc(R
n) that is epi-homogeneous of degree i.

The special case m = 1 in the previous result leads to the following result.

Corollary 22. If Z: Convsc(R
n) → R is a continuous and epi-translation invariant valuation that is

epi-homogeneous of degree 1, then Z is epi-additive.

Finally, we also obtain the dual statements. We say that a functional Z : Conv(Rn;R) → R is additive

if Z(α v + β w) = αZ(v) + β Z(w) for all α, β ≥ 0 and v, w ∈ Conv(Rn;R).

Theorem 23. Let Z: Conv(Rn;R) → R be a continuous, dually epi-translation invariant valuation that

is homogeneous of degree m ∈ {1, . . . , n}. There exists a symmetric function Z̄ : (Conv(Rn;R))m → R

such that for k ∈ N, v1, . . . , vk ∈ Conv(Rn;R) and λ1, . . . , λk ≥ 0,

Z(λ1 v1 + · · ·+ λk vk) =
∑

i1,...,ik∈{0,...,m}
i1+···+ik=m

(

m

i1 · · · ik

)

λi1
1 · · ·λik

k Z̄(v1[i1], . . . , vk[ik]).

Moreover, the function Z̄ is additive in each variable. For i ∈ {1, . . . , m} and vi+1, . . . , vm ∈ Conv(Rn;R),
the map v 7→ Z̄(v[i], vi+1, . . . , vm) is a continuous and dually epi-translation invariant valuation on

Conv(Rn;R) that is homogeneous of degree i.

The special case m = 1 in the previous result leads to the following result.

Corollary 24. If Z: Conv(Rn;R) → R is a continuous and dually epi-translation invariant valuation

that is homogeneous of degree 1, then Z is additive.

Let ζ ∈ Cc(R
n). By Proposition 19, the functional

Z(v) =

∫

Rn×Rn

ζ(x) dΘ0(v, (x, y))

defines a continuous, dually epi-translation invariant valuation on Conv(Rn;R) that is homogeneous of

degree n. Hence, by Theorem 23, for v1, . . . , vk ∈ Conv(Rn;R) and λ1, . . . , λk ≥ 0, there exists a

symmetric function Z̄ : (Conv(Rn;R))n → R such that

Z(λ1 v1 + · · ·+ λk vk) =
∑

i1,...,ik∈{0,...,n}
i1+···+ik=n

(

n

i1 · · · ik

)

λi1
1 · · ·λik

k Z̄(v1[i1], . . . , vk[ik]).

If we assume in addition that v1, . . . , vk ∈ C2(Rn), then by (8) and properties of the mixed discriminant,

we can also write

Z(λ1 v1 + · · ·+ λk vk) =

∫

Rn

ζ(x) det(D2(λ1 v1 + · · ·+ λk vk)(x)) dx

=

k
∑

i1,...,in=1

λi1 · · ·λin

∫

Rn

ζ(x) det(D2vi1(x), . . . ,D
2vin(x)) dx.
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It is now easy to see that for such functions v1, . . . , vk and i1, . . . , ik ∈ {0, . . . , n} with i1+ · · ·+ ik = n,

Z̄(v1[i1], . . . , vk[ik]) =

∫

Rn

ζ(x) det(D2v1(x)[i1], . . . ,D
2vk[ik]) dx.

Note that this is a special case of (2).

7. CLASSIFICATION THEOREMS

The classification of valuations that are epi-homogenous of degree 0 is straightforward.

Theorem 25. A functional Z: Convsc(R
n) → R is a continuous and epi-translation invariant valuation

that is epi-homogeneous of degree 0, if and only if Z is constant.

Proof. Let Z: Convsc(R
n) → R be a continuous and epi-translation invariant valuation that is epi-

homogeneous of degree zero. We show that Z is constant. Indeed, for given y ∈ R
n, the functional

Z̃y : K
n → R defined by

Z̃y(K) = Z(ℓy + IK).

is a zero-homogeneous, continuous and translation invariant valuation on Kn and therefore constant.

Such a constant cannot depend on y, as, choosing K = {0}, we obtain

I{0} + ℓy = I{0} + ℓy0

for all y, y0 ∈ R
n. Hence there exists α ∈ R such that

Z(IK + ℓy) = α

for all K ∈ Kn and y ∈ R
n. Thus the statement follows from applying Lemma 16 to Z−α. �

By duality, we also obtain the following result.

Theorem 26. A functional Z: Conv(Rn;R) → R is a continuous and dually epi-translation invariant

valuation that is homogeneous of degree 0, if and only if Z is constant.

Next, we prove Theorem 2. The “if” part of the proof follows from Proposition 20 and the subsequent

remark. The proof of the theorem is completed by the next statement.

Proposition 27. If Z : Convsc(R
n) → R is a continuous, epi-translation invariant valuation, that is

epi-homogeneous of degree n, then there exists ζ ∈ Cc(R
n) such that

Z(u) =

∫

dom(u)

ζ(∇u(x)) dx

for every u ∈ Convsc(R
n).

Proof. For y ∈ R
n, we consider the map Z̃y : K

n → R defined by

Z̃y(K) = Z(ℓy + IK).

We know from the proof of Theorem 1 that Z̃y is a continuous and translation invariant valuation on

Kn. Moreover, as the functional Z is epi-homogeneous of degree n, the functional Z̃y is homogeneous

of degree n. By Theorem 8, for each y ∈ R
n, there exists a constant, that we denote by ζ(y), such that

(12) Z̃(K) = ζ(y) Vn(K)

for every K ∈ Kn. As Z is continuous, the function ζ : Rn → R is continuous. We prove, by contra-

diction, that ζ has compact support. Assume that there exists a sequence yk ∈ R
n, such that

(13) lim
k→∞

|yk| = +∞
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and ζ(yk) 6= 0 for every k. Without loss of generality, we may assume that

(14) lim
k→∞

yk
|yk|

= en

where en is the n-th element of the canonical basis of Rn.

Let

Bk = {x ∈ y⊥k : |x| ≤ 1}, B∞ = {x ∈ e⊥n : |x| ≤ 1}.

Define the cylinder

Ck =

{

x+ tyk : x ∈ Bk, t ∈

[

0,
1

ζ(yk)

]}

.

We have

Vn(Ck) =
κn−1

ζ(yk)
,

where κn−1 is the (n− 1)-dimensional volume of the unit ball in R
n−1.

For k ∈ N, we consider the function

uk = ℓyk + ICk
.

This is a sequence of functions in Convsc(R
n); using (13) and (14), it follows from Lemma 10 that uk

epi-converges to

u∞ = IB∞ .

In particular, by the continuity of Z and (12) we get

0 = Z(u∞) = lim
k→∞

Z(uk).

On the other hand, by the definition of uk and (12),

Z(uk) = ζ(yk) Vn(Ck) = κn−1 > 0.

This completes the proof. �

8. VALUATIONS WITHOUT VERTICAL TRANSLATION INVARIANCE

In this part we see that Theorems 1 and 4 are no longer true if we remove the assumption of vertical

translation invariance. To do so, on the base of Theorem 17 we construct the following example. For

η ∈ Cc(R
n) and v ∈ Conv(Rn;R) ∩ C2(Rn), define

(15) Z(v) =

∫

Rn

ev(x)−〈∇v(x),x〉 η(x) det(D2v(x)) dx.

By Theorem 17, the functional defined in (15) can be extended to a continuous valuation on Conv(Rn;R).
It is dually translation invariant but not vertically translation invariant. We choose v ∈ Conv(Rn;R) as

v(x) = 1
2
|x|2.

Note that the Hessian matrix of v is everywhere equal to the identity matrix. Hence det(D2v) = 1 on

R
n. For λ ≥ 0 we have

Z(λv) = λn

∫

Rn

η(x)eλ
|x|2

2 dx.

If η is non-negative and η(x) ≥ 1 for every x such that 1 ≤ |x| ≤ 2, then

Z(λv) ≥ cλneλ/2

for a suitable constant c > 0 and for every λ ≥ 0. Hence Z(λv) does not have polynomial growth as λ
tends to ∞.
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Theorem 28. There exist continuous, dually translation invariant valuations on Conv(Rn;R) which

cannot be written as finite sums of homogeneous valuations.

As a consequence we also have the following dual statement.

Theorem 29. There exist continuous, translation invariant valuations on Convsc(R
n) which cannot be

written as finite sums of epi-homogeneous valuations.

9. EPI-TRANSLATION INVARIANT VALUATIONS ON COERCIVE FUNCTIONS

In this part we prove that every continuous and epi-translation invariant valuation on Convcoe(R
n) is

trivial.

Theorem 30. Every continuous, epi-translation invariant valuation Z : Convcoe(R
n) → R is constant.

Proof. Let Z : Convcoe(R
n) → R be a continuous, epi-translation invariant valuation. We need to show

that there exists α ∈ R such that Z(u) = α for every u ∈ Convcoe(R
n). As in the proof of Theorem 1

define for y ∈ R
n\{0} the map Z̃y : K

n → R by

Z̃y(K) = Z(ℓy + IK)

for every K ∈ Kn. Since Z̃y is a continuous and translation invariant valuation, by Theorem 7 it admits

a homogeneous decomposition

Z̃y =
n
∑

j=0

Z̃y,j ,

where each Z̃y,j is a continuous, translation invariant valuation on Kn that is homogeneous of degree j.

Next, we will show that Z̃y,j ≡ 0 for all 1 ≤ j ≤ n. Since

Z̃y,0(K) = lim
λ→0

Z̃y,0(λK) = Z̃y,0({0})

for every K ∈ Kn, this will then imply that Z̃y is constant. By continuity it is enough to show that Z̃y,j

vanishes on polytopes for all 1 ≤ j ≤ n. Since Z̃y is continuous, it is enough to restrict to polytopes with

no facet parallel to y⊥. Therefore, fix such a polytope P ∈ Pn of dimension at least one. By translation

invariance we can assume that the origin is one of the vertices of P and that P lies in the half-space

{x ∈ R
n : 〈x, y〉 ≥ 0}. In particular, this gives P ∩ y⊥ = {0}, 〈x, y〉 > 0 for all x ∈ P\{0} and

moreover 〈x, y〉 > 0 and for all x ∈ λP\{0} for all λ > 0. Due to the choice of P we obtain that

ℓy + IλP is epi-convergent to ℓy + IC as λ → ∞ where C is the infinite cone over P with apex at the

origin, that is C is the positive hull of P . Furthermore ℓy+ IC ∈ Convcoe(R
n) since y 6= 0. By continuity

this gives

Z(ℓy + IC) = lim
λ→∞

Z(ℓy + IλP ) = lim
λ→∞

Z̃y(λP ) = lim
λ→∞

n
∑

j=0

λjZ̃y,j(P ).

Since the left side of this equation is finite, we have Z̃y,n(P ) = 0. Otherwise, the right side would

be ±∞, depending on the sign of Z̃y,n(P ). Since P was arbitrary, we obtain that Z̃y,n vanishes on all

compact convex polytopes of dimension greater or equal than 1 and by continuity Z̃y,n ≡ 0. Similarly,

one can now show by induction that also Z̃y,j ≡ 0 for all 1 ≤ j ≤ n− 1.
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We have proven so far that for every y ∈ R
n\{0} there exists a constantα(y) ∈ R such that Z̃y ≡ α(y).

Since

α(y) = Z̃y({0}) = Z(I{0}),

we obtain that α(y) is in fact independent of y, that is, there exists α ∈ R such that Z̃y ≡ α for every

y ∈ R
n. By the definition of Z̃y and the vertical translation invariance of Z̃ this gives Z(ℓy+ IK+β) = α

for every K ∈ Kn, y ∈ R
n\{0} and β ∈ R. The claim now follows from Lemma 16. �

If u ∈ Convcoe(R
n), then its conjugate u∗ ∈ Conv(Rn) and the origin is an interior point of its domain

(see, for example, [35, Theorem 11.8]). Let Convod(R
n) be the set of functions in Conv(Rn) with the

origin in the interior of its domain. Theorem 30 has the following dual.

Theorem 31. Every continuous, dually epi-translation invariant valuation Z : Convod(R
n) → R is

constant.
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