A HOMOGENEOUS DECOMPOSITION THEOREM FOR VALUATIONS ON CONVEX FUNCTIONS

ANDREA COLESANTI, MONIKA LUDWIG, AND FABIAN MUSSNIG

ABSTRACT. The existence of a homogeneous decomposition for continuous and epi-translation invariant valuations on super-coercive functions is established. Continuous and epi-translation invariant valuations that are epi-homogeneous of degree n are classified. By duality, corresponding results are obtained for valuations on finite-valued convex functions.

2000 AMS subject classification: 52B45 (26B25, 52A21, 52A41)

1. INTRODUCTION

Given a space of real-valued functions X, we consider real-valued valuations on X, that is, functionals $Z: X \to \mathbb{R}$ such that

$$
(1) \qquad \qquad Z(u \lor v) + Z(u \land v) = Z(u) + Z(v)
$$

for every $u, v \in X$ with $u \vee v$ and $u \wedge v \in X$, where \vee and \wedge denote the point-wise maximum and minimum, respectively. For X , the space of indicator functions of convex bodies (that is, compact convex sets) in \mathbb{R}^n , we obtain the classical notion of valuation on convex bodies. Here strong structure and classification theorems have been established over the last seventy years (see $[1, 2, 6, 7, 19-21, 28]$ $[1, 2, 6, 7, 19-21, 28]$ $[1, 2, 6, 7, 19-21, 28]$ $[1, 2, 6, 7, 19-21, 28]$ $[1, 2, 6, 7, 19-21, 28]$ $[1, 2, 6, 7, 19-21, 28]$ $[1, 2, 6, 7, 19-21, 28]$) for some recent results and [\[22,](#page-17-1) [23,](#page-17-2) [36\]](#page-17-3) for information on the classical theory). The aim of this article is to obtain such results also in the functional setting. In particular, we will establish a homogeneous decomposition result à la McMullen [\[30\]](#page-17-4).

Valuations on function spaces have only recently started to attract attention. Classification results were obtained for L_p and Sobolev spaces [\[24–](#page-17-5)[27,](#page-17-6) [29,](#page-17-7) [38,](#page-17-8) [39\]](#page-17-9), spaces of quasi-convex functions [\[12,](#page-16-6) [13\]](#page-16-7), of Lipschitz functions [\[17\]](#page-16-8), of definable functions [\[4\]](#page-16-9) and on Banach lattices [\[37\]](#page-17-10). Spaces of convex functions play a special role because of their close connection to convex bodies. Here classification results were obtained for $SL(n)$ invariant and for monotone valuations in [\[8,](#page-16-10) [14,](#page-16-11) [15,](#page-16-12) [32–](#page-17-11)[34\]](#page-17-12) and the connection to valuations on convex bodies was explored by Alesker [\[3\]](#page-16-13). While the theory of translation invariant valuations is well developed for convex bodies, for convex functions the corresponding theory did not exist till now. We introduce the notion of *epi-translation invariance* to build such a theory. In particular, we will show that on the space of super-coercive convex functions there is a homogeneous decomposition for continuous and epi-translation invariant valuations and there exist non-trivial such valuations for each degree of epi-homogeneity while on the larger space of coercive convex functions all continuous and epi-translation invariant valuations are constant.

The general space of (extended real-valued) convex functions on \mathbb{R}^n is defined as

Conv $(\mathbb{R}^n) = \{u : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} : u$ is convex and lower semicontinuous, $u \neq +\infty\}$.

It is equipped with the topology induced by epi-convergence (see Section [2.2\)](#page-4-0). Continuity of valuations defined on Conv(\mathbb{R}^n), or on subsets of Conv(\mathbb{R}^n), will be always with respect to this topology. The space Conv (\mathbb{R}^n) is a standard space in convex analysis (see [\[35\]](#page-17-13)) and important in many applications. As we

Key words and phrases. Convex function, valuation, homogeneous decomposition.

will show, Conv (\mathbb{R}^n) is too large for our purposes. We will be mainly interested in two of its subspaces. The first is formed by *coercive* functions,

$$
Conv_{\text{coe}}(\mathbb{R}^n) = \left\{ u \in \text{Conv}(\mathbb{R}^n) \colon \lim_{|x| \to +\infty} u(x) = +\infty \right\},\
$$

where |x| is the Euclidean norm of $x \in \mathbb{R}^n$. The second is formed by *super-coercive* functions,

$$
Conv_{sc}(\mathbb{R}^n) = \left\{ u \in Conv(\mathbb{R}^n) : \lim_{|x| \to +\infty} \frac{u(x)}{|x|} = +\infty \right\}.
$$

The space of super-coercive convex functions is related to another subspace of Conv (\mathbb{R}^n) , formed by convex functions with finite values,

$$
Conv(\mathbb{R}^n; \mathbb{R}) = \{ v \in Conv(\mathbb{R}^n) \colon v(x) < +\infty \text{ for all } x \in \mathbb{R}^n \}.
$$

Indeed, $v \in Conv(\mathbb{R}^n;\mathbb{R})$ if and only if its standard conjugate or Legendre transform v^* belongs to Conv_{sc} (\mathbb{R}^n) (see Section [1.3\)](#page-2-0).

1.1. One of the most important structural results for valuations on convex bodies is the existence of a homogeneous decomposition for translation invariant valuations. It was conjectured by Hadwiger and established by McMullen [\[30\]](#page-17-4) (see Section [2.1\)](#page-4-1). Our first aim is to establish such a result for valuations on convex functions. We define *epi-multiplication* by setting for $u \in Conv(\mathbb{R}^n)$ and $\lambda > 0$,

$$
\lambda \cdot u(x) = \lambda \, u\left(\frac{x}{\lambda}\right)
$$

for $x \in \mathbb{R}^n$. From a geometric point of view, this operation has the following meaning: the epigraph of $\lambda \cdot u$ is obtained by rescaling the epigraph of u by the factor λ . We extend the definition of epimultiplication to $0 \cdot u(x) = 0$ if $x = 0$ and $0 \cdot u(x) = +\infty$ if $x \neq 0$. It is easy to see that $u \in Conv_{sc}(\mathbb{R}^n)$ implies $\lambda \cdot u \in Conv_{\text{sc}}(\mathbb{R}^n)$ for $\lambda \geq 0$. A functional $Z : Conv_{\text{sc}}(\mathbb{R}^n) \to \mathbb{R}$ is called *epi-homogeneous* of degree $\alpha \in \mathbb{R}$ if

$$
Z(\lambda \cdot u) = \lambda^{\alpha} Z(u)
$$

for all $u \in Conv_{sc}(\mathbb{R}^n)$ and $\lambda > 0$. Here and in the following corresponding definitions will be used for Conv (\mathbb{R}^n) and its subspaces.

We call $Z: Conv_{sc}(\mathbb{R}^n) \to \mathbb{R}$ translation invariant if $Z(u \circ \tau^{-1}) = Z(u)$ for every $u \in Conv_{sc}(\mathbb{R}^n)$ and every translation $\tau : \mathbb{R}^n \to \mathbb{R}^n$. If $u \in Conv_{\text{sc}}(\mathbb{R}^n)$ then $u \circ \tau^{-1} \in Conv_{\text{sc}}(\mathbb{R}^n)$ as well. We say that Z is *vertically translation invariant* if

$$
Z(u + \alpha) = Z(u)
$$

for all $u \in Conv_{sc}(\mathbb{R}^n)$ and $\alpha \in \mathbb{R}$. If Z is both translation invariant and vertically translation invariant, then Z is called *epi-translation invariant*. As we will see, the set of continuous, epi-translation invariant valuations on $Conv_{sc}(\mathbb{R}^n)$ is non-empty. Note that a functional Z is epi-translation invariant if for all $u \in Conv_{sc}(\mathbb{R}^n)$ the value $Z(u)$ is not changed by translations of the epigraph of u.

The following result establishes a homogeneous decomposition for continuous and epi-translation invariant valuations on $Conv_{sc}(\mathbb{R}^n)$.

Theorem 1. If $Z: Conv_{sc}(\mathbb{R}^n) \to \mathbb{R}$ is a continuous and epi-translation invariant valuation, then there are continuous and epi-translation invariant valuations $\overline{Z_0},\ldots,\overline{Z_n}$: $\text{Conv}_{\text{sc}}(\mathbb{R}^n) \to \mathbb{R}$ such that $\overline{Z_i}$ is *epi-homogeneous of degree i* and $Z = Z_0 + \cdots + Z_n$ *.*

We will see that this theorem is no longer true if we remove the condition of vertical translation invariance (see Section [8\)](#page-14-0). We will also see that the set of continuous and epi-translation invariant valuations is trivial on the larger set of coercive convex functions (see Section [9\)](#page-15-0). Hence the assumption of super-coercivity is in some sense necessary.

Milman and Rotem [\[31\]](#page-17-14) discuss the problem to find a functional analog of Minkowski's mixed volume theorem. In particular, they point out that such a result is not possible on $Conv(\mathbb{R}^n)$ for inf-convolution as addition and the volume functional $u \mapsto \int_{\mathbb{R}^n} e^{-u(x)} dx$. Instead, they define a new addition for convex functions to obtain a functional mixed volume theorem. A consequence of Theorem [1](#page-1-0) is that continuous and epi-translation invariant valuations are multilinear on $\mathrm{Conv_{sc}(\mathbb{R}^n)}$ with respect to inf-convolution and epi-multiplication (see Theorem [21\)](#page-12-0). Thus, for all such valuations, a functional analog of Minkowski's mixed volume theorem is obtained on $Conv_{sc}(\mathbb{R}^n)$ with inf-convolution as addition.

1.2. The following result gives a characterization of continuous and epi-translation invariant valuations on Conv_{sc}(\mathbb{R}^n), which are epi-homogeneous of degree n. For $u \in Conv_{sc}(\mathbb{R}^n)$, we denote by $dom(u)$ the set of points of \mathbb{R}^n where u is finite and by ∇u the gradient of u. Note that by standard properties of convex functions, $\nabla u(x)$ is well defined for a.e. $x \in \text{dom}(u)$. Let $C_c(\mathbb{R}^n)$ be the set of continuous functions with compact support on \mathbb{R}^n .

Theorem 2. A functional $Z: Conv_{sc}(\mathbb{R}^n) \to \mathbb{R}$ is a continuous and epi-translation invariant valuation that is epi-homogeneous of degree n, if and only if there exists $\zeta \in C_c(\mathbb{R}^n)$ such that

$$
Z(u) = \int_{\text{dom}(u)} \zeta(\nabla u(x)) \, \mathrm{d}x
$$

for every $u \in Conv_{\rm sc}(\mathbb{R}^n)$ *.*

We will also obtain a classification of continuous and epi-translation invariant valuations that are epihomogeneous of degree 0. These are just constants. As a consequence of these results and Theorem [1,](#page-1-0) we obtain the following complete classification in dimension one.

Corollary 3. A functional $Z: Conv_{sc}(\mathbb{R}) \to \mathbb{R}$ is a continuous and epi-translation invariant valuation, *if and only if there exist a constant* $\zeta_0 \in \mathbb{R}$ *and a function* $\zeta_1 \in C_c(\mathbb{R})$ *such that*

$$
Z(u) = \zeta_0 + \int_{\text{dom}(u)} \zeta_1(u'(x)) dx
$$

for every $u \in Conv_{\rm sc}(\mathbb{R})$.

1.3. As mentioned before, there exists a bijection between Conv(\mathbb{R}^n ; \mathbb{R}) and Conv_{sc}(\mathbb{R}^n) given by the standard conjugate, or Legendre transform, of convex functions. For $u \in Conv(\mathbb{R}^n)$, we denote by u^* its conjugate, defined by

$$
u^*(y) = \sup_{x \in \mathbb{R}^n} (\langle x, y \rangle - u(x))
$$

for $y \in \mathbb{R}^n$, where $\langle x, y \rangle$ is the inner product of $x, y \in \mathbb{R}^n$. Note that $u \in Conv_{\text{sc}}(\mathbb{R}^n)$ if and only if $u^* \in Conv(\mathbb{R}^n; \mathbb{R})$ (see, for example, [\[35,](#page-17-13) Theorem 11.8]).

Let Z be a continuous valuation on Conv $(\mathbb{R}^n; \mathbb{R})$. It was proved in [\[16\]](#page-16-14) that \mathbb{Z}^* : Conv_{sc} $(\mathbb{R}^n) \to \mathbb{R}$, defined by

$$
Z^*(u) = Z(u^*),
$$

is a continuous valuation as well. This fact permits to transfer results for valuations on Conv $(\mathbb{R}^n;\mathbb{R})$ to results valid for valuations on Conv_{sc} (\mathbb{R}^n) and vice versa. We call \mathbb{Z}^* the dual valuation of Z.

A valuation Z on Conv(\mathbb{R}^n ; \mathbb{R}) is called *homogeneous* if there exists $\alpha \in \mathbb{R}$ such that

$$
Z(\lambda v) = \lambda^{\alpha} Z(v)
$$

for all $v \in Conv(\mathbb{R}^n;\mathbb{R})$ and $\lambda \geq 0$. We say that Z is *dually translation invariant* if for every linear function $\ell \colon \mathbb{R}^n \to \mathbb{R}$

$$
Z(v+\ell) = Z(v)
$$

for every $v \in Conv(\mathbb{R}^n; \mathbb{R})$. Let $\ell(y) = \langle y, x_0 \rangle$ for $x_0, y \in \mathbb{R}^n$. As $(v + \ell)^*(x) = v^*(x - x_0)$ for $v \in Conv(\mathbb{R}^n;\mathbb{R})$, we see that Z is dually translation invariant if and only if Z^{*} is translation invariant. We

define vertical translation invariance for valuations on Conv(\mathbb{R}^n ; \mathbb{R}) in the same way as on Conv_{sc}(\mathbb{R}^n). We say that Z is *dually epi-translation invariant* on $Conv(\mathbb{R}^n; \mathbb{R})$ if it is vertically and dually translation invariant. Note that a functional Z is dually epi-translation invariant, if for all $v \in Conv(\mathbb{R}^n; \mathbb{R})$, the value $Z(v)$ is not changed by adding an affine function to v.

Let Z be a valuation on Conv $(\mathbb{R}^n;\mathbb{R})$. We note the following simple facts. The valuation Z is vertically translation invariant if and only if Z^* has the same property. The valuation Z^* is epi-homogeneous of degree α if and only if Z is homogeneous of degree α .

Hence we obtain the following result as a consequence of Theorem [1.](#page-1-0)

Theorem 4. If $Z: Conv(\mathbb{R}^n; \mathbb{R}) \to \mathbb{R}$ is a continuous and dually epi-translation invariant valuation, then there are continuous and dually epi-translation invariant valuations $Z_0,\ldots,Z_n: {\rm Conv}(\Bbb R^n;\Bbb R)\to \Bbb R$ such that Z_i is homogeneous of degree i and $Z = Z_0 + \cdots + Z_n$.

Alesker [\[3\]](#page-16-13) introduced the following class of valuations on Conv $(\mathbb{R}^n;\mathbb{R})$. Given real symmetric $n \times n$ matrices M_1, \ldots, M_n , denote by $\det(M_1, \ldots, M_n)$ their mixed discriminant. Let $i \in \{1, \ldots, n\}$ and write $\det(M[i], M_1, \ldots, M_{n-i})$ for the mixed discriminant in which the matrix M is repeated i times. Let A_1, \ldots, A_{n-i} be continuous, symmetric $n \times n$ matrix-valued functions on \mathbb{R}^n with compact support and $\zeta \in C_c(\mathbb{R}^n)$. Given a function $v \in Conv(\mathbb{R}^n; \mathbb{R}) \cap C^2(\mathbb{R}^n)$, set

(2)
$$
Z(v) = \int_{\mathbb{R}^n} \zeta(x) \det(D^2 v(x)[i], A_1(x), \dots, A_{n-i}(x)) dx
$$

where D^2v is the Hessian matrix of v. Alesker [\[3\]](#page-16-13) proved that Z can be extended to a continuous valuation on Conv $(\mathbb{R}^n;\mathbb{R})$. Valuations of type [\(2\)](#page-3-0) are homogeneous of degree i and dually epi-translation invariant. This implies in particular that the set of valuations with these properties is non-empty. Clearly, the dual functional Z^{*} is a continuous, epi-translation invariant, epi-homogeneous valuation on Conv_{sc}(\mathbb{R}^n).

Next, we state the counterpart of Theorem [2](#page-2-1) for valuations on Conv $(\mathbb{R}^n; \mathbb{R})$. Let $\Theta_0(v, \cdot)$ be the Hessian measure of order 0 of a function $v \in Conv(\mathbb{R}^n; \mathbb{R})$ (see Section [4](#page-6-0) for the definition).

Theorem 5. A functional $Z: Conv(\mathbb{R}^n; \mathbb{R}) \to \mathbb{R}$ is a continuous and dually epi-translation invariant *valuation that is homogeneous of degree n, if and only if there exists* $\zeta \in C_c(\mathbb{R}^n)$ *such that*

$$
Z(v) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \zeta(x) d\Theta_0(v,(x,y))
$$

for every $v \in Conv(\mathbb{R}^n; \mathbb{R})$ *.*

In the special case of dimension one, we obtain the following complete classification theorem.

Corollary 6. A functional $Z: Conv(\mathbb{R}; \mathbb{R}) \to \mathbb{R}$ is a continuous and dually epi-translation invariant *valuation, if and only if there exist a constant* $\zeta_0 \in \mathbb{R}$ *and a function* $\zeta_1 \in C_c(\mathbb{R})$ *such that*

$$
Z(v) = \zeta_0 + \int_{\mathbb{R} \times \mathbb{R}} \zeta_1(x) d\Theta_0(v, (x, y))
$$

for every $v \in Conv(\mathbb{R}; \mathbb{R})$.

The plan for this paper is as follows. In Section [2,](#page-4-2) we collect results on convex bodies and functions needed for the proofs of the main results. In Section [3,](#page-5-0) an inclusion-exclusion principle is established for valuations on convex functions and in Section [4,](#page-6-0) the existence and properties of the valuations in Theorem [2](#page-2-1) and Theorem [5](#page-3-1) are deduced by using results on Hessian valuations. Theorem [1](#page-1-0) is proved in Section [5.](#page-9-0) As a consequence the polynomiality of epi-translation invariant valuations is obtained and a connection to the valuations introduced by Alesker is established in Section [6.](#page-11-0) The proof of Theorem [2](#page-2-1) is given in Section [7.](#page-13-0) In the final sections, the necessity of the assumptions in Theorem [1](#page-1-0) is demonstrated.

2. PRELIMINARIES

We work in *n*-dimensional Euclidean space \mathbb{R}^n , with $n \geq 1$, endowed with the Euclidean norm $|\cdot|$ and the usual scalar product $\langle \cdot, \cdot \rangle$.

2.1. A *convex body* is a nonempty, compact and convex subset of \mathbb{R}^n . The family of all convex bodies is denoted by \mathcal{K}^n . A *polytope* is the convex hull of finitely many points in \mathbb{R}^n . The set of polytopes, denoted by \mathcal{P}^n , is contained in \mathcal{K}^n . We equip both \mathcal{K}^n and \mathcal{P}^n with the topology coming from the Hausdorff metric.

A functional $Z : \mathcal{K}^n \to \mathbb{R}$ is a valuation if

$$
Z(K \cup L) + Z(K \cap L) = Z(K) + Z(L)
$$

for every $K, L \in \mathcal{K}^n$ with $K \cup L \in \mathcal{K}^n$. We say that Z is translation invariant if $\mathbb{Z}(\tau K) = \mathbb{Z}(K)$ for all translations $\tau : \mathbb{R}^n \to \mathbb{R}^n$ and $K \in \mathcal{K}^n$. It is homogeneous of degree $\alpha \in \mathbb{R}$, if $\mathbb{Z}(\lambda K) = \lambda^{\alpha} \mathbb{Z}(K)$ for all $K \in \mathcal{K}^n$ and $\lambda \geq 0$.

The following result by McMullen [\[30\]](#page-17-4) establishes a homogeneous decomposition for continuous and translation invariant valuations on \mathcal{K}^n .

Theorem 7 (McMullen). *If* $Z : \mathcal{K}^n \to \mathbb{R}$ *is a continuous and translation invariant valuation, then there* are continuous and translation invariant valuations $Z_0, \ldots, Z_n : \mathcal{K}^n \to \mathbb{R}$ such that Z_i is homogeneous *of degree i* and $Z = Z_0 + \cdots + Z_n$.

We recall two classification results for valuations on convex bodies. First, we note that it is easy to see that every continuous and translation invariant valuation that is homogeneous of degree 0 is constant. The classification of continuous and translation invariant valuations that are n -homogeneous is due to Hadwiger [\[22\]](#page-17-1). Let V_n denote *n*-dimensional volume (that is, *n*-dimensional Lebesgue measure).

Theorem 8 (Hadwiger). A functional $Z: \mathcal{K}^n \to \mathbb{R}$ is a continuous and translation invariant valuation *that is homogeneous of degree n, if and only if there exists* $\alpha \in \mathbb{R}$ *such that* $Z = \alpha V_n$ *.*

2.2. Given a subset $A \subset \mathbb{R}^n$, let $I_A: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ denote the (convex) indicatrix function of A,

$$
\mathbf{I}_A(x) = \begin{cases} 0 & \text{if } x \in A, \\ +\infty & \text{if } x \notin A. \end{cases}
$$

Note that for a convex body K, we have $I_K \in Conv_{sc}(\mathbb{R}^n)$.

We equip Conv (\mathbb{R}^n) with the topology associated to epi-convergence. Here a sequence $u_k \in Conv(\mathbb{R}^n)$ is *epi-convergent* to $u \in Conv(\mathbb{R}^n)$ if for all $x \in \mathbb{R}^n$ the following conditions hold:

(i) For every sequence x_k that converges to x, we have $u(x) \leq \liminf_{k \to \infty} u_k(x_k)$.

(ii) There exists a sequence x_k that converges to x such that $u(x) = \lim_{k \to \infty} u_k(x_k)$.

The following result can be found in [\[35,](#page-17-13) Theorem 11.34].

Proposition 9. A sequence u_k of functions from Conv(\mathbb{R}^n) epi-converges to $u \in \text{Conv}(\mathbb{R}^n)$ if and only if *the sequence* u_k^* *epi-converges to* u^* *.*

If $u \in Conv_{\text{coe}}(\mathbb{R}^n)$, then for $t \in \mathbb{R}$ the sublevel sets $\{u \leq t\} = \{x \in \mathbb{R}^n : u(x) \leq t\}$ are either empty or in \mathcal{K}^n . The next result, which follows from [\[15,](#page-16-12) Lemma 5] and [\[5,](#page-16-15) Theorem 3.1], shows that on Conv_{coe}(\mathbb{R}^n) epi-convergence is equivalent to Hausdorff convergence of sublevel sets, where we say that $\{u_k \leq t\} \to \emptyset$ as $k \to \infty$ if there exists $k_0 \in \mathbb{N}$ such that $\{u_k \leq t\} = \emptyset$ for $k \geq k_0$.

Lemma 10. If $u_k, u \in Conv_{\text{coe}}(\mathbb{R}^n)$, then u_k epi-converges to u if and only if $\{u_k \le t\} \to \{u \le t\}$ for *every* $t \in \mathbb{R}$ *with* $t \neq \min_{x \in \mathbb{R}^n} u(x)$ *.*

2.3. A function $v \in Conv(\mathbb{R}^n; \mathbb{R})$ is called *piecewise affine* if there exist finitely many affine functions $w_1, \ldots, w_m : \mathbb{R}^n \to \mathbb{R}$ such that

$$
(3) \t v = \bigvee_{i=1}^{m} w_i.
$$

The set of piecewise affine functions will be denoted by $Conv_{p.a.}(\mathbb{R}^n;\mathbb{R})$. It is a subset of $Conv(\mathbb{R}^n;\mathbb{R})$.

We recall that epi-convergence in Conv $(\mathbb{R}^n;\mathbb{R})$ is equivalent to uniform convergence on compact sets (see, for example, [\[35,](#page-17-13) Theorem 7.17]). Hence the following proposition follows from standard approximation results for convex functions.

Proposition 11. For every $v \in \text{Conv}(\mathbb{R}^n; \mathbb{R})$, there exists a sequence in $\text{Conv}_{p.a.}(\mathbb{R}^n; \mathbb{R})$ which epi*converges to* v*.*

We also need to introduce a counterpart of $Conv_{p.a.}(\mathbb{R}^n;\mathbb{R})$ in $Conv_{sc}(\mathbb{R}^n)$. For given polytopes $P, P_1, \ldots, P_m \in \mathcal{P}^n$, the collection $\{P_1, \ldots, P_m\}$ is called a *polytopal partition* of P if $P = \bigcup_{i=1}^m P_i$ and the P_i 's have pairwise disjoint interiors. A function $u \in Conv_{\text{sc}}(\mathbb{R}^n)$ belongs to $Conv_{\text{p.a.}}(\mathbb{R}^n)$ if there exists a polytope P and a polytopal partition $\{P_1, \ldots, P_m\}$ of P such that

$$
u = \bigwedge_{i=1}^{m} (w_i + \mathbf{I}_{P_i})
$$

where $w_1, \ldots, w_m : \mathbb{R}^n \to \mathbb{R}$ are affine.

By [\[35,](#page-17-13) Theorem 11.14], a function u is in $Conv_{p.a.}(\mathbb{R}^n)$ if and only if u^* is in $Conv_{p.a.}(\mathbb{R}^n;\mathbb{R})$. Hence, we obtain the following consequence of Proposition [9](#page-4-3) and Proposition [11.](#page-5-1)

Corollary 12. For every $u \in Conv_{\text{sc}}(\mathbb{R}^n)$, there exists a sequence in $Conv_{\text{p.a.}}(\mathbb{R}^n)$ which epi-converges *to* u*.*

Since Conv_{sc}(\mathbb{R}^n) is a dense subset of Conv_{coe}(\mathbb{R}^n), it is easy to see that the statement of Corollary [12](#page-5-2) also holds if $Conv_{sc}(\mathbb{R}^n)$ is replaced by $Conv_{coe}(\mathbb{R}^n)$.

3. THE INCLUSION-EXCLUSION PRINCIPLE

It is often useful to extend the valuation property [\(1\)](#page-0-0) to several convex functions. For valuations on convex bodies, this is an important tool and a consequence of Groemer's extension theorem [\[18\]](#page-16-16). For $m \ge 1$ and $u_1, \ldots, u_m \in \text{Conv}(\mathbb{R}^n)$, we set $u_J = \bigvee_{j \in J} u_j$ for $\emptyset \ne J \subset \{1, \ldots, m\}$. Let $|J|$ denote the number of elements in J.

Theorem 13. If $Z : Conv(\mathbb{R}^n) \to \mathbb{R}$ is a continuous valuation, then

(4)
$$
Z(u_1 \wedge \cdots \wedge u_m) = \sum_{\emptyset \neq J \subset \{1,\dots,m\}} (-1)^{|J|-1} Z(u_J)
$$

for all $u_1, \ldots, u_m \in \text{Conv}(\mathbb{R}^n)$ *and* $m \in \mathbb{N}$ *whenever* $u_1 \wedge \cdots \wedge u_m \in \text{Conv}(\mathbb{R}^n)$ *.*

Note that Conv_{coe} (\mathbb{R}^n) and Conv_{sc} (\mathbb{R}^n) are closed under the operation of taking maxima. Hence Theorem [13](#page-5-3) also holds with Conv (\mathbb{R}^n) replaced by one of these spaces.

Let $\bigwedge \text{Conv}(\mathbb{R}^n)$ denote the set of finite minima of convex functions from Conv (\mathbb{R}^n) . It is easy to see that $\bigwedge \text{Conv}(\mathbb{R}^n)$ is a lattice. If Z is a valuation on a lattice, a simple induction argument shows that the inclusion-exclusion principle [\(4\)](#page-5-4) holds. Hence Theorem [13](#page-5-3) is a consequence of the following extension result.

Theorem 14. A continuous valuation on $Conv(\mathbb{R}^n)$ admits a unique extension to a valuation on the *lattice* $\bigwedge \text{Conv}(\mathbb{R}^n)$.

We identify a convex function with its epigraph. Let C_{epi}^{n+1} be the set of closed convex sets in \mathbb{R}^{n+1} that are epigraphs of functions in Conv (\mathbb{R}^n) and equip this set with the Painlevé-Kuratowski topology, which corresponds to the topology induced by epi-convergence (see, for example, [\[35,](#page-17-13) Definition 7.1]). A slight modification of Groemer's extension theorem [\[18\]](#page-16-16) (or see [\[36,](#page-17-3) Theorem 6.2.3] or [\[23\]](#page-17-2)) shows that the following statement is true (we omit the proof). Here $\bigcup C_{\text{epi}}^{n+1}$ is the set of all finite unions of elements from C_{epi}^{n+1} . Theorem [14](#page-6-1) is equivalent to Theorem [15.](#page-6-2)

Theorem 15. A continuous valuation on C_{epi}^{n+1} admits a unique extension to a valuation on the lattice $\bigcup \mathcal{C}_{epi}^{n+1}$.

We require the following simple consequence of the inclusion-exclusion principle, Theorem [13](#page-5-3) and of Corollary [12.](#page-5-2)

Lemma 16. Let Z be a continuous valuation on $Conv_{\text{sc}}(\mathbb{R}^n)$ (or on $Conv_{\text{coe}}(\mathbb{R}^n)$). If

$$
Z(w + I_P) = 0
$$

for every affine function $w : \mathbb{R}^n \to \mathbb{R}$ and for every polytope P, then $Z \equiv 0$ *.*

Proof. By Corollary [12](#page-5-2) (and the remark following it), it suffices to prove that $Z(u) = 0$ for $u \in Conv_{sc}(\mathbb{R}^n)$ (or $u \in Conv_{coe}(\mathbb{R}^n)$) that is piecewise affine. So, let $u = \bigwedge_{i=1}^m (w_i + I_{P_i})$ with w_1, \ldots, w_m affine and $P_1, \ldots, P_m \in \mathcal{P}^n$. By Theorem [13](#page-5-3) (and the remark following it), it is enough to show that

$$
\mathrm{Z}\left(\bigvee_{j\in J}(w_j+\mathbf{I}_{P_j})\right)=0
$$

for every $\emptyset \neq J \subset \{1,\ldots,m\}$. This follows from [\(5\)](#page-6-3) as $\bigvee_{j\in J}(w_j + I_{P_j})$ is a piecewise affine function restricted to a polytope.

4. HESSIAN MEASURES AND VALUATIONS

For $u \in \text{Conv}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$, we denote by $\partial u(x)$ the subgradient of u at x, that is,

$$
\partial u(x) = \{ y \in \mathbb{R}^n \colon u(z) \ge u(x) + \langle z - x, y \rangle \text{ for all } z \in \mathbb{R}^n \}.
$$

We set

$$
\Gamma_u = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : y \in \partial u(x)\}.
$$

In other words, Γ_u is the generalized graph of ∂u .

Next, we recall the notion of Hessian measures of a function $u \in Conv(\mathbb{R}^n)$. These are non-negative Borel measures defined on the Borel subsets of $\mathbb{R}^n \times \mathbb{R}^n$, which we will denote by $\Theta_i(u, \cdot)$ with $i =$ $0, \ldots, n$. Their definition can be given as follows (see also [\[10,](#page-16-17) [11,](#page-16-18) [16\]](#page-16-14)). Let $\eta \subset \mathbb{R}^n \times \mathbb{R}^n$ be a Borel set and $s > 0$. Consider the following set

$$
P_s(u, \eta) = \{x + sy \colon (x, y) \in \Gamma_u \cap \eta\}.
$$

It can be proven (see Theorem 7.1 in [\[16\]](#page-16-14)) that $P_s(u, \eta)$ is measurable and that its measure is a polynomial in the variable s, that is, there exists $(n + 1)$ non-negative coefficients $\Theta_i(u, \eta)$ such that

$$
\mathcal{H}^n(P_s(u,\eta)) = \sum_{i=0}^n \binom{n}{i} s^i \Theta_{n-i}(u,\eta).
$$

Here \mathcal{H}^n is the *n*-dimensional Hausdorff measure in \mathbb{R}^n , normalized so that it coincides with the Lebesgue measure in \mathbb{R}^n . The previous formula defines the Hessian measures of u; for more details we refer the reader to [\[10,](#page-16-17) [11,](#page-16-18) [16\]](#page-16-14).

According to Theorem 8.2 in [\[16\]](#page-16-14), for every $v \in Conv(\mathbb{R}^n; \mathbb{R})$ and for every Borel subset η of $\mathbb{R}^n \times \mathbb{R}^n$

(6)
$$
\Theta_i(v,\eta) = \Theta_{n-i}(v^*,\hat{\eta}),
$$

where $\hat{\eta} = \{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^n : (y, x) \in \eta \}.$

We require the following statement for Hessian valuations for $i = 0$. As the proof is the same for all indices *i*, we give the more general statement. Let $[D^2v(x)]_i$ be the *i*-th elementary symmetric function of the eigenvalues of the Hessian matrix D^2v .

Theorem 17. Let $\zeta \in C(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n)$ have compact support with respect to the second variable. For $i \in \{0, 1, \ldots, n\},\$

(7)
$$
Z(v) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \zeta(v(x), x, y) d\Theta_i(v, (x, y))
$$

is well defined for every $v \in \text{Conv}(\mathbb{R}^n;\mathbb{R})$ and defines a continuous valuation on $\text{Conv}(\mathbb{R}^n;\mathbb{R})$. More*over,*

(8)
$$
Z(v) = \int_{\mathbb{R}^n} \zeta(v(x), x, \nabla v(x)) \left[\mathcal{D}^2 v(x) \right]_{n-i} \, dx
$$

for every $v \in \text{Conv}(\mathbb{R}^n; \mathbb{R}) \cap C^2(\mathbb{R}^n)$.

We use the following result.

Theorem 18 ([\[16\]](#page-16-14), Theorem 1.1). Let $\zeta \in C(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n)$ have compact support with respect to the *second and third variables. For every* $i \in \{0, 1, \ldots, n\}$ *, the functional defined by*

$$
v \mapsto \int_{\mathbb{R}^n \times \mathbb{R}^n} \zeta(v(x), x, y) \,\mathrm{d}\Theta_i(v, (x, y))
$$

defines a continuous valuation on Conv(R n)*. Moreover,*

(9)
$$
Z(v) = \int_{\mathbb{R}^n} \zeta(v(x), x, \nabla v(x)) \left[\mathcal{D}^2 v(x) \right]_{n-i} dx
$$

for $v \in \text{Conv}(\mathbb{R}^n) \cap C^2(\mathbb{R}^n)$ *.*

Proof of Theorem [17.](#page-7-0) Since ζ has compact support with respect to the second variable, there is $r > 0$ such that $\zeta(t, x, y) = 0$ for every $y \in \mathbb{R}^n$ with $|y| \geq r$ and $(t, x) \in \mathbb{R} \times \mathbb{R}^n$. Let $v, v_k \in Conv(\mathbb{R}^n; \mathbb{R})$ be such that v_k epi-converges to v. Since the functions are convex and finite this implies uniform convergence on compact sets, in particular on $B_r := \{x \in \mathbb{R}^n : |x| \le r\}$. Moreover, the sequence v_k is uniformly bounded on B_r and uniformly Lipschitz. Hence, there exists $c > 0$ such that

$$
|v_k(x)| \le c, \ |v(x)| \le c, \ |y| \le c
$$

for all $k \in \mathbb{N}$, $x \in B_r$ and $y \in \partial v_k(x) \cup \partial v(x)$.

Next, let $\eta : \mathbb{R}^n \to \mathbb{R}$ be smooth with compact support such that $\eta(y) = 1$ for all $y \in \mathbb{R}^n$ with $|y| \leq c$ and define $\tilde{\zeta} \in C(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n)$ by

$$
\tilde{\zeta}(t,x,y)=\zeta(t,x,y)\,\eta(y).
$$

The function $\tilde{\zeta}$ satisfies the conditions of Theorem [18](#page-7-1) and $\zeta(v(x), x, y) = \tilde{\zeta}(v(x), x, y)$ for all $x \in \mathbb{R}^n$, $y \in \partial v(x)$ and $\zeta(v_k(x), x, y) = \tilde{\zeta}(v_k(x), x, y)$ for all $x \in \mathbb{R}^n$, $y \in \partial v_k(x)$ and $k \in \mathbb{N}$. Hence, by Theorem [18,](#page-7-1)

$$
\int_{\mathbb{R}^n \times \mathbb{R}^n} \zeta(v_k(x), x, y) \, d\Theta_i(v_k, (x, y)) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \tilde{\zeta}(v_k(x), x, y) \, d\Theta_i(v_k, (x, y))
$$
\n
$$
\longrightarrow \int_{\mathbb{R}^n \times \mathbb{R}^n} \tilde{\zeta}(v(x), x, y) \, d\Theta_i(v, (x, y)) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \zeta(v(x), x, y) \, d\Theta_i(v, (x, y))
$$

as $k \to \infty$. Since v and v_k were arbitrary this shows that [\(7\)](#page-7-2) is well defined and continuous. Since such a function $\tilde{\zeta}$ can especially be found for any finite number of functions in Conv $(\mathbb{R}^n;\mathbb{R})$, this also proves the valuation property. Property [\(8\)](#page-7-3) follows from [\(9\)](#page-7-4). \Box

As a simple consequence of Theorem [17](#page-7-0) we obtain the following statement.

Proposition 19. For $\zeta \in C_c(\mathbb{R}^n)$, the functional Z: Conv $(\mathbb{R}^n; \mathbb{R}) \to \mathbb{R}$, defined by

(10)
$$
Z(v) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \zeta(x) d\Theta_0(v,(x,y)),
$$

is a continuous, dually epi-translation invariant valuation which is is homogeneous of degree n*.*

Proof. By Theorem [17](#page-7-0) the map defined by [\(10\)](#page-8-0) is a continuous valuation on on Conv $(\mathbb{R}^n; \mathbb{R})$. It remains to show dually epi-translation invariance. For $v \in Conv(\mathbb{R}^n; \mathbb{R}) \cap C^2(\mathbb{R}^n)$ it follows from [\(8\)](#page-7-3) that

$$
Z(v) = \int_{\mathbb{R}^n} \zeta(x) \, \det(\mathcal{D}^2 v(x)) \, dx
$$

which is clearly invariant under the addition of constants and linear terms. The statement now easily follows for general $v \in Conv(\mathbb{R}^n; \mathbb{R})$ by approximation.

By the considerations presented in Section [1.3,](#page-2-0) [\(6\)](#page-7-5) and Proposition [19](#page-8-1) lead to the following result.

Proposition 20. *For* $\zeta \in C_c(\mathbb{R}^n)$ *, the functional* $Z \colon \text{Conv}_{\text{sc}}(\mathbb{R}^n) \to \mathbb{R}$ *, defined by*

$$
Z(u) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \zeta(y) d\Theta_n(u,(x,y)),
$$

is a continuous and epi-translation invariant valuation on $Conv_{\rm sc}(\mathbb{R}^n)$ which is epi-homogeneous of *degree* n*.*

Note, that if Z is as in Proposition [20,](#page-8-2) then

$$
Z(u) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \zeta(y) d\Theta_n(u, (x, y)) = \int_{\text{dom}(u)} \zeta(\nabla u(x)) dx
$$

for every $u \in Conv_{\text{sc}}(\mathbb{R}^n)$. See also [\[16,](#page-16-14) Section 10.4].

5. PROOF OF THEOREM [1](#page-1-0)

For $y \in \mathbb{R}^n$, define the linear function $\ell_y \colon \mathbb{R}^n \to \mathbb{R}$ as

$$
\ell_y(x) = \langle x, y \rangle.
$$

For $K \in \mathcal{K}^n$, the function $\ell_y + \mathbf{I}_K$ belongs to Conv_{sc}(\mathbb{R}^n).

Claim. The functional \tilde{Z}_y : $K^n \to \mathbb{R}$, defined by

$$
\tilde{\mathcal{Z}}_y(K) = \mathcal{Z}(\ell_y + \mathbf{I}_K),
$$

is a continuous and translation invariant valuation.

Proof. i) The valuation property. Let $K, L \in \mathcal{K}^n$ be such that $K \cup L \in \mathcal{K}^n$. Note that

$$
(\ell_y+{\bf I}_K)\vee(\ell_y+{\bf I}_L)=\ell_y+{\bf I}_{K\cap L};\quad (\ell_y+{\bf I}_K)\wedge(\ell_y+{\bf I}_L)=\ell_y+{\bf I}_{K\cup L}.
$$

Hence the valuation property of Z implies that \tilde{Z}_y is a valuation.

ii) Translation invariance. Let $x_0 \in \mathbb{R}^n$. For every $x \in \mathbb{R}^n$ we have

$$
\ell_y(x) + \mathbf{I}_{K+x_0}(x) = \langle x, y \rangle + \mathbf{I}_K(x - x_0)
$$

= $\langle x - x_0, y \rangle + \mathbf{I}_K(x - x_0) + \langle x_0, y \rangle$
= $\ell_y(x - x_0) + \mathbf{I}_K(x - x_0) + \langle x_0, y \rangle$.

In other words, the functions $\ell_y + I_{K+x_0}$ and $\ell_y + I_K$ differ only by a translation of the variable and by an additive constant. Using the epi-translation invariance of Z we get

$$
\tilde{\mathcal{Z}}_y(K+x_0)=\mathcal{Z}(\ell_y+\mathbf{I}_{K+x_0})=\mathcal{Z}(\ell_y+\mathbf{I}_K)=\tilde{\mathcal{Z}}_y(K).
$$

iii) Continuity. By Lemma [10,](#page-4-4) a sequence of convex bodies K_i converges to K if and only if $\ell_y + I_{K_i}$ epi-converges to $\ell_y + I_K$. Hence the continuity of Z implies that of \mathbb{Z}_y . y .

Let $y \in \mathbb{R}^n$ be fixed. By the previous claim and Theorem [7,](#page-4-5) there exist continuous and translation invariant valuations $\tilde{Z}_{y,0}, \ldots, \tilde{Z}_{y,n}$ on \mathcal{K}^n such that $\tilde{Z}_{y,j}$ is *j*-homogeneous and

$$
\tilde{\mathbf{Z}}_y = \sum_{j=0}^n \tilde{\mathbf{Z}}_{y,j} .
$$

Let $K \in \mathcal{K}^n$. For $\lambda \geq 0$, we have $\lambda \cdot (\ell_y + \mathbf{I}_K) = \ell_y + \mathbf{I}_{\lambda K}$. Therefore we obtain, for every $\lambda \geq 0$,

$$
Z(\lambda \cdot (\ell_y + \mathbf{I}_K)) = \sum_{j=0}^n \tilde{Z}_{y,j}(K)\lambda^j.
$$

We consider the system of equations,

(11)
$$
Z(k \cdot (\ell_y + \mathbf{I}_K)) = \sum_{j=0}^n \tilde{Z}_{y,j}(K) k^j, \quad k = 0, 1, ..., n.
$$

Its associated matrix is a Vandermonde matrix and invertible. Hence there are coefficients α_{ij} for $i, j =$ $0, \ldots n$, such that

$$
\tilde{\mathbf{Z}}_{y,i}(K) = \sum_{j=0}^{n} \alpha_{ij} \, \mathbf{Z}(k \cdot (\ell_y + \mathbf{I}_K)), \quad i = 0, \dots, n.
$$

Note that the coefficients α_{ij} are independent of y and K.

For $i = 0, \ldots, n$, we define Z_i : Conv_{sc} $(\mathbb{R}^n) \to \mathbb{R}$ as

$$
Z_i(u) = \sum_{j=0}^n \alpha_{ij} Z(j \cdot u).
$$

In general, if Z is a continuous, epi-translation invariant valuation on Conv_{sc}(\mathbb{R}^n) and $\lambda \geq 0$, then the functional $u \mapsto Z(\lambda \cdot u)$ is a continuous, epi-translation valuation as well. Hence Z_i is a continuous, epi-translation invariant valuation on Conv_{sc}(\mathbb{R}^n), for every $i = 0, \ldots, n$.

By [\(11\)](#page-9-1) and the definition of Z_i , for every $y \in \mathbb{R}^n$ and $K \in \mathcal{K}^n$ we may write

$$
\mathcal{Z}_i(\ell_y + \mathbf{I}_K) = \tilde{\mathcal{Z}}_{y,i}(K).
$$

Therefore

$$
Z(\ell_y + \mathbf{I}_K) = \sum_{i=0}^n Z_i(\ell_y + \mathbf{I}_K).
$$

Moreover, by the homogeneity of the $Z_{y,i}$ we have, for $\lambda \geq 0$,

$$
Z_i(\lambda \cdot (\ell_y + \mathbf{I}_K)) = \tilde{Z}_{y,i}(\lambda K) = \lambda^i \tilde{Z}_{y,i}(K) = \lambda^i Z_i(\ell_y + \mathbf{I}_K).
$$

As a conclusion, we have the following statement: there exist continuous and epi-translation invariant valuations Z_0, \ldots, Z_n on Conv_{sc}(\mathbb{R}^n) such that, for every $y \in \mathbb{R}^n$ and for every $K \in \mathcal{K}^n$, setting $u =$ $\ell_y + I_K$, we have

$$
Z(u) = \sum_{i=0}^{n} Z_i(u),
$$

and, for every $\lambda \geq 0$,

$$
Z_i(\lambda \cdot u) = \lambda^i Z_i(u).
$$

The same statement holds if we replace $u = \ell_y + I_K$ by $u = \ell_y + I_K + \alpha$, for any constant $\alpha \in \mathbb{R}$ as all valuations involved are vertically translation invariant.

If we apply Lemma [16](#page-6-4) to

$$
Z - \sum_{i=0}^{n} Z_i,
$$

we get that this valuation vanishes on $Conv_{sc}(\mathbb{R}^n)$, so that

$$
Z(u) = \sum_{i=0}^{n} Z_i(u)
$$

for every $u \in Conv_{\text{sc}}(\mathbb{R}^n)$. For $\lambda \geq 0$, the same lemma applied to the valuation on Conv_{sc} (\mathbb{R}^n) defined by

$$
u \mapsto Z_i(\lambda \cdot u) - \lambda^i Z_i(u),
$$

shows that this must be identically zero as well, that is, Z_i is epi-homogeneous of degree i. The proof is complete.

6. POLYNOMIALITY

In this section we establish the polynomial behavior of continuous and epi-translation invariant valuations on Conv_{sc}(\mathbb{R}^n). This corresponds to the polynomiality of translation invariant valuations on convex bodies stated by Hadwiger and proved by McMullen [\[30\]](#page-17-4). We start by recalling the defini-tion of inf-convolution (see, for example, [\[35,](#page-17-13) [36\]](#page-17-3)). For $u, v \in Conv(\mathbb{R}^n)$, we define the function $u \Box v : \mathbb{R}^n \to [-\infty, +\infty]$ by

$$
u \Box v(z) = \inf \{ u(x) + v(y) \colon x, y \in \mathbb{R}^n, x + y = z \}
$$

for $z \in \mathbb{R}^n$. This operation can be extended to more than two functions with corresponding coefficients. The inf-convolution has a straightforward geometric meaning: the epigraph of $u \square v$ is the Minkowski sum of the epigraphs of u and v .

By [\[36,](#page-17-3) Section 1.6], for every $\alpha, \beta > 0$ and for every $u, v \in \text{Conv}(\mathbb{R}^n)$, we have $\alpha \cdot u \Box \beta \cdot u \in Conv(\mathbb{R}^n)$, if this function does not attain $-\infty$. Moreover, in this case we have the following relation (see for instance [\[9,](#page-16-19) Proposition 2.1]):

$$
(\alpha \cdot u \Box \beta \cdot v)^* = (\alpha u^* + \beta v^*).
$$

This shows in particular that if $u, v \in Conv_{\text{sc}}(\mathbb{R}^n)$ then $\alpha \cdot u \square \beta \cdot v \in Conv_{\text{sc}}(\mathbb{R}^n)$. Indeed, in this case u^{*} and v^{*} belong to Conv(\mathbb{R}^n ; \mathbb{R}) and so does their usual sum. Consequently, its conjugate belongs to Conv_{sc} (\mathbb{R}^n) . We say that Z is *epi-additive* if

$$
Z(\alpha \cdot u \Box \beta \cdot v) = \alpha Z(u) + \beta Z(v)
$$

for all $\alpha, \beta > 0$ and $u, v \in Conv_{sc}(\mathbb{R}^n)$.

Let Z: Conv_{sc} $(\mathbb{R}^n) \to \mathbb{R}$ be a continuous, epi-translation invariant valuation that is epi-homogeneous of degree $m \in \{1, \ldots, n\}$. For $u_1 \in Conv_{sc}(\mathbb{R}^n)$, we consider the functional $Z_{u_1} : Conv_{sc}(\mathbb{R}^n) \to \mathbb{R}$ defined by

$$
Z_{u_1}(u) = Z(u \square u_1).
$$

The functional Z_{u_1} is a continuous and epi-translation invariant valuation on Conv_{sc}(\mathbb{R}^n). Indeed, the valuation property, continuity and vertical translation invariance follow immediately from the corresponding properties of Z. As for translation invariance, let $x_0 \in \mathbb{R}^n$ and $\tau : \mathbb{R}^n \to \mathbb{R}^n$ be the translation by x_0 , that is, $\tau(x) = x + x_0$. We have

$$
(u \circ \tau^{-1}) \Box u_1 = ((u \circ \tau^{-1})^* + u_1^*)^* = (u^* + \langle \cdot, x_0 \rangle + u_1^*)^* = (u \Box u_1) \circ \tau^{-1}.
$$

Hence the epi-translation invariance of Z_{u_1} follows from the epi-translation invariance of Z. Therefore, we may apply Theorem [1](#page-1-0) to obtain a polynomial expansion

$$
Z((\lambda \cdot u) \square u_1) = Z_{u_1}(\lambda \cdot u) = \sum_{i=0}^n \lambda^i Z_{u_1,i}(u)
$$

for $\lambda \geq 0$ and $u \in Conv_{sc}(\mathbb{R}^n)$, where the functionals $Z_{u_1,i}$ are continuous, epi-translation invariant valuations on Conv_{sc}(\mathbb{R}^n) that are epi-homogeneous of degree $i \in \{0, \ldots, n\}$.

Similarly, for fixed $\bar{u} \in Conv_{sc}(\mathbb{R}^n)$ one can show that $v \mapsto Z_{v,i}(\bar{u})$ defines a continuous and epitranslation invariant valuation on Conv_{sc} (\mathbb{R}^n) . Hence, as in the proof of Theorem 6.3.4 in [\[36\]](#page-17-3), we may repeat this argument to obtain the following statement.

Theorem 21. Let $Z: Conv_{sc}(\mathbb{R}^n) \to \mathbb{R}$ be a continuous and epi-translation invariant valuation that is epi -homogeneous of degree $m\in\{1,\ldots,n\}.$ There exists a symmetric function $\bar{\Z}:(\mathsf{Conv}_{\mathrm{sc}}(\R^n))^m\to\R$ *such that for* $k \in \mathbb{N}$, $u_1, \ldots, u_k \in \text{Conv}_{\text{sc}}(\mathbb{R}^n)$ *and* $\lambda_1, \ldots, \lambda_k \geq 0$,

$$
Z(\lambda_1 \cdot u_1 \square \cdots \square \lambda_k \cdot u_k) = \sum_{\substack{i_1, \dots, i_k \in \{0, \dots, m\} \\ i_1 + \dots + i_k = m}} {m \choose i_1 \cdots i_k} \lambda_1^{i_1} \cdots \lambda_k^{i_k} \overline{Z}(u_1[i_1], \dots, u_k[i_k]),
$$

where $u_j[i_j]$ means that the argument u_j is repeated i_j times. Moreover, the function \bar{Z} is epi-additive in $\textit{each variable.}$ For $i \in \{1, \ldots, m\}$ and $u_{i+1}, \ldots, u_m \in \text{Conv}_{\text{sc}}(\mathbb{R}^n)$, the map $u \mapsto \bar{Z}(u[i], u_{i+1}, \ldots, u_m)$ is a continuous, epi-translation invariant valuation on $Conv_{\rm sc}(\mathbb{R}^n)$ that is epi-homogeneous of degree i.

The special case $m = 1$ in the previous result leads to the following result.

Corollary 22. If $Z: Conv_{sc}(\mathbb{R}^n) \to \mathbb{R}$ is a continuous and epi-translation invariant valuation that is *epi-homogeneous of degree 1, then* Z *is epi-additive.*

Finally, we also obtain the dual statements. We say that a functional $Z: Conv(\mathbb{R}^n; \mathbb{R}) \to \mathbb{R}$ is *additive* if $Z(\alpha v + \beta w) = \alpha Z(v) + \beta Z(w)$ for all $\alpha, \beta \ge 0$ and $v, w \in Conv(\mathbb{R}^n; \mathbb{R})$.

Theorem 23. Let $Z: Conv(\mathbb{R}^n; \mathbb{R}) \to \mathbb{R}$ be a continuous, dually epi-translation invariant valuation that is homogeneous of degree $m \in \{1,\ldots,n\}$. There exists a symmetric function $\bar{Z} : (\mathrm{Conv}(\mathbb{R}^n;\mathbb{R}))^m \to \mathbb{R}$ *such that for* $k \in \mathbb{N}$, $v_1, \ldots, v_k \in \text{Conv}(\mathbb{R}^n; \mathbb{R})$ *and* $\lambda_1, \ldots, \lambda_k \geq 0$,

$$
Z(\lambda_1 v_1 + \dots + \lambda_k v_k) = \sum_{\substack{i_1, \dots, i_k \in \{0, \dots, m\} \\ i_1 + \dots + i_k = m}} {m \choose i_1 \dots i_k} \lambda_1^{i_1} \dots \lambda_k^{i_k} \overline{Z}(v_1[i_1], \dots, v_k[i_k]).
$$

Moreover, the function \bar{Z} *is additive in each variable. For* $i \in \{1, \ldots, m\}$ *and* $v_{i+1}, \ldots, v_m \in \mathrm{Conv}(\mathbb{R}^n;\mathbb{R})$, *the map* $v \mapsto \bar{Z}(v[i], v_{i+1}, \ldots, v_m)$ *is a continuous and dually epi-translation invariant valuation on* $Conv(\mathbb{R}^n;\mathbb{R})$ that is homogeneous of degree i.

The special case $m = 1$ in the previous result leads to the following result.

Corollary 24. If $Z: Conv(\mathbb{R}^n; \mathbb{R}) \to \mathbb{R}$ is a continuous and dually epi-translation invariant valuation *that is homogeneous of degree 1, then* Z *is additive.*

Let $\zeta \in C_c(\mathbb{R}^n)$. By Proposition [19,](#page-8-1) the functional

$$
Z(v) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \zeta(x) d\Theta_0(v, (x, y))
$$

defines a continuous, dually epi-translation invariant valuation on $Conv(\mathbb{R}^n;\mathbb{R})$ that is homogeneous of degree *n*. Hence, by Theorem [23,](#page-12-1) for $v_1, \ldots, v_k \in \text{Conv}(\mathbb{R}^n; \mathbb{R})$ and $\lambda_1, \ldots, \lambda_k \geq 0$, there exists a symmetric function $\bar{Z} : (\text{Conv}(\mathbb{R}^n; \mathbb{R}))^n \to \mathbb{R}$ such that

$$
Z(\lambda_1 v_1 + \dots + \lambda_k v_k) = \sum_{\substack{i_1, \dots, i_k \in \{0, \dots, n\} \\ i_1 + \dots + i_k = n}} {n \choose i_1 \dots i_k} \lambda_1^{i_1} \dots \lambda_k^{i_k} \overline{Z}(v_1[i_1], \dots, v_k[i_k]).
$$

If we assume in addition that $v_1, \ldots, v_k \in C^2(\mathbb{R}^n)$, then by [\(8\)](#page-7-3) and properties of the mixed discriminant, we can also write

$$
Z(\lambda_1 v_1 + \dots + \lambda_k v_k) = \int_{\mathbb{R}^n} \zeta(x) \det(D^2(\lambda_1 v_1 + \dots + \lambda_k v_k)(x)) dx
$$

=
$$
\sum_{i_1, \dots, i_n=1}^k \lambda_{i_1} \cdots \lambda_{i_n} \int_{\mathbb{R}^n} \zeta(x) \det(D^2 v_{i_1}(x), \dots, D^2 v_{i_n}(x)) dx.
$$

It is now easy to see that for such functions v_1, \ldots, v_k and $i_1, \ldots, i_k \in \{0, \ldots, n\}$ with $i_1 + \cdots + i_k = n$,

$$
\bar{Z}(v_1[i_1], \ldots, v_k[i_k]) = \int_{\mathbb{R}^n} \zeta(x) \ \det(\mathrm{D}^2 v_1(x)[i_1], \ldots, \mathrm{D}^2 v_k[i_k]) \, \mathrm{d}x.
$$

Note that this is a special case of [\(2\)](#page-3-0).

7. CLASSIFICATION THEOREMS

The classification of valuations that are epi-homogenous of degree 0 is straightforward.

Theorem 25. A functional $Z: Conv_{sc}(\mathbb{R}^n) \to \mathbb{R}$ is a continuous and epi-translation invariant valuation *that is epi-homogeneous of degree* 0*, if and only if* Z *is constant.*

Proof. Let Z: Conv_{sc} $(\mathbb{R}^n) \to \mathbb{R}$ be a continuous and epi-translation invariant valuation that is epihomogeneous of degree zero. We show that Z is constant. Indeed, for given $y \in \mathbb{R}^n$, the functional $\tilde{\mathrm{Z}}_y \colon \mathcal{K}^n \to \mathbb{R}$ defined by

$$
\tilde{\mathcal{Z}}_y(K) = \mathcal{Z}(\ell_y + \mathbf{I}_K).
$$

is a zero-homogeneous, continuous and translation invariant valuation on \mathcal{K}^n and therefore constant. Such a constant cannot depend on y, as, choosing $K = \{0\}$, we obtain

$$
\mathbf{I}_{\{0\}} + \ell_y = \mathbf{I}_{\{0\}} + \ell_{y_0}
$$

for all $y, y_0 \in \mathbb{R}^n$. Hence there exists $\alpha \in \mathbb{R}$ such that

$$
Z(\mathbf{I}_K + \ell_y) = \alpha
$$

for all $K \in \mathcal{K}^n$ and $y \in \mathbb{R}^n$. Thus the statement follows from applying Lemma [16](#page-6-4) to $Z - \alpha$.

By duality, we also obtain the following result.

Theorem 26. A functional $Z: Conv(\mathbb{R}^n; \mathbb{R}) \to \mathbb{R}$ is a continuous and dually epi-translation invariant *valuation that is homogeneous of degree* 0*, if and only if* Z *is constant.*

Next, we prove Theorem [2.](#page-2-1) The "if" part of the proof follows from Proposition [20](#page-8-2) and the subsequent remark. The proof of the theorem is completed by the next statement.

Proposition 27. If $Z : Conv_{sc}(\mathbb{R}^n) \to \mathbb{R}$ is a continuous, epi-translation invariant valuation, that is epi -homogeneous of degree *n*, then there exists $\zeta \in C_c(\mathbb{R}^n)$ such that

$$
Z(u) = \int_{\text{dom}(u)} \zeta(\nabla u(x)) \, \mathrm{d}x
$$

for every $u \in Conv_{\rm sc}(\mathbb{R}^n)$ *.*

Proof. For $y \in \mathbb{R}^n$, we consider the map \tilde{Z}_y : $\mathcal{K}^n \to \mathbb{R}$ defined by

$$
\tilde{\mathcal{Z}}_y(K) = \mathcal{Z}(\ell_y + \mathbf{I}_K).
$$

We know from the proof of Theorem [1](#page-1-0) that \tilde{Z}_y is a continuous and translation invariant valuation on \mathcal{K}^n . Moreover, as the functional Z is epi-homogeneous of degree n, the functional \tilde{Z}_y is homogeneous of degree n. By Theorem [8,](#page-4-6) for each $y \in \mathbb{R}^n$, there exists a constant, that we denote by $\zeta(y)$, such that

$$
\tilde{Z}(K) = \zeta(y) V_n(K)
$$

for every $K \in \mathcal{K}^n$. As Z is continuous, the function $\zeta : \mathbb{R}^n \to \mathbb{R}$ is continuous. We prove, by contradiction, that ζ has compact support. Assume that there exists a sequence $y_k \in \mathbb{R}^n$, such that

(13)
$$
\lim_{k \to \infty} |y_k| = +\infty
$$

and $\zeta(y_k) \neq 0$ for every k. Without loss of generality, we may assume that

(14)
$$
\lim_{k \to \infty} \frac{y_k}{|y_k|} = e_n
$$

where e_n is the *n*-th element of the canonical basis of \mathbb{R}^n .

Let

$$
B_k = \{ x \in y_k^{\perp} : |x| \le 1 \}, \quad B_{\infty} = \{ x \in e_n^{\perp} : |x| \le 1 \}.
$$

Define the cylinder

$$
C_k = \left\{ x + ty_k \colon x \in B_k, t \in \left[0, \frac{1}{\zeta(y_k)}\right] \right\}.
$$

We have

$$
V_n(C_k) = \frac{\kappa_{n-1}}{\zeta(y_k)},
$$

where κ_{n-1} is the $(n-1)$ -dimensional volume of the unit ball in \mathbb{R}^{n-1} .

For $k \in \mathbb{N}$, we consider the function

$$
u_k = \ell_{y_k} + \mathbf{I}_{C_k}.
$$

This is a sequence of functions in Conv_{sc}(\mathbb{R}^n); using [\(13\)](#page-13-1) and [\(14\)](#page-14-1), it follows from Lemma [10](#page-4-4) that u_k epi-converges to

$$
u_\infty=\mathbf{I}_{B_\infty}.
$$

In particular, by the continuity of Z and (12) we get

$$
0 = \mathcal{Z}(u_{\infty}) = \lim_{k \to \infty} \mathcal{Z}(u_k).
$$

On the other hand, by the definition of u_k and [\(12\)](#page-13-2),

$$
Z(u_k) = \zeta(y_k) V_n(C_k) = \kappa_{n-1} > 0.
$$

This completes the proof. \Box

8. VALUATIONS WITHOUT VERTICAL TRANSLATION INVARIANCE

In this part we see that Theorems [1](#page-1-0) and [4](#page-3-2) are no longer true if we remove the assumption of vertical translation invariance. To do so, on the base of Theorem [17](#page-7-0) we construct the following example. For $\eta \in C_c(\mathbb{R}^n)$ and $v \in \text{Conv}(\mathbb{R}^n; \mathbb{R}) \cap C^2(\mathbb{R}^n)$, define

(15)
$$
Z(v) = \int_{\mathbb{R}^n} e^{v(x) - \langle \nabla v(x), x \rangle} \eta(x) \det(\mathcal{D}^2 v(x)) dx.
$$

By Theorem [17,](#page-7-0) the functional defined in [\(15\)](#page-14-2) can be extended to a continuous valuation on Conv $(\mathbb{R}^n;\mathbb{R})$. It is dually translation invariant but not vertically translation invariant. We choose $v \in Conv(\mathbb{R}^n; \mathbb{R})$ as

$$
v(x) = \frac{1}{2}|x|^2.
$$

Note that the Hessian matrix of v is everywhere equal to the identity matrix. Hence $\det(D^2v) = 1$ on \mathbb{R}^n . For $\lambda \geq 0$ we have

$$
Z(\lambda v) = \lambda^n \int_{\mathbb{R}^n} \eta(x) e^{\lambda \frac{|x|^2}{2}} dx.
$$

If η is non-negative and $\eta(x) \geq 1$ for every x such that $1 \leq |x| \leq 2$, then

$$
Z(\lambda v) \ge c \lambda^n e^{\lambda/2}
$$

for a suitable constant $c > 0$ and for every $\lambda > 0$. Hence $Z(\lambda v)$ does not have polynomial growth as λ tends to ∞ .

Theorem 28. There exist continuous, dually translation invariant valuations on $Conv(\mathbb{R}^n;\mathbb{R})$ which *cannot be written as finite sums of homogeneous valuations.*

As a consequence we also have the following dual statement.

Theorem 29. There exist continuous, translation invariant valuations on $Conv_{sc}(\mathbb{R}^n)$ which cannot be *written as finite sums of epi-homogeneous valuations.*

9. EPI-TRANSLATION INVARIANT VALUATIONS ON COERCIVE FUNCTIONS

In this part we prove that every continuous and epi-translation invariant valuation on Conv_{coe} (\mathbb{R}^n) is trivial.

Theorem 30. Every continuous, epi-translation invariant valuation Z : $Conv_{\text{coe}}(\mathbb{R}^n) \to \mathbb{R}$ is constant.

Proof. Let Z: Conv_{coe} $(\mathbb{R}^n) \to \mathbb{R}$ be a continuous, epi-translation invariant valuation. We need to show that there exists $\alpha \in \mathbb{R}$ such that $Z(u) = \alpha$ for every $u \in Conv_{\text{coe}}(\mathbb{R}^n)$. As in the proof of Theorem [1](#page-1-0) define for $y \in \mathbb{R}^n \backslash \{0\}$ the map $\tilde{Z}_y : \mathcal{K}^n \to \mathbb{R}$ by

$$
\tilde{\mathcal{Z}}_y(K) = \mathcal{Z}(\ell_y + \mathbf{I}_K)
$$

for every $K \in \mathcal{K}^n$. Since \tilde{Z}_y is a continuous and translation invariant valuation, by Theorem [7](#page-4-5) it admits a homogeneous decomposition

$$
\tilde{\mathbf{Z}}_y = \sum_{j=0}^n \tilde{\mathbf{Z}}_{y,j},
$$

where each $\tilde{Z}_{y,j}$ is a continuous, translation invariant valuation on \mathcal{K}^n that is homogeneous of degree j.

Next, we will show that $\tilde{Z}_{y,j} \equiv 0$ for all $1 \leq j \leq n$. Since

$$
\tilde{\mathcal{Z}}_{y,0}(K) = \lim_{\lambda \to 0} \tilde{\mathcal{Z}}_{y,0}(\lambda K) = \tilde{\mathcal{Z}}_{y,0}(\{0\})
$$

for every $K \in \mathcal{K}^n$, this will then imply that \tilde{Z}_y is constant. By continuity it is enough to show that $\tilde{Z}_{y,j}$ vanishes on polytopes for all $1 \leq j \leq n$. Since \tilde{Z}_y is continuous, it is enough to restrict to polytopes with no facet parallel to y^{\perp} . Therefore, fix such a polytope $P \in \mathcal{P}^n$ of dimension at least one. By translation invariance we can assume that the origin is one of the vertices of P and that P lies in the half-space $\{x \in \mathbb{R}^n : \langle x, y \rangle \ge 0\}$. In particular, this gives $P \cap y^{\perp} = \{0\}$, $\langle x, y \rangle > 0$ for all $x \in P \setminus \{0\}$ and moreover $\langle x, y \rangle > 0$ and for all $x \in \lambda P \setminus \{0\}$ for all $\lambda > 0$. Due to the choice of P we obtain that $\ell_y + I_{\lambda P}$ is epi-convergent to $\ell_y + I_C$ as $\lambda \to \infty$ where C is the infinite cone over P with apex at the origin, that is C is the positive hull of P. Furthermore $\ell_y + I_C \in Conv_{\text{coe}}(\mathbb{R}^n)$ since $y \neq 0$. By continuity this gives

$$
\mathcal{Z}(\ell_y + \mathbf{I}_C) = \lim_{\lambda \to \infty} \mathcal{Z}(\ell_y + \mathbf{I}_{\lambda P}) = \lim_{\lambda \to \infty} \tilde{\mathcal{Z}}_y(\lambda P) = \lim_{\lambda \to \infty} \sum_{j=0}^n \lambda^j \tilde{\mathcal{Z}}_{y,j}(P).
$$

Since the left side of this equation is finite, we have $\tilde{Z}_{y,n}(P) = 0$. Otherwise, the right side would be $\pm\infty$, depending on the sign of $\tilde{\mathbb{Z}}_{y,n}(P)$. Since P was arbitrary, we obtain that $\tilde{\mathbb{Z}}_{y,n}$ vanishes on all compact convex polytopes of dimension greater or equal than 1 and by continuity $\tilde{Z}_{y,n} \equiv 0$. Similarly, one can now show by induction that also $\tilde{Z}_{y,j} \equiv 0$ for all $1 \leq j \leq n-1$.

We have proven so far that for every $y\in\mathbb R^n\setminus\{0\}$ there exists a constant $\alpha(y)\in\mathbb R$ such that $\tilde Z_y\equiv\alpha(y).$ Since

$$
\alpha(y) = \tilde{Z}_y(\{0\}) = Z(\mathbf{I}_{\{0\}}),
$$

we obtain that $\alpha(y)$ is in fact independent of y, that is, there exists $\alpha \in \mathbb{R}$ such that $\tilde{Z}_y \equiv \alpha$ for every $y\in\mathbb{R}^n$. By the definition of $\tilde Z_y$ and the vertical translation invariance of $\tilde Z$ this gives $Z(\ell_y+I_K+\beta)=\alpha$ for every $K \in \mathcal{K}^n$, $y \in \mathbb{R}^n \setminus \{0\}$ and $\beta \in \mathbb{R}$. The claim now follows from Lemma [16.](#page-6-4)

If $u \in Conv_{\text{coe}}(\mathbb{R}^n)$, then its conjugate $u^* \in Conv(\mathbb{R}^n)$ and the origin is an interior point of its domain (see, for example, [\[35,](#page-17-13) Theorem 11.8]). Let Conv_{od}(\mathbb{R}^n) be the set of functions in Conv(\mathbb{R}^n) with the origin in the interior of its domain. Theorem [30](#page-15-1) has the following dual.

Theorem 31. Every continuous, dually epi-translation invariant valuation Z : Conv_{od} $(\mathbb{R}^n) \to \mathbb{R}$ is *constant.*

REFERENCES

- [1] S. Alesker, *Continuous rotation invariant valuations on convex sets*, Ann. of Math. (2) 149 (1999), 977–1005.
- [2] S. Alesker, *Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture*, Geom. Funct. Anal. 11 (2001), 244–272.
- [3] S. Alesker, *Valuations on convex functions and convex sets and Monge–Ampere operators `* , Adv. Geom. 19 (2019), 313–322.
- [4] Y. Baryshnikov, R. Ghrist, and M. Wright, *Hadwiger's Theorem for definable functions*, Adv. Math. 245 (2013), 573– 586.
- [5] G. Beer, R. T. Rockafellar and R. J.-B. Wets, *A characterization of epi-convergence in terms of convergence of level sets*, Proc. Amer. Math. Soc. 116 (1992), 753–761.
- [6] A. Bernig and J. H. G. Fu, *Hermitian integral geometry*, Ann. of Math. (2) 173 (2011), 907–945.
- [7] A. Bernig, J. H. G. Fu, and G. Solanes, *Integral geometry of complex space forms*, Geom. Funct. Anal. 24 (2014), 403–492.
- [8] L. Cavallina and A. Colesanti, *Monotone valuations on the space of convex functions*, Anal. Geom. Metr. Spaces 3 (2015), 167–211.
- [9] A. Colesanti and I. Fragal`a, *The first variation of the total mass of log-concave functions and related inequalities*, Adv. Math. 244 (2013), 708–749.
- [10] A. Colesanti and D. Hug, *Hessian measures of semi-convex functions and applications to support measures of convex bodies*, Manuscripta Math. 101 (2000), 209–238.
- [11] A. Colesanti and D. Hug, *Steiner type formulae and weighted measures of singularities for semi-convex functions*, Trans. Amer. Math. Soc. 352 (2000), 3239–3263.
- [12] A. Colesanti and N. Lombardi, *Valuations on the space of quasi-concave functions*, Geometric aspects of functional analysis (B. Klartag and E. Milman, eds.), Lecture Notes in Math., Springer International Publishing, Cham, 2017, 71–105.
- [13] A. Colesanti, N. Lombardi, and L. Parapatits, *Translation invariant valuations on quasi-concave functions*, Studia Math. 243 (2018), 79–99.
- [14] A. Colesanti, M. Ludwig, and F. Mussnig, *Minkowski valuations on convex functions*, Calc. Var. Partial Differential Equations 56 (2017), Art. 162, 29.
- [15] A. Colesanti, M. Ludwig, and F. Mussnig, *Valuations on convex functions*, Int. Math. Res. Not. IMRN (2019), 2384– 2410.
- [16] A. Colesanti, M. Ludwig, and F. Mussnig, *Hessian valuations*, Indiana Univ. Math. J., in press.
- [17] A. Colesanti, D. Pagnini, P. Tradacete, and I. Villanueva, *Dot product invariant valuations on Lip*(S^{n-1}), [arXiv:1906.04118](http://arxiv.org/abs/1906.04118) (2019).
- [18] H. Groemer, *On the extension of additive functionals on classes of convex sets*, Pacific J. Math. 75 (1978), 397–410.
- [19] C. Haberl, *Minkowski valuations intertwining with the special linear group*, J. Eur. Math. Soc. (JEMS) 14 (2012), 1565–1597.
- [20] C. Haberl and L. Parapatits, *The centro-affine Hadwiger theorem*, J. Amer. Math. Soc. 27 (2014), 685–705.
- [21] C. Haberl and L. Parapatits, *Moments and valuations*, Amer. J. Math. 138 (2017), 1575–1603.

18 ANDREA COLESANTI, MONIKA LUDWIG, AND FABIAN MUSSNIG

- [22] H. Hadwiger, *Vorlesungen uber Inhalt, Oberfl ¨ ache und Isoperimetrie ¨* , Springer, Berlin, 1957.
- [23] D. A. Klain and G.-C. Rota, *Introduction to Geometric Probability*, Cambridge University Press, Cambridge, 1997.
- [24] H. Kone, *Valuations on Orlicz spaces and* L^{ϕ} -star sets, Adv. in Appl. Math. **52** (2014), 82–98.
- [25] J. Li and D. Ma, *Laplace transforms and valuations*, J. Funct. Anal. 272 (2017), 738–758.
- [26] M. Ludwig, *Fisher information and valuations*, Adv. Math. 226 (2011), 2700–2711.
- [27] M. Ludwig, *Valuations on Sobolev spaces*, Amer. J. Math. 134 (2012), 827–842.
- [28] M. Ludwig and M. Reitzner, *A classification of* SL(n) *invariant valuations*, Ann. of Math. (2) 172 (2010), 1219–1267.
- [29] D. Ma, *Real-valued valuations on Sobolev spaces*, Sci. China Math. 59 (2016), 921–934.
- [30] P. McMullen, *Valuations and Euler-type relations on certain classes of convex polytopes*, Proc. London Math. Soc. (3) 35 (1977), 113–135.
- [31] V. D. Milman and L. Rotem, *Mixed integrals and related inequalities*, J. Funct. Anal. 264 (2013), 570–604.
- [32] F. Mussnig, *Valuations on log-concave functions*, [arXiv:1707.06428](http://arxiv.org/abs/1707.06428) (2017).
- [33] F. Mussnig, *SL*(n) *invariant valuations on super-coercive convex functions*, [arXiv:1903.04225](http://arxiv.org/abs/1903.04225) (2019).
- [34] F. Mussnig, *Volume, polar volume and Euler characteristic for convex functions*, Adv. Math. 344 (2019), 340–373.
- [35] R. T. Rockafellar and R. J.-B. Wets, *Variational Analysis*, Grundlehren der Mathematischen Wissenschaften, vol. 317, Springer-Verlag, Berlin, 1998.
- [36] R. Schneider, *Convex Bodies: the Brunn-Minkowski Theory*, Second expanded ed., Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014.
- [37] P. Tradacete and I. Villanueva, *Valuations on Banach lattices*, Int. Math. Res. Not., in press.
- [38] A. Tsang, *Valuations on L^p spaces*, Int. Math. Res. Not. 20 (2010), 3993-4023.
- [39] T. Wang, *Semi-valuations on* BV(\mathbb{R}^n), Indiana Univ. Math. J. 63 (2014), 1447–1465.

DIPARTIMENTO DI MATEMATICA E INFORMATICA "U. DINI" UNIVERSITÀ DEGLI STUDI DI FIRENZE, VIALE MOR-GAGNI 67/A - 50134, FIRENZE, ITALY

E-mail address: andrea.colesanti@unifi.it

INSTITUT FÜR DISKRETE MATHEMATIK UND GEOMETRIE, TECHNISCHE UNIVERSITÄT WIEN, WIEDNER HAUPT-STRASSE 8-10/1046, 1040 WIEN, AUSTRIA

E-mail address: monika.ludwig@tuwien.ac.at

INSTITUT FÜR DISKRETE MATHEMATIK UND GEOMETRIE, TECHNISCHE UNIVERSITÄT WIEN, WIEDNER HAUPT-STRASSE 8-10/1046, 1040 WIEN, AUSTRIA

E-mail address: fabian.mussnig@alumni.tuwien.ac.at