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Abstract

This paper considers the problem of determining the min-
imum euclidean distance of a point from a polynomial
surface in Rn. It is well known that this problem is in
general non-convex. The main purpose of the paper is to
investigate to what extent Linear Matrix Inequality (LMI)
techniques can be exploited for solving this problem. The
first result of the paper shows that a lower bound to the
global minimum can be achieved via the solution of a one-
parameter family of Linear Matrix Inequalities (LMIs). It
is also pointed out that for some classes of problems the
solution of a single LMI problem provides the lower bound.
The second result concerns the tightness of the bound. It
is shown that optimality of the lower bound can be easily
checked via the solution of a system of linear equations.
Two application examples are finally presented to show
potentialities of the approach.

1 Introduction

It is a well known fact that a large number of system
analysis and control problems amount to computing the
minimum distance from a point to a surface in a finite
dimensional space. Several issues in robustness analysis
of control systems, such as the µ and the related stability
margin computation [1]-[3], and the problem of estimating
the domain of attraction of equilibria of nonlinear systems
[4],[5] fall in this class of problems. Unfortunately, it is also
known that the great majority of such problems can be
formulated as non-convex optimization programs, whose
solution is in general extremely difficult, if not impossible
to obtain with reasonable computational effort.

Recently, powerful convex optimization techniques have
been devised for problems in the form of Linear Matrix In-

equalities (LMIs) [6]. Such techniques have been succes-
fully employed in connection with suitable changes of vari-
ables for convexifying some classes of optimization prob-
lems.

The main purpose of this paper is to show how LMI
techniques can be exploited to solve some classes of min-
imum distance problems. More specifically, the problem
of determining the minimum euclidean distance of a point
from a polynomial surface in Rn is considered. It is first
shown that a lower bound to the global minimum can
be achieved via the solution of a one-parameter family of
LMIs, once a suitable change of variables has been per-
formed. In particular, each LMI problem requires the
minimization of the maximum eigenvalue of a symmet-
ric matrix. Successively, tightness of this lower bound is
investigated, providing a simple optimality test based on
the solution of a system of linear equations.

The paper is organized as follows. In Section 2 the
minimum distance problem is formulated and its canon-
ical form is introduced. The lower bound based on LMI
techniques is given in Section 3. Section 4 contains the
optimality test for the lower bound. Two application
examples are given in Section 5 to illustrate the features
of the approach. Some concluding comments end the
paper in Section 6.

Notation.
Rn: real n-space;
Rn0 : Rn \ ∅;
x = (x1, . . . , xn)′: vector of Rn;
Rn×n: real n× n-space;
A = [aij ]: matrix of Rn×n;
A′, A−1: transpose of A, inverse of A;
det[A]: determinant of matrix A;
Ker[A]: null space of matrix A;
En: n× n identity matrix;
A > 0 (A ≥ 0): positive definite (semidefinite) matrix;
λM{A}: maximum real eigenvalue of matrix A;
‖ · ‖2,W : weighted euclidean norm;



Hn(A): Hurwitz determinant of order n of matrix A
characteristic polynomial.

2 Problem formulation and preliminaries

In order to state the problem, we need to introduce the
following definitions.

Definition 1.
A map f (d) : Rn −→ R is said a (real n-variate
homogeneous) form of degree d if

f (d)(x) = f (d)(x1, . . . , xn) =

i1+...+in=d∑
i1≥0,...,in≥0

fi1,...,inx
i1
1 · · ·xinn

(1)
where fi1,...,in ∈ R are the coefficients and d is a non-
negative integer.

With some abuse of notation, we will sometimes denote
a form simply by f , dropping the explicit dependence on
the degree.

Definition 2.
A (real n-variate homogeneous) form f is said positive
definite (semidefinite) in a certain region if f(x) > 0
(f(x) ≥ 0) for all x in that region.
A (real n-variate homogeneous) form f is said positive
definite (semidefinite) if f(x) > 0 (f(x) ≥ 0) for all
x ∈ Rn0 .

Observe that a positive definite form is necessarily
of even degree. Moreover, a (real n-variate) polynomial
p(x) can always be written as the sum of forms of suitable
degree, i.e.,

p(x) = p(x1, . . . , xn) =

N∑
k=0

f (k)(x1, . . . , xn) (2)

where f (k) are (real n-variate homogeneous) forms of
degree k.

Now, we introduce a definition on polynomials which will
be used to avoid the trivial case when the solution of the
considered optimization problem is zero.

Definition 3.
A polynomial p(x) =

∑N
k=0 f

(k)(x) is said locally positive
definite if its form of minimum degree is positive definite.

We can now formulate our problem.

Problem I.
Let p(x) be a locally positive definite polynomial and
W a symmetric positive definite matrix. Compute the
minimum distance from the origin to the surface defined
by p(x) = 0, i.e., solve the constrained optimization

problem

ρ∗ = min
x∈Rn

0

‖x‖22,W

subject to p(x) = 0.
(3)

Remark 1.
The above optimization problem can incorporate multiple
polynomial constraints in an obvious way. Suppose
that the constraints are p1(x) = 0 and p2(x) = 0.
Thus, an equivalent scalar polynomial constraint is
p21(x) + p22(x) = 0.

Our aim is to investigate how convex optimization
techniques such as LMIs can be exploited for approxi-
mating the true solution. To this purpose, we introduce
a canonical optimization problem where the constraint is
given by a single polynomial consisting of even forms only.

Problem II.
Let u(x) be a positive definite quadratic form and w(x)
be a locally positive definite polynomial of the form

w(x1, . . . , xn) =

m∑
k=0

v(2k)(x1, . . . , xn), (4)

where v(2k) are given forms of even degree. Solve the
following constrained optimization problem

c∗ = min
x∈Rn

0

u(x)

subject to w(x) = 0.
(5)

At a first sight, Problem II appears a simplified version
of Problem I. However, it is straightforward to show that
any problem of the form (3) can be equivalently written
in the form of (5).

Proposition 1.
Let p(x) and W be given. Then, u(x) and w(x) can be
constructed such that ρ∗ = c∗.

3 An LMI-based lower bound

In this section, our primary goal is to provide a lower
bound to the optimal solution c∗ that can be computed
via LMI techniques.

Figure 1 shows a geometrical view of the tangency prob-
lem (5). Since w(x) is locally positive definite, it turns out
that c∗ can be computed as the smallest positive value of
c such that w(x) loses positivity for some x belonging to
the level set

Uc = {x ∈ Rn : u(x) = c} . (6)

This fact suggests that the computation of c∗ could be
performed by a sequence of positivity tests of w(x) on the
ellipsoids u(x) = c. To this purpose, let us consider the
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Figure 1: Geometrical view of Problem II.

real form of degree 2m

ŵ(x; c) =

m∑
k=0

v(2k)(x)
um−k(x)

cm−k
(7)

where c is any positive real. We have the following result.

Lemma 1.
For a given positive c, the following two statements are
equivalent:

i) w(x) > 0 ∀ x ∈ Uc;

ii) ŵ(x; c) > 0 ∀ x ∈ Rn0 .

Proof.
ii) =⇒ i). Obvious.
i) =⇒ ii). For a given x ∈ Rn0 , there exists a strictly
positive r such that

x̃ = rx and u(x̃) ∈ Uc.

Condition i) implies that w(x̃) > 0 and by (4), (7) this
yields

ŵ(x̃; c) > 0. (8)

Since ŵ(x; c) is a (homogeneous) form in x, one has

ŵ(x; c) = r2mŵ(x̃; c). (9)

The proof follows from (8), (9) and arbitrariness of x.

The lemma above suggests that a constrained poly-
nomial positivity test is equivalent to a positivity test of
a form.

Now, we rewrite ŵ(x; c) in a form more convenient for
our purposes. To proceed, let x ∈ Rn and consider the
sub-vector x[k] ∈ Rn−k+1 composed of the last n − k + 1
coordinates of x, i.e.,

x[k] = (xk, xk+1, · · · , xn)′. (10)

Obviously, x[1] = x. Furthermore, let us introduce the
vector defined recursively as follows

x
{m}
[k] :=

{
(xkx

{m−1}
[k]

′
, · · · , xnx{m−1}[n]

′
)′ m > 0

1 m = 0.

(11)

For ease of notation, we denote the vector x
{m}
[1] , composed

of all the distinct monomials of degree m built with the
n coordinates of x, by x{m}. Notice that x{m} ∈ Rσ(n,m)

where

σ(n,m) :=

(
n+m− 1
n− 1

)
. (12)

Since ŵ(x; c) is a real form of degree 2m, it is easy to show
that

ŵ(x; c) = x{m}
′
Ω2m(c)x{m} (13)

where Ω2m(c) ∈ Rσ(n,m)×σ(n,m) is a suitable symmet-
ric matrix. It turns out that the matrix Ω2m(c) is not
uniquely defined. Indeed, consider the set of matrices

L :=
{
L ∈ Rσ(n,m)×σ(n,m) :

L = L′ , x{m}
′
Lx{m} = 0 ∀x ∈ Rn

}
.

(14)

Such a set has the following property.

Lemma 2.
L is a linear space and its dimension dL is

dL =
1

2
σ(n,m) [σ(n,m) + 1]− σ(n, 2m). (15)

The above lemma suggests that all the matrices belong-
ing to L admit a linear parameterization. The proof of
Lemma 2 and details on such a parameterization can be
found in [7].

Lemma 3.
Let Ω̂2m(c) be any symmetric matrix such that

ŵ(x; c) = x{m}
′
Ω̂2m(c)x{m}. (16)

Let L(α) be a linear parameterization of L and define

Ω2m(c;α) := Ω̂2m(c) + L(α). (17)

Then,

ŵ(x; c) = x{m}
′
Ω2m(c;α)x{m} ∀ α ∈ RdL , ∀ x ∈ Rn.

(18)
Proof. Obvious, since

x{m}
′
L(α)x{m} = 0 ∀ α ∈ RdL , ∀ x ∈ Rn.

Notice that, for a fixed c, the symmetric matrix
Ω2m(c;α) depends affine linearly on α.



We can now give the main result of this section.

Theorem 1.
Let

ĉ = sup c (19)

such that

min
α
λmax [−Ω2m(c;α)] ≤ 0. (20)

Then, ĉ is a lower bound of c∗, i.e.,

ĉ ≤ c∗. (21)

Proof. From Lemma 1, it is straightforward to verify that
problem (5) can be rewritten as

c∗ = sup c (22)

such that

ŵ(x; c) ≥ 0. (23)

Now, let α̂ be such that

λmax [−Ω2m(ĉ; α̂)] = 0. (24)

From Lemma 2 and Lemma 3 it follows that ŵ(x, ĉ) ≥ 0
and thus the proof is complete.

The above theorem states that a lower bound for
Problem II can be computed via the solution of a
one-parameter family of convex optimization problems.
Specifically, for a fixed value of the parameter c, each
problem requires the minimization of the maximum
eigenvalue of a symmetric matrix with respect to the
vector α (see (20)), a problem that can be solved via a
standard LMI [6].

To conclude the section, we consider a special class
of problems (5) for which only a single LMI problem is
needed for computing the lower bound ĉ. Such a class C
includes polynomials w(x) with two terms, as precisely
defined below.

Definition 4. A polynomial w is said to belong to
the class C if

w(x) = v(2l)(x) + v(2m)(x) (25)

where l ∈ {0, 1}.

Such a class has the following property [7].

Lemma 4.
Let w ∈ C be locally positive definite. Then, there exist a
positive definite matrix M0 and a symmetric matrix M1

such that

Ω2m(c, α) = cl−mM0 +M1 + L(α). (26)

We are now ready to state the next theorem.

Theorem 2.
Assume that the polynomial w in problem (5) belongs to
the class C. Let

σ = min
α
λmax

[
(M̂ ′0)−1(−M1 − L(α))(M̂0)−1

]
(27)

where M̂0 is such that

M0 = M̂ ′0M̂0. (28)

Then,

ĉ = σ
1

l−m . (29)

Proof. It immediately follows from condition (20) and
equation (26).

4 Optimality properties of the LMI-based
lower bound

In the previous section an LMI-based lower bound ĉ has
been computed. The key step in the development of such a
bound is the positivity condition of the matrix Ω2m(c;α).
Obviously, such a condition is more stringent than the
actual condition of positivity of the corresponding form
ŵ(x; c). This fact is responsible for making the lower
bound ĉ in general suboptimal, i.e., strictly lower than
the optimal solution c∗.

In this section, we give a result for checking if we have
indeed ĉ = c∗.

Theorem 3.
Let α̂ be such that

λmax [−Ω2m(ĉ; α̂)] = 0. (30)

Then, the following statements are equivalent

i) ĉ = c∗

ii) ∃x̂ ∈ Rn :

{
x̂{m} ∈ Ker [Ω2m(ĉ; α̂)]
u(x̂) = ĉ

.
(31)

Proof. It easily follows from the fact that condition
ii) yields the equivalence of positive semidefiniteness
of the matrix Ω2m(ĉ; α̂) and the corresponding form
ŵ(x; ĉ) = x{m}

′
Ω2m(ĉ; α̂)x{m}.

Remark 2.
The theorem above suggests the following simple test for
checking optimality of ĉ. Compute a vector of the null
space of Ω2m(ĉ; α̂) and verify if it is equal to x{m} for
some x ∈ Rn. It can be shown that such a verification
amounts to solving a system of n linear equations [7].



5 Application examples

In this section we discuss two examples concerning the
stability margin of control systems [3] and the estimation
of the domain of attraction of equilibria [4]. Details on the
computational steps (e.g., linear parametrization L(α))
can be found in [7].
Example 1. Consider the state-space system

ż(t) = A(x)z(t) (32)

where z ∈ Rn is the state vector and x = (x1, . . . , xn)′ ∈
Rn is the vector of uncertain parameters. Assume that
A(0) is a Hurwitz matrix. Then, it is well kwown ([8],[9])
that the l2 parametric stability margin is given by

ρ2 =
√
ρ∗ =

√
min{ρR, ρI} (33)

where ρR is the solution of the optimization problem

ρR = min
x∈Rn

x21 + x22

subject to det[A(x)] = 0.
(34)

and ρI is

ρI = min
x∈Rn

x21 + x22

subject to Hn−1[A(x)] = 0.
(35)

If A(x) depends polynomially on x, then the problems
above are in the form of Problem I, once W = En and
p(x) = (−1)n det[A(x)] in problem (34) while p(x) =
Hn−1[A(x)] in problem (35) . To illustrate the compu-
tational steps, we consider the following numerical case

A(x) =

 2x1 2x1 − 4x2 + 1 −x1 + 5x2
0 2x1 + 2x2 2x1 + 1
3x2 − 1 −3 −3x1 − 3

 . (36)

In this case we have

det[A(x)] = −1 + 2x1 + 7x2 − 6x21 + 16x1x2 − 2x22
−12x31 + 6x21x2 − 48x1x

2
2

H2[A(x)] = 8− 22x1 − 2x2 − 23x21 + 34x1x2 − 45x22
−4x31 + 21x21x2 − 35x1x

2
2.

(37)
Figures 2 and 3 show that the optimization problems (34)
and (35) have local minima in addition to the global one.
Let us consider problem (34). According to Proposition 1
and taking into account the form of p(x), it results

u(x) = x21 + x22

w(x) = 1 + 8x21 − 60x1x2 − 45x22 + 84x41 − 48x31x2
+388x21x

2
2 + 728x1x

3
2 + 424x42 − 144x61

+144x51x2 − 1188x41x
2
2 − 144x31x

3
2

−1944x21x
4
2 − 2880x1x

5
2 − 900x62.

(38)
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Figure 2: Problem (34): boundary of p(x) = 0 (solid),
global minimum (dotted) and local minimum (dashdot).
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Figure 3: Problem (35): boundary of p(x) = 0 (solid),
global minimum (dotted) and local minimum (dashdot).

Since n = 2 and m = 3, Lemma 2 provides dL = 3. Using
Theorem 1 we obtain

ĉ = 0.0213.

This bound is optimal since condition ii) of Theorem 3
holds for

x̂ = [0.063, 0.131]′.

Therefore, we have

ρR = ĉ = 0.0213.

In the same way, we find for problem (35)

ĉ = 0.0682.

The bound ĉ is optimal in this case, too. Indeed, we find
that condition ii) of Theorem 3 holds for

x̂ = [0.234,−0.117]′.

Therefore, we have

ρI = ĉ = 0.0682



and finally from (32)

ρ2 = 0.146.

Example 2. Consider the state-space system

ẋ(t) = f(x(t)) (39)

where x ∈ Rn is the state vector and f is a given nonlinear
vector field. Assume that the origin in an asymptotically
stable equilibrium point. Then, it is well kwown that the
largest ellipsoidal estimate of the domain of attraction of
the origin, that can be computed via the quadratic Lya-
punov function V (x) = x′Px, is given by V (x) = ρ∗,
where ρ∗ is the solution of the optimization problem

ρ∗ = min
x∈Rn

0

x21 + x22

subject to − x′Pf(x)− f ′(x)Px = 0.
(40)

If f(x) depends polynomially on x, then the problem
above is in the form of Problem I, once W = P and
p(x) = −x′Pf(x) − f ′(x)Px. To illustrate the compu-
tational steps, we consider the following numerical case

f(x) =

[
−0.5x1 − 0.95x1x

2
2 − 0.2x32

−0.5x2 + 2x31 + 0.7x32

]
; V (x) = x21+x22.

(41)
In this case we have
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Figure 4: Boundary of p(x) = 0 (solid), global minimum
(dotted) and local minimum (dashdot).

p(x) = x21 + x22 − 4x31x2 + 1.9x21x
2
2 + 0.4x1x

3
2 − 1.4x42.

Figure 4 shows that the optimization problem has a local
minimum in addition to the global one.
According to Proposition 1, it results

u(x) = x21 + x22

w(x) = x21 + x22 − 4x31x2 + 1.9x21x
2
2 + 0.4x1x

3
2 − 1.4x42.

It turns out dL = 1 and from Theorem 1 we get

ĉ = 0.710.

This bound is optimal also in this case. Thus, we have

ρ∗ =
√
ĉ = 0.843.

6 Conclusion

In this paper the problem of determining the minimum
euclidean distance of a point from a polynomial surface in
Rn is considered. As a first result it is shown that a lower
bound to the global minimum is achieved via the solution
of a one-parameter family of LMIs, once a suitable change
of variables is performed. Each LMI problem requires the
minimization of the maximum eigenvalue of a symmetric
matrix. Successively, a simple test for checking tightness
of this lower bound is given.
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