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Introduction

The subject of this thesis is the study of geometric properties of locally and
globally homogeneous Riemannian spaces.

A smooth Riemannian manifold (Mm, g) is globally homogeneous if its isometry
group Iso(M , g) acts transitively on it, i.e. if for any choice of x, y ∈ M there
exists an isometry fx,y : M → M mapping x to y. Any globally homogeneous
Riemannian space is complete (see [36, Ch IV, Thm 4.5]) and naturally equi-
variantly diffeomorphic to a (not necessarily unique) quotient space G/H. Here
G is a Lie group which acts transitively, isometrically and almost-effectively on
M , H is the isotropy of G at a distinguished point xo ∈ M and the equivariant
diffeomorphism M → G/H is given by aH 7→ a ·xo, where · denotes the left action
of G on M . Any such quotient (M = G/H, g) is reductive, i.e. the Lie subalgebra
h := Lie(H) admits an Ad(H)-invariant complement m in g := Lie(G) (see [3,
par 7.22]). The evaluation map X 7→ X∗xo

:= d
dt exp(tX) · xo

∣∣
t=0

gives rise to a
canonical identification m ' TxoM and, more generally, to a canonical bijection{

G-invariant tensor fields on M
}
←→

{
Ad(H)-invariant tensors on m

}
. (�)

We stress that the relation (�) simplifies significantly the study of geometric prob-
lems on this kind of manifolds, making use of Linear Algebra and Representation
Theory techniques. For this reason, globally homogeneous Riemannian spaces
have been widely investigated in the literature. We mention, in particular, the
problem of finding special metrics, e.g. Einstein metrics (see e.g. [87, 7, 12, 8])
and metrics with distinguished curvature conditions (see e.g. [84, 88]). Moreover,
since by means of (�) any evolution PDE evolving a G-invariant tensor on M

reduces to a dynamical system, globally homogeneous Riemannian spaces have
been recently used to study the behavior of invariant geometric flows (see e.g.
[42, 9, 40, 43, 11, 10]).
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A larger class of manifolds, but perhaps less studied in the literature, is pro-
vided by the so called locally homogeneous Riemannian spaces. Namely, a smooth
Riemannian manifold (Mm, g) is locally homogeneous if its pseudogroup of local
isometries acts transitively on it, i.e. if for any choice of x, y ∈ M there exist
ε = ε(x, y) > 0 and a local isometry fx,y : Bg(x, ε) ⊂ M → Bg(y, ε) ⊂ M map-
ping x to y. Here, Bg(x, ε) denotes the open ball of radius ε around x in M with
respect to the Riemannian distance dg induced by g. Clearly, any globally homoge-
neous space is, in particular, locally homogeneous. On the other hand, there exist
explicit examples of incomplete locally homogeneous Riemannian spaces which
are not locally isometric to any complete one, and hence not locally isometric to
any globally homogeneous Riemannian space (see [52, 38]). We call them strictly
locally homogeneous. Accordingly, we indicate by Hloc

m the moduli spaces of the
equivalence classes of m-dimensional locally homogeneous Riemannian spaces up
to equivariant local isometries, and by Hm the moduli subspace of Hloc

m given by
the non-strictly locally homogeneous Riemannian spaces.

There are many reasons for investigating this larger class of manifolds.
Firstly, it often happens that one can explicitly construct compact non-strictly

locally homogeneous Riemannian spaces with some additional properties, which
do not admit any transitive isometric global Lie group action. For example, any
compact hyperbolic manifold is, by definition, locally isometric to the real hy-
perbolic space (RHm, ghyp), and hence is locally homogeneous, but cannot admit
globally non-trivial Killing vector fields by the Bochner Theorem. Also, there
are numerous compact non-strictly locally homogeneous Hermitian surfaces, both
Kähler and non-Kähler (see e.g. [85, 86]), while there are very few compact glo-
bally homogeneous Hermitian surfaces (see [81]).

Secondly, strictly locally homogeneous Riemannian manifolds come up natu-
rally as limits of homogeneous spaces. Indeed, by the Cheeger-Gromov Compact-
ness Theorem, a non-collapsing sequence of homogeneous spaces (M (n), g(n)) with
bounded geometry subconverges in the pointed C∞-topology to a limit homoge-
neous space (M (∞), g(∞)) (see e.g. [19, Ch 3] and [28, Sec 6.1]). Here, by bounded
geometry we mean that for any integer k ≥ 0 there exists C > 0, depending only
on k, such that∣∣Rm(g(n))

∣∣
g(n) +

∣∣∇g(n)
Rm(g(n))

∣∣
g(n) + . . .+

∣∣(∇g(n)
)k Rm(gg(n))

∣∣
g(n) ≤ C

for any n ∈ N. However, this framework excludes the study of collapsing se-
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quences with bounded curvature (see [17, 18]). In order to overcome this issue,
Glickenstein [24] and Lott [44] extended the Cheeger-Gromov Compactness The-
orem to sequences of manifolds with no positive lower bound on the injectivity
radii. Their key tool is to replace the Riemannian manifolds with the larger cat-
egory of Riemannian groupoids (see [44] and references therein). Remarkably,
applying this machinery to homogeneous spaces, the limit Riemannian groupoid
one gets is an incomplete locally homogeneous space (see [44, Ex 5.7, Prop 5.9]
and [11, Sec 5]) and it is often the case that one needs to study this completion
for proving theorems about homogeneous spaces (see e.g. [10, 11]).

The main results of this thesis are contained in Chapter III, where a compact-
ness theorem for the moduli space Hloc

m is proved.

We recall that, in [41], Lauret developed a framework which allows him to
parameterize the moduli space Hm by a quotient of a distinguished set of Lie
algebras with an additional structure (see Section III.3.1). This parametrization
associates to any element µ ∈ Hm a pair (Gµ/Hµ, gµ) given by the quotient of
a simply connected Lie group Gµ by a closed connected subgroup Hµ ⊂ Gµ,
and a Gµ-invariant metric gµ. Furthermore, he endowed Hm with three different
topologies and he discussed the relations among them. These are:

· the pointed convergence topology, that is the usual convergence in pointed
Cheeger-Gromov topology of pointed Riemannian manifolds;
· the infinitesimal convergence topology, that is a weaker notion that involves

only the germs of the metrics at a point;
· the algebraic convergence topology, which only takes into account the under-

lying algebraic structure.

Here we observe that some known results, which appeared in [77, 78], allow us to
reformulate this construction for the entire moduli space Hloc

m (see also [9, Sec 5]),
and both the infinitesimal convergence and the algebraic convergence perfectly
extend to this larger space. Actually, for what concerns the former, we introduce
a weaker version of that, which we call s-infintesimal convergence. In detail

Definition (see Definition III.3.9). For any s ∈ N ∪ {∞} big enough, a
sequence (µ(n)) ⊂ Hloc

m converges s-infinitesimally to µ(∞) ∈ Hloc
m if the Rie-

mannian curvature tensor and its first s covariant derivatives at the origin of
(Gµ(n)/Hµ(n) , gµ(n)) converge to those of (Gµ(∞)/Hµ(∞) , gµ(∞)).
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In this definition, we require s ≥ ı(m) + 2, where 0 ≤ ı(m) < 3
2m is defined

as the maximum of the Singer invariants of m-dimensional locally homogeneous
Riemannian spaces (see Formula (I.4.8)). This is motivated by the fact that any
class µ ∈ Hloc

m is completely determined by the curvature tensor and its covariant
derivatives at some point up to order ı(m)+2 (see [76]). Note that Lauret’s original
definition is equivalent to ours in the case s =∞ (see Proposition IV.5.2).

However, there is an issue that arises when one tries to extend the pointed
convergence topology to Hloc

m . In fact, if µ ∈ Hloc
m \Hm, i.e. it is strictly locally

homogeneous, then the construction above determines a quotient Gµ/Hµ by a non-
closed subgroup Hµ ⊂ Gµ, which is not even Hausdorff. This issue is overcome
by considering local factor spaces, which generalize the usual quotients of Lie
groups (see [52, 78]). However, since a rigorous definition of local factor spaces
depends on arbitrary choices of distinguished neighborhoods inside Hµ and Gµ

(see Proposition II.4.1), this approach does not seem to fit well with the study of
pointed convergence.

Generalizing a notion introduced in [11], we consider a special class of locally
homogeneous Riemannian spaces, whose elements are called geometric models.
More precisely

Definition (see Definition III.2.1). A geometric model is a smooth locally
homogeneous Riemannian distance ball (B, ĝ) = (Bĝ(o,π), ĝ) of radius π, centered
at o, satisfying | sec(ĝ)| ≤ 1 and injo(B, ĝ) = π.

A first useful fact about the geometric models is that they provide a
parametrization for the moduli space Hloc

m up to scaling. In fact, denoting by
Hloc
m (1) ⊂ Hloc

m the subspace given by the equivalence classes µ ∈ Hloc
m with

bounded sectional curvature | sec(gµ)| ≤ 1, we prove the following

Theorem (see Theorem III.1.1). For each µ ∈ Hloc
m (1), there exists a geo-

metric model (Bµ, ĝµ) = (Bĝµ(oµ,π), ĝµ) which is equivariantly locally isometric
to (Gµ/Hµ, gµ), and it is unique up to a global equivariant isometry.

As a consequence, this allows us to study pointed convergence in the moduli
space Hloc

m (1). The main result of this thesis is

Theorem (see Theorem III.1.2, Corollary III.1.3). The moduli space
Hloc
m (1) is compact in the pointed C1,α-topology for any 0 < α < 1.
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Notice that no assumption on the covariant derivatives of the curvature is
imposed here, and hence this theorem generalizes Glickenstein and Lott’s results
for sequences of homogeneous spaces with bounded geometry. This also shows
that the moduli space Hloc

m is the natural completion of the space Hm considered
in [41], and that the geometric models provide the right theoretical framework
to study convergence of homogeneous and locally homogeneous spaces from the
geometric viewpoint. In this direction, we also proved

Theorem (see Theorem III.1.4). Let (µ(n)) ⊂ Hloc
m (1) be a sequence, µ(∞) ∈

Hloc
m (1) and s ≥ ı(m) + 2 an integer.

i) If (Bµ(n) , ĝµ(n)) converges to (Bµ(∞) , ĝµ(∞)) in the pointed Cs+2-topology, then
(µ(n)) converges s-infinitesimally to µ(∞).

ii) If (µ(n)) converges (s+1)-infinitesimally to µ(∞), then (Bµ(n) , ĝµ(n)) converges
to (Bµ(∞) , ĝµ(∞)) in the pointed Cs+2,α-topology for any 0 < α < 1.

As observed in [41, Subsec 6.2] and [43, Subsec 3.4], in general the pointed con-
vergence is stronger than the infinitesimal convergence. Indeed, Lauret exhibited
an explicit sequence of Aloff–Wallach spaces

(
Wn,n+1, g(n)

)
converging infinitesi-

mally to a limit Aloff–Wallach space
(
W1,1, g(∞)

)
(see [41, Ex 6.6]). Since W1,1

is compact and Wn,n+1 are pairwise non-homeomorphic, it follows that there is
no subsequence of

(
Wn,n+1, g(n)

)
converging to

(
W1,1, g(∞)

)
in the pointed C∞-

topology. Notice that this implies, in particular, that the injectivity radii along
the sequence must tend to zero, otherwise one would have sub-convergence by
the Cheeger-Gromov Compactness Theorem. However, up to a rescaling, we can
assume that | sec(g(n))| ≤ 1 and hence, by our previous theorem, the geometric
models of

(
Wn,n+1, g(n)

)
converge to the geometric model of

(
W1,1, g(∞)

)
in the

pointed C∞-topology.

A key tool for the proof of our Theorem III.1.2 is a local version of the Myers-
Steenrod Theorem, which is proved in Chapter II.

In this direction, we recall that a central problem in Lie theory, commonly
known as the Hilbert fifth problem, has been to characterize Lie groups among
all topological groups in terms of group theory and topology. This topic has
remarkable consequences in Differential Geometry. In fact, it is often important
to show that certain groups of differentiable transformations, on a given smooth
manifold, can be turned into a Lie transformation group.
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One of the most famed result of this type is due to Myers and Steenrod
[53], who proved in 1939 that: any closed group of isometries acting on a Ck-
Riemannian manifold, with k ≥ 2, is a Lie group. Afterwards, in 1952 Gleason,
Montgomery and Zippin [23, 50] gave a complete answer to the Hilbert fifth
problem. In particular, they proved that: a locally compact topological group
admits a Lie group structure if and only if it is locally Euclidean, and this occurs
if and only if it has no small subgroups.

It has to be said, however, that Lie groups were not originally conceived
by Sophus Lie as global objects, but rather as what we call nowadays local Lie
groups. In this regard, we notice that Myers and Steenrod themselves concluded
their paper [53] with the open question: “Is any locally compact group germ of
local isometries a Lie group germ? ” About this issue, Mostow claimed in [52, p.
616]: “It seems to the author that the arguments of Myers and Steenrod apply to
closed local groups of isometries as well as to global groups.”. To the best of our
knowledge, this statement has never been rigorously proved so far.

Recently Goldbring [25] solved the local version of the Hilbert fifth problem
using techniques from non-standard Analysis. In particular, he proved a statement
analogous to the one of Gleason, Montgomery and Zippin for local topological
groups. Using this last result, we prove the following

Theorem (see Theorem II.1.1). Any locally compact and effective local topo-
logical group of isometries acting on a pointed Ck,α-Riemannian manifold, with
k + α > 0, is a local Lie group of isometries.

which will be crucial in the proof of Theorem III.1.2.

In Chapter IV we carry out a deeper study of the s-infinitesimal convergence
introduced in Chapter III. In particular, we construct an explicit 2-parameter
family {µ?(ε, δ) : ε, δ ∈ R , ε > 0 , 0 ≤ δ < 1} ⊂ H3 with the following property:
for any fixed integer k ≥ 0, there are (ε(n)), (δ(n)) ⊂ R and C > 0 such that,
letting ĝ(n) := ĝµ?(ε(n),δ(n)),∣∣Rm(ĝ(n))

∣∣
ĝ(n) +

∣∣∇ĝ(n)
Rm(ĝ(n))

∣∣
ĝ(n) + . . .+

∣∣(∇ĝ(n)
)k Rm(gĝ(n))

∣∣
ĝ(n) ≤ C ,∣∣(∇ĝ(n)

)k+1 Rm(ĝ(n))
∣∣
ĝ(n) → +∞ as n→ +∞ .

The classe µ?(ε, δ) comes from a slight modification of the well-known Berger
spheres, arising from the canonical variation of the round metric with respect to
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the Hopf fibration S1 → SU(2)→ CP 1 (see [3, p. 252]), which correspond to the
case δ = 0. This allows us to prove the following

Theorem (see Theorem IV.1.1). For any choice of m, s ∈ N such that m ≥ 3

and s ≥ ı(m) + 2, the notion of s-infinitesimal convergence in Hloc
m is strictly

weaker than the one of (s+1)-infinitesimal convergence.

In particular, this shows that keeping all the covariant derivatives of the cur-
vature tensor bounded along a sequence of homogeneous spaces is a much more
restrictive condition than just bound a finite number of them. This also leads
to the construction of the first example of a sequence of smooth pointed locally
homogeneous spaces converging to a smooth pointed locally homogeneous space
in the pointed Ck,α-topology for any 0 < α < 1, and which does not admit any
convergent subsequence in the pointed Ck+1-topology. This phenomenon is for us
somehow unexpected.

In the last part of the thesis, we deal with some problems concerning compact
homogeneous spaces.

More precisely, in Chapter V we study the space MG
1 of unit-volume G-

invariant Riemannian metrics on a given compact, connected, almost-effective
globally homogeneous space Mm = G/H. This space has been extensively inves-
tigated in the literature, especially in the context of the variational formulation
of the Einstein equation. In fact, it is well known that G-invariant unit volume
Einstein metrics on M can be characterized variationally as the critical points
of the scalar curvature functional scal : MG

1 → R. In [12], with the aim of
studying homogeneous Einstein metrics from a variational viewpoint, the authors
proved that the functional scal satisfies the Palais-Smale condition on the subsets
(MG

1 )ε := {g ∈ MG
1 : scal(g) ≥ ε}, with ε > 0. Namely, if (g(n)) ⊂ MG

1 is a
sequence with scal(g(n)) ≥ ε > 0 and

∣∣Rico(g(n))
∣∣
g(n) → 0, then one can extract a

subsequence which converges in the C∞-topology to an Einstein metric g(∞) ∈MG
1

with positive scalar curvature [12, Thm A]. Here, Rico(g(n)) is the traceless Ricci
tensor of g(n) and | · |g(n) is the norm induced by g(n) on the tensor bundle over
M . As is well known, the traceless Ricci tensor is the negative gradient vector of
the functional scal with respect to the standard L2-metric 〈 · , · 〉 on MG

1 . Let us
stress that, in the general inhomogeneous setting, the Hilbert functional does not
satisfy the Palais-Smale condition, even in the cohomogeneity one case (see [6]).
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On the other hand, the Palais-Smale condition for the functional scal fails,
in general, on the whole space MG

1 . In fact, sometimes there exist the so
called 0-Palais-Smale sequences, i.e. (g(n)) ⊂ MG

1 such that scal(g(n)) → 0 and∣∣Rico(g(n))
∣∣
g(n) → 0. Notice that, unlike the previous case, a 0-Palais-Smale se-

quence (g(n)) cannot have convergent subsequences if M is not a torus. This
means that (g(n)) goes off to infinity on the set MG

1 and, consequently, we say
that such sequences are divergent. Remarkably, there are topological obstructions
on the existence of 0-Palais-Smale sequences. Indeed, by [12, Thm 2.1], if M ad-
mits a 0-Palais-Smale sequence, then there exists a closed, connected intermediate
subgroup Ho ( Ko ⊂ Go such that the quotient Ko/Ho is a torus. Here, Ho and
Go denote the identity components of H and G, respectively.

This last theorem is optimal if the isotropy group H is connected. When H

is disconnected, the authors conjectured that G/H is itself a homogeneous torus
bundle [12, p. 697]. The main result proved in this chapter, for the purpose of
generalizing [12, Thm 2.1], is the following

Theorem (see Theorem V.1.1, Theorem V.1.3). Let Mm = G/H be a com-
pact, connected homogenous space and (g(n)) ⊂ MG

1 a diverging sequence of unit
volume G-invariant metrics on M . If there exists C > 0 such that | sec(g(n))| ≤ C
for any n ∈ N, then there exists an intermediate closed subgroup H ( K ⊂ G such
that the quotient K/H is a torus. If in addition scal(g(n)) ≥ ε > 0, then there
exists a second intermediate closed subgroup K ( K′ ⊂ G such that the quotient
K′/H is not a torus.

Let us remark that in [11] the following estimate was proved: there exists a
uniform constant C > 0, which depends only on the dimension m ∈ N, such that

|Rm(g)|g ≤ C|Ric(g)|g for any g ∈MG ,

where Rm(g) denotes the curvature operator of g [11, Thm 4]. This implies,
in particular, that any sequence (g(n)) ⊂ MG

1 with scal(g(n)) → δ ≥ 0 and∣∣Rico(g(n))
∣∣
g(n) → 0 has bounded curvature and hence, assuming that M is not a

torus, 0-Palais-Smale sequences are special examples of diverging sequences with
bounded curvature. Consequently, since we require neither that the Lie groups
H,G are connected, nor that the traceless Ricci goes to zero, our result generalizes
[12, Thm 2.1]. Let us point out that this also proves the previously mentioned
conjecture in [12, p. 697].
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The original results presented in this thesis have been published in [61] or have
been submitted for publication in [62, 63, 64].
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Chapter I

Preliminaries

I.1 Riemannian manifolds of low regularity

I.1.1 Notation

We indicate with 〈·, ·〉st the standard Euclidean inner product on Rm and with
| · |st the induced norm. We also adopt the following standard notation for any
pair (k,α) ∈

(
Z≥0× [0, 1]

)
∪{(∞, 0)} and for any ball B ⊂⊂ Rm (see [22, p. 52]):

· if α = 0, then Ck,0(B̄) = Ck(B̄) is the set of functions f : B → R having all
derivatives of order up to k continuous in B with continuous extensions to B̄;
· if α 6= 0, then Ck,α(B̄) is the set of those functions in Ck(B̄) whose k-th order

partial derivatives are uniformly α-Hölder continuous in B.
We also consider the total order relation

(k1,α1) ≤ (k2,α2) ⇐⇒ k1 < k2 or (k1 = k2) ∧ (α1 ≤ α2)

so that Ck2,α2(B̄) ( Ck1,α1(B̄) for any (k1,α1) < (k2,α2). For (k,α) 6= (∞, 0) the
space Ck,α(B̄) is a Banach space with the norm

||f ||Ck,α(B̄) :=

||f ||Ck(B̄) if α = 0

||f ||Ck(B̄) + max|j|=k ||∂jf ||α,B if α 6= 0
,

where

||f ||Ck(B̄) :=
k∑
s=0

max
|j|=s

{
sup
x∈B

∣∣(∂jf)(x)
∣∣} , ||u||α,B := sup

x,y∈B

∣∣u(x)− u(y)
∣∣

|x− y|α
.

1



2 Chapter I. Preliminaries

Here, j = (j1, . . ., jm) is a multi-index, |j| := j1+. . .+jm and ∂jf := ∂|j|f
∂j1x1...∂jmxm

.
We say that a function F = (F 1, . . .,F q) : U ⊂ Rm → Rq is of class Ck,α

if F i|B ∈ Ck,α(B̄) for any 1 ≤ i ≤ q and for any ball B ⊂⊂ U . In what fol-
lows, smooth will always mean C∞-smooth. We also say that F is of class Cω if
F 1, . . .,F q are real analytic.

A sequence f (n) : U (n) ⊂ Rm → R of functions of class Ck,α converges in the
Ck,α-topology to a function f (∞) : U (∞) ⊂ Rm → R of class Ck,α if limn→+∞ U

(n) =

U (∞) and for any ball B ⊂⊂ U (∞) it holds that∣∣∣∣f (n) − f (∞)
∣∣∣∣
Ck,α(B̄)

→ 0 as n→ +∞ .

A path γ : I ⊂ R→ Rm is said to be of class AC if for any closed subinterval
[a, b] ⊂ I, the restriction γ|[a,b] is absolutely continuous. We stress that if γ : I →
Rm is a path of class AC, then the tangent vector γ̇(t) ∈ Tγ(t)Rm = Rm exists for
almost all t ∈ I and γ̇ ∈ L1([a, b];Rm) for every closed subinterval [a, b] ⊂ I.

I.1.2 Riemannian metrics of low regularity

Let M be a topological manifold. From now until the end of this section, every
manifold is assumed to be connected. An atlas A on M is said to be a Ck,α-atlas
if its overlap maps are of class Ck,α. A Ck1,α1-atlas A1 and a Ck2,α2-atlas A2 on
M with (k1,α1) ≤ (k2,α2) are said to be compatible if their union A1 ∪ A2 is
a Ck1,α1-atlas on M . The following classical result guarantees the existence of
smooth structures under far weaker hypotheses. More precisely

Theorem I.1.1 ([31], Thm 2.9). LetM be a topological manifold and A a Ck-atlas
on M . If k ≥ 1, then there exists a smooth atlas A1 on M compatible with A.
Moreover, if A2 is another smooth atlas on M compatible with A, then (M ,A1)

is smoothly diffeomorphic to (M ,A2).

This theorem allows us to restrict our discussion, from now on, to the realm
of smooth manifolds. On this regard, we recall the following standard definitions:
· a function f : M1 →M2 between smooth manifolds is said to be of class Ck,α

if its expressions in local coordinates are of class Ck,α;
· a tensor field T is said to be of class Ck,α if its components in local coordinates

are of class Ck,α;
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· a path γ : I ⊂ R → M on a smooth manifold is said to be of class AC if its
expressions in local coordinates are of class AC.

A Ck,α-Riemannian manifold (M , g) is the datum of a smooth manifold M to-
gether with a Riemannian metric g on M of class Ck,α, that is gij = g( ∂

∂xi
, ∂
∂xj

)

are of class Ck,α for any choice of coordinate vector fields ∂
∂x1 , . . ., ∂

∂xm . Let us
define

I :=
{
γ : [0,Tγ ]→M path of class AC

}
,

`g : I → R , `g(γ) :=
∫ Tγ

0

∣∣γ̇(t)
∣∣
g
dt ,

dg : M ×M → R , dg(x, y) := inf
{
`g(γ) : γ ∈ I, γ(0) = x, γ(Tγ) = y

}
.

(I.1.1)

Proposition I.1.2 ([14]). Let (M , g) be a C0-Riemannian manifold and (I, `g, dg)

as in (I.1.1).
i) The map `g is additive with respect to concatenation, continuous on segments

and invariant under reparametrizations.
ii) The map dg is a distance function and it determines the same topology of M .
iii) Given a path γ ∈ I, the following equalities hold:

|γ̇(t)|g= lim
δ→0

dg(γ(t+ δ), γ(t))

δ
for any 0 < t < Tγ such that γ̇(t) exists ,

`g(γ)= sup

{ N∑
i=1

dg(γ(ti−1), γ(ti)) : N ∈ N , 0 = t0 < t1 < . . . < tN = Tγ

}
.

This last result shows that the triple (I, `g, dg), defined in (I.1.1), turns a
Ck,α-Riemannian manifold (M , g) into a separable, locally compact length space.
From now on, we will use the notation Bg(p, r) to denote the metric ball centered
at p ∈M of radius r > 0 in (M , dg).

We recall that path γ ∈ I is said to be a geodesic if there exists λγ > 0 such
that, for any to ∈ [0,Tγ ], there exists εo > 0 such that dg(γ(t1), γ(t2)) = λγ |t1−t2|
for any t1, t2 ∈ (to − εo, to + εo) ∩ [0,Tγ ]. A geodesic γ is said to be minimizing
if dg(γ(t1), γ(t2)) = λγ |t1 − t2| for any t1, t2 ∈ [0,Tγ ]. Furthermore, (M , g) is
said to be complete if the metric space (M , dg) is complete. See [13, Thm 2.5.28]
for a generalization of the classical Hopf-Rinow Theorem in this low regularity
category.
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If (k,α) ≥ (1, 0), then, given any local chart (U , ξ) on M , one can consider
the Christoffel symbols of g in the coordinates (U , ξ)

Γrij
(U ,ξ) := 1

2((ξ−1)∗g)sr
(
((ξ−1)∗g)ir,j + ((ξ−1)∗g)jr,i − ((ξ−1)∗g)ij,r

)
,

which are functions of class Ck−1,α. Here, the comma indicates the ordinary
partial derivative.

We say that a path γ ∈ I satisfies the geodesic equation if it is of class C2 and,
for any local chart (U , ξ) on M such that γ((0,Tγ)) ∩ U 6= 0, it holds that(d2(ξ◦γ)

dt2

)r
+
(d(ξ◦γ)

dt

)i(d(ξ◦γ)
dt

)j
Γrij

(U ,ξ)(ξ◦γ) = 0 in γ−1(γ((0,Tγ)) ∩ U). (I.1.2)

From the Peano Theorem, equation (I.1.2) admits a local solution for any
initial condition (x, v) ∈ TM . Furthermore, if (k,α) ≥ (1, 1), then this solution
is unique by means of Picard-Lindelöf Theorem. Notice also that any solution
of (I.1.2) is necessarily of class Ck+1,α. The following proposition resumes some
results about the regularity of geodesics and their relation with the geodesic equa-
tion.

Proposition I.1.3 ([16, 45, 73]). Let (M , g) be a Ck,α-Riemannian manifold.
· If (0, 0) < (k,α) ≤ (0, 1), then any geodesic is of class C1, α

2−α .
· If (1, 0) ≤ (k,α) < (1, 1), then the solutions of the geodesic equation (I.1.2)

need not be geodesics. Conversely, any geodesic is of class C2,α and it satisfies
the geodesic equation.
· If (k,α) ≥ (1, 1), then any path γ ∈ I is a geodesic if and only if it is of class
Ck+1,α and satisfies the geodesic equation.

This last claim brings us to introduce the Riemannian exponential map. More
concretely

Proposition I.1.4 ([39, 48]). Let (M , g) be a Ck,α-Riemannian manifold with
(k,α) ≥ (1, 1). Then, there exist a maximal open set U ⊂ TM and a map
Exp(g) : U →M of class Ck−1,α with the following properties.
i) For any x ∈ M , the set U ∩ TxM is non-empty and star-shaped with respect

to the origin.
ii) For any (x, v) ∈ U , the path [0, 1] 3 t 7→ Exp(g)(x, tv) is the geodesic starting

from x ∈M and tangent to v ∈ TxM .
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iii) For any x ∈M , there exists a neighborhood Ux ⊂ U ∩TxM of the origin such
that the restriction Exp(g)(x, ·)|Ux is a Ck−1,α-diffeomorphism with its image.

Notice that the Riemannian exponential is not defined if (0, 0) ≤ (k,α) < (1, 1)

and, if (k,α) = (1, 1), it is just a C0,1-homeomorphism. Furthermore, if (1, 1) <

(k,α) < (∞, 0), then the atlas of normal coordinates on (M , g) is just of class
Ck−1,α and hence the components of Exp(g)(x, ·)∗g are merely of class Ck−2,α.
Nevertheless, we mention that, for (k,α) ≥ (1, 0), there exists a distinguished
Ck+1,α-atlas, which consists of harmonic coordinate charts, that is the best possible
choice in terms of regularity of g. We refer to the seminal work [21] for more
details.

Given two Ck,α-Riemannian manifolds (M1, g1) and (M2, g2), a function f :

M1 →M2 is said to be a metric isometry if it is surjective and distance preserving,
i.e. dg1(x, y) = dg2(f(x), f(y)) for any x, y ∈M1. It is straightforward to observe
that any metric isometry is a C0,1-homeomorphism and that the inverse of a metric
isometry is itself a metric isometry. On the other hand, a map f : M1 → M2 is
called a Riemannian isometry if it is a Ck+1,α-diffeomorphisms between M1 and
M2 such that f∗g2 = g1. Notice that any Riemannian isometry is, in particular,
a metric isometry. Remarkably, the following weaker converse assertion holds.

Theorem I.1.5 ([16, 68, 71, 74],[80]). Let f : (M1, g1) → (M2, g2) be a metric
isometry between Ck,α-Riemannian manifolds. If (k,α)>(0, 0), then f is of class
Ck+1,α and it is a Riemannian isometry.

From now on, we will use the term isometry just to indicate a metric iso-
metry. By means of Theorem I.1.5, this coincides with the notion of Riemannian
isometry with only one exception, namely the pathological case (k,α) = (0, 0).
Furthermore, the full isometry group of a Ck,α-Riemannian manifold (M , g) will
be denoted by Iso(M , g).

Finally, we list some notation. Given a sufficiently regular Ck,α-Riemannian
manifold (M , g), we denote by ∇g its Levi-Civita covariant derivative and by
Rm(g)(X∧Y ) := ∇g[X,Y ] − [∇gX ,∇gY ] its Riemannian curvature operator. More-
over, we denote the sectional curvature by sec(g), the Ricci curvature by Ric(g),
the injectivity radius at p ∈M by injp(M , g) and for any integer k ≥ 0 we set

Rmk(g) :
⊗kTM ⊗ Λ2TM → so(TM , g) ,

Rmk(g)(X1, . . .,Xk|Y1∧Y2) :=
(
(∇g)kX1,...,Xk

Rm(g)
)
(Y1∧Y2) .

(I.1.3)
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Remark I.1.6. From now on, when the regularity of a tensor field is not specified,
it is intended to be smooth.

I.2 Convergence of Riemannian manifolds

In this section, we recall the notion of Gromov-Hausdorff convergence for compact
metric spaces and we give the definition of pointed Ck,α-convergence for pointed
Riemannian manifolds. This last definition is usually stated for complete Rieman-
nian manifolds (see e.g. [19, Ch 3]), but here we present a version which holds
also in the non-complete setting.

I.2.1 Gromov-Hausdorff convergence of compact metric spaces

Let Z = (Z, dZ) be a metric space. For any choice of compact subsetsK1,K2 ⊂ Z,
the Hausdorff distance between K1 and K2 is defined by

distZ
H

(K1,K2) := inf
{
ε > 0 : K1 ⊂ Uε(K2) , K2 ⊂ Uε(K1)

}
,

where Uε(K) := {x ∈ Z : dZ(x,K) < ε} is the ε-tube around K in Z. The pair(
{K ⊂ Z compact}, distZ

H

)
is itself a metric space and it is compact if and only

if Z is compact as well (see e.g. [70, p. 195]).
Let now X = (X, dX) and Y = (Y , dY ) be two compact metric spaces. The

Gromov-Hausdorff distance between X and Y is defined as

distGH(X,Y ) := inf
{
distZ

H

(
φ1(X),φ2(Y )

)
: Z is a metric space ,

φ1 : X → Z and φ2 : Y → Z are isometric embeddings
}

.

Letting X denote the set of isometric classes of compact metric spaces, it turns
out that (X , distGH) is a complete metric space (see e.g. [70, Prop 1.1.4]).
Therefore, a sequence (X(n)) ⊂ X of compact metric spaces is said to con-
verge in the Gromov-Hausdorff topology to a compact metric space X(∞) if
limn→+∞ distGH(X(n),X(∞)) = 0.

We stress now that, given two compact metric space X,Y ∈ X , in general it
is difficult to compute the explicit value of distGH(X,Y ). To this purpose, we
recall that a Gromov-Hausdorff ε-approximation between X and Y is a pair (ϕ,ψ)
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of not necessarily continuous maps ϕ : X → Y and ψ : Y → X satisfying for any
x,x′ ∈ X, y, y′ ∈ Y∣∣dX(x,x′)− dY (ϕ(x),ϕ(x′))

∣∣ < ε , dX(x, (ψ ◦ ϕ)(x)) < ε ,∣∣dY (y, y′)− dX(ψ(y),ψ(y′))
∣∣ < ε , dY (y, (ϕ ◦ ψ)(y)) < ε .

Remarkably, the following fact holds: if there exists a Gromov-Hausdorff ε-
approximation between X and Y , then distGH(X,Y ) ≤ 3

2ε (see e.g. [70, Lemma
1.3.3]). In particular, it comes that a sequence (X(n)) ⊂ X converges to X(∞)

in the Gromov-Hausdorff topology if and only if, for any ε > 0, there exists
N = N(ε) > 0 such that, for any n > N , there exists a Gromov-Hausdorff
ε-approximation (ϕ(n),ψ(n)) between X(n) and X(∞).

I.2.2 Convergence of Riemannian metric tensors

Let M be a smooth manifold. We recall that a sequence (T (n)) of tensor fields
on M of class Ck,α converges in the Ck,α-topology to a tensor field T on M of
class Ck,α of the same type if for any local chart (U , ξ) on M , the components of
(ξ−1)∗T (n) converge to the components of (ξ−1)∗T in the Ck,α-topology.

Let us review some properties related to the convergence of Riemannian me-
trics. For this purpose, for any fixed p, q ∈M we consider the subset

Ip,q :=
{
γ ∈ I : γ(0) = p , γ(Tγ) = q

}
,

where I has been defined in I.1.1.

Proposition I.2.1. Let (g(n)) be a sequence of C0-Riemannian metrics on M

which converges to a C0-Riemannian metric (g(∞)) in the C0-topology. Then
i) `g(n)(γ)→ `g(∞)(γ) as n→ +∞, for any γ ∈ Ip,q;
ii) lim supn→+∞ dg(n)(p, q) ≤ dg(∞)(p, q).

Proof. In order to prove claim (i), fix γ ∈ Ip,q. We can assume, without loss of
generality, that M = Rm and Tγ = 1. Then

`g(n)(γ) =

∫ 1

0

√
g

(n)
ij (γ(t))γ̇i(t)γ̇j(t) dt .

By assumption,
∣∣∣∣g(n)
ij (γ(·))− g(∞)

ij (γ(·))
∣∣∣∣
C0([0,1])

→ 0 for any 1 ≤ i, j ≤ m. Hence:
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·
√
g

(n)
ij (γ(·))γ̇iγ̇j converges almost-everywhere to

√
g

(∞)
ij (γ(·))γ̇iγ̇j in [0, 1];

· there exists F ∈ L1([0, 1];R) such that
√
g

(n)
ij (γ(·))γ̇iγ̇j ≤ F almost-

everywhere in [0, 1].
Therefore, claim (i) follows from the Lebesgue Dominated Convergence Theorem.

For claim (ii), fix ε > 0 and let γ ∈ Ip,q such that `g(∞)(γ) < dg(∞)(p, q) + ε
2 .

Since `g(n)(γ) → `g(∞)(γ) as n → +∞, there exists n̄ = n̄(ε) > 0 such that
`g(∞)(γ)− ε

2 < `g(n)(γ) < `g(∞) + ε
2 for any n > n̄. Then

dg(n)(p, q) ≤ `g(n)(γ) < `g(∞)(γ) + ε
2 < dg(∞)(p, q) + ε for any n > n̄

and hence the thesis follows.

As the next example shows, this result cannot be improved, not even for the
C∞-convergence.

Example I.2.2. Let M :=
{

(x1,x2) ∈ R2 : |x2| < 1
}
, gst the Euclidean metric

onM and (a(n)) ⊂ (0, 1] a monotone sequence such that a(n) → 0. For any n ∈ N,
we define

R(n) :=
{

(x1,x2) ∈ R2 : |x1| < n, |x2| < 1− 1
n

}
⊂M

and we consider a smooth function f (n) : M → R such that
· f (n) = 1 in R(n),
· (a(n))2 < f (n) < 1 in R(n+1) \R(n),
· f (n) = (a(n))2 in M \R(n+1).

Let g(n) := f (n)gst, fix the points p := (0, 2
3), q := (0,−2

3) ∈ M and consider for
any n ∈ N the piecewise linear path γ(n) : [0, 1]→M with vertices

p
(n)
0 := p , p

(n)
1 :=

(
0, 1− 1

n+1

)
, p

(n)
2 :=

(
n+ 1, 1− 1

n+1

)
,

p
(n)
3 :=

(
n+ 1,−1 + 1

n+1

)
, p

(n)
4 :=

(
0,−1 + 1

n+1

)
, p

(n)
5 := q .

Therefore

dg(n)(p, q) ≤ `g(n)(γ(n)) < 1
3 + (2(n+ 1) + 2)a(n) + 1

3 = 2
3 + 2(n+ 2)a(n)

and hence, by choosing a(n) := 1
6(n+2) , we get lim supn→+∞ dg(n)(p, q) ≤ 1. On the

other hand, (g(n)) converges in the C∞-topology to gst onM and dst(p, q) = 4
3 > 1.
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Let us indicate now by M the space of smooth Riemannian metrics on M and
by Diff(M)\M the moduli space of smooth metrics up to smooth diffeomorphism.
Then, as the next example shows, the quotient topology on Diff(M)\M, inherited
from the C∞-convergence in M, is not Hausdorff.

Example I.2.3. Let go be a non-flat Riemannian metric on Rm which coin-
cides with the Euclidean metric gst outside the closed ball Bst(0, 1) and fix a
vector v ∈ Rm, |v|st = 1. We consider now the sequence (φ(n)) ⊂ Diff(Rm)

of diffeomorphisms defined by φ(n)(x) := x + nv. Since (dφ(n))x = IdRm and
|φ(n)(x)|st ≥ n− |x|st for every x ∈ Rm, it follows that (φ(n))∗go converges to gst

in the C∞-topology, which is not isometric to go. Therefore, gst and go cannot be
separated by Diff(Rm)-invariant neighborhoods in M.

I.2.3 Pointed convergence of Riemannian manifolds

Let now (M , g) be a Ck,α-Riemannian manifold. The distance of a point p ∈ M
from the boundary of (M , g) is defined as the supremum

dist(p, ∂(M , g)) := sup
{
r ≥ 0 : Bg(p, r) ⊂⊂M

}
.

Notice that, by the Hopf-Rinow-Cohn-Vossen Theorem, the manifold (M , g) is
complete if and only if dist(p, ∂(M , g)) = +∞ for some, and hence for any,
p ∈M (see [13, Thm 2.5.28]).

Definition I.2.4. Let (M (n), g(n), p(n)) be a sequence of pointed Ck,α-Riemannian
m-manifolds, δ(n) := dist(p(n), ∂(M (n), g(n))) and assume that δ(n) → δ(∞) ∈
(0, +∞] . The sequence (M (n), g(n), p(n)) is said to converge in the pointed Ck,α-
topology to a pointed Ck,α-Riemannian manifold (M (∞), g(∞), p(∞)) if there exist:
i) an exhaustion (U (n)) of M (∞) by relatively compact open sets containing the

point p(∞);
ii) a sequence (δ̃(n)) ⊂ R such that 0 < δ̃(n) ≤ δ(n) and δ̃(n) → δ(∞);
iii) a sequence of Ck+1,α-embeddings φ(n) : U (n) → M (n) such that φ(n)(p(∞)) =

p(n);
so that the following conditions are satisfied:
· Bg(n)(p(n), δ̃(n)) ⊂ φ(n)(U (n)) ⊂ Bg(n)(p(n), δ(n));
· φ(n)∗g(n) converges to g(∞) in the Ck,α-topology.
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Notice that this type of convergence implies that, for any fixed 0 < r < δ(∞),
there exists an integer n̄ = n̄(r) ∈ N such that the Riemannian distance ball
Bg(n)(p(n), r) is compactly contained in M (n), for any n ≥ n̄, and the sequence of
compact balls

(
Bg(n)(p(n), r), dg(n)

)
n≥n̄ converges in the Gromov-Hausdorff topol-

ogy to
(
Bg(∞)(p(∞), r), dg(∞)

)
(see [66, p. 415] and [13, Ex 8.1.3]). Moreover:

· if δ(∞) is finite, then the limit space (M (∞), g(∞), p(∞)) is an incom-
plete Riemannian distance ball of radius δ(∞), centered at p(∞), and also
dist(p(∞), ∂(M (∞), g(∞))) = δ(∞);
· if δ(∞) = +∞, then the limit space (M (∞), g(∞), p(∞)) is complete.

Notice also that, if δ(n) = +∞ for any n ∈ N, then we get back to the usual
definition of pointed convergence for complete Riemannian manifolds (see e.g.
[66, p. 415]).

Example I.2.5. Let us consider the sequence of pointed m-dimensional spheres
(M (n), g(n), p(n)) := (Sm,n2ground, o), where ground is the round metric of radius 1

on Sm and o := (+1, 0, . . ., 0) is the North pole. Obviously in this case δ(n) = +∞
for any n ∈ N. Let us define

φ(n) : Rm → Sm , φ(n)(y) :=
(

4n2 − |y|2st
4n2 + |y|2st

,
4n y1

4n2 + |y|2st
, . . . ,

4n ym

4n2 + |y|2st

)
.

One can directly check that each map φ(n) is a smooth diffeomorphism of Rm into
Sm\{(−1, 0, . . ., 0)}, with inverse given by

(φ(n))−1 : Sm\{(−1, 0, . . ., 0)} → Rm , (φ(n))−1(x) :=
(

2nx1

1 + x0
, . . . ,

2nxm

1 + x0

)
.

Moreover

φ(n)(0) = o , φ(n)∗g(n) =

(
4n2

4n2 + |y|2st

)2

gst for any n ∈ N ,

where we recall that gst is the standard Euclidean metric on Rm. So, we conclude
that (Sm,n2ground, o) converges to (Rm, gst, 0) in the pointed C∞-topology.

Remark I.2.6. Let us stress that the pointed convergence is significantly different
from the mere convergence of metric tensors that we saw in Section I.2.2, even
when we are considering a sequence of Riemannian metrics on the same manifold.
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· Referring to Example I.2.3, take a sequence of points (p(n)) ⊂ Rm. Then, it is
easy to check that (Rm, go, p(n)) converges to (Rm, go, p(∞)) in the pointed C∞-
topology if p(n) → p(∞) for some p(∞) ∈ Rm, while it converges to (Rm, gst, 0)

if p(n) → +∞.
· Referring to Example I.2.5, the metrics g(n) = n2ground on Sm do not converge

to any metric on Sm in the C∞-topology, while (Sm, g(n), o) converges to
(Rm, gst, 0) in the pointed C∞-topology.

We mention here that the Cheeger-Gromov Precompactness Theorem states
that given two constants Do, vo > 0, the space of smooth compact Riemannianm-
manifolds with bounded curvature, diameter at most Do and volume at least vo is
precompact in the pointed C1,α-topology. Various versions of this classical result
are known, e.g. for complete non-compact but pointed Riemannian manifolds or
for bounded domains in possibly incomplete pointed Riemannian manifolds. We
refer to the survey paper [29] and references therein for more details.

We state below some well-known results that will be needed in Chapter III.

Definition I.2.7 ([1], Sec 2). Let (Mm, g) be a smooth Riemannian mani-
fold, p ∈ M . The Ck,a-harmonic radius of (Mm, g) at p, which we denote
by hark,α

p (M , g), is the largest r ≥ 0 such that there exists a local chart
ξ = (ξ1, . . ., ξm) : Bg

(
p,
√

2r
)
→ Rm such that

i) ξ(p) = 0 and ((ξ−1)∗g)ij(0) = δij for any 1 ≤ i, j ≤ m;
ii) ∆gξ

i = 0 for any 1 ≤ i ≤ m;
iii) 1

2 |v|
2
st ≤ ((ξ−1)∗g)ij(x)vivj ≤ 2|v|2st for any v ∈ Rm and x ∈ ξ

(
Bg

(
p,
√

2r
))
;

iv) rk+α · ||((ξ−1)∗g)ij ||Ck,α(Bst(0,r))
≤ 1 for any 1 ≤ i, j ≤ m.

Here, ∆g is the Laplace-Beltrami operator of (M , g). Notice that, by (i) and
(iii), it comes that Bst(0, r) ⊂ ξ

(
Bg

(
p,
√

2r
))
⊂ Bst(0, 2r) in Rm. Moreover,

from (ii), (iv) and the classical Schauder interior estimates (see [22, Thm 6.2 and
(4.17)]), there exists a constant C = C(m, k,α, r) > 0 such that

||f ◦ ξ−1||Ck+1,α(Bst(0, r
2

))
≤ C sup

ξ−1(Bst(0,r))

∣∣f ∣∣
for any ∆g-harmonic function f : ξ−1(Bst(0, r)) ⊂M → R (see also [34, Sec 1]).

Harmonic coordinates and the harmonic radius play a central role in conver-
gence theory of Riemannian manifolds. We recall the following important result.
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Theorem I.2.8 (see e.g. [29], Thm 6). Let (Mm, g) be a smooth, not necessarily
complete, Riemannian manifold, U ⊂ M an open subset and δ > 0 such that the
following conditions are satisfied.
a) There exist an integer k ≥ 0 and a constant C > 0 such that

sup
{∣∣Rmj(g)x

∣∣
g

: x ∈M , dg(U ,x) < δ
}
≤ C for any 0 ≤ j ≤ k .

b) There exists a constant io ∈ R such that

inf
{

injx(M , g) : x ∈M , dg(U ,x) < δ
}
≥ io > 0 .

Then, for any 0 < α < 1 there exists a positive constant ro = ro(m, δ, k,α,C, io)

such that hark+1,α
x (M , g) ≥ ro for any x ∈ U .

which in turn implies

Theorem I.2.9 (Cheeger-Gromov precompactness Theorem). Let us consider a
sequence (M (n), g(n), p(n)) of pointed smooth complete Riemannian m-manifolds
and suppose that the following conditions are satisfied.
a) There exist an integer k ≥ 0 and a constant C > 0 such that

sup
{∣∣Rmj(g(n))x

∣∣
g(n) : x ∈M (n)

}
≤ C for any 0 ≤ j ≤ k .

b) There exists a constant io ∈ R such that

injp(n)(M (n), g(n)) ≥ io > 0 .

Then, for any 0 < α < 1 there exists a pointed complete Ck+1,α-Riemannian m-
manifold (M (∞), g(∞), p(∞)) such that the sequence (M (n), g(n), p(n)) converges,
up to a subsequence, to (M (∞), g(∞), p(∞)) in the pointed Ck+1,α-topology.

We also mention that one way to get convergence results, when the sequence
of Riemannian manifolds being considered is not complete, is to use local mollifi-
cations in the sense of Hochard [32]. More concretely, we have

Lemma I.2.10 ([32], Lemma 6.2 and [75], Lemma 4.3). Let (M , g) be a smooth,
not necessarily complete, Riemannian manifold and V ⊂M an open set. Assume
that for some 0 < ρ ≤ 1 it holds∣∣Rm(g)x

∣∣
g
≤ ρ−2 , injx(M , g) ≥ ρ for any x ∈ V .
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Then, there exists a constant c = c(m) ≥ 1, an open subset Ṽ ⊂ V and a smooth
Riemannian metric g̃ defined on Ṽ such that (Ṽ , g̃) is a complete Riemannian
manifold satisfying
· sup

{∣∣Rm(g̃)x
∣∣
g̃

: x ∈ Ṽ
}
≤ cρ−2;

· V(2ρ) ⊂ Ṽ(ρ) ⊂ V(ρ) ⊂ Ṽ ⊂ V ;
· g̃ = g on Ṽ(ρ);

where we used the notation U(r) := {x ∈ U : Bg(x, r) ⊂⊂ U} for any open subset
U ⊂M .

This last result will be used in Chapter III.

I.3 Groups of transformations

In this subsection, we collect some basic facts on global and local groups of trans-
formations. For more details, we refer to [56, Ch 1], [59], [67].

I.3.1 Global groups of transformations

We recall that a topological group is a Hausdorff topological space equipped with
a continuous group structure. A topological group is a (real analytic) Lie group if
it is endowed with a smooth (resp. real analytic) manifold structure with respect
to which the group operations are smooth (resp. real analytic). It is well known
that the category of real analytic Lie groups is equivalent to the category of
smooth Lie groups via the forgetful functor (see e.g. [36, p. 43]). The following
characterization of Lie groups is the above mentioned solution to the Hilbert fifth
problem.

Theorem I.3.1 ([23, 50]). For any connected and locally compact topological
group G, the following conditions are equivalent.
a) G is locally Euclidean, i.e. there is a neighborhood of e∈G homeomorphic to

an open ball of some RN.
b) G has no small subgroups (NSS for short), i.e. there exists a neighborhood of

e ∈ G containing no nontrivial subgroups of G.
c) G admits a unique smooth manifold structure which turns it into a Lie group.

Let M be a smooth manifold. Given k ∈ Z≥0 ∪ {∞}, a topological group
of Ck-transformations G = (G, Θ) on M is the datum of a topological group G
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together with a continuous action Θ : G ×M → M on M such that the map
Θ(a) := Θ(a, ·) : M → M is of class Ck for any a ∈ G. We recall that the
correspondence a 7→ Θ(a) determines a group homeomorphism G → Diffk(M)

from G to the group of Ck-diffeomorphisms of M , and that G = (G, Θ) is called
effective (resp. almost-effective) if the kernel of G → Diffk(M) is trivial (resp.
discrete). Furthermore, we say that G = (G, Θ) is closed if it is effective and Θ(G)

is closed in Diffk(M).

A topological group of Ck-transformations G = (G, Θ) onM is called Lie group
of Ck-transformations if G is a Lie group and the function Θ : G×M → M is of
class Ck.

Remark I.3.2. By [4, Thm 4], the second condition above is redundant. Namely,
if G is a Lie group and each map Θ(a) : M → M is of class Ck, then the map
Θ : G×M →M is automatically of class Ck.

If M is equipped with a Ck,α-Riemannian metric g, then G = (G, Θ) is called
topological (resp. Lie) group of isometries if each map Θ(a) : M → M is an
isometry of (M , g). By the classical Myers-Steenrod Theorem, it is known that any
closed topological group of isometries of a Ck-Riemannian manifold, with k ≥ 2,
is a Lie group of isometries.

I.3.2 Local topological groups and local Lie groups

A local topological group is a tuple (G, e, J(G),D(G), , ν) given by:
i) a Hausdorff topological space G with a distinguished element e ∈ G called

unit;
ii) a neighborhood J(G) ⊂ G of e and an open subset D(G) ⊂ G × G which

contains both G× {e}, {e} × G;
iii) two continuous maps  : J(G)→ G, ν : D(G)→ G;
so that, for any choice of a, a1, a2 ∈ G and b ∈ J(G):
· ν(a, e) = ν(e, a) = a;
· if (a1, a), (a, a2), (a1, ν(a, a2)), (ν(a1, a), a2) ∈ D(G), then ν(a1, ν(a, a2)) =

ν(ν(a1, a), a2);
· (b, (b)), ((b), b) ∈ D(G) and ν(b, (b)) = ν((b), b) = e.

From now on, we adopt the usual notation a1 · a2 := ν(a1, a2), a−1 := (a) and
we will indicate any local topological group (G, e, J(G),D(G), , ν) simply by G.
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Given a local topological group G, every neighborhood U of the unit e ∈ G

inherits a structure of local topological group induced by G. In fact, if we set

J(U) := J(G) ∩ U ∩ −1(U) , D(U) := D(G) ∩ (U× U) ∩ ν−1(U) ,

then one can directly check that (U, e, J(U),D(U), |J(U), ν|D(U)) is itself a local
topological group. In this case, we say that U is a restriction of G. We remark
that G can be restricted to a neighborhood U of the unit which is symmetric, i.e.
U = J(U), and cancellative, i.e. for any a, a1, a2 ∈ U it holds that:
· if (a, a1), (a, a2) ∈ D(U) and a · a1 = a · a2, then a1 = a2;
· if (a1, a), (a2, a) ∈ D(U) and a1 · a = a2 · a, then a1 = a2;
· if (a1, a2) ∈ D(U), then (a−1

2 , a−1
1 ) ∈ D(U) and (a1 · a2)−1 = a−1

2 · a
−1
1

(see e.g. [79, Sec 1.5.6], [25, Cor 2.17]). In particular, this implies that (|U◦|U) =

IdU. From now on, any local topological group G and any neighborhood U ⊂ G

of the unit are assumed to be symmetric and cancellative.

Example I.3.3 ([57], Ex 7). Let G = (G, e, J(G),D(G), , ν) be defined by the
following:

G := R , J(G) := R \ {1
2 , 1} , D(G) := {(x, y) ∈ R2 : |xy| 6= 1} ,

e := 0 , (x) :=
−x

1− 2x
, ν(x, y) :=

x+ y − 2xy

1− xy
.

Here, we are considering R with the standard Euclidean topology. Then, one can
directly check that G is a local topological group. Moreover, for any 0 < t ≤ 1

2 ,
the interval Ut :=

( −t
1−2t , t

)
is symmetric and cancellative.

A subset H ⊂ G which contains the unit e ∈ G is said to be a sub-local
group, if there exists a neighborhood V of H such that for any a ∈ H, (a1, a2) ∈
(H× H) ∩D(G) it holds

a−1 ∈ V =⇒ a−1 ∈ H , a1 · a2 ∈ V =⇒ a1 · a2 ∈ H .

Any such an open subset V ⊂ G is called associated neighborhood for H.
A sub-local group H such that H × H ⊂ D(G) and with V = G is called a

subgroup. Notice that, by such hypothesis, a · b ∈ H, a−1 ∈ H for any a, b ∈ H and
therefore H is a topological group in the usual sense. The local topological group
G is said to have no small subgroups (NSS) if there exists a neighborhood of the
unit with no nontrivial subgroups.
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Given two local topological groups G and G′, a local homomorphism from G to
G′ is a pair (U,ϕ) given by a neighborhood U ⊂ G of the unit and a continuous
function ϕ : U→ G′ such that
· ϕ(e) = e′ and ϕ(D(U)) ⊂ D(G′),
· ϕ(a−1) = ϕ(a)−1 and ϕ(a1 ·a2) = ϕ(a1)·ϕ(a2) for any a ∈ U, (a1, a2) ∈ D(U).

Two local homomorphisms (U1,ϕ1), (U2,ϕ2) are equivalent if there exists a neigh-
borhood Ũ ⊂ U1∩U2 of the unit such that ϕ1|Ũ = ϕ2|Ũ. For the sake of shortness,
we will simply write ϕ : G → G′ to denote a local homomorphism (U,ϕ), deter-
mined up to an equivalence. The composition ϕ′ ◦ϕ of two local homomorphisms
is defined in an obvious way and a local homomorphism ϕ : G → G′ is called a
local isomorphism if there exists a local homomorphism ψ : G′ → G such that
ψ ◦ ϕ = IdG and ϕ ◦ ψ = IdG′ , where the equalities are up to equivalence.

Example I.3.4. Let G be the local topological group defined in Example I.3.3
and R = (R, +) the additive group of real numbers. For any 0 < t ≤ 1

2 , the pair
(Ut,ϕt) given by

Ut :=
( −t

1−2t , t
)

, ϕt(x) :=
x

x− 1

is a local homomorphism from G to R. However, the group G is not globalizable,
i.e. there exists no local homomorphism ϕ̃ defined on the whole G to a (global)
topological group G̃ = (G̃, ?). Indeed, if we assume by contradiction that such ϕ̃
exists, then for any x ∈ G we would get

ϕ̃(1) = ϕ̃(ν(1,x)) = ϕ̃(1) ? ϕ̃(x) =⇒ ϕ̃(x) = eG̃ ,

which is not possible.

A local Lie group is a local topological group that is also a smooth manifold
in such a way that the local group operations  : G → G and ν : D(G) → G are
smooth. Just like in the global Lie groups theory, one can associate a Lie algebra
g of left invariant vector fields to any local Lie group G. Analogues of Lie’s three
fundamental theorems hold also for the local Lie groups ([5, Ch 3]). In particular,
it turns out that every local Lie group is locally isomorphic to some Lie group
by means of a smooth local isomorphism. We resume in the following theorem
the solution of the Hilbert fifth problem for local topological groups provided by
Goldbring. We refer to [25] for the proof and more details.
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Theorem I.3.5 ([25]). For any locally compact local topological group G, the
conditions listed below are equivalent.
a) G is locally Euclidean.
b) G is NSS.
c) G is locally isomorphic to a Lie group.

I.3.3 Local (topological and Lie) groups of transformations

Let (M , p) be a pointed smooth manifold. A local topological group of Ck-
transformations on (M , p) is a tuple G = (G,UG, Ωp,W, Θ) formed by:
i) a (local) topological group G and a neighborhood UG ⊂ G of the unit;
ii) a neighborhood Ωp ⊂M of p;
iii) an open subset W ⊂ UG ×Ωp which contains both UG × {p}, {e} ×Ωp and a

continuous map Θ : W→ Ωp;
such that the following hold:
· for any (a, b) ∈ (UG × UG) ∩D(G) and x ∈ Ωp it holds that

Θ(a, Θ(b,x)) = Θ(a · b,x)

provided that (b,x), (a · b,x) ∈W and (a, Θ(b,x)) ∈W;
· for any a ∈ UG, the map Θ(a) := Θ(a, ·), defined on the open subset

W(a) := {x : (a,x) ∈W} ⊂ Ωp, is of class Ck;
· Θ(e) = IdΩp , i.e. Θ(e,x) = x for any x ∈ Ωp.
From the definition, it follows that, for any a ∈ UG, there exist a neighborhood

U ⊂ Ωp of p and a neighborhood V ⊂ Ωp of Θ(a, p) such that Θ(a)|U : U → V is
a Ck-diffeomorphism, with inverse given by (Θ(a)|U

)−1
= Θ(a−1)|V . We say that

G is almost-effective (resp. effective) if the set{
a ∈ UG : Θ(a) fixes a neighborhood of p

}
is discrete (resp. equal to {e}). We also say that G = (G,UG, Ωp,W, Θ) is locally
compact if G is locally compact. We will tacitly assume that Ωp, W are connected
and that W(a) is connected for any a ∈ UG. The orbit of G through p is the set

G(p) :=
{(

Θ(a1) ◦ . . . ◦Θ(aN )
)
(p) : N ≥ 1 , ai ∈ UG for any 1 ≤ i ≤ N ,(

Θ(aj+1) ◦ . . . ◦Θ(aN )
)
(p) ∈W(aj) for any 1 ≤ j ≤ N − 1

}
.
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Motivated by the terminology for Lie algebra actions, we say that G is transitive
if G(p) contains a neighborhood of the point p.

Two local topological groups Gi = (Gi,UGi , Ωpi ,Wi, Θi) of Ck-transformations
acting on (Mi, pi), with i = 1, 2, are said to be locally Ck-equivalent if there exist
i) a neighborhood Uo ⊂ UG1 of the unit and a local isomorphism ϕ : G1 → G2

defined on Uo with ϕ(Uo) ⊂ UG2 ;
ii) two nested neighborhoods Uo ⊂ U ⊂ Ωp1 of p1 and an open Ck-embedding

f : U → Ωp2 with f(p1) = p2;
such that the following hold:
· Uo × Uo ⊂W1, Θ1(Uo × Uo) ⊂ U and ϕ(Uo)× f(Uo) ⊂W2;
· for any (a,x) ∈ Uo × Uo, it holds that f

(
Θ1(a,x)

)
= Θ2

(
ϕ(a), f(x)

)
.

A local topological group of Ck-transformations G = (G,UG, Ωp,W, Θ) on
(M , p) is called local Lie group of Ck-transformations if G is a Lie group and the
map Θ is of class Ck.

Remark I.3.6. In perfect analogy with what occurs for global groups of trans-
formations, by [4, Thm 4] the second condition is redundant here as well. Namely,
if the (local) topological group G is a Lie group and each map Θ(a) : W(a)→ Ωp

is of class Ck, then the map Θ : W→ Ωp is automatically of class Ck.

If (M , p) is equipped with a Ck-Riemannian metric g, then G =

(G,UG, Ωp,W, Θ) is called local topological (resp. Lie) group of isometries if each
map Θ(a) : W(a)→ Ωp is a local isometry of (M , g).

Finally, consider an almost-effective local Lie group G = (G,UG, Ωp,W, Θ) of
Ck-transformations on (M , p) and suppose that k ≥ 2. Let also g := Lie(G) and
exp : g→ G the Lie exponential of G. For any X ∈ g, we consider the open set

WX := {(t,x) ∈ R× Ωp : (exp(tX),x) ∈W}

and the map of class Ck

ΘX : WX →M , ΘX(t,x) := Θ
(

exp(tX),x
)

.

This allows us to consider the differential

Θ∗ : g→ Ck−1(Ωp;TM |Ωp) , Θ∗(X)x :=
d

dt
ΘX(t,x)

∣∣∣
t=0

. (I.3.1)
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In full analogy with the theory of Lie group actions, one can prove that the map
Θ∗ is R-linear, injective and, for any X,Y ∈ g

Θ∗
(
Ad(a)X

)
Θ(a,x)

= d(Θ(a))x
(
Θ∗(X)

)
x

for any (a,x) ∈W ,

Θ∗
(
[X,Y ]

)
= −[Θ∗(X), Θ∗(Y )] . (I.3.2)

The vector fields in Θ∗(g) are called infinitesimal generator of G. If G acts by
isometries, then its infinitesimal generators are Killing vector fields. Notice also
that G is transitive if and only if the set {Θ∗(X)|p : X ∈ g} coincides with the
whole tangent space TpM .

I.4 Basics on locally homogeneous spaces

We recall that a Ck,α-Riemannian manifold (M , g) is locally homogeneous if the
pseudogroup of local isometries of (M , g) acts transitively on M , i.e. if for any
x, y ∈ M there exist ε = ε(x, y) > 0 a local isometry f : Bg(x, ε) → Bg(y, ε)

such that f(x) = y. From now on, we use the term locally homogeneous space to
denote locally homogeneous Riemannian manifolds which are smooth, and hence
real analytic (see e.g. [77, Thm 2.2], [11, Lemma 1.1]).

I.4.1 Nomizu algebras

Given a locally homogeneous space (M , g) and a distinguished point p ∈ M , it
is known that there exists a local Lie group of isometries which acts transitively
on (M , g, p) according to the definitions in Section I.3. Such local Lie group is
constructed as follows. Consider the Killing generators at p, that is the pairs
(v,A) ∈ TpM ⊕ so(TpM , gp) such that

A · gp = 0 , vyRmk+1(g)p +A · Rmk(g)p = 0 for any k ∈ Z≥0 , (I.4.1)

where so(TpM , gp) acts on the tensor algebra of TpM as a derivation. The space
of Killing generators at p is denoted by killg. This notation is due to the following
fact. For any Killing vector field X of (M , g) defined in a neighborhood of p,
the pair

(
Xp,−(∇gX)p

)
is a Killing generator of (M , g) at p. Conversely, being

(M , g) real analytic, by [55, Thm 2] there exists a neighborhood Ωp ⊂ M of p
such that, for any (v,A) ∈ killg, there exists a Killing vector field X on Ωp with
Xp = v and −(∇gX)p = A.
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Lemma I.4.1. Let X,Y be Killing vector fields defined in a neighborhood Ωp ⊂M
of p and set (v,A) :=

(
Xp,−(∇gX)p

)
, (w,B) :=

(
Yp,−(∇gY )p

)
. Then

[X,Y ]p = A(w)−B(v) , −(∇g[X,Y ])p = [A,B] + Rm(g)p(v∧w) . (I.4.2)

Proof. Since ∇g is torsion-free, we get

[X,Y ]p = (∇gXY )p − (∇gYX)p = A(w)−B(v) . (I.4.3)

Let us write now −∇gX = LX−∇gX , where LX indicates the Lie derivative along
X. From the Jacobi Identity it comes that

L[X,Y ] = [LX ,LY ]

∇g[X,Y ] −∇
g[X,Y ] = [∇gX −∇

gX,∇gY −∇
gY ]

∇g[X,Y ] −∇
g[X,Y ] = [∇gX ,∇gY ]− [∇gX ,∇gY ] + [∇gY ,∇gX] + [∇gX,∇gY ]

−∇g[X,Y ] = [∇gX,∇gY ]− Rm(g)(X∧Y )− [∇gX ,∇gY ] + [∇gY ,∇gX]

and hence

− (∇g[X,Y ])p = [A,B] + Rm(g)p(v∧w) +
(
[∇gX ,−∇gY ]− Rm(g)(X∧Y )

)
p
−

−
(
[∇gY ,−∇gX]− Rm(g)(Y ∧X)

)
p

. (I.4.4)

Let us consider now, for any Killing vector field V defined in the neighborhood
Ωp of p, the tensor αV ∈

⊗3 T ∗M |Ωp given by

αV (Z1,Z2,Z3) := g
(
[∇gZ1

,−∇gV ]Z2 − Rm(g)(Z1∧V )Z2,Z3

)
.

Then, αV is symmetric with respect to Z1 and Z2, since

αV (Z1,Z2,Z3)− αV (Z2,Z1,Z3) =

= g
(
[∇gZ1

,−∇gV ]Z2,Z3

)
− g
(

Rm(g)(Z1∧V )Z2,Z3

)
−

− g
(
[∇gZ2

,−∇gV ]Z1,Z3

)
+ g
(

Rm(g)(Z2∧V )Z1,Z3

)
= −g(∇gZ1

∇gZ2
V ,Z3) + g(∇g∇gZ1

Z2
V ,Z3)− Rm(g)(Z1∧V ,Z2∧Z3)+

+ g(∇gZ2
∇gZ1

V ,Z3)− g(∇g∇gZ2
Z1
V ,Z3) + Rm(g)(Z2∧V ,Z1∧Z3)

= Rm(g)(Z1∧Z2,V ∧Z3)+ Rm(g)(V ∧Z1,Z2∧Z3)+ Rm(g)(Z2∧V ,Z1∧Z3)

= 0 .
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On the other hand, αV is skew-symmetric with respect to Z2 and Z3. Indeed

g([∇gZ1
,−∇gV ]Z2,Z3) = −g(∇gZ1

∇gZ2
V ,Z3) + g(∇g∇gZ1

Z2
V ,Z3)

= −Z1(g(∇gZ2
V ,Z3)) + g(∇gZ2

V ,∇gZ1
Z3)−

− g(∇gZ3
V ,∇gZ1

Z2)

= Z1(g(∇gZ3
V ,Z2))− g(∇gZ3

V ,∇gZ1
Z2)+

+ g(∇gZ2
V ,∇gZ1

Z3)

= g(∇gZ1
∇gZ3

V ,Z2)− g(∇g∇gZ1
Z3
V ,Z2)

= −g([∇gZ1
,−∇gV ]Z3,Z2) .

Therefore, it comes necessarily that αV = 0 and so(
[∇gX ,−∇gY ]−Rm(g)(X∧Y )

)
p

=
(
[∇gY ,−∇gX]−Rm(g)(Y ∧X)

)
p

= 0 . (I.4.5)

The thesis comes from (I.4.3), (I.4.4) and (I.4.5).

From (I.4.2), it follows that the space of Killing generators killg of (M , g) at p
can be endowed with a Lie algebra structures by setting[

(v,A), (w,B)
]
:=
(
A(w)−B(v), [A,B] + Rm(g)p(v∧w)

)
. (I.4.6)

The pair killg = (killg, [ , ]) is called the Nomizu algebra of (M , g, p) and it is
isomorphic to the Lie algebra of local Killing vector fields of (M , g) defined in a
neighborhood of p. By [59, Thm XI] (see also [10, Thm A.4]) there exists a local
Lie group of isometries whose infinitesimal generators are precisely the Killing
vector fields in killg.

I.4.2 Orthogonal transitive Lie algebras

In this subsection, we briefly summarize some algebraic tools which are useful to
study locally homogeneous Riemannian manifolds. We refer to [77, 78] and [41]
for more details.

Firstly, as we already mentioned in the Introduction, we introduce the follow-
ing notation.
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Definition I.4.2. Let (M , g) be a locally homogeneous space. Then, (M , g)

is said to be strictly locally homogeneous if it is not locally isometric to some
homogeneous space, otherwise it is said to be non-strictly locally homogeneous.

Notice that a complete locally homogeneous space (M , g) is always non-strictly
locally homogeneous. In fact, by hypothesis its Riemannian universal cover (M̃ , g)

is a simply connected, complete locally homogeneous space and hence, by [76], it
comes that (M̃ , g) is homogeneous. Here, with a slight abuse of notation, we are
denoting by g both the Riemannian metric onM and its pullback on the universal
cover M̃ . Moreover, by [52, Sec 7] we know that any locally homogeneous space
(Mm, g) of dimension m ≤ 4 is non-strictly locally homogeneous.

Secondly, we introduce the following definition, which plays an important role
in comparing strictly and non-strictly locally homogeneous spaces.

Definition I.4.3 ([58], p. 51). Let G be a connected Lie group, h ⊂ g := Lie(G)

a Lie subalgebra and H ⊂ G the connected Lie subgroup with Lie(H) = h. The
Malcev-closure of h in G is the Lie algebra h

G ⊂ g of the closure H of H in G. The
Lie algebra h is said to be Malcev-closed in G if h = h

G.

Notice that the notion of Malcev-closure depends on the Lie group G, i.e. it
is possible that hG 6= h

G′ for two connected Lie groups with Lie(G) = Lie(G′) = g.

Example I.4.4. Let g := R2 and G := R2, G′ := T2 = Z2\R2. We consider the
Lie subalgebra h ⊂ g spanned by the vector (1,

√
2)t ∈ R2. Then it follows that

h = h
G ( h

G′
= g (see Lemma III.3.5).

Then, we recall the following

Definition I.4.5. Let m, q ∈ Z≥0. An orthogonal transitive Lie algebra (g =

h + m, 〈 , 〉) of rank (m, q) is the datum of
· a (q +m)-dimensional Lie algebra g;
· a q-dimensional Lie subalgebra h ⊂ g which does not contain any non-trivial

ideal of g;
· an ad(h)-invariant complement m of h in g;
· an ad(h)-invariant Euclidean product 〈 , 〉 on m.

An orthogonal transitive Lie algebra (g = h + m, 〈 , 〉) is said to be regular if h is
Malcev-closed in the simply connected Lie group G with Lie(G) = g (see Definition
I.4.3), non-regular otherwise.
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Let (g = h + m, 〈 , 〉) be an orthogonal transitive Lie algebra of rank (m, q).
Since there are no ideals of g in h, the adjoint action of h on m is a faith-
ful representation in so(m, 〈 , 〉) and so q ≤ m(m−1)

2 . An adapted frame is a
basis u = (e1, . . ., eq+m) : Rq+m → g such that h = span(e1, . . ., eq), m =

span(eq+1, . . ., eq+m) and 〈eq+i, eq+j〉 = δij . Given two orthogonal transitive Lie
algebras (gi = hi + mi, 〈 , 〉i), we call orthogonal transitive Lie algebras isomor-
phism (isomorphism for short) any Lie algebra isomorphism ϕ : g1 → g2 such
that ϕ(h1) = h2, ϕ(m1) = m2 and 〈 , 〉1 = (ϕ|m1)∗〈 , 〉2.

Remark I.4.6. Let (g = h+m, 〈 , 〉) be an orthogonal transitive Lie algebra. By
[78, Lemma 3.1], one can extend 〈 , 〉 to an ad(h)-invariant Euclidean product 〈 , 〉′

on the whole g in such a way that 〈h,m〉′ = 0 and 〈 , 〉′|h⊗h coincides with the
Cartan-Killing form of so(m, 〈 , 〉).

An important class of examples of orthogonal transitive Lie algebras are pro-
vided by the Nomizu algebras. In fact, let (M , g) be a locally homogeneous space,
p ∈M a distinguished point and killg = { Killing generators (v,A) at p } the No-
mizu algebra of (M , g, p). Consider the scalar product on killg given by

〈〈(v,A), (w,B)〉〉g := gp(v,w)− Tr(AB) ,

set killg0 := {(0,A) ∈ killg} and let m be the 〈〈 , 〉〉g-orthogonal complement of killg0 in
killg. Since (M , g) is locally homogeneous, this gives rise to a linear isomorphism
m ' TpM , which allow us to define a scalar product 〈 , 〉g on m induced by the
metric tensor on M . Then, (killg = killg0 + m, 〈 , 〉g) is an orthogonal transitive
Lie algebra. We stress that the Nomizu algebra, modulo isomorphism, does not
depend on the choice of the point p. Furthermore, two locally homogeneous spaces
are locally isometric if and only if their Nomizu algebras are isomorphic.

The notion of Malcev-closure is related to the strictly locally homogeneous
spaces by the following result.

Theorem I.4.7 ([77], Lemma 3.5 and Prop 4.4). Let (M , g) be a locally homo-
geneous space, p ∈ M a distinguished point and (killg = killg0 + m, 〈 , 〉g) be the
Nomizu algebra of (M , g, p). Then, (killg = killg0 + m, 〈 , 〉g) is regular if and only
if (M , g) is non-strictly locally homogeneous.
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I.4.3 Ambrose-Singer connections and the Singer invariant

Let us recall here the following classical result.

Theorem I.4.8 ([82], Thm 2.1). A smooth Riemannian manifold (M , g) is a
locally homogeneous space if and only if it admits a metric connection with par-
allel torsion and curvature. Any such connection is called an Ambrose-Singer
connection.

In general, Ambrose-Singer connections are far from being unique, but there
is always a canonical one, which is characterized as follows. Fix p ∈ M and, for
any k ≥ 0, set

i(k) :=
{
A ∈ so(TpM , gp) : A · Rmr(g)p = 0 , 0 ≤ r ≤ k

}
. (I.4.7)

Since
(
i(k)

)
k∈Z≥0

is a filtration of the finite dimensional Lie algebra so(TpM , gp),
there exists a first integer kg such that i(kg) = i(kg+1), which is called the Singer
invariant of (M , g). It actually holds that i(k) = i(kg) for any integer k ≥ kg.

Theorem I.4.9 ([82]). Let (M , g) be a locally homogeneous space and p ∈ M a
distinguished point. Then there exists a unique Ambrose-Singer connection Dg on
(M , g) such that Sgp ∈ i(kg)

⊥, where Sg := Dg − ∇g and i(kg)
⊥ is the orthogo-

nal complement of i(kg) in so(TpM , gp) with respect to the Cartan-Killing form.
Moreover i(k) = i(kg) for any integer k ≥ kg and the pairs (v,Sgp(v)), v ∈ TpM ,
are Killing generator at p.

Remark I.4.10. Notice that for non-strictly locally homogeneous spaces, the
canonical Ambrose-Singer connection coincides with its canonical connection ac-
cording to [37, Sec X.2].

By the results in [76, 54], it is known that a locally homogeneous space (M , g)

with Singer invariant kg is completely determined by the curvature and its co-
variant derivatives up to order kg + 2 at a single point. It is also known that
kg <

3
2 dimM ([26, p. 165]), but in general this estimate is not sharp. For later

purposes, for any integer m ≥ 1 we set

ı(m) := max{kg : (M , g) locally homogeneous, dimM ≤ m} . (I.4.8)
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Notice that m 7→ ı(m) is not decreasing and 0 ≤ ı(m) < 3
2m. Moreover, ı(1) =

ı(2) = 0 and the main result in [35] implies that ı(3) = ı(4) = 1. We also mention
that from the main theorem in [47] we get limm→+∞ ı(m) = +∞.

For any m, s ∈ N with m ≥ 1 and s ≥ ı(m) + 2, we define R̃s(m) to be the
set of all the (s+1)-tuples

(R0,R1, . . .,Rs) ∈W s(m) :=
s⊕

k=0

(⊗k(Rm)∗ ⊗ Λ2(Rm)∗ ⊗ so(m)
)

satisfying the following conditions (R1) and (R2).

(R1) The following identities hold:

〈R0(Y1∧Y2)V1,V2〉st = 〈R0(V1∧V2)Y1,Y2〉st ,

SY1,Y2,V1
〈R0(Y1∧Y2)V1,V2〉st = 0 ,

〈R1(X1|Y1∧Y2)V1,V2〉st = 〈R1(X1|V1∧V2)Y1,Y2〉st ,

SY1,Y2,V1
〈R1(X1|Y1∧Y2)V1,V2〉st = 0 ,

SX1,Y1,Y2
〈R1(X1|Y1∧Y2)V1,V2〉st = 0 ,

Rk+2(X1,X2,X3, . . .Xk+2|Y1∧Y2)−Rk+2(X2,X1,X3, . . .Xk+2|Y1∧Y2) =

= −
(
R0(X1∧X2) ·Rk

)
(X3, . . .Xk+2|Y1∧Y2) for any 0 ≤ k ≤ s− 2 ,

where SA,B,C denotes the sum over the cyclic permutations of A,B,C and so(m)

acts on the tensor algebra on Rm by derivation.

(R2) For any 1 ≤ k ≤ s, the maps

αk : so(m)→W k(m) , αk(A) := (A ·R0,A ·R1, . . .,A ·Ri) ,

βk : Rm →W k−1(m) , βi(X) := (XyR1,XyR2, . . .,XyRi)

are such that

βk(Rm) ⊂ αk−1(so(m)) for any ı(m) + 2 ≤ k ≤ s ,

ker(αk) = ker(αk+1) for any ı(m) ≤ k ≤ s− 1 .

Note that R̃s(m) is invariant under the standard left action of O(m). Hence,
we introduce the following
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Definition I.4.11. Let m, s ∈ N with m ≥ 1, s ≥ ı(m) + 2. We call Riemannian
s-tuples of rank m the elements of the quotient Rs(m) := O(m)\R̃s(m).

This definition is motivated by the following

Theorem I.4.12 ([54]). Let (Mm, g) be a locally homogeneous space. For any
point p ∈M , u : Rn → TpM orthonormal and s ≥ ı(m) + 2, it holds that(

u∗Rm0(g)p,u
∗Rm1(g)p, . . .,u

∗Rms(g)p
)
∈ R̃s(m)

and the corresponding Riemannian s-tuple ρs ∈ Rs(m) is independent of p and u.
Conversely, for any Riemannian s-tuple ρs ∈ Rs(m), there exists a locally

homogeneous space (Mm, g), which is uniquely determined up to local isometry,
such that

(
u∗Rm(g)p,u

∗Rm1(g)p, . . .,u
∗Rms(g)p

)
, for some point p ∈ M and

u : Rn → TpM orthonormal, is a representative of ρs.

I.5 Compact homogeneous spaces

I.5.1 The space of invariant metrics

Let M = G/H be a compact, connected and almost effective m-dimensional ho-
mogeneous space, with G and H compact Lie groups. We fix once and for all
an Ad(G)-invariant Euclidean inner product Q on the Lie algebra g := Lie(G)

and we indicate with m the Q-orthogonal complement of h := Lie(H) in g. From
now on, we will always identify any G-invariant tensor field on M with the cor-
responding Ad(H)-invariant tensor on m by the natural evaluation map at the
point eH ∈ M . The restriction Qm := Q|m⊗m of Q on the complement m defines
a normal G-invariant metric on M . Up to a normalization, we can assume that
vol(Qm) = 1. We denote by MG the set of G-invariant metrics on M and by MG

1

the subset of unit volume ones.

The set of inner products on m, which we indicate with P (m), is an open cone
in the space Sym(m,Qm) of symmetric endomorphism of (m,Qm) by means of the
embedding

g 7−→ Ag , g = Qm(Ag · , · ) (I.5.1)

and it is acted transitively by GL(m), with isotropy in Qm isomorphic to O(m,Qm).
So, it admits the coset space presentation P (m) = GL(m)

/
O(m,Qm). It can also
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be endowed with the standard GL(m)-invariant Riemannian metric defined by

〈A1,A2〉g := Tr(A−1
g A1A

−1
g A2) for any A1,A2 ∈ TgP (m) ' Sym(m,Qm) .

(I.5.2)
Since the map a 7→ (aT )−1 is an involutive automorphism of GL(m) with fixed
point set O(m,Qm), P (m) is a Riemannian symmetric space. The space MG is
nothing but the fixed point set of the isometric action of H on P (m) given by

Ag 7−→ (Ad(h)|m)Ag(Ad(h)|m)T , h ∈ H , g ∈ P (m) (I.5.3)

and so MG is a totally geodesic submanifold of P (m). Since P (m) splits isomet-
rically as R × SL(m)/SO(m,Qm), and SL(m)/SO(m,Qm) is a symmetric space of
non-compact type, we conclude that MG, endowed with the restriction of (I.5.2),
is a Riemannian symmetric space with non-positive sectional curvature.

We consider now a Qm-orthogonal, Ad(H)-invariant irreducible decomposition

m = m1 + . . .+ m` . (I.5.4)

If the adjoint representation of H is monotypic, i.e. mi 6' mj for any 1 ≤ i < j ≤ `,
the decomposition (I.5.4) is unique up to ordering and by the Schur Lemma any
invariant metric g ∈MG can be uniquely written as

g = λ1Qm1 + · · ·+ λ`Qm` , (I.5.5)

where Qmi := Q|mi⊗mi and λ1, . . . ,λ` ∈ R are positive coefficients. In general, the
decomposition (I.5.4) is not unique if some modules mi are equivalent to each other
and the invariant metrics need not to be diagonal anymore. We denote by FG the
space of ordered, Qm-orthogonal, Ad(H)-invariant, irreducible decompositions of
m, which is itself a compact homogeneous space (see [7, Lemma 4.19]).

The space MG can be described in terms of any fixed decomposition ϕ ∈ FG.
Instead of using such approach, we will allow the decomposition of m to vary
in the space FG. Indeed, it is known that for any g ∈ MG, there exists ϕ =

(m1, . . .,m`) ∈ FG with respect to which g is diagonal, i.e. takes the form (I.5.5)
(see see e.g. [87, Sec 1]). Any such ϕ will be called a good decomposition for g.
Notice that a metric g may admit more than one good decomposition.
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Since MG is a symmetric space with non-positive sectional curvature, by the
Cartan-Hadamard Theorem, its Riemannian exponential map is surjective. More-
over, by (I.5.1) and (I.5.3), we get

TQmM
G = Sym(m,Qm)Ad(H)

=
{
v ∈ Sym(m,Qm) : (Ad(h)|m)·v·(Ad(h)|m)T = v for any h ∈ H

}
.

For any fixed v ∈ TQmM
G, there exists a decomposition ϕ = (m1, . . .,m`) ∈ FG

such that
v = v1Qm1 + . . .+ v`Qm` for some v1, . . ., v` ∈ R .

By [30, p. 226], the geodesic γv(t) in MG starting from Qm and tangent to
v ∈ TQmM

G, with respect to the same decomposition ϕ, takes the form

γv(t) = etv1Qm1 + . . .+ etv`Qm` . (I.5.6)

Any such decomposition will be called good decomposition for v. Notice that the
eigenvalues vi do not depend on the choice of the good decomposition. Since
vol(γv(t)) = exp(tTr(v)), it follows that MG

1 is a totally geodesic submanifold of
MG. In particular, we consider the unit tangent sphere

Σ :=
{
v ∈ Sym(m,Qm)Ad(H) : Tr(v2) = 1 , Tr(v) = 0

}
(I.5.7)

so that
MG

1 = {Qm} ∪ {γv(t) : v ∈ Σ , t > 0} .

Notice that the space MG
1 is a singleton if and only if G/H is isotropy irreducible.

In that case, Σ = ∅.

I.5.2 Curvature of compact homogeneous spaces

Let us fix a decomposition ϕ = (m1, . . .,m`) ∈ FG for the reductive complement m
and set I := {1, . . ., `}. Notice that the number ` of irreducible invariant submod-
ules does not depend on the choice of the decomposition ϕ. We set di := dim(mi)

which are again, up to ordering, independent of ϕ. A basis (eα) for m is said to
be ϕ-adapted if

e1, . . ., ed1 ∈ m1 , ed1+1, . . ., ed1+d2 ∈ m2 , . . . , ed1+...+d`−1+1, . . ., en ∈ m` .
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For any subset I ′ ⊂ I, we set

mI′ :=
∑
i∈I′

mi , dI′ :=
∑
i∈I′

di . (I.5.8)

Moreover, for any I1, I2, I3 ⊂ I, we define

[I1I2I3]ϕ :=
∑

eα∈mI1
eβ∈mI2
eγ∈mI3

Q([eα, eβ], eγ)2 , (I.5.9)

where (eα) is a Qm-orthonormal ϕ-adapted basis for m. If at least one of the
three index sets is a singleton, say e.g. I1 = {i}, we will shortly write [iI2I3]ϕ

instead of [{i}I2I3]ϕ. Notice that [I1I2I3]ϕ is symmetric in all three entries and
it does not depend on the choice of the Qm-orthonormal basis (eα). Furthermore,
[I1I2I3]ϕ ≥ 0 and [I1I2I3]ϕ = 0 if and only if [mI1 ,mI2 ] ∩ mI3 = {0}. Finally,
though the coefficients [I1I2I3]ϕ do depend on the choice of ϕ, the correspondence
ϕ→ [I1I2I3]ϕ is a continuous function on FG (see [7, Sec 4.3]).

We introduce now the Casimir operator

CQh
: m→ m , CQh

:= −
∑
i

ad(zi) ◦ ad(zi) ,

where Qh := Q|h⊗h and (zi) is any Qh-orthonormal basis for h. Then, the following
conditions hold:

CQh
|mi = ci Idmi , (I.5.10)

with ci ≥ 0 and ci = 0 if and only if [h,mi] = {0} (see [87, Sec 1]). We also define
the coefficients b1, . . ., b` ∈ R by setting

(−B)|mi⊗mi = biQmi , (I.5.11)

where B is the Cartan-Killing form of g. Since g is compact, it follows that bi ≥ 0

and bi = 0 if and only if mi ⊂ z(g). If G is semisimple, then one can choose
Q = −B, so that bi = 1 for any i.

Notice that both the coefficients ci and bi do depend on the choice of ϕ, while

bG/H := TrQm(−B) =
∑
i∈I

dibi (I.5.12)
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does not. Moreover, they are related by the following useful relation (see [87,
Lemma 1.5]):

dibi = 2dici +
∑
j,k∈I

[ijk]ϕ for any i ∈ I . (I.5.13)

Let now g ∈MG be a diagonal metric as in (I.5.5) with respect to ϕ. The next
proposition gives explicit formulas for the sectional curvature sec(g) of g along
ϕ-adapted 2-planes in m. Notice that one could obtain (I.5.14) and (I.5.15) from
[27, Cor 1.13] where the authors proved a more general formula for the sectional
curvature of diagonal cohomogeneity one metrics.

Proposition I.5.1. Let X,Y ∈ m be Qm-orthonormal vectors. If X ∈ mi and
Y ∈ mj for some i, j ∈ I, then the sectional curvature of g along X ∧ Y is given
by the following formulas.
· if i = j, then

sec(g)(X∧Y ) =
1

λi

∣∣[X,Y ]h
∣∣2
Q

+
∑
k∈I

4λi − 3λk
4λ2

i

∣∣[X,Y ]mk
∣∣2
Q

, (I.5.14)

· if i 6= j, then

sec(g)(X∧Y ) =
∑
k∈I

λ2
i + λ2

j − 3λ2
k − 2λiλj + 2λiλk + 2λjλk

4λiλjλk

∣∣[X,Y ]mk
∣∣2
Q

.

(I.5.15)

Proof. We let X̃ := 1√
λi
X, Ỹ := 1√

λj
Y . By [3, Thm 7.30] it holds that

sec(X∧Y ) = −3
4

∣∣[X̃, Ỹ ]m
∣∣2
g
− 1

2g
(
[X̃, [X̃, Ỹ ]]m, Ỹ ]

)
− 1

2g
(
[Ỹ , [Ỹ , X̃]]m, X̃]

)
+

+
∣∣Ug(X̃, Ỹ )

∣∣2
g
− g
(
Ug(X̃, X̃),Ug(Ỹ , Ỹ )

)
,

(I.5.16)
where Ug : m⊗m→ m is the symmetric tensor uniquely defined by

2g(Ug(X,Y ),Z) := g([Z,X]m,Y ) + g([Z,Y ]m,X) . (I.5.17)

We observe that∣∣[X̃, Ỹ ]m
∣∣2
g

=
∑
k∈I

λk
λiλj

∣∣[X,Y ]mk
∣∣2
Q

,

g([X̃, [X̃, Ỹ ]]m, Ỹ ) =
1

λi
Q([X, [X,Y ]],Y ) = − 1

λi

∣∣[X,Y ]
∣∣2
Q

, (I.5.18)

g([Ỹ , [Ỹ , X̃]]m, X̃) =
1

λj
Q([Y , [Y ,X]],X) = − 1

λj

∣∣[X,Y ]
∣∣2
Q

.
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Let now (eα) be a ϕ-adapted Qm-orthonormal basis for m. Then

g(Ug(X̃, X̃), eα) = g([eα, X̃], X̃) = 1
λi
Q([X,X], eα) = 0

and so
Ug(X̃, X̃) = Ug(Ỹ , Ỹ ) = 0 . (I.5.19)

Finally

|Ug(X̃, Ỹ )|2g =
∑
k∈I

∑
eα∈mk

g(Ug(X̃, Ỹ ), 1√
λk
eα)2

=
∑
k∈I

∑
eα∈mk

1

4λiλjλk

(
g([eα,X],Y ) + g([eα,Y ],X)

)2
(I.5.20)

=
∑
k∈I

|λi − λj |2

4λiλjλk

∣∣[X,Y ]mk
∣∣2
Q

.

By (I.5.18), (I.5.19) and (I.5.20), formula (I.5.16) becomes

sec(g)(X∧Y ) =

= −
∑
k∈I

3λk
4λiλj

∣∣[X,Y ]mk
∣∣2
Q

+
1

2

( 1

λi
+

1

λj

)∣∣[X,Y ]
∣∣2
Q

+
∑
k∈I

|λi − λj |2

4λiλjλk

∣∣[X,Y ]mk
∣∣2
Q

=
δij
λi

∣∣[X,Y ]h
∣∣2
Q

+
∑
k∈I

2λi + 2λj − 3λk
4λiλj

∣∣[X,Y ]mk
∣∣2
Q

+
∑
k∈I

|λi − λj |2

4λiλjλk

∣∣[X,Y ]mk
∣∣2
Q

=
δij
λi

∣∣[X,Y ]h
∣∣2
Q

+
∑
k∈I

λ2
i + λ2

j − 3λ2
k − 2λiλj + 2λiλk + 2λjλk

4λiλjλk

∣∣[X,Y ]mk
∣∣2
Q

and so both (I.5.14) and (I.5.15) follow.

As far as it concerns the Ricci tensor Ric(g) : m⊗m→ R, the following lemma
holds true (see also [60, Lemma 1.1]).

Lemma I.5.2. For any 1 ≤ i ≤ ` it holds that

Ric(g)|mi⊗mi = λi rici(g)Qmi ,

where

rici(g) :=
bi

2λi
− 1

2di

∑
j,k∈I

[ijk]ϕ
λk
λiλj

+
1

4di

∑
j,k∈I

[ijk]ϕ
λi
λjλk

. (I.5.21)
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If the adjoint representation of H on m is monotypic, then the Ricci tensor de-
composes as

Ric(g) = λ1 ric1(g)Qm1 + . . .+ λ` ric`(g)Qm` .

Proof. By the Schur Lemma, for any 1 ≤ i ≤ ` there exist xi ∈ R such that
Ric(g)|mi⊗mi = xiQmi . Then, letting (eα) be a ϕ-adapted Qm-orthonormal basis
for m, it necessarily holds that

rici(g) =
xi
λi

=
1

diλi

∑
eα∈mi

Ric(g)(eα, eα) =
1

di

∑
eα∈mi

Ric(g)
(
eα√
λi

, eα√
λi

)
. (I.5.22)

Notice that, from (I.5.9), (I.5.10) and the Ad(G)-invariance of Q, we directly
obtain that

∑
eα∈mi
eβ∈mj

∣∣[eα, eβ]h
∣∣2
Q

= δijdici ,
∑
eα∈mi
eβ∈mj

∣∣[eα, eβ]mk
∣∣2
Q

= [ijk]ϕ . (I.5.23)

Therefore, for any fixed i ∈ I, we get

∑
j∈I

∑
eα∈mi
eβ∈mj

sec(g)(eα ∧ eβ) =

(I.5.23)
=

∑
j∈I

∑
eα∈mi
eβ∈mj

δij
λi

∣∣[eα, eβ]h
∣∣2
Q

+

+
∑
j,k∈I

∑
eα∈mi
eβ∈mj

λ2
i + λ2

j − 3λ2
k − 2λiλj + 2λiλk + 2λjλk

4λiλjλk

∣∣[eα, eβ]mk
∣∣2
Q

(I.5.23)
=

dici
λi

+
1

4

∑
j,k∈I

[ijk]ϕ
λ2
i − (λj − λk)2

λiλjλk

(I.5.13)
=

dibi
2λi

+
1

4

∑
j,k∈I

[ijk]ϕ

(
−
λ2
j + λ2

k

λiλjλk
+

λi
λjλk

)
(I.5.23)

=
dibi
2λi
− 1

2

∑
j,k∈I

[ijk]ϕ
λk
λiλj

+
1

4

∑
j,k∈I

[ijk]ϕ
λi
λjλk

. (I.5.24)
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Finally, from (I.5.22) and (I.5.24) we conclude that

rici(g) =
1

di

∑
eα∈mi

Ric(g)
(
eα√
λi

, eα√
λi

)
=

1

di

∑
j∈I

∑
eα∈mi
eβ∈mj

sec(g)(eα ∧ eβ)

=
bi

2λi
− 1

2di

∑
j,k∈I

[ijk]ϕ
λk
λiλj

+
1

4di

∑
j,k∈I

[ijk]ϕ
λi
λjλk

.

The last claim follows directly by applying the Schur Lemma.

Notice that the coefficients rici(g) defined in (I.5.21) are precisely the diagonal
terms of the Ricci operator Ric(g) : m→ m given by the relation Ric(g)(X,Y ) =

g
(

Ric(g)(X),Y
)
.

Finally, by (I.5.21), it comes that the scalar curvature of g is given by (see
also [87, Sec 1])

scal(g) =
∑
i∈I

di rici(g) =
1

2

∑
i∈I

dibi
λi
− 1

4

∑
i,j,k∈I

[ijk]ϕ
λi
λjλk

. (I.5.25)





Chapter II

A local version of the
Myers-Steenrod Theorem

II.1 Statement of results

In this chapter we give a characterization of local groups of isometries that ad-
mit structures of local Lie transformation groups. More precisely, we prove the
following

Theorem II.1.1. Any locally compact and effective local topological group of
isometries acting on a pointed Ck,α-Riemannian manifold, with k + α > 0, is
a local Lie group of isometries.

Our result can be considered as a local version of the Myers-Steenrod Theorem
[53]. We recall that the most enhanced version of this result is actually a conse-
quence of the celebrated Gleason, Montgomery and Zippin solution to Hilbert’s
fifth problem [23, 50]:
(H5) A locally compact topological group admits a Lie group structure if and

only if it is locally Euclidean, and this occurs if and only if it has no small
subgroups.

Note that (H5) is a characterization of Lie groups among all topological groups
in terms of just group theory and topology. It was thus natural to expect that a
similar property holds for local Lie groups too. However, such a result was proved
only recently by Goldbring in [25] using techniques from non-standard Analysis.
The proof of our Theorem II.1.1 is strongly based on Goldbring’s Theorem.

35
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For a better understanding of our result, it is convenient to briefly review the
relations between the solution to the Hilbert’s fifth problem (H5) and the various
known versions of the Myers-Steenrod Theorem. We start by recalling that the
original paper [53] contains the following two results:
(MS1) Any distance preserving map between Ck-Riemannian manifolds, with k ≥

2, is of class Ck−1;
(MS2) Any closed group of isometries acting on a Ck-Riemannian manifold, with

k ≥ 2, is a Lie transformation group.
Subsequently, the works by Calabi and Hartman [16], Rešetnjak [68], Sabitov [71]
and Shefel’ [74] allowed to obtain the following stronger version of (MS1):
(MS1’) Any distance preserving map between Ck,α-Riemannian manifolds, with

k + α > 0, is of class Ck+1,α.
Now, claims (MS1’) and (H5) imply a strengthened version of (MS2), which holds
under much lower regularity assumptions. Namely
(MS2’) Any closed group of isometries acting on a Ck,α-Riemannian manifold,

with k + α > 0, is a Lie transformation group.
To the best of our knowledge, this is the strongest version of the Myers-Steenrod
Theorem which can be obtained using the so far known results. For the reader
convenience, we provide a proof in Section II.2 below. Our Theorem II.1.1 is
obtained under the same regularity assumptions of such stronger version of (MS2)
and can therefore be considered as a perfect analogue of it in the category of local
groups of transformations.

We would like to point out that, as many authors have predicted the existence
of a local version of (H5), also the contents of our Theorem II.1.1 were expected to
be true (see [52, p. 616]). On the other hand, its proof remained an open problem
since the very first appearance of the Myers-Steenrod Theorem in [53], where the
authors themselves ended the paper asking explicitly whether any locally compact
group germ of local isometries were a Lie group germ or not. We guess that the
lapse of time that passed between the statement of the problem and the finding
of the solution presented here was caused by the lack of specific technical tools
for dealing with local Lie groups, a gap which was finally filled in the previous
quoted paper by Goldbring.

As a by-product, we also obtain a useful regularity result for locally homoge-
neous Riemannian metrics, on which the main results of Chapter III are based.
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Namely

Theorem II.1.2. Let (M , g) be a locally homogeneous C1-Riemannian manifold.
If there exist a point p ∈M and a locally compact, effective local topological group
of isometries which acts transitively on (M , g, p), then (M , g) is real analytic.

II.2 The Myers-Steenrod Theorem in low regularity

We provide here a proof of the version (MS2’) of the Myers-Steenrod Theorem. We
also show how it yields a useful regularity property for homogeneous Riemannian
manifolds. First, we recall the following crucial result, which is a consequence of
Theorem I.3.1.

Theorem II.2.1 ([51] Thm 2, p. 208). Let G = (G, Θ) be a topological group of
Ck-transformations on a smooth manifold M , with k ≥ 1. If G is effective and
locally compact, then G is a Lie group of Ck-transformations.

We also need the following property, which is essentially due to van Dantzig
and van der Waerden [20]. Let (M , g) be a Ck,α-Riemannian manifold and
Iso(M , g) its full isometry group. We recall that the compact-open topology
τco on Iso(M , g) is generated by the subbasis formed by the sets

(f ;K; ε) := {h ∈ Iso(M , g) : dg(f(x),h(x)) < ε for any x ∈ K} ,

with f ∈ Iso(M , g), K ⊂ M compact, ε > 0. On the other hand, the point-open
topology τpo on Iso(M , g) is generated by the subbasis formed by the sets

(f ;x; ε) := {h ∈ Iso(M , g) : dg(f(x),h(x)) < ε} ,

with f ∈ Iso(M , g), x ∈M , ε > 0.

Lemma II.2.2. On Iso(M , g), the compact-open topology coincides with the point-
open topology. This topology is Hausdorff, it makes the group operations continu-
ous and it is the coarsest topology with respect to which the action of Iso(M , g) on
M is continuous. Furthermore, with respect to such topology, Iso(M , g) is locally
compact and its action on M is proper.
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Proof. We set G := Iso(M , g) for short. Let us fix f ∈ G, K ⊂ M compact,
ε > 0 and let x1, . . .,xN ∈ K be such that K ⊂ Bg(x1, ε3) ∪ . . . ∪ Bg(xN , ε3).
We have to show that A :=

⋂
1≤i≤N (f ;xi;

ε
3) is contained in (f ;K; ε). So, let us

consider h ∈ A and x ∈ K. By construction, there exists 1 ≤ i ≤ N such that
dg(x,xi) <

ε
3 . But then

dg(f(x),h(x)) ≤ dg(f(x), f(xi)) + dg(f(xi),h(xi)) + dg(h(xi),h(x)) < ε

and hence τco ⊂ τpo. Since the other inclusion is obvious, we conclude that
τco = τpo. The second claim is just a collection of some well known properties
of the compact-open topology. We refer to the main theorem of [46] for the last
claim.

We are now ready to prove the following

Corollary II.2.3 (Enhanced version of the Myers-Steenrod Theorem). Any
closed group of isometries of a Ck,α-Riemannian manifold, with k + α > 0, is
a Lie group of isometries.

Proof. Let (M , g) be a Ck,α-Riemannian manifold, with k + α > 0, and consider
its full isometry group G = Iso(M , g). Then, by means of Theorem I.1.5 and
Lemma II.2.2, G is an effective group of Ck+1-transformation and G is locally
compact. Then, by Theorem II.2.1, it is a Lie group of isometries and the thesis
follows.

This corollary yields the following improvement of a well known property
of homogeneous Riemannian manifolds. As usual, a Ck,α-Riemannian manifold
(M , g) is called homogeneous if it admits a closed, transitive group of isometries.

Theorem II.2.4. Any homogeneous C0,α-Riemannian manifold, with α > 0, is
real analytic.

Proof. Let (M , g) be a C0,α-Riemannian manifold, with α > 0, and G = (G, Θ)

a closed, transitive topological group of isometries acting on (M , g). Pick a dis-
tinguished point xo ∈ M and consider the isotropy subgroup of G at xo, i.e.
H := {a ∈ G : Θ(a,xo) = xo}. From Corollary II.2.3, it follows that G is a Lie
group of isometries and, by means of Theorem I.1.5, the map Θ : G ×M → M
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is of class C1. Then, H is an embedded Lie subgroup of G and we get the C1-
diffeomorphism

ϑxo : G/H→M , ϑxo(aH) := Θ(a,xo) . (II.2.1)

Since G acts by isometries, there exists a unique invariant Cω-Riemannian metric
g̃ on G/H which makes the map ϑxo : (G/H, g̃) → (M , g) an isometry. From this
the thesis follows.

II.3 Proof of Theorem II.1.1

The purpose of this section is to give the proof of a local analogue of Theorem
II.2.1, namely

Theorem II.3.1. Let G = (G,UG, Ωp,W, Θ) be a local topological group of Ck-
transformations on a pointed smooth manifold (M , p), with k ≥ 1. If G is locally
compact and effective, then G is a local Lie group of Ck-transformations.

of which Theorem II.1.1 is an immediate consequence.

First, we need a preparatory lemma. For its statement, we introduce the
following definition. Let G be a local topological group. For any integer N ≥ 1

and for any a1, . . ., aN , b ∈ G, we say that the element a1 ·a2 · . . . ·aN is well defined
and equal to b, for short a1 · a2 · . . . · aN = b, if the following condition defined
by induction on N is satisfied: for any 1 ≤ i ≤ N there exist bi, b′i ∈ G such that
a1 · . . . · ai = bi, ai+1 · . . . · aN = b′i, (b′i, b

′′
i ) ∈ D(G) and bi · b′i = b. If U ⊂ G is a

neighborhood of the unit such that a1 · . . . · aN is well defined for any choice of
a1, . . ., aN ∈ U, we set UN :=

{
a1 · . . . · aN : a1, . . ., aN ∈ U

}
.

Lemma II.3.2. Let G = (G,UG, Ωp,W, Θ) be a local topological group of Ck-
transformations on a pointed smooth manifold (M , p). Then:
i) For any compact set K ⊂ Ωp, there exists a neighborhood U ⊂ UG of the unit

such that U×K ⊂W.
ii) For any fixed N ∈ N, there exists a neighborhood WN of {e} ×Ωp in W such

that for any
(a1,x), . . . , (aN ,x) ∈WN

the element a1 · . . . · aN is well defined and (bi · b′i,x), (bi, Θ(b′i,x)) ∈ W for
any 1 ≤ i ≤ N , where bi := a1 · . . . · ai and b′i := ai+1 · . . . · aN .
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Proof. To prove the first claim, it is sufficient to observe that, since {e} × K is
compact, there exists an finite open cover {I1, . . ., I`} of {e}×K inside W, where
the open sets Ii have the form Ii = Ui×Ui for any 1 ≤ i ≤ `. Then U ⊂

⋂
1≤i≤`Ui

satisfies (i).
We now recall that there exists a sequence of nested neighborhoods

{e} ⊂ . . . ⊂ D̃N (G) ⊂ D̃N−1(G) ⊂ . . . ⊂ D̃2(G) ⊂ G

of the unit such that, for any N ≥ 2 and for any choice of N elements a1, . . ., aN ∈
D̃N (G), the product a1 · . . . · aN is well defined (see e.g. [25, Lemma 2.5]).

Fix N ∈ N. By (i) we can consider N exhaustions
{
U

(n)
1

}
, . . . ,

{
U

(n)
N

}
of Ωp by

relatively compact open sets and two sequences
{
U(n)

}
,
{
U′(n)

}
of neighborhoods

of the unit in UG ⊂ G such that:
· U (n)

1 ⊂⊂ U (n)
2 ⊂⊂ · · · ⊂⊂ U (n)

N ⊂⊂ U (n+1)
1 and U(n+1) ⊂ U′(n+1) ⊂ U(n),

· U′(n) × U (n)
N ⊂

(
D̃N (G)×M

)
∩W,

· (U(n)
)N ⊂ U′(n) and Θ

(
U(n) × U (n)

i

)
⊂ U (n)

i+1 for any 1 ≤ i ≤ N − 1.
It is immediate now to realize that for any (a1,x), . . . , (aN ,x) ∈ U(n) × U (n)

1 it
holds that a1 · . . . ·aN is well defined and that (bi · b′i,x), (bi, Θ(b′i,x)) ∈W for any
1 ≤ i ≤ N , with a1 · . . . · ai = bi and ai+1 · . . . · aN = b′i. Therefore, if we define
WN :=

⋃
k∈NU(n) × U (n)

1 , then claim (ii) follows.

We observe that Theorem II.3.1 involves only local objects. Hence, without
loss of generality, we may assume that (M , p) = (Rm, 0). However, for the sake
of clarity, in what follows we will still use the symbols p and Ωp for 0 and the
distinguished neighborhood of 0, respectively.

Proposition II.3.3. Let k ≥ 1 and G = (G,UG, Ωp,W, Θ) a locally compact local
group of Ck-transformations on (M , p) = (Rm, 0). Then, there exist a relatively
compact neighborhood V ⊂ UG of the unit and a ball B ⊂ Ωp centered at p which
satisfy the following property: if H is a subgroup of G entirely contained in V, then
there exists a neighborhood Vo ⊂ B of the origin such that Θ(a)|Vo = IdVo for any
a ∈ H.

Proof. By [49, Thm 1] and [4, p. 685], given (a,x) ∈ W, for any neighborhood
Va ⊂ UG of a and for any ball B ⊂ Ωp centered at x such that Va ×B ⊂W, the
following holds: every partial derivative of the function Θ(b)|B : B → Rm up to
order k is continuous with respect to b ∈ Va.
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Since Θ(e) is the identity map of Ωp ⊂ Rm, from Lemma IV.4.1 it follows
that there exist a relatively compact neighborhood V ⊂ G of the unit and a ball
B ⊂⊂ Ωp of the origin such that V̄× B̄ ⊂WN , with N ≥ 2 big enough, and the
family of functions

{
(Θ(a) − Id)|B : B → Rm

}
a∈V is uniformly bounded in the

Banach space Ck(B̄) by a positive constant C ∈ R, which can be taken as small
as one likes by restricting V. Let now H be a subgroup of G entirely contained in
V. By taking the closure, one can suppose that H is closed and hence compact.
We define the map

T : B → Rm , T (x) :=
∫
H

Θ(a,x) dλ(a) ,

where λ is the Haar measure of H, normalized in such a way that λ(H) = 1. By
differentiating under the integral sign, it follows that T is of class Ck. Moreover

||T − Id ||Ck(B̄) ≤
∫
H
||Θ(a)− Id ||Ck(B̄) dλ(a) ≤ C .

By the Inverse Function Theorem, there exists an open neighborhood V ⊂ B of
the origin such that the restriction T |V : V → Rm is an open Ck-embedding and
T (V ) ⊂ B. On the other hand, we can choose a sufficiently small neighborhood
Vo ⊂ V of the origin such that Θ(a)(Vo) ⊂ V for any a ∈ V. Then, from the
bi-invariance of the Haar measure, for any b ∈ H and for any x ∈ Vo it follows
that (

T ◦Θ(b)
)
(x) =

∫
H

(
Θ(a) ◦Θ(b)

)
(x) dλ(a)

=

∫
H

Θ(a · b)(x) dλ(a) =

∫
H

Θ(a)(x) dλ(a) = T (x) .

Since T is invertible in V , we get Θ(b)|Vo = IdVo for any b ∈ H.

We are now able to conclude the proof of Theorem II.3.1. Suppose that G is
a locally compact and effective local topological group of Ck-transformations on
(Rm, 0). From Proposition II.3.3, we directly get that the abstract (local) group
of G is NSS. By Theorem I.3.5 and Remark I.3.6, we get the thesis.

II.4 Proof of Theorem II.1.2

Since we deal with locally homogeneous manifolds, in order to prove Theorem
II.1.2 we need to define rigorously a local analogous of the usual quotient of Lie
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groups. Namely

Proposition II.4.1. Let G be a Lie group and H ⊂ G be a (not necessarily closed)
Lie subgroup.
a) There exist a neighborhood UH ⊂ H of the unit in the manifold topology of H

and two neighborhoods U,V ⊂ G of the identity such that: UH is a sub-local
group of G with associated neighborhood V, UH is closed in V and U6 ⊂ V.

b) The binary relation on U defined by

a ∼ b def⇐⇒ a−1 · b ∈ UH

is an equivalence relation on U and the equivalence class [a]∼ of a ∈ U verifies
[a]∼ = (aUH) ∩ U.

c) The quotient space (G/H)(UH,U,V) := U/∼ =
{

(aUH) ∩ U : a ∈ U
}
is a topo-

logical manifold and it admits a real analytic structure, which is unique up to
Cω-diffeomorphism, with respect to which the following conditions hold:
· the canonical projection π(UH,U,V) : U→ (G/H)(UH,U,V) is a Cω-submersion;
· the tuple G(G,H),(UH,U,V) := (G,U, (G/H)(UH,U,V),W, Θ) with

W :=
{(
a, (bUH) ∩ U

)
: a ∈ U, b ∈ U, a · b ∈ U

}
,

Θ : W→ (G/H)UH,U,V , Θ(a)
(
(bUH) ∩ U

)
:= ((a · b)UH) ∩ U

is a local Lie group of Cω-transformations acting transitively on(
(G/H)(UH,U,V), (eUH) ∩ U

)
.

d) If (UH,U,V) and (U′H,U′,V′) are two triples both satisfying all conditions in
(a), then G(G,H),(UH,U,V) is locally Cω-equivalent to G(G,H),(U′H,U′,V′).

Proof. The proof of (a) is straightforward, while (b) is the statement of [25,
Lemma 2.13]. To prove (c), one can easily adapt the well known proof of the
corresponding statement for the quotient of a Lie group with respect to a closed
subgroup (see e.g. [30, Ch II, Sec 4]). Finally, to prove (d), let us consider two
neighborhoods U1,U2 ⊂ G of the unit such that (U1)2 ⊂ U2 and UH∩U2 = U′H∩U2.
Then let us pick a neighborhood Uo ⊂ U ∩ U′ ∩ U1 of the unit in G. One can
directly check that the map

π(UH,U,V)(Uo)→ π(U′H,U′,V′)(Uo) , (aUH) ∩ U 7→ (aU′H) ∩ U′

is a Cω-diffeomorphism.
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Given a Lie group G together with a Lie subgroup H, we call admissible triple
for H in G any choice of (UH,U,V) as in (a) and local factor space of G modulo
H any quotient (G/H)(UH,U,V) as in (c). Notice that H is closed in G if and only if
(H,G,G) is an admissible triple for H in G and, in that case, (G/H)(H,G,G) = G/H.
For other details concerning local factor spaces and locally homogeneous metrics,
we refer to [52] and [78].

Let now G = (G,UG, Ωp,W, Θ) be an almost-effective local Lie group of Ck-
transformations on (M , p), with k ≥ 2, and consider its infinitesimal generators
Θ∗ : g → Ck−1(Ωp;TM |Ωp). We define the subset h :=

{
X ∈ g : Θ∗(X)p = 0

}
.

By (I.3.2), it follows that h is a Lie subalgebra of g and so we can consider the
unique connected Lie subgroup H of G such that Lie(H) = h. We call it the
abstract isotropy subgroup of G at p. Notice that G is almost-effective if and only
if h does not contain any non-trivial ideal of g, while G is effective if and only
if H does not contain any non-trivial normal subgroup of G. As expected, the
following proposition holds.

Proposition II.4.2. For any admissible triple (UH,U,V) for H in G, G is locally
Ck-equivalent to the local Lie group of Cω-transformations G(G,H),(UH,U,V) defined
in (c) of Proposition II.4.1.

Proof. Let (UH,U,V) be an admissible triple for H in G and choose a sufficiently
small neighborhood of the unit Uo ⊂ U∩UG. Then, the identity map IdG : G→ G

and the map

ϑxo : π(UH,U,V)(Uo)→M , ϑxo((aUH) ∩ U) := Θ(a, p)

give rise to a local Ck-equivalence between G and G(G,H),(UH,U,V).

Let now (M , g) be a locally homogeneous C1-Riemannian manifold and assume
that there exist a point p ∈ M and a locally compact, effective local topological
group of isometries G = (G,UG, Ωp,W, Θ) which acts transitively on (M , g, p).

Lemma II.4.3. For any fixed xo ∈ M , there exists a neighborhood Uxo ⊂ M of
xo and an open C2-embedding ϕxo : Uxo → Rm such that the pulled-back metric
(ϕ−1

xo
)∗g on the open set ϕxo(Uxo) ⊂ Rm is real analytic.

Proof. Since (M , g) is locally homogeneous, it is sufficient to prove the claim for
xo = p. By means of Theorem II.1.1 and Theorem I.1.5, G is a local Lie group of
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isometries and the map Θ is of class C2. Then, let H be the abstract isotropy of
G at p and pick an admissible triple (UH,U,V) for H in G. By means of Proposi-
tion II.4.2, G is locally C2-equivalent to the local Lie group G(G,H),(UH,U,V) of Cω-
transformations on the local factor space (G/H)(UH,U,V). Since G acts on (M , g, p)

by isometries, there exists a unique Cω-Riemannian metric g̃ on (G/H)(UH,U,V)

which makes the map ϑxo : π(UH,U,V)(Uo)→M defined in the proof of Proposition
II.4.2 a local isometry.

We may now conclude the proof of Theorem II.1.2. By Lemma II.4.3, there
exists a C2-atlas A = {(Uα, ξα)} on M such that the metric g is real analytic with
respect to each coordinate chart (Uα, ξα) ∈ A. But then, by [21, Lemma 1.2],
there exists a Cω-atlas A′ on M which is compatible with A and with respect to
which g is real analytic.



Chapter III

A compactness theorem for
locally homogeneous spaces

III.1 Statement of results

In this chapter we prove the main results of the thesis, which concern the com-
pactness of some moduli spaces of locally homogeneous Riemannian manifolds.

Generalizing a notion introduced in [11], we consider a distinguished set of
locally homogeneous spaces (B, ĝ) called geometric models (see Definition III.2.1).
These objects provide a useful parametrization for the subspace Hloc

m (1) ⊂ Hloc
m of

those equivalence classes µ ∈ Hloc
m with bounded sectional curvature | sec(gµ)| ≤ 1.

Indeed, we prove

Theorem III.1.1. In any class µ ∈ Hloc
m (1) there exists a geometric model

(Bµ, ĝµ) = (Bĝµ(oµ,π), ĝµ), which is unique up to a global equivariant isometry.

The proof of Theorem III.1.1 is based on the following two preliminary results.
Firstly, for any equivariant local isometry class µ ∈ Hm(1) := Hloc

m (1) ∩Hm the
existence of a geometric model is a direct consequence of the Rauch Comparison
Theorem (see Remark III.2.4). Secondly, for any µ ∈ Hloc

m \ Hm there exists
a sequence (µ(n)) ⊂ Hm which converges to µ in an appropriate topology (see
Theorem III.3.4).

By means of these facts, Theorem III.1.1 is a consequence of the next

45
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Theorem III.1.2. The space of geometric models is compact in the pointed C1,α-
topology for any 0 < α < 1.

We would like to point out that our Theorem III.1.2 can be considered as a
generalization of a previous result by Böhm, Lafuente and Simon. In fact, they
proved the following in [11, Thm 1.6]: a sequence of geometric models (B(n), ĝ(n))

with Ric(ĝ(n)) → 0 converges, up to a subsequence, to a smooth flat Riemannian
manifold (M , g) in the pointed C1,α-topology for any 0 < α < 1. Indeed, both
theorems rely on a Cheeger-Gromov-type precompactness theorem for incomplete
Riemannian manifolds and in both proofs there is the need of showing that the
limit space, which is a priori just a C1,α-Riemannian manifold, is indeed smooth.
In [11, Thm 1.6] such required regularity is achieved by means of the additional
assumption on the Ricci tensor, while in our result we use Theorem II.1.2 proved
in Chapter II.

Notice that Theorem III.1.1 and Theorem III.1.2 directly imply the following

Corollary III.1.3. The moduli space Hloc
m (1) is compact in the pointed C1,α-

topology for any 0 < α < 1.

In order to use the compactness result of Theorem III.1.2 in the proof of
Theorem III.1.1, one needs to take care of some special issues on the convergence
of locally homogeneous spaces. In particular, we use the fact that the homogenous
spaces are dense in the class of locally homogenous spaces with respect to the
topology of the algebraic convergence. Moreover, the pointed C1,α-convergence
of a sequence of geometric models, combined with the additional assumption
of algebraic convergence, implies the pointed C∞-convergence of the geometric
models. This is the crucial step for concluding the proof of Theorem III.1.1.

As a by-product of our analysis of the various notions of convergence and of
Theorem III.1.1, we also obtain

Theorem III.1.4. Let (µ(n)) ⊂ Hloc
m (1) be a sequence, µ(∞) ∈ Hloc

m (1) and s ≥
ı(m) + 2 an integer.
i) If (Bµ(n) , ĝµ(n)) converges to (Bµ(∞) , ĝµ(∞)) in the pointed Cs+2-topology, then

(µ(n)) converges s-infinitesimally to µ(∞).
ii) If (µ(n)) converges (s+1)-infinitesimally to µ(∞), then (Bµ(n) , ĝµ(n)) converges

to (Bµ(∞) , ĝµ(∞)) in the pointed Cs+2,α-topology for any 0 < α < 1.
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which in turn immediately implies

Corollary III.1.5. Let (µ(n)) ⊂ Hloc
m (1) be a sequence and µ(∞) ∈ Hloc

m (1).
i) The geometric models (Bµ(n) , ĝµ(n)) converge to (Bµ(∞) , ĝµ(∞)) in the pointed
C∞-topology if and only if (µ(n)) converges infinitesimally to µ(∞).

ii) If (µ(n)) converges algebraically to µ(∞), then (Bµ(n) , ĝµ(n)) converges to
(Bµ(∞) , ĝµ(∞)) in the pointed C∞-topology.

Let us remark that here, as we pointed out in the Introduction, the role
of the geometric models is crucial. Indeed, in general pointed convergence is
much stronger than the infinitesimal convergence (see [41, Ex 6.6]). For reader’s
convenience, we summarize in the following diagram the relations among the three
notions of convergence.

Pointed C∞-convergence
of the geometric models

+3

�
#+

Infinitesimal
convergenceks

(

u}

ks

Algebraic
convergence

ck
5=

III.2 The space of geometric models

III.2.1 Geometric models

We begin this section by introducing the following

Definition III.2.1. A geometric model is a smooth locally homogeneous Rie-
mannian distance ball (B, ĝ) = (Bĝ(o,π), ĝ) of radius π satisfying | sec(ĝ)| ≤ 1

and injo(B, ĝ) = π.

From now until the end of Section III.2, up to pulling back the metric via the
Riemannian exponential map, any geometric model will be always assumed to be
of the form (Bm, ĝ), where Bm := Bst(0,π) ⊂ Rm is the m-dimensional Euclidean
ball of radius π, and the standard coordinates of Bm will be always assumed to
be normal for ĝ at 0. Therefore the geodesics starting from 0 ∈ Bm are precisely
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the straight lines and dĝ(0,x) = |x|st for any x ∈ Bm. Hence, Bĝ(0, r) = Bst(0, r)

for any 0 < r ≤ π. Moreover, by [11, Lemma 1.3] it comes that

injx(Bm, ĝ) = π − |x|st for any x ∈ Bm . (III.2.1)

Since (Bm, ĝ) is real analytic, any local isometry can be extended uniformly, i.e.

Lemma III.2.2 ([11], Lemma 1.4). Let x, y ∈ Bm and set ρx,y := π −
max{|x|st, |y|st}. Then, for any isometry f : Bĝ(x, ε) → Bĝ(y, ε) such that
f(x) = y and 0 < ε ≤ ρx,y, there exists an isometry f̃ : Bĝ(x, ρx,y)→ Bĝ(y, ρx,y)

such that f̃ |Bĝ(x,ε) = f .

Proof. Let 0 < ε ≤ ρx,y and f : Bĝ(x, ε) → Bĝ(y, ε) a local isometry such that
f(x) = y. By (III.2.1), the Riemannian exponential maps

Exp(ĝ)x : Bĝx(0x, ρx,y)→ Bĝ(x, ρx,y) , Exp(ĝ)y : Bĝy(0y, ρx,y)→ Bĝ(y, ρx,y)

are Cω-diffeomorphisms. Let us define

f̃ : Bĝ(x, ρx,y)→ Bĝ(y, ρx,y) , f̃ := Exp(ĝ)y ◦ df |x ◦ Exp(ĝ)−1
x .

Since f is an isometry, it preserves geodesics and hence f̃ |Bĝ(x,ε) = f . Moreover,
the analytic functions (f̃∗ĝ)ij and ĝij |Bĝ(x,ρx,y) coincide in the open ball Bĝ(x, ε).
Therefore (f̃∗ĝ)ij = ĝij |Bĝ(x,ρx,y) and hence f̃ is an isometry.

By repeating the same argument, one can also prove the following

Lemma III.2.3. Let (Bm, ĝ1) and (Bm, ĝ2) be two geometric models. Then, any
isometry

f : (Bst(0, ε), ĝ1)→ (Bst(0, ε), ĝ2) with 0 < ε < π

can be uniquely extended to an isometry f̃ : (Bm, ĝ1)→ (Bm, ĝ2).

Remark III.2.4. As pointed out in [11, Sec 1], any m-dimensional homogeneous
space (M , g) verifying | sec(g)| ≤ 1 is locally isometric to a geometric model
(Bm, ĝ), which is unique up to isometry by Lemma III.2.3. In fact, (M , g) is
complete (see [36, Ch IV, Thm 4.5]) and, fixed a point p ∈ M , by the Rauch
comparison theorem (see e.g. [33, Sec 6.5]), the differential of the Riemannian
exponential Exp(g)p : TpM → M of (M , g) at p is injective at every point of
Bgp(0p,π) ⊂ TpM . By choosing an orthonormal frame u : Rm → TpM , one can
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consider the pulled-back metric ĝ := (Exp(g)p ◦ u)∗g on Bm = Bst(0,π) ⊂ Rm.
Then, it is easy to check that (Bm, ĝ) is a geometric model, which is clearly locally
isometric to (M , g).

Notice that the argument in Remark III.2.4 cannot be used to prove that any
m-dimensional, possibly incomplete, locally homogeneous space (M , g) verifying
| sec(g)| ≤ 1 is locally isometric to a geometric model (Bm, ĝ). Nonetheless, this
claim is true by means of Theorem III.1.1.

III.2.2 Proof of Theorem III.1.2

Let (Bm, ĝ(n)) be a sequence of geometric models. The main purpose of this
section is to prove the following

Theorem III.2.5. The sequence (Bm, ĝ(n)) subconverges to a limit geometric
model (Bm, ĝ(∞)) in the pointed C1,α-topology for any 0 < α < 1.

which proves Theorem III.1.2. We begin with the following

Proposition III.2.6. The sequence (Bm, ĝ(n)) subconverges to an incomplete
pointed C1,α-Riemannian manifold

(
M (∞), g(∞), o

)
in the pointed C1,α-topology.

Proof. Fix a sequence (εk) ⊂ R with 0 < εk << 1 and εk → 0. We use local
mollifications in the sense of Hochard [32]. More concretely, by Lemma I.2.10 and
(III.2.1) there exists a uniform constant c = c(m) ≥ 1 and, for any fixed k ∈ N,
there exist open sets

Bst(0,π − 2εk) ⊂M
(n)
k ⊂ Bst(0,π − εk)

and smooth Riemannian metrics g(n)
k on M (n)

k such that:
i)
(
M

(n)
k , g

(n)
k

)
are complete smooth Riemannian manifolds,

ii) g(n)
k = ĝ(n) on Bst(0,π − 3εk),

iii) sup
{∣∣Rm(g

(n)
k )x

∣∣
ĝ

(n)
k

: x ∈M (n)
k

}
< c ε−2

k .

From (ii) it follows that inj0
(
M

(n)
k , g

(n)
k

)
≥ π − 3εk. Therefore by (i), (iii) and

Theorem I.2.9 we can extract a subsequence in such a way that
(
M

(n)
1 , g

(n)
1 , 0

)
converges in the pointed C1,α-topology to a pointed C1,α-Riemannian manifold(
M

(∞)
1 , g

(∞)
1 , o1

)
as n → +∞. Iterating this construction for any k ∈ N and us-

ing a Cantor diagonal procedure, we can extract a subsequence in such a way
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that
(
M

(n)
k , g

(n)
k , 0

)
converges in the pointed C1,α-topology to a pointed C1,α-

Riemannian manifold
(
M

(∞)
k , g

(∞)
k , ok

)
as n→ +∞ for any fixed k ∈ N.

In particular, for any k ∈ N we have a sequence of C2,α-embeddings

ψ
(n)
k : B

g
(∞)
k

(ok,π − 4εk) ⊂M
(∞)
k →M

(n)
k

such that ψ(n)
k (ok) = 0 and (ψ

(n)
k )∗g

(n)
k converges in the C1,α-topology to g(∞)

k

in B
g

(∞)
k

(ok,π − 4εk) as n → +∞. This implies that ψ(n)
k

(
Bgk(ok,π − 4εk)

)
⊂

Bst(0,π − 3εk) for n ∈ N sufficiently large and therefore by (ii) it comes that
(ψ

(n)
k )∗ĝ(n) converges in the C1,α-topology to g(∞)

k in B
g

(∞)
k

(ok,π − 4εk) as n →
+∞. Hence, there exist pointed isometric embeddings

ϕk :
(
B
g

(∞)
k

(ok,π − 4εk), g
(∞)
k , ok

)
→
(
B
g

(∞)
k+1

(ok+1,π − 4εk+1), g
(∞)
k+1, ok+1

)
for any k ∈ N. Therefore, we may consider the direct limit(

M (∞), g(∞), o
)
:= lim

−→

{(
B
g

(∞)
k

(ok,π − 4εk), g
(∞)
k , ok

)
,ϕk

}
k∈N

.

The triple
(
M (∞), g(∞), o

)
is a pointed C1,α-Riemannian manifold (see e.g. [19,

Ch 4, Sec 2.3]). Moreover, by construction we get the thesis.

Up to passing to a subsequence of (Bm, ĝ(n)), we can assume that there exist
an exhaustion (U (n)) ofM (∞) by relatively compact open sets centered at o and a
sequence of C2,α-diffeomorphisms φ(n) : U (n) → Bst

(
0,π− 1

2n

)
such that φ(n)(o) =

0 and g(n) := φ(n)∗ĝ(n) converges in the C1,α-topology to g(∞).

Let us define the subsets

U (n) :=
⋃

p∈U(n)

{p} ×B
g

(n)
p

(
0p,π − 1

2n − |φ
(n)(p)|st

)
⊂ TM (∞) ,

U (∞) :=
⋃

p∈M(∞)

{p} ×B
g

(∞)
p

(
0p,π − dg(∞)(o, p)

)
⊂ TM (∞) .

and the subsets

V(n) :=
⋃

p∈U(n)

{p} ×Bg(n)

(
p,π − 1

2n − |φ
(n)(p)|st

)
⊂M (∞) ×M (∞) ,

V(∞) :=
⋃

p∈M(∞)

{p} ×Bg(∞)

(
p,π − dg(∞)(o, p)

)
⊂M (∞) ×M (∞) .



III.2 The space of geometric models 51

Notice that the metrics g(n) on U (n) are merely of class C1,α. Nonetheless, we can
consider

E(n) : U (n) → U (n) , E(n)(p, v) := (φ(n))−1
(

Exp(ĝ(n))
(
φ(n)(p), (dφ(n))p(v)

))
.

By construction, the maps

Ě(n) : U (n) → V(n) , Ě(n)(p, v) =
(
p,E(n)(p, v)

)
are C2,α-diffeomorphisms and we indicate their inverses by Ľ(n) : V(n) → U (n).
Notice that the maps Ľ(n) are necessarily of the form Ľ(n)(p, q) =

(
p,L(n)(p, q)

)
,

with E(n)
(
p,L(n)(p, q)

)
= q for any (p, q) ∈ V(n) and L(n)

(
p,E(n)(p, v)

)
= v for

any (p, v) ∈ U (n).

Proposition III.2.7. The sequence (Ě(n)) subconverge uniformly on compact sets
to a C0,1-homeomorphism

Ě(∞) : U (∞) → V(∞) , Ě(∞)(p, v) =
(
p,E(∞)(p, v)

)
. (III.2.2)

Proof. Let us compute the differential of E(n) at a point (p, v) ∈ U (n). For
this purpose, pick two vectors w1 ∈ TpM (∞) and w2 ∈ Tv(TpM (∞)) = TpM

(∞),
consider the parallel transports of the pushforwards (dφ(n))p(v), (dφ(n))p(w2) ∈
Tφ(n)(p)B

m along the ĝ(n)-geodesic s 7→ Exp(ĝ(n))(φ(n)(p), s(dφ(n))p(w1)) and
pull them back by using φ(n). We indicate such paths with v(n)(w1; s)

and w
(n)
2 (w1; s), respectively. Moreover, consider the ĝ(n)-Jacobi field along

the ĝ(n)-geodesic t 7→ Exp(ĝ(n))(φ(n)(p), t(dφ(n))p(v)) with initial conditions
(dφ(n))p(w1), (dφ(n))p(w2) ∈ Tφ(n)(p)B

m and pull it back by using φ(n). We indi-

cate it with J (n)
w1,w2(v; t). Then, it is straightforward to check that the differential(
dE(n)

)
(p,v)

: TpM
(∞) ⊕ TpM (∞) → TE(n)(p,v)M

(∞)

is given by

(
dE(n)

)
(p,v)

(w1,w2) =
∂

∂s
E(n)

(
E(n)(p, sw1), t

(
v(n)(w1; s) + sw

(n)
2 (w1; s)

))∣∣∣∣
s=0
t=1

= J (n)
w1,w2

(v; 1) .

(III.2.3)
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We recall that, since | sec(g(n))| ≤ 1 by assumption, from the Rauch comparison
Theorem (see [33, Thm 6.5.1, Thm 6.5.2]) it follows that for any t ∈ [0, 1]∣∣J (n)

w1,0(v; t)
∣∣
g(n) ≤ cosh

(
t|v|g(n)

)
|w1|g(n) ,

sin
(
t|v|g(n)

)
|v|g(n)

|w2|g(n) ≤
∣∣J (n)

0,w2
(v; t)

∣∣
g(n) ≤

sinh
(
t|v|g(n)

)
|v|g(n)

|w2|g(n) .
(III.2.4)

By (III.2.3), the differential(
dĚ(n)

)
(p,v)

: TpM
(∞) ⊕ TpM (∞) → TpM

(∞) ⊕ TE(n)(p,v)M
(∞)

of the map Ě(n) is given by(
dĚ(n)

)
(p,v)

(w1,w2) =
(
w1, J (n)

w1,w2
(v; 1)

)
.

By (III.2.4) it comes that∣∣(dĚ(n)
)

(p,v)
(w1,w2)

∣∣
g(n) ≤ |w1|g(n) +

∣∣J (n)
w1,w2

(v; 1)
∣∣
g(n)

≤ |w1|g(n) +
∣∣J (n)
w1,0(v; 1)

∣∣
g(n) +

∣∣J (n)
0,w2

(v; 1)
∣∣
g(n)

≤
(

1+ cosh
(
|v|g(n)

)
+

sinh
(
|v|g(n)

)
|v|g(n)

)(
|w1|g(n)+|w2|g(n)

)
(III.2.5)

and also
√

2
∣∣(dĚ(n)

)
(p,v)

(w1,w2)
∣∣
g(n) ≥ |w1|g(n) + 1

12

∣∣J (n)
w1,w2

(v; 1)
∣∣
g(n)

≥ |w1|g(n) − 1
12

∣∣J (n)
w1,0(v; 1)

∣∣
g(n) + 1

12

∣∣J (n)
0,w2

(v; 1)
∣∣
g(n)

≥
(
1− 1

12 cosh
(
|v|g(n)

))
|w1|g(n)+

sin
(
t|v|g(n)

)
12|v|g(n)

|w2|g(n) .

(III.2.6)
From (III.2.3),(III.2.5) and (III.2.6), since g(n) converges in the C1,α-topology

to g(∞), for any compact set K ⊂M there exists δ̄ = δ̄(K) > 0 such that, for any
fixed 0 < δ < δ̄, there exist n̄ = n̄(K, δ) ∈ N and C = C(K, δ), c = c(K, δ) > 0

such that for any p ∈ K and n ≥ n̄

∅ 6= B
g

(∞)
p

(
0p,π − δ − dg(∞)(o, p)

)
⊂ B

g
(n)
p

(
0p,π − 1

2n − |φ
(n)(p)|st

)
⊂ TpM (∞)
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and for any v ∈ TpM (∞) with |v|g(∞) ≤ π − δ − dg(∞)(o, p) it holds

dg(∞)

(
Ě(n)(p, v), (o, o)

)
≤ C <

√
2π ,

e−c(|w1|g(∞) + |w2|g(∞)) <
∣∣(dĚ(n)

)
(p,v)

(w1,w2)
∣∣
g(∞) < ec(|w1|g(∞) + |w2|g(∞)) .

(III.2.7)
Here, we considered on the product M (∞) ×M (∞) the distance

dg(∞)

(
(p1, q1), (p2, q2)

)
:=
√
dg(∞)(p1, p2)2 + dg(∞)(q1, q2)2 .

Therefore, (III.2.7) implies that the sequence of diffeomorphism (Ě(n)) is uni-
formly locally bi-Lipschitz (see e.g. [39, Lemma 2.10]). Let us fix a compact
set K ⊂ M , let δ̄ = δ̄(K) be as above and consider a sequence (δi) ⊂ R such
that 0 < δi+1 < δi < δ̄ and δi → 0. By combining the Ascoli-Arzelà Theorem
with a Cantor diagonal procedure, from (III.2.7) it comes that the restriction
Ě(n)

∣∣
U(n)
K

subconverges uniformly on compact sets of U (∞)
K , where we have set

U (n)
K := U (n) ∩ TM (∞)|K and U (∞)

K := U (∞) ∩ TM (∞)|K . By considering now an
exhaustion of M (∞) by compact sets Kj and by applying again a Cantor diago-
nal procedure, we get that (Ě(n)) subconverges uniformly on compact sets to a
C0,1-homeomorphisms

Ě(∞) : U (∞) → V(∞) , Ě(∞)(p, v) =
(
p,E(∞)(p, v)

)
and this completes the proof.

By means of the proposition above, we pass to a subsequence of (Bm, ĝ(n))

in such a way that the maps Ě(n) converge uniformly on compact sets to a C0,1-
homeomorphism Ě(∞), which is necessarily of the form (III.2.2). We denote its
inverse by

Ľ(∞) : V(∞) → U (∞) , Ľ(∞)(p, q) :=
(
p,L(∞)(p, q)

)
.

Up to pass to a further subsequence, we can assume that (Ľ(n)) converges uni-
formly on compact sets to Ľ(∞). For the sake of shortness, we set

E(n)
p := E(n)(p, ·) , E(∞)

p := E(∞)(p, ·) ,

L(n)
p := L(n)(p, ·) , L(∞)

p := L(∞)(p, ·) .

Clearly it holds that L(n)
p =

(
E

(n)
p

)−1 and L(∞)
p =

(
E

(∞)
p

)−1.
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In the next theorem we will construct explicitly a local topological group of
isometries acting on the limit manifold (M (∞), g(∞), o). This will allow us to
apply Theorem II.1.2 afterwards. Firstly, we denote by Og(∞)

(
M (∞)

)
→ M (∞)

the orthonormal frame bundle of (M (∞), g(∞)). Secondly, letting ust be the stan-
dard orthonormal frame of

(
T0B

m, ĝ
(n)
0

)
=
(
Rm, 〈·, ·〉st

)
, we can assume, up to

passing to a further subsequence, that u(n)
st := ((dφ(n))o)

−1(ust) converges to an
orthonormal frame u(∞)

st for
(
ToM

(∞), g
(∞)
o

)
. This yields an identification

Og(∞)

(
M (∞)

)
=
{

(p, a) : p ∈M (∞) ,

a :
(
ToM

(∞), g(∞)
o

)
→
(
TpM

(∞), g(∞)
p

)
linear isometry

}
.

Theorem III.2.8. There exists a locally compact and effective local topological
group of isometries acting transitively on the pointed C1,α-Riemannian manifold
(M (∞), g(∞), o).

Proof. Since (Bm, ĝ(n)) are locally homogeneous and smooth, we can pick for
any n ∈ N an effective local Lie group of isometries G(n) acting transitively on
(Bm, ĝ(n), 0). By Lemma III.2.2, any local isometry f (n) ∈ G(n) admits a unique
analytic extension

f (n) : Bst

(
0,π−|f (n)(0)|st

)
→ Bĝ(n)

(
f (n)(0),π−|f (n)(0)|st

)
.

For any n ∈ N and for any f (n) ∈ G(n) such that |f (n)(0)|st < π
2 , we define

f̃ (n) : Dom(f̃ (n))→ Im(f̃ (n)) , f̃ (n) := φ(n)−1 ◦ f (n) ◦
(
φ(n)|Dom(f̃ (n))

)
,

where Dom(f̃ (n)), Im(f̃ (n)) ⊂ U (n) are the open subsets given by

Dom(f̃ (n)) :=
(
f (n) ◦ φ(n)

)−1
(
Bst

(
0,π − 1

2n

)
∩Bĝ(n)

(
f (n)(0),π−|f (n)(0)|st

))
,

Im(f̃ (n)) :=
(
φ(n)

)−1
(
Bst

(
0,π − 1

2n

)
∩Bĝ(n)

(
f (n)(0),π−|f (n)(0)|st

))
.

Hence G̃(n) :=
{
f̃ (n) : f (n) ∈ G(n), |f (n)(0)|st < π

2

}
is a transitive, effective local

Lie group of isometries on (M (∞), g(n), o). We are going to describe explicitly
below the structure of local group of G̃(n).

The multiplication
ν̃(n) : D(G̃(n))→ G̃(n) (III.2.8)
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is defined in the following way. First, we set

D(G̃(n)) :=
{(
f̃

(n)
1 , f̃

(n)
2

)
∈ G̃(n)×G̃(n) :

∣∣f (n)
1 (f

(n)
2 (0))

∣∣
st
< π

2

}
.

Then, given
(
f̃

(n)
1 , f̃

(n)
2

)
∈ D(G̃(n)), we consider a neighborhood V of 0 ∈ Bm

such that

V ⊂ Bst

(
0,π−|f (n)

2 (0)|st
)

, f2(V ) ⊂ Bst

(
0,π−|f (n)

1 (0)|st
)

and we set f (n)
3 := f

(n)
1 ◦(f (n)

2 |V ). Then, we consider the analytic extension of f (n)
3

as above and we set ν̃(n)
(
f̃

(n)
1 , f̃

(n)
2

)
:= f̃

(n)
3 . In the same fashion, the inversion

map
̃(n) : G̃(n) → G̃(n) (III.2.9)

is defined by choosing, for any given f̃ (n) ∈ G̃(n), a neighborhood V of 0 ∈ Bm

such that
V ⊂ Bst

(
0,π−|f (n)(0)|st

)
, 0 ∈ f (n)(V )

and defining f ′(n) := (f (n)|V )−1. Then, we consider the analytic extension of f ′(n)

and we set ̃(n)(f̃ (n)) := f̃ ′(n).
We stress the fact that any f̃ (n) ∈ G̃(n) verifies

f̃ (n)(x) =
(
E

(n)

f̃ (n)(p)
◦
(
df̃ (n)|p

)
◦ L(n)

p

)
(x) (III.2.10)

for any x ∈ Dom(f̃ (n)) ∩Bg(n)

(
p,π − 1

2n − |φ
(n)(p)|

)
, for any p ∈ Bg(∞)(o, π2 ).

Let us consider now a dense and countable subset S ⊂ Bg(∞)(o, π2 ). By com-
bining the Ascoli-Arzelà Theorem with a Cantor diagonal procedure (see Step
1 of the proof of [28, Thm 6.6]), up to pass to a subsequence the following
claim holds true: for any p ∈ S, there exists a sequence f̃ (n) ∈ G̃(n) which
converges in the C1-topology to a g(∞)-isometry f̃ (∞) : Bg(∞)(o,π−dg(∞)(o, p))→
Bg(∞)(p,π−dg(∞)(o, p)), with f̃ (∞)(o) = p. For the sake of brevity, we just write
f̃ (∞) = limC1 f̃ (n) and

Dom(f̃ (∞)) := Bg(∞)

(
o,π−dg(∞)(o, f̃ (∞)(o))

)
. (III.2.11)

Let us set

G̃(∞) :=
{
f̃ (∞) : there exists a sequence f̃ (n) ∈ G̃(n) s.t. f̃ (∞) = limC1 f̃ (n)

}
.
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Then, G̃(∞) can be endowed with a structure of local group in the following way.
Firstly we define the subsetD(G̃(∞)) ⊂ G̃(∞)×G̃(∞) of those pairs (f̃

(∞)
1 , f̃

(∞)
2 )

for which there exist f̃ (n)
1 , f̃

(n)
2 ∈ G̃(n) such that

(
f̃

(n)
1 , f̃

(n)
2

)
∈ D(G̃(n)) for any

n ∈ N large enough and f̃ (∞)
i = limC1 f̃

(n)
i . Notice that the definition of D(G̃(∞))

does not depend on the choice of the sequences (f̃
(n)
i ), i = 1, 2. Then, we set

ν̃(∞) : D(G̃(∞))→ G̃(∞) , ν̃(∞)(f̃
(∞)
1 , f̃

(∞)
2 ) := limC1 ν̃(n)(f̃

(n)
1 , f̃

(n)
2 ) ,

(III.2.12)
where ν̃(n) was defined in (III.2.8). Analogously, we set

̃(∞) : G̃(∞) → G̃(∞) , ̃(∞)(f̃ (∞)) := limC1 ̃(n)(f̃ (n)) , (III.2.13)

where ̃(n) was defined in (III.2.9). One can directly check that both (III.2.12)
and (III.2.13) are well defined.

From Proposition III.2.7 and (III.2.10) it comes that any f̃ (∞) ∈ G̃(∞) verifies

f̃ (∞)(x) =
(
E

(∞)

f̃(p)
◦
(
df̃ (∞)|p

)
◦ L(∞)

p

)
(x) (III.2.14)

for any x ∈ Dom(f̃ (n)) ∩Bg(∞)

(
p,π − dg(∞)(o, p)

)
, for any p ∈ Bg(∞)(o, π2 ).

Let us consider now the map

σ : G̃(∞) → Og(∞)

(
M (∞)

)
, σ(f̃ (∞)) :=

(
f̃ (∞)(o), df̃ (∞)|o

)
. (III.2.15)

From (III.2.14) it comes directly that σ is injective. Then, we indicate with G(∞)

the topological closure of σ(G̃(∞)) inside Og(∞)

(
M (∞)

)
. One can define a structure

of local topological group of G(∞) by defining an open set D(G(∞)) ⊂ G(∞)×G(∞)

and two maps ν(∞) : D(G(∞)) → G(∞), (∞) : G(∞) → G(∞) by extending
(III.2.12), (III.2.13) in the following way.

First, letD(G(∞)) be the subset of those pairs ((p1, a1), (p2, a2)) ∈ G(∞)×G(∞)

for which there exist (f̃
(∞)
1,k ), (f̃

(∞)
2,k ) ⊂ G̃(∞) such that

(
f̃

(∞)
1,k , f̃

(∞)
2,k

)
∈ D(G̃(∞))

for any k ∈ N large enough and (pi, ai) = limk→+∞ σ(f̃
(∞)
i,k ). Then, we define

ν(∞) : D(G(∞))→ G(∞) ,

ν(∞)((p1, a1), (p2, a2)) := lim
k→+∞

σ
(
ν̃(∞)(f̃

(∞)
1,k , f̃

(∞)
2,k )

)
.

(III.2.16)
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Notice that, if we set pi,k := f̃
(∞)
i,k (o) and ai,k := df̃

(∞)
i,k |o we get

ν̃(∞)( ˜f (∞)
1,k, f̃

(∞)
2,k )(o) =

(
E(∞)
p1,k
◦ a1,k ◦ L(∞)

o ◦ E(∞)
p2,k
◦ a2,k

)
(0o) ,

d
(
ν̃(∞)(f̃

(∞)
1,k , f̃

(∞)
2,k )

)
|o =

= L
(∞)

(E
(∞)
p1,k
◦a1,k◦L

(∞)
o ◦E(∞)

p2,k
◦a2,k)(0o)

◦ E(∞)
p1,k
◦ a1,k ◦ L(∞)

o ◦ E(∞)
p2,k
◦ a2,k

and hence the limit (III.2.16) exists, it does not depend on the choice of
(f̃

(∞)
1,k , f̃

(∞)
2,k ) and the map ν(∞) is continuous. Analogously, we define

(∞) : G(∞) → G(∞) , (∞)(p, a) := lim
k→+∞

σ
(
̃(∞)(f̃

(∞)
k )

)
, (III.2.17)

where (f̃
(∞)
k ) ⊂ G̃(∞) is any sequence such that (p, a) = limk→+∞ σ(f̃

(∞)
k ). Then,

setting pk := f̃
(∞)
k (o) and ak := df̃ (∞)|o we get

̃(f̃
(∞)
k )(o) =

(
E(∞)
o ◦ a−1

k ◦ L
(∞)
pk

)
(o) ,

d
(
̃(∞)(f̃

(∞)
k )

)
|o = L

(∞)

(E
(∞)
o ◦a−1

k ◦L
(∞)
pk

)(o)
◦ E(∞)

o ◦ a−1
k ◦ L

(∞)
pk
◦ E(∞)

o

and hence the limit (III.2.17) exists, it does not depend on the choice of (f̃
(∞)
k )

and the map (∞) is continuous. Finally, we define the open set

W(∞) :=
⋃

(p,a)∈G(∞)

{(p, a)}×Bg(∞)(o,π− dg(∞)(o, p)) ⊂ G(∞)×M (∞) (III.2.18)

and the map

Θ(∞) : W(∞) →M (∞) , Θ(∞)((p, a),x) := lim
k→+∞

f̃
(∞)
k (x) , (III.2.19)

where (f̃
(∞)
k ) ⊂ G̃(∞) is any sequence such that (p, a) = limk→+∞ σ(f̃

(∞)
k ). Again,

the limit (III.2.19) exists, it does not depend on (f̃
(∞)
k ) and the map Θ(∞) is con-

tinuous. From now on, we identify any pair (p, a) ∈ G(∞) with the corresponding
map f (∞) := Θ(∞)((p, a), ·) and we just write “f (∞) ∈ G(∞) ”. Notice that the
map f (∞) ∈ G(∞) corresponding to a pair (p, a) is given by

f (∞) = E(∞)
p ◦ a ◦ L(∞)

o

∣∣
Dom(f (∞))

, Dom(f (∞)) := Bg(∞)

(
o,π−dg(∞)(o, p)

)
.

(III.2.20)
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From (III.2.19) it follows that each map f (∞) ∈ G(∞) is an isometry, and
hence G(∞) is a local topological group of isometries on (M (∞), g(∞), o). Since it
is a closed subset of Og(∞)

(
M (∞)

)
, it is locally compact. Moreover, by (III.2.20)

it is effective. Finally, since by construction the orbit G(∞)(o) contains the whole
ball Bg(∞)(o, π2 ), we conclude that G(∞) is transitive.

Finally, we are ready to prove Theorem III.2.5.

Proof of Theorem III.2.5. Since each (Bm, ĝ(n)) is locally homogeneous, the limit
space

(
M (∞), g(∞)

)
is locally homogeneous (see [11, proof of Thm 1.6]). Hence,

by Theorem II.1.2 and Theorem III.2.8 it follows that
(
M (∞), g(∞)

)
is a lo-

cally homogeneous Cω-Riemannian manifold. Since convergence in pointed C1,α-
topology implies convergence in pointed Gromov-Hausdorff topology, it holds that
sec(g(∞)) ≥ −1. Moreover, by [66, Thm. 6.4.8] we get a positive uniform lower
bound on the convexity radius conv0(Bm, ĝ(n)) along the sequence, and hence
by [15, Thm. 5.1] we get sec(g(∞)) ≤ 1. Furthermore by [72, Lemma 1.5] it
necessarily holds that E(∞) = Exp(g(∞)) (see also the proof of [65, Thm 4.4]).
Therefore, fixed a g(∞)-orthonormal frame u : Rm → ToM , one can consider the
pulled-back metric ĝ(∞) := (Exp(g(∞))o ◦ u)∗g(∞) on Bm = Bst(0,π) ⊂ Rm. It
is easy to realize that (Bm, ĝ(∞)) is a geometric model and, since it is isometric
to (M (∞), g(∞)), we conclude that (Bm, ĝ(n), 0) converges to the geometric model
(Bm, ĝ(∞), 0) in the pointed C1,α-topology.

From Theorem III.2.5 we also get the following

Corollary III.2.9. Let (Bm, ĝ(n)) be a sequence of geometric models and assume
that there exist an integer k ≥ 0 and a constant C > 0 such that∣∣Rmj(ĝ(n))

∣∣
ĝ(n) ≤ C , 0 ≤ j ≤ k .

Then the sequence (Bm, ĝ(n)) subconverges to a geometric model (Bm, ĝ(∞)) in the
pointed Ck+1,α-topology for any 0 < α < 1.

Proof. By means of Theorem III.2.5, we can assume that (Bm, ĝ(n)) converges
to a geometric model (Bm, ĝ(∞)) in the pointed C1,α-topology as n → +∞. Fix
0 < δ < π and set Ωδ := Bst(0,π − δ) ⊂ Bm. Then, by Theorem I.2.8, we get

hark+1,α
x

(
Bm, ĝ(n)

)
≥ ro > 0 for any x ∈ Ωδ .
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Following [34, proof of Thm A] and [1, Lemma 2.1], it is possible to construct,
up to passing to a subsequence, smooth embeddings ψ(n) : Ωδ → RN , for some
N >> m, such that ψ(n)(0) = 0 and Ω

(n)
δ := ψ(n)(Ωδ) ⊂ RN are locally repre-

sented as graphs of smooth functions over Bst

(
0, ro2

)
⊂ Rm, uniformly bounded in

Ck+2,α
(
Bst

(
0, ro2

))
. Then, up to passing to a subsequence, Ω

(n)
δ converges in the

Ck+2,α-topology as submanifolds of RN to an embedded Ck+2,α-submanifold Ω
(∞)
δ

of RN . Set g(n) := ((ψ(n))−1)∗ĝ(n). Up to pass to a further subsequence, the pro-
jection along the normals of Ω

(∞)
δ induces a sequences of Ck+2,α-diffeomorphisms

pr(n) : Ω
(n)
δ → Ω

(∞)
δ and the metrics ((pr(n))−1)∗g(n) converges in the Ck+1,α-

topology to a Ck+1,α-Riemannian g(∞) on Ω
(∞)
δ .

Since we assumed that (Bm, ĝ(n)) converges in the pointed C1,α-topology to
(Bm, ĝ(∞)), it comes that there exists an isometric embedding ϕ : (Ω

(∞)
δ , g(∞))→

(Bm, ĝ(∞)) with ϕ(0) = 0. Moreover, given any compact set K ⊂ Bm, one
can take δ small enough in such a way that K ⊂ ϕ

(
Ω

(∞)
δ

)
. This completes the

proof.

III.3 Algebraic aspects of locally homogeneous spaces

III.3.1 The space of locally homogeneous spaces

For any m, q ∈ Z, with m ≥ 1 and 0 ≤ q ≤ m(m−1)
2 , we denote by Hloc

q,m the
moduli space of transitive orthogonal Lie algebras (g = h+m, 〈 , 〉) of rank (q,m)

up to isomorphisms, and by Hq,m ⊂ Hloc
q,m the subset of moduli space of regular

ones (see Section I.4.5). Moreover, we define

Vq,m :=
(
GL(q)× O(m)

)∖(
Λ2(Rq+m)∗ ⊗ Rq+m

)
,

where we considered a fixed decomposition Rq+m = Rq ⊕ Rm and the diagonal
embedding of GL(q) × O(m) into GL(q + m), which acts on Λ2(Rq+m)∗ ⊗ Rq+m

on the left by change of basis:

(a · µ)(X,Y ) := aµ(a−1X, a−1 Y ) .

Following the same argument as [41], one can show that the map

Φq,m : Hloc
q,m → Vq,m , (g = h + m, 〈 , 〉) 7→ µ := u∗

(
[·, ·]g

)
,
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where u : Rm+q → g is any adapted linear frame for (g = h + m, 〈 , 〉), is well
defined, injective and that its image contains precisely the elements µ ∈ Vq,m
which verify the following conditions:
(h1) µ satisfies the Jacobi Identity, µ(Rq,Rq) ⊂ Rq and µ(Rq,Rm) ⊂ Rm;
(h2) 〈µ(Z,X),Y 〉st = 〈X,µ(Z,Y )〉st for any X,Y ∈ Rm, Z ∈ Rq;
(h3)

{
Z ∈ Rq : µ(Z,Rm) = {0}

}
= {0}.

From now on, we identify Hloc
q,m with its image through Φq,m, i.e. we think

Hloc
q,m ⊂ Vq,m. For the sake of clarity, for any µ ∈ Φq,m(Hloc

q,m) ' Hloc
q,m we set

gµ := (Rq+m,µ) , hµ := (Rq,µ|Rq×Rq)

so that (gµ = hµ + Rm, 〈 , 〉st) is the orthogonal transitive Lie algebra uniquely
associated to the bracket µ.

Remark III.3.1. Conditions (h1) and (h2) above are closed, while (h3) is open.
Nonetheless, as pointed out in [41], given any sequence (µ(n)) ⊂ Hloc

q,m which
converges to an element µ̃ ∈ Vq,m \Hloc

q,m in the standard topology of Vq,m, there
exists a decomposition Rq = Rq−q′ ⊕ Rq′ for some 0 ≤ q′ < q such that

Rq−q
′

=
{
Z ∈ Rq : µ(Z,Rm) = {0}

}
and the restriction

(µ̃)|q′,m := prRq′+m ◦ (µ̃|Rq′+m×Rq′+m) , (III.3.1)

satisfies (µ̃)|q′,m ∈ Hloc
q′,m. Here, R

q′+m = Rq′ ⊕ Rm and prRq′+m : Rq+m → Rq′+m

denotes the projection with respect to the direct sum decomposition Rq+m =

Rq−q′ ⊕ Rq′+m.

Moreover, for later purposes, we consider the orthogonal decomposition (see
Remark I.4.6)

µ = µ|hµ∧gµ +µhµ +µRm , with µhµ : Rm∧Rm → hµ , µRm : Rm∧Rm → Rm

(III.3.2)
and we also set

Hloc
m :=

m(m−1)
2⋃

q=0

Hloc
q,m , Hm :=

m(m−1)
2⋃

q=0

Hq,m . (III.3.3)
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The set Hloc
m parametrizes the moduli space of the equivalence classes of m-

dimensional smooth locally homogeneous Riemannian manifolds, up to equivari-
ant local isometries, in the following way.

Theorem III.3.2 ([77], Lemma 3.5 and Prop 4.4). For any µ ∈ Hloc
m , there

exist a pointed locally homogeneous space (M , g, p) and an injective Lie algebra
homomorphism ϕ : gµ → killg such that ϕ(hµ) ⊂ killg0 and (ϕ(Rm), (ϕ−1)∗〈 , 〉st) =

(TpM , gp). The space (M , g, p) is uniquely determined up to an equivariant local
isometry and it is non-strictly locally homogeneous if and only if µ is regular.

Given an element µ ∈ Hloc
m , the locally homogeneous space uniquely associated

to µ as in Theorem III.3.2 is constructed in the following way. Let Gµ be the only
simply connected Lie group with Lie(Gµ) = gµ and Hµ the Lie subgroup of Gµ with
Lie(Hµ) = hµ, which is closed in Gµ if and only if µ ∈ Hm. Then we consider the
local factor space Gµ/Hµ, which admits a unique suitable real analytic manifold
structure (see Proposition II.4.1). Moreover, by means of the standard local action
of Gµ on Gµ/Hµ, one can construct a uniquely determined invariant Riemannian
metric gµ on Gµ/Hµ such that (Rm, 〈 , 〉st) ' (TeµHµGµ/Hµ, gµ|eµHµ).

III.3.2 Curvature of locally homogeneous spaces

For the sake of shortness, we also indicate any geometric quantity related to
(Gµ/Hµ, gµ) just by writing µ in the place of gµ, e.g. we write Rmk(µ) instead of
Rmk(gµ). We will also denote by kill(µ) the Nomizu algebra of (Gµ/Hµ, gµ).

For any µ ∈ Hloc
m , the canonical Ambrose-Singer connection Dµ (see Section

I.4.3) is uniquely determined by the (1, 2)-tensor Sµ := Dµ − ∇µ, which can be
identified with the linear map Sµ : Rm → so(m) defined by (see [37, Thm 3.3, Ch
X])

− 2〈Sµ(X)Y ,Z〉st = 〈µRm(X,Y ),Z〉st + 〈µRm(Z,X),Y 〉st + 〈µRm(Z,Y ),X〉st .

(III.3.4)
Then, by [37, Thm 2.3, Ch X] it comes that

Rm0(µ)(X∧Y ) = adµ
(
µhµ(X,Y )

)
−[Sµ(X),Sµ(Y )]−Sµ(µRm(X,Y )) , (III.3.5)

where µhµ and µRm were defined in (III.3.2). Moreover, since Dµ Rm(µ) = 0 we
obtain

XyRmk+1(µ) = −Sµ(X) · Rmk(µ) for any k ≥ 0 . (III.3.6)
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We also stress that for any k ≥ 0

Rmk+2(X1,X2,X3, . . .,Xk+2|Y1∧Y2)− Rmk+2(X2,X1,X3, . . .,Xk+2|Y1∧Y2) =

= −
(

Rm0(X1,X2) · Rmk
)
(X3, . . .,Xk+2|Y1∧Y2) . (III.3.7)

Notice that in both (III.3.6) and (III.3.7), given a linear map P : ⊗qRm →
so(m) and an element A ∈ so(m), the linear map (A · P ) : ⊗qRm → so(m) is
defined by

(A · P )(V1, . . .,Vq) := [A,P (V1, . . .,Vq)]−
q∑
i=1

P
(
V1, . . .,A · Vi, . . .,Vq

)
. (III.3.8)

Finally, for the sake of notation we denote by

Hloc
q,m(1) := {µ ∈ Hloc

q,m : | sec(µ)| ≤ 1} , Hq,m(1) := Hloc
q,m(1) ∩Hq,m

and we define the spaces Hloc
m (1) and Hm(1) in the same fashion as in (III.3.3).

Remark III.3.3. We stress that for any µ ∈ Hloc
q,m there exists R > 0 such that

R · µ ∈ Hloc
q,m(1), where the bracket R · µ is defined by

(R · µ)|hµ∧gµ := µ|hµ∧gµ , (R · µ)hµ := 1
R2µhµ , (R · µ)Rm := 1

Rµhµ (III.3.9)

(see III.3.2). Indeed, the locally homogeneous space (GR·µ/HR·µ, gR·µ) is locally
equivariantly isometric to (Gµ/Hµ,R2gµ) and hence it follows that sec(R · µ) =
1
R sec(µ).

III.3.3 The subset Hq,m is dense in Hloc
q,m

In this subsection we are going to show that the inclusion Hloc
q,m ⊂ Vq,m induces a

topology on the set Hloc
q,m with respect to which the subset Hq,m is dense. More

precisely (see also [83, Thm 4.1])

Theorem III.3.4. The set Hq,m is dense in Hloc
q,m with respect to the standard

topology induced by Vq,m.

In order to prove Theorem III.3.4, we need the following
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Lemma III.3.5. Let Tm = Zm\Rm be the m-torus and let Lv be the 1-parameter
subgroup of Tm generated by a fixed element v = (v1, . . ., vm) ∈ Rm = Lie(Tm).
Then

dim Lv = dimQ spanQ(v1, . . ., vm) , (III.3.10)

where spanQ(v1, . . ., vm) ⊂ R is the Q-subspace of R generated by the components
of v.

Proof. We recall that the closed subgroups of a locally compact topological group
are characterized as being those which are intersections of kernels of continuous
characters (see [69, Rem 1.20]). Moreover, the continuous characters of Tm are
precisely the maps

χr : Tm → S1 , χr(Zm · x) := e2π
√
−1〈x,r〉st with r ∈ Zm .

Since Lv ⊂ ker(χr) if and only if (χr)∗(tv) ∈ Z for any t ∈ R, i.e. if and only if
〈v, r〉st = 0, we get

Lv =
⋂
r∈Zn
〈v,r〉st=0

ker(χr) .

So by a straightforward computation it comes that

dim Lv = dimR
⋂
r∈Zm
〈v,r〉st=0

ker(χr)∗ = m− rankZ F ,

where we denoted by F the free Z-module F := {r ∈ Zm : 〈v, r〉st = 0}. Since
the rank of F is

rankZ F = m− dimQ spanQ(v1, . . ., vm) ,

the thesis follows.

Corollary III.3.6. Let Tm = Zm\Rm be the m-torus, Grs(t) the Grassmannian
of s-planes inside t := Lie(Tm) and Gr?s(t) the subset of those a ∈ Grs(t) such
that aTm = a. Then Gr?s(t) is dense in Grs(t) for any integer 0 ≤ s ≤ m.

Finally, we are ready to prove Theorem III.3.4.
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Proof of Theorem III.3.4. Fix µ ∈ Hloc
q,m \Hq,m. Let 〈 , 〉′µ be the ad(hµ)-invariant

Euclidean product on gµ defined in Remark I.4.6 and Gµ the simply connected
Lie group with Lie(Gµ) = gµ. Then, the Malcev-closure hGµ

µ of hµ in Gµ turns out
to be faithfully represented by its adjoint action as a subalgebra of so(gµ, 〈 , 〉′µ)

(see [78, Sec 3]) and hence it is reductive. Therefore by [58, Thm 3, p. 52] it
follows that

h
Gµ

µ = [hµ, hµ] + tµ , with tµ ⊂ gµ abelian such that z(hµ)
Gµ

= tµ .

By Corollary III.3.6, we can pick a sequence of subalgebras a(n) ⊂ tµ which
converges to z(hµ) with respect to the standard Euclidean topology such that
a(n)

Gµ
= a(n). Then we define h(n) := [hµ, hµ] + a(n), m(n) as the 〈, 〉′-orthogonal

complement of h(n) inside gµ and 〈, 〉(n) := 〈, 〉′|m(n)×m(n) . It is easy to check
that (gµ = h(n) + m(n), 〈, 〉(n)) is a regular orthogonal transitive Lie algebra, and
so it corresponds uniquely to an element µ(n) ∈ Hq,m. Finally, by the very
construction, we can conclude that µ(n) → µ as n→ +∞ in the standard topology
induced by Vq,m.

Remark III.3.7. We recall again that, by [52, Sec 7], it follows thatHq,m = Hloc
q,m

for any m ≤ 4.

III.3.4 Algebraic convergence and infinitesimal convergence

We begin by recalling the following

Definition III.3.8. A sequence (µ(n)) ⊂ Hloc
q,m is said to converge algebraically

to µ(∞) ∈ Hloc
m if one of the two mutually exclusive conditions below is satisfied:

i) µ(∞) ∈ Hloc
q,m and µ(n) → µ(∞) in the standard topology induced by Vq,m;

ii) µ(∞) ∈ Hloc
q′,m for some 0 ≤ q′ < q and there exists µ̃ ∈ Vq,m \Hloc

q,m such that
µ(n) → µ̃(∞) in the standard topology of Vq,m and (µ̃(∞))|q′,m = µ(∞) as in
Remark III.3.1.

We introduce also a second notion of convergence. Firstly, let us notice that
Theorem I.4.12 and Theorem III.3.2 allow us to consider the map

Hloc
m → Rs(m) , µ 7→ ρs(µ) =

(
Rm0(µ), Rm1(µ), . . ., Rms(µ)

)
which associates to any µ ∈ Hloc

m the Riemannian s-tuple ρs(µ) of (Gµ/Hµ, gµ), for
any integer s ≥ ı(m) + 2. This map is surjective but not injective. In particular,



III.3 Algebraic aspects of locally homogeneous spaces 65

by Theorem I.4.12 and Theorem III.3.2 it holds that ρs(µ1) = ρs(µ2) for some,
and hence for any, s ≥ ı(m) + 2 if and only if kill(µ1) = kill(µ2).

Definition III.3.9. Let m, s ∈ N with s ≥ ı(m)+2. A sequence (µ(n)) ⊂ Hloc
m

is said to converge s-infinitesimally to µ(∞) ∈ Hloc
m if ρs(µ(n)) → ρs(µ(∞)) as

n → +∞ in the standard Euclidean topology of Rs(m). If (µ(n)) converges s-
infinitesimally to µ(∞) ∈ Hloc

m for any integer s ≥ ı(m) + 2, then (µ(n)) is said to
converge infinitesimally to µ(∞).

Notice that by the previous observation, if a sequence (µ(n)) ⊂ Hloc
m converges

s1-infinitesimally to µ(∞)
1 and s2-infinitesimally to µ(∞)

2 for some integers s2 ≥
s1 ≥ ı(m) + 2, then kill(µ

(∞)
1 ) = kill(µ

(∞)
2 ).

The following proposition puts in relation the algebraic convergence with the
infinitesimal convergence (see [41, Thm 6.12 (i)] and the errata corrige [43, Thm
3.9]).

Proposition III.3.10. Let m ≥ 1 and 0 ≤ q ≤ m(m−1)
2 be two integers.

i) If (µ(n)) ⊂ Hloc
q,m converges algebraically to µ(∞) ∈ Hloc

m , then (µ(n)) converges
infinitesimally to µ(∞).

ii) The converse assertion of (i) is not true.

Proof. Let us assume that (µ(n)) ⊂ Hloc
q,m converges algebraically to µ ∈ Hloc

m .
From (III.3.4) we immediately get that Sµ(n) → Sµ

(∞) in the standard Euclidean
topology. Then claim (i) is a consequence of (III.3.5) and (III.3.6). On the other
hand, claim (ii) follows directly from [10, Ex 9.1].

As we will see in Chapter IV and in Chapter V, there are sequences (µ(n)) ⊂
Hloc
q,m with bounded curvature, say e.g. | sec(µ(n))| ≤ 1, which do not converge

to any element in Hloc
m . By Remark III.3.1, in this case it necessarily holds that

|µ(n)|st → +∞ as n→ +∞. Motivated by this fact, we recall the following

Definition III.3.11. A sequence (µ(n)) ⊂ Hloc
q,m(1) is said to be algebraically

collapsed if |µ(n)|st → +∞ as n→ +∞, algebraically non-collapsed otherwise.

Notice that by Remark III.3.1 and Proposition III.3.10 we immediately get

Corollary III.3.12. If (µ(n)) ⊂ Hloc
q,m(1) is algebraically non-collapsed, then it

converges infinitesimally, up to a subsequence, to an element µ(∞) ∈ Hloc
m (1).
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III.3.5 Proofs of Theorem III.1.1 and Theorem III.1.4

We are now ready to prove the following

Theorem III.3.13. For each µ ∈ Hloc
m (1), there exists a geometric model

(Bµ, ĝµ) = (Bĝµ(oµ,π), ĝµ) which is equivariantly locally isometric to (Gµ/Hµ, gµ),
and it is unique up to a global equivariant isometry.

which coincides with Theorem III.1.1.

Proof of Theorem III.3.13. Let us fix µ ∈ Hloc
q,m(1). If µ is regular, then the claim

holds true by Remark III.2.4. So, we assume that µ ∈ Hloc
q,m \Hq,m. By Theorem

III.3.4, we can pick a sequence (µ(n)) ⊂ Hq,m which converges algebraically to
µ. By Proposition III.3.10 it comes that (µ(n)) converges infinitesimally to µ and
hence we can assume that

| sec(µ(n))| ≤ 1

(1− ε(n)

π )2
for some positive ε(n) → 0 .

By repeating the same argument as in Remark III.2.4, we can pull back the
metric gµ(n) to the tangent ball of radius π − ε(n) at the origin of Gµ(n)/Hµ(n) via
the Riemannian exponential. By Proposition III.3.10 and Corollary III.2.9, we
can pass to a subsequence in such a way that these tangent balls converges to
a geometric model (B, ĝ) in the pointed C∞-topology. Therefore, from Theorem
I.4.12, it necessary holds that (Bm, ĝ(∞)) is locally isometric to (Gµ/Hµ, gµ), since
they have the same Riemannian s-tuple model for any s ≥ ı(m)+2.

Finally, we notice that the pointed Cs+2-convergence of a sequence of geomet-
ric models clearly implies the s-infinitesimal convergence. Our Theorem III.1.4,
which we prove below, is a kind of converse of such statement.

Proof of Theorem III.1.4. Claim (i) follows directly from the very definition of
pointed Cs+2-convergence and s-infinitesimal convergence. In order to prove claim
(ii), let us consider a sequence (µ(n)) ⊂ Hloc

m (1) and assume that (µ(n)) converges
(s+1)-infinitesimally to an element µ(∞) ∈ Hloc

m for some s ≥ ı(m)+2. By Propo-
sition III.3.10 we get µ(∞) ∈ Hloc

m (1). Fix 0 < α < 1. By Theorem I.4.12 and
Corollary III.2.9, it comes that there exists a subsequence of (Bµ(n) , ĝµ(n)) which
converges to (Bµ(∞) , ĝµ(∞)) in the pointed Cs+2,α-topology. Moreover, it holds
more: any convergent subsequence of (Bµ(n) , ĝµ(n)) in the pointed Cs+2,α-topology
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necessarily converges to (Bµ(∞) , ĝµ(∞)). Let us assume then by contradiction that
(Bµ(n) , ĝµ(n)) does not converges to (Bµ(∞) , ĝµ(∞)) in the pointed Cs+2,α-topology.
Then, there exist 0 < δ < π and a sequence (nj) ⊂ N such that for any jo ∈ N and
for any choice of Cs+3,α-embeddings φ(nj) : Bĝ

µ(∞)
(oµ(∞) ,π−δ) ⊂ Bµ(∞) → B

µ(nj)

with φ(n)(oµ(∞)) = o
µ(nj) and j ≥ jo, the pulled back metrics (φ(nj))∗ĝ

µ(nj)

do not converge to ĝµ(∞) in Cs+2,α-topology. On the other hand, the sequence
(B

µ(nj) , ĝµ(nj)) has bounded geometry up to order s+1, and hence it admits a
subsequence which converges to a limit geometric model in the pointed Cs+2,α-
topology. By construction, this limit is not isometric to (Bµ(∞) , ĝµ(∞)), which is
a contradiction.





Chapter IV

On the infinitesimal convergence
of locally homogeneous spaces

IV.1 Statement of results

In this Chapter, we investigate more deeply the notion of s-infinitesimal conver-
gence by letting the integer s vary. In particular, we prove that keeping all the
covariant derivatives of the curvature tensor bounded along a sequence of locally
homogeneous spaces is a much more restrictive condition than just a bound on
any finite number of them. More precisely

Theorem IV.1.1. For any choice of m, s ∈ N such that m ≥ 3 and s ≥ ı(m)+2,
the notion of s-infinitesimal convergence in Hloc

m is strictly weaker than the one
of (s+1)-infinitesimal convergence.

See Formula (I.4.8) for the definition of ı(m). In particular, we construct an
explicit 2-parameter family

{µ?(ε, δ) : ε, δ ∈ R , ε > 0 , 0 ≤ δ < 1} ⊂ H0,3(1)

with the following property: for any fixed integer k ≥ 0, there are (ε(n)), (δ(n)) ⊂
(0, 1) and C > 0 such that, letting µ(n) := µ?(ε

(n), δ(n)), it holds that∣∣Rm0(µ(n))
∣∣
st

+
∣∣Rm1(µ(n))

∣∣
st

+ . . .+
∣∣Rmk(µ(n))

∣∣
st
≤ C ,∣∣Rmk+1(µ(n))

∣∣
st
→ +∞ as n→ +∞ .

69
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The key idea to construct such µ?(ε, δ) is to consider a slight modification of the
well-known Berger spheres, which arise from the canonical variation of the round
metric with respect to the Hopf fibration S1 → SU(2) → CP 1 (see [3, p. 252]),
which correspond to the case δ = 0.

Combining Theorem III.1.4 and Theorem IV.1.1, we also obtain

Corollary IV.1.2. For any m, k ∈ N with m ≥ 3 and k ≥ ı(m) + 4, there
exists a sequence of m-dimensional pointed locally homogeneous spaces converging
to a limit pointed locally homogeneous space in the pointed Ck,α-topology for any
0 < α < 1 and which does not admit any convergent subsequence in the pointed
Ck+1-topology.

To the best of our knowledge, Corollary IV.1.2 provides the first examples
of locally homogeneous spaces converging in the pointed Ck,α-topology for any
0 < α < 1 but not in the Ck+1-topology, for some fixed k ≥ 0.

Finally, we stress that the contents of this chapter lead to the following corol-
lary (compare with Corollary III.1.3).

Corollary IV.1.3. If 1 ≤ m < 3, then Hloc
m (1) = Hm(1) is compact in the pointed

C∞-topology. On the contrary, Hloc
m (1) is not compact in the pointed C3-topology

for any m ≥ 3.

IV.2 Riemannian curvature of left invariant metrics on
SU(2)

Let us fix a left invariant metric g on the Lie group SU(2), which we will con-
stantly identify with the corresponding Euclidean inner product on the Lie algebra
su(2). By the Milnor Theorem, it is known that there exists a g-orthogonal basis
(X0,X1,X2) for su(2) such that

[X0,X1] = −2X2 , [X0,X2] = +2X1 , [X1,X2] = −2X0 . (IV.2.1)

Up to an automorphism of su(2), we can assume that

X0 =

(
i 0

0 −i

)
, X1 =

(
0 −1

1 0

)
, X2 =

(
0 i

i 0

)
. (IV.2.2)
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We also set

g(X0,X0) = ε , g(X1,X1) = λ1 , g(X2,X2) = λ2 . (IV.2.3)

We aim to study the curvature of (SU(2), g). Firstly, by means of (IV.2.1) and
(IV.2.3), we notice that the bracket µ ∈ H0,3 satisfying (Gµ, gµ) = (SU(2), g) is
given by

µ(e0, e1) = −2
√

λ2
ελ1

e2 , µ(e0, e2) = +2
√

λ1
ελ2

e1 , µ(e1, e2) = −2
√

ε
λ1λ2

e0 .

(IV.2.4)
Here, we indicated with (e0, e1, e2) the standard basis of R3. From now on, we
will denote by (

Eij := ei ⊗ ej − ej ⊗ ei , 0 ≤ i < j ≤ 2
)

the standard basis of so(3).
Let Sµ : R3 → so(3) be the linear operator uniquely associated to the canonical

Ambrose-Singer connection of µ. By (III.3.4), one can directly check that

Sµ(e0) = +cµ0E12 , Sµ(e1) = −cµ1E02 , Sµ(e2) = +cµ2E01 , (IV.2.5)

where cµ0 , cµ1 , cµ2 ∈ R are the coefficients defined by

cµ0 := −ε+λ1+λ2√
ελ1λ2

, cµ1 := +ε−λ1+λ2√
ελ1λ2

, cµ2 := +ε+λ1−λ2√
ελ1λ2

. (IV.2.6)

In virtue of (III.3.5) and (IV.2.5), the curvature operator Rm0(µ) : Λ2R3 → so(3)

is diagonal, i.e.

Rm0(µ)(e0 ∧ e1) = sec(µ)(e0∧e1)E01 , Rm0(µ)(e1 ∧ e2) = sec(µ)(e1∧e2)E12 ,

Rm0(µ)(e0 ∧ e2) = sec(µ)(e0∧e2)E02 ,

and the sectional curvature is given by

sec(µ)(e0∧e1) = −cµ0c
µ
1 + cµ1c

µ
2 + cµ0c

µ
2

= 1
λ1λ2

(
ε+ 2(λ2 − λ1)− ε−1(λ2 − λ1)(λ1 + 3λ2)

)
,

sec(µ)(e1∧e2) = +cµ0c
µ
1 − c

µ
1c
µ
2 + cµ0c

µ
2

= 1
λ1λ2

(
−3ε+ 2(λ1 + λ2) + ε−1(λ2 − λ1)2

)
,

sec(µ)(e0∧e2) = +cµ0c
µ
1 + cµ1c

µ
2 − c

µ
0c
µ
2

= 1
λ1λ2

(
ε− 2(λ2 − λ1) + ε−1(λ2 − λ1)(λ2 + 3λ1)

)
.

(IV.2.7)
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By applying (III.3.6), we obtain the following expressions for the non-zero com-
ponents of Rm1(µ)

Rm1(µ)(e0|e0 ∧ e1) = 2(cµ0 )2(cµ1−c
µ
2 )E02

Rm1(µ)(e0|e0 ∧ e2) = 2(cµ0 )2(cµ1−c
µ
2 )E01

Rm1(µ)(e1|e0 ∧ e1) = 2(cµ1 )2(cµ0−c
µ
2 )E12

Rm1(µ)(e1|e1 ∧ e2) = 2(cµ1 )2(cµ0−c
µ
2 )E01

Rm1(µ)(e2|e0 ∧ e2) = 2(cµ2 )2(cµ0−c
µ
1 )E12

Rm1(µ)(e2|e1 ∧ e2) = 2(cµ2 )2(cµ0−c
µ
1 )E02

(IV.2.8)

and for the non-zero components of Rm2(µ).

Rm2(µ)(e0, e0|e0∧e1) = +4(cµ0 )3(cµ1−c
µ
2 )E01

Rm2(µ)(e0, e0|e0∧e2) = −4(cµ0 )3(cµ1−c
µ
2 )E02

Rm2(µ)(e0, e1|e0∧e2) = −2cµ0 (cµ1−c
µ
2 )(cµ0 (cµ1 +cµ2 )−cµ1c

µ
2 )E12

Rm2(µ)(e0, e1|e1∧e2) = −2cµ0 (cµ1−c
µ
2 )(cµ0 (cµ1 +cµ2 )−cµ1c

µ
2 )E02

Rm2(µ)(e0, e2|e0∧e1) = −2cµ0 (cµ1−c
µ
2 )(cµ0 (cµ1 +cµ2 )−cµ1c

µ
2 )E12

Rm2(µ)(e0, e2|e1∧e2) = −2cµ0 (cµ1−c
µ
2 )(cµ0 (cµ1 +cµ2 )−cµ1c

µ
2 )E01

Rm2(µ)(e1, e0|e0∧e2) = −2cµ1 (cµ0−c
µ
2 )(cµ0 (cµ1−c

µ
2 )+cµ1c

µ
2 )E12

Rm2(µ)(e1, e0|e1∧e2) = −2cµ1 (cµ0−c
µ
2 )(cµ0 (cµ1−c

µ
2 )+cµ1c

µ
2 )E02

Rm2(µ)(e1, e1|e0∧e1) = +4(cµ1 )3(cµ0−c
µ
2 )E01

Rm2(µ)(e1, e1|e1∧e2) = −4(cµ1 )3(cµ0−c
µ
2 )E12

Rm2(µ)(e1, e2|e0∧e1) = +2cµ1 (cµ0−c
µ
2 )(cµ0 (cµ1−c

µ
2 )+cµ1c

µ
2 )E02

Rm2(µ)(e1, e2|e0∧e2) = +2cµ1 (cµ0−c
µ
2 )(cµ0 (cµ1−c

µ
2 )+cµ1c

µ
2 )E01

Rm2(µ)(e2, e0|e0∧e1) = −2cµ2 (cµ0−c
µ
1 )(cµ0 (cµ1−c

µ
2 )−cµ1c

µ
2 )E12

Rm2(µ)(e2, e0|e1∧e2) = −2cµ2 (cµ0−c
µ
1 )(cµ0 (cµ1−c

µ
2 )−cµ1c

µ
2 )E01

Rm2(µ)(e2, e1|e0∧e1) = −2cµ2 (cµ0−c
µ
1 )(cµ0 (cµ1−c

µ
2 )−cµ1c

µ
2 )E02

Rm2(µ)(e2, e1|e0∧e2) = −2cµ2 (cµ0−c
µ
1 )(cµ0 (cµ1−c

µ
2 )−cµ1c

µ
2 )E01

Rm2(µ)(e2, e2|e0∧e2) = +4(cµ2 )3(cµ0−c
µ
1 )E02

Rm2(µ)(e2, e2|e1∧e2) = −4(cµ2 )3(cµ0−c
µ
1 )E12

(IV.2.9)

We stress also that from (III.3.6), for any integer k ≥ 0 there exists Ck > 0, which
depends only on k, such that∣∣XyRmk+1(µ)

∣∣
st
≤ Ck

∣∣Sµ(X)
∣∣
st

∣∣Rmk(µ)
∣∣
st

. (IV.2.10)
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Finally, we prove the following

Lemma IV.2.1. Let k ≥ 1 be an integer and b(k) := 1 + (k mod 2). Then, it
holds that

Rmk(µ)(e0, . . ., e0|e0∧e1) = (−1)[ k−1
2

]2k(cµ0 )k+1(cµ1 − c
µ
2 )E0b(k)

Rmk(µ)(e0, . . ., e0|e0∧e2) = (−1)[ k
2

]2k(cµ0 )k+1(cµ1 − c
µ
2 )E0b(k+1) ,

Rmk(µ)(e0, . . ., e0|e1∧e2) = 0

(IV.2.11)

where cµ0 , cµ1 , cµ2 are defined in (IV.2.6).

Proof. We proceed by induction on k ≥ 1. The case k = 1 follows directly from
the computations in (IV.2.8). In order to prove that k ⇒ k + 1, we first notice
that

[E12,E0b(k)] = (−1)kE0b(k+1) , (−1)[ k
2

] = (−1)k−1(−1)[ k−1
2

] . (IV.2.12)

So, by (IV.2.5), (III.3.6), (IV.2.12) and the inductive hypothesis we get

Rmk+1(µ)(e0, . . ., e0|e0∧e1) =

= −(−1)[ k−1
2

]2k(cµ0 )k+2(cµ1 − c
µ
2 )[E12,E0b(k)]+

+ (−1)[ k−1
2

]2k(cµ0 )k+2(cµ1 − c
µ
2 )E0b(k+1)

= (−1)k−1(−1)[ k−1
2

]2k+1(cµ0 )k+2(cµ1 − c
µ
2 )E0b(k+1)

= (−1)[ k
2

]2k(cµ0 )k+1(cµ1 − c
µ
2 )E0b(k+1) .

The second formula is analogous. For the third formula, from (IV.2.5), (III.3.6)
and the inductive hypothesis

Rmk+1(µ)(e0, . . ., e0|e1∧e2) =

= 0 + cµ0 Rmk(µ)(e0, . . ., e0|e2 ∧ e2)− cµ0 Rmk(µ)(e0, . . ., e0|e1 ∧ e1)

= 0

which completes the proof.
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IV.3 Collapsing sequences on SU(2)

IV.3.1 Almost-Berger sequences

We consider now a sequence (µ(n)) ⊂ H0,3 of brackets which corresponds to a
sequence (gµ(n)) of left-invariant metrics on SU(2). By (IV.2.1), we can assume
that

gµ(n)(X0,X0) = ε(n) , gµ(n)(X1,X1) = λ
(n)
1 , gµ(n)(X2,X2) = λ

(n)
2 ,

gµ(n)(X0,X1) = gµ(n)(X0,X2) = gµ(n)(X1,X2) = 0
(IV.3.1)

where (X0,X1,X2) is the standard basis of su(2) given in (IV.2.2). Let us suppose
that

ε(n) → 0 , λ
(n)
i → λ

(∞)
i ∈ (0, +∞) as n→ +∞ .

A direct computation based on (IV.2.7) shows that the sectional curvature
sec(µ(n)) is uniformly bounded if and only if∣∣λ(n)

1 − λ(n)
2

∣∣ ≤ C ε(n) for some C > 0 . (IV.3.2)

Notice that (IV.3.2) is coherent with Theorem V.3.3 in the next Chapter, which
will give necessary conditions for a sequence of invariant metrics on a compact
homogeneous space to diverge with bounded curvature.

Since we are interested in studying sequences with bounded curvature, we
assume without loss of generality that λ(∞)

1 = λ
(∞)
2 = 1. Notice that, if we define

k̄ := sup
{
k ∈ Z :

(
ε(n)

)− k
2
∣∣λ(n)

1 − λ(n)
2

∣∣→ 0 as n→ +∞
}

, (IV.3.3)

then condition (IV.3.2) implies that k̄ ≥ 1. We introduce now the following

Definition IV.3.1. An almost-Berger sequence is any sequence (µ(n)) ⊂ H0,3

which corresponds to a sequence of left-invariant metrics on SU(2) as in (IV.3.1)
such that
i) ε(n) → 0 and λ(n)

i → 1 as n→ +∞;
ii) sec(µ(n)) is uniformly bounded, i.e. (IV.3.2) holds true.
The positive integer reg(µ(n)) := k̄ defined in (IV.3.3) is called regularity index of
(µ(n)).
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This nomenclature is motivated by the following fact. If λ(n)
1 = λ

(n)
2 = 1 for

any n ∈ N, then gµ(n) comes from the canonical variation of the round metric on
S3 = SU(2) with respect to the Hopf fibration S1 → S3 → S2 (see [3, p. 252]).
The 3-sphere endowed with any such a metric is commonly named Berger sphere.
They provide the first non trivial example of collapsing sequence with bounded
curvature (see e.g. [17, 18]).

From the very definition of regularity index, the following properties hold:

· (ε(n)
)− k

2
∣∣λ(n)

1 − λ(n)
2

∣∣→ 0 as n→ +∞ for any integer 0 ≤ k ≤ reg(µ(n));

· if reg(µ(n)) = k̄ is finite, then
(
ε(n)

)− k̄+1
2
∣∣λ(n)

1 − λ(n)
2

∣∣ is bounded away from
zero.

Let us stress also that from (IV.2.4) it comes that any almost-Berger sequence
(µ(n)) verifies

µ(n)(e0, e1)→ −∞ , µ(n)(e0, e2)→ +∞ , µ(n)(e1, e2)→ 0 as n→ +∞ .

This means that they never converge algebraically to an element of Hloc
3 . Actu-

ally, we point out that any almost-Berger sequence is, in particular, a diverging
sequence with bounded curvature as the ones in Chapter V. Hence, the fact that
almost-Berger sequences cannot converge algebraically can be also derived from
Proposition V.1.4.

IV.3.2 Curvature estimates

We investigate the behavior of the curvature along an almost-Berger sequence
(µ(n)) ⊂ H0,3. Concerning the sectional curvature, from (IV.2.7) we directly get

Proposition IV.3.2. Let (µ(n)) be an almost-Berger sequence with regularity
index reg(µ(n)) = k̄. Then

sec(µ(n))(e0∧e1)→ 0 , sec(µ(n))(e1∧e2)→ 4 , sec(µ(n))(e0∧e2)→ 0

if and only if k̄ ≥ 2.

We give now a characterization for the covariant derivatives of the curvature
tensor along (µ(n)) in terms of the regularity index. More precisely
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Proposition IV.3.3. Let (µ(n)) be an almost Berger sequence with regularity
index reg(µ(n)) = k̄ ≥ 2. Then, for any integer k ≥ 1 there exists a constant
Lk > 0 such that∣∣Rmk(µ(n))

∣∣
st
≤ Lk

((
ε(n)

) 1
2 +

(
ε(n)

)− k+2
2
∣∣λ(n)

1 − λ(n)
2

∣∣) for any n ∈ N .

(IV.3.4)

Proof. Let us assume, without loss of generality, that ε(n) < 1 and
∣∣λ(n)

1 −λ
(n)
2

∣∣ < 1

for any n ∈ N. Firstly, since k̄ ≥ 2 by hypothesis, from (IV.2.6) we get

cµ
(n)

1 , cµ
(n)

2 ∼
(
ε(n)

) 1
2

and so from (IV.2.5), (IV.2.8) and (IV.2.10) it follows that for any k ≥ 1 there
exists Lk,0 > 0 such that

∣∣Rmk(µ(n))(ei1 , . . ., eik |ej1∧ej2)
∣∣
st
≤ Lk,0

(
ε(n)

) k
2 (IV.3.5)

for any 1 ≤ i1, . . ., ik ≤ 2, 0 ≤ j1 < j2 ≤ 2.
Secondly, by (IV.2.6) we notice that

cµ
(n)

0 ∼ 2
(
ε(n)

)− 1
2

and so from (IV.2.11) it follows that for any k ≥ 1 there exists Lk,k > 0 such that

∣∣Rmk(µ(n))(e0, . . ., e0|ej1∧ej2)
∣∣
st
≤ Lk,k

(
ε(n)

)− k+2
2
∣∣λ(n)

1 − λ(n)
2

∣∣ (IV.3.6)

for any 0 ≤ j1 < j2 ≤ 2. Moreover, from (IV.2.5), (IV.2.10) and (IV.3.6), it
follows that for any k, r ∈ Z with k ≥ 2 and 1 ≤ r ≤ k − 1, there exists Lk,r > 0

such that∣∣Rmk(µ(n))(ei1 , . . ., eik−r , e0, . . ., e0︸ ︷︷ ︸
r

|ej1∧ej2)
∣∣
st
≤ Lk,r

(
ε(n)

)− r+2
2
∣∣λ(n)

1 − λ(n)
2

∣∣
(IV.3.7)

for any 1 ≤ i1, . . ., ik−r ≤ 2, 0 ≤ j1 < j2 ≤ 2.
Thirdly, a direct computation based on (III.3.6) and the last identity in (R1)

(see Section I.4.3) shows that for any k, r ∈ Z with k ≥ 0 and 0 ≤ r ≤ k, there
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exists Nk,r > 0 such that

∣∣∣∣∣Rmk+2(µ(n))(eα1 , . . ., eαr , e`1 , e`2 , eαr+1 , . . ., eαk |ej1∧ej2)
∣∣
st
−

−
∣∣Rmk+2(µ(n))(eα1 , . . ., eαr , e`2 , e`1 , eαr+1 , . . ., eαk |ej1∧ej2)

∣∣
st

∣∣∣ ≤
≤ Nk,r

r∑
q=0

∣∣Rmq(µ(n))
∣∣
st

∣∣Rmk−q(µ(n))
∣∣
st

(IV.3.8)

for any 0 ≤ α1, . . .,αk ≤ 2, 0 ≤ `1, `2 ≤ 2, 0 ≤ j1 < j2 ≤ 2.
Finally, we are ready to prove (IV.3.4) by induction on k ≥ 1. For k = 1, it

follows directly from (IV.2.6) and (IV.2.8). Let us fix now k > 1 and assume that
(IV.3.4) holds for any 1 ≤ k′ ≤ k. Then

∣∣Rmk+1(µ(n))
∣∣
st
≤

≤ C1

∑
0≤α1,...,αk+1≤2

0≤j1<j2≤2

∣∣Rmk+1(µ(n))(eα1 , . . ., eαk+1
|ej1∧ej2)

∣∣
st

(IV.3.8)
≤ C2

{
k+1∑
r=0

∑
1≤i1,...,i(k+1)−r≤2

0≤j1<j2≤2

∣∣Rmk+1(µ(n))(ei1 , . . ., ei(k+1)−r , e0, . . ., e0︸ ︷︷ ︸
r

|

|ej1∧ej2)
∣∣
st

+
k−1∑
q=0

∣∣Rmq(µ(n))
∣∣
st

∣∣Rmk−q−1(µ(n))
∣∣
st

}
(IV.3.5),(IV.3.7),(IV.3.6)

≤ C3

{
k+1∑
i=1

(
ε(n)

) i
2 +

k+1∑
i=0

(
ε(n)

)− i+2
2
∣∣λ(n)

1 − λ(n)
2

∣∣+
+

k−1∑
q=0

∣∣Rmq(µ(n))
∣∣
st

∣∣Rmk−q−1(µ(n))
∣∣
st

}

≤ C4

{(
ε(n)

) 1
2 +

(
ε(n)

)− k+3
2
∣∣λ(n)

1 − λ(n)
2

∣∣+
+

k−1∑
q=0

∣∣Rmq(µ(n))
∣∣
st

∣∣Rmk−q−1(µ(n))
∣∣
st

}

where Ci are some suitable positive constants. Finally, by Proposition IV.3.2 and
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the inductive hypothesis, we obtain

k−1∑
q=0

∣∣Rmq(µ(n))
∣∣
st

∣∣Rmk−q−1(µ(n))
∣∣
st
≤ C̃

((
ε(n)

) 1
2 +

(
ε(n)

)− k+3
2
∣∣λ(n)

1 − λ(n)
2

∣∣)
for another suitable C̃ > 0. Therefore, the thesis follows.

From (IV.2.8), (IV.2.11) and (IV.3.4) we directly get

Corollary IV.3.4. Let (µ(n)) be an almost Berger sequence with regularity index
reg(µ(n)) = k̄.
a) If k̄ ≥ 3, then

∣∣Rmk(µ(n))
∣∣
st
→ 0 as n→ +∞ for any 1 ≤ k ≤ k̄ − 2.

b) If k̄ ≥ 2 and it is finite, the following conditions hold true:
· ∣∣Rmk̄−1(µ(n))

∣∣
st
does not converge to 0 as n→ +∞;

· ∣∣Rmk̄−1(µ(n))
∣∣
st

is bounded if and only if
(
ε(n)

)− k̄+1
2
∣∣λ(n)

1 − λ
(n)
2

∣∣ is
bounded.

c) If k̄ is finite, then
∣∣Rmk(µ(n))

∣∣
st
→ +∞ as n→ +∞ for any integer k ≥ k̄.

Proof. Claim (a) follows directly from (IV.3.4). Let us assume now that k̄ ≥ 2.
Then, by (IV.2.11) we get∣∣Rmk(µ(n))(e0, . . ., e0|e0∧e1)

∣∣
st
∼ 22(k+1)

(
ε(n)

)− k+2
2
∣∣λ(n)

1 − λ(n)
2

∣∣ (IV.3.9)

for any k ≥ 1. Therefore, claim (b) follows from (IV.3.4) and (IV.3.9), while claim
(c) follows from (IV.3.9). Finally, if k̄ = 1, then claim (c) follows from (IV.2.8)
and (IV.2.11).

IV.4 Proofs of the main results

For the proofs of the main results, we begin by considering the 2-parameter family

{µ? = µ?(ε, δ) : ε, δ ∈ R, ε > 0, 0 ≤ δ < 1} ⊂ H0,3

defined by

µ?(e0, e1) = −2
√

1
ε

2+δ
2−δ e2 , µ?(e0, e2) = +2

√
1
ε

2−δ
2+δ e1 ,

µ?(e1, e2) = −2
√

4ε
4−δ2 e0 .

(IV.4.1)
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By means of (IV.2.4), each element µ?(ε, δ) ∈ H0,3 corresponds to the Lie group
SU(2) endowed with the diagonal left-invariant metric gµ?(ε,δ) defined by

gµ?(ε,δ)(X0,X0) = ε , gµ?(ε,δ)(X1,X1) = 1− δ
2 , gµ?(ε,δ)(X2,X2) = 1 + δ

2 ,

(IV.4.2)
where (X0,X1,X2) is the standard basis of su(2) given in (IV.2.2).

Let us also consider the Riemannian symmetric space (CP 1 × R, gFS+dt2),
which corresponds to the element µo ∈ H1,3 defined by

µo(e0, e1) = −2e2 , µo(e0, e2) = +2e1 , µo(e1, e2) = −2e0 , µo(e3, · ) = 0 .

Clearly, it holds that

Rm0(µo) =

(
4

0

0

)
, Rmk(µo) = 0 for any k ≥ 1 . (IV.4.3)

Proof of Theorem IV.1.1. Let us fixm = 3, and hence ı(3) = 1 (see Section I.4.3).
Fix an integer s ≥ 3 and consider the sequence µ(n) := µ?(ε

(n), δ(n)) defined by

ε(n) := 1
n2 , δ(n) := 1

ns+
5
2

.

Then we get

(
ε(n)

)− k
2 δ(n) = nk−s−

5
2 , lim

n→+∞
nk−s−

5
2 =

0 if 0 ≤ k ≤ s+ 2

+∞ if k > s+ 2

and hence, from (IV.4.2), it comes that (µ(n)) is an almost Berger sequence with
regularity index reg(µ(n)) = s+2 (see Definition IV.3.1). From Proposition IV.3.2
and Corollary IV.3.4, we get

Rm0(µ(n))→
(

4

0

0

)
, Rmk(µ(n))→ 0 for any 1 ≤ k ≤ s ,

∣∣Rmk′(µ(n))
∣∣
st
→ +∞ for any k′ ≥ s+ 1 .

Therefore the thesis comes directly from (IV.4.3). For m > 3, it is sufficient
to consider the Riemannian product (SU(2) × Rm−3, gµ(n)+gflat), where µ(n) is
constructed as above choosing s ≥ ı(m) + 2.
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Proof of Corollary IV.1.2. As in the proof of Theorem IV.1.1, we can reduce to
the case m = 3. Fix an integer k ≥ ı(3) + 4 = 5 and consider the sequences

ε(n) := 1
n2 , δ(n) := 1

nk+1 .

By arguing as in the proof of Theorem IV.1.1, from Proposition IV.3.2 and Corol-
lary IV.3.4 it comes that the sequence µ(n) := µ?(ε

(n), δ(n)) converges (k−2)-
infinitesimally to µo and

1
C <

∣∣Rmk−1(µ(n))
∣∣
st
< C ,

∣∣Rmk′(µ(n))
∣∣
st
→ +∞ for any k′ ≥ k

for some C > 1. We can choose R > 0 big enough so that | sec(R · µ(n))| ≤ 1,
where the scaled bracket R·µ(n) is defined by (III.3.9). Letting µ̃(n) := R·µ(n) and
µ̃o := R ·µo, by Theorem III.1.4 and Corollary III.2.9, it follows that we can pass
to a subsequence in such a way that (Bµ̃(n) , ĝµ̃(n)) converges to (Bµ̃o , ĝµ̃o) in the
pointed Ck,α-topology for any 0 < α < 1. Finally, let us assume by contradiction
that (Bµ̃(n) , ĝµ̃(n)) admits a convergent subsequence in the pointed Ck+1-topology.
By Theorem III.1.4, this would imply that

∣∣Rmk−1(µ(nj))
∣∣
st
→ 0 as j → +∞ for

some (nj) ⊂ N, which is not possible.

Proof of Corollary IV.1.3. Let us first prove that the moduli spaces H1(1), H2(1)

are compact in the pointed C∞-topology. For m = 1, H1 = H0,1 contains only the
bracket µ = 0 which correspond to the straight line (R = R/{0}, dt2). Therefore
in this case the statement is trivially true. For m = 2, the moduli space H2(1)

decomposes as H2(1) = H0,2(1)∪H1,2(1). Then, by the well known classification
of real 2-dimensional Lie algebras, we get

H0,2(1) = {0} ∪ {R · µsol : R ∈ (0, 1] } ,

where the bracket µ = 0 correspond to (R2 = R2/{0}, gflat), while µsol(e1, e2) = e1

correspond to the solvmanifold presentation of the hyperbolic space (RH2 =

Gµsol
/{0}, ghyp). On the other hand

H1,2(1) = {µ0} ∪ {R · µε : R ∈ (0, 1] , ε = ±1} ,

where
µ0(e0, e1) = +e2 , µ0(e0, e2) = −e2 , µ0(e1, e2) = 0
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corresponds to (R2 = SE(2)/SO(2), gflat), while

µε(e0, e1) = +e2 , µε(e0, e2) = −e2 , µε(e1, e2) = ε e0 , with ε = ±1

correspond to (S2 = SO(3)/SO(2), ground) and (RH2 = SL(2,R)/SO(2), ghyp),
respectively. Therefore, H2(1) is compact with respect to the topology of the
algebraic convergence and hence the claim follows by Corollary III.1.5. Finally,
to prove that Hloc

m (1) is not compact in the pointed C3-topology for any m ≥ 3,
one can reduce to the casem = 3 and applying again Proposition IV.3.2, Corollary
IV.3.4 and Remark III.3.3 in order to construct a sequence (µ(n)) ⊂ H3(1) such
that

∣∣Rm1(µ(n))
∣∣
st
→ +∞ as n→ +∞.

IV.5 A note on the infinitesimal convergence

In this section, we recall the definition of infinitesimal convergence introduced by
Lauret in [41] for sequences of homogeneous spaces and we prove that it is equiv-
alent to the notion of infinitesimal convergence according to Definition III.3.9.

IV.5.1 Taylor expansion of real analytic Riemannian metrics

For reader’s convenience, we give a detailed proof for the following known fact
(see also [2, Prop E.III.7]).

Proposition IV.5.1. For any integer k ≥ 0, every partial derivative
∂k+2gij

∂q1x1...∂qmxm

∣∣
0

of order k + 2 of a real analytic Riemannian metric g in
normal coordinates is expressible as a polynomial in the components of
Rm0(g)|0, . . ., Rmk(g)|0.

To check this, consider a ball B ⊂⊂ Rm centered at the origin and denote
by g a real analytic Riemannian metric on B. We also assume that the standard
coordinates (x1, . . .,xm) of Rm are normal for g at 0. Then, there exists ε > 0

sufficiently small such that

gij(x) = δij +
∞∑
k=0

∑
|q|=k+2

∂qgij(0)

q!
xq for any |x|st < ε ,

where for any multi-index q = (q1, . . ., qm) we denote by q! := q1!. . .qm!, by
xq := (x1)q1 . . .(xm)qm and by ∂q := ∂|q|

∂q1x1...∂qmxm
.
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Fix now y ∈ B and consider the radial geodesic γ(t) := ty together with the
Jacobi vector field J(t) := twi ∂

∂xi
along γ(t). Set also f(t) := gγ(t)(J(t), J(t))

and, for any tensor field A = A(t) along γ(t), denote by A{k} the k-th covariant
derivative A{k}(t) := (∇gt )kA(t) along γ(t). We recall that the Jacobi equation is

J{2}(t) = R(t)
(
J{0}(t)

)
with R(t)( · ) := − Rm(g)γ(t)(γ̇(t) ∧ ( · ))γ̇(t) .

By the Leibniz rule, we get

J{0}(0) = 0 , J{1}(0) = w , J{2}(0) = 0 ,

J{k+2}(0) = Pk
(
R{0}(0), . . .,R{k−1}(0)

)
w for any integer k ≥ 1 ,

(IV.5.1)

where Pk are polynomials in k variables of deg(Pk) = bk+1
2 c recursively defined

by

P1(a0) = a0 , P2(a0, a1) = 2a1 ,

Pk(a
0, . . ., ak−1) = kak−1 +

k−2∑
i=1

(
k

i+ 2

)
ak−2−iPi(a

0, . . ., ai−1) .

Differentiating the function f , we get f(0) = ḟ(0) = 0, f̈(0) = 〈w,w〉st and for
any integer k ≥ 1

f (2k+1)(0) = 2(2k + 1)
〈
J{2k}(0),w

〉
st

+
k∑
i=3

2

(
2k + 1

i

)〈
J{2k+1−i}(0), J{i}(0)

〉
st

,

f (2k+2)(0) = 2(2k + 2)
〈
J{2k+1}(0),w

〉
st

+

+

k∑
i=3

2

(
2(k + 1)

i

)〈
J{2k+2−i}(0), J{i}(0)

〉
st

+

+

(
2(k + 1)

k + 1

)〈
J{k+1}(0), J{k+1}(0)

〉
st

.

(IV.5.2)
From (IV.5.1) and (IV.5.2) it follow that

f (k+4)(0) =
∑
ij

∑
|q|=k+2

α
[k]
ijq y

qwiwj for any integer k ≥ 0 ,

where α[k]
ijq are coefficients which depends polynomially only on the components
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of Rm0(g)|0, . . ., Rmk(g)|0. Hence, for t sufficiently small

f(t) =

∞∑
k=0

f (k)(0)

k!
tk

= δijw
iwjt2 +

∞∑
k=0

f (k+4)(0)

(k + 4)!
tk+4

= t2

(
δij +

∞∑
k=0

∑
|q|=k+2

α
[k]
ijq

(k + 4)!
yqtk+2

)
wiwj .

Since f(t) = t2gij(ty)wiwj , we finally get

gij(x) = δij +
∞∑
k=0

∑
|q|=k+2

q!
(k+4)!α

[k]
ijq

q!
xq

and the thesis follows.

IV.5.2 The infinitesimal convergence in the sense of Lauret

A sequence (µ(n)) ⊂ Hm converges infinitesimally to µ(∞) ∈ Hm in the sense of
Lauret if there exists a sequence of smooth embeddings

φ(n) : Bg
µ(∞)

(
eµ(∞)Hµ(∞) , ε(n)

)
⊂ Gµ(∞)/Hµ(∞) → Gµ(n)/Hµ(n) , with ε(n) → 0+

such that φ(n)(eµ(∞)Hµ(∞)) = eµ(n)Hµ(n) and∣∣∣((∇µ)k
(
φ(n)∗gµ(n) − gµ(∞)

))
eµHµ

∣∣∣
gµ
→ 0 as n→ +∞ , for any k ≥ 0 .

(IV.5.3)
Fixing a system of local coordinates centered at eµHµ and letting g(n)

ij , g(∞)
ij be the

components of φ(n)∗gµ(n) and gµ(∞) , respectively, it is easy to realize that (IV.5.3)
is equivalent to require that

∂qg
(n)
ij (0)→ ∂qg

(∞)
ij (0) as n→ +∞ (IV.5.4)

for any multi-index q.

Proposition IV.5.2. Let (µ(n)) ⊂ Hm be a sequence and µ(∞) ∈ Hm. Then
(µ(n)) converges infinitesimally to µ(∞) in the sense of Lauret if and only if (µ(n))

converges infinitesimally to µ(∞) according to Definition III.3.9.
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Proof. Let (Bm, ĝµ(n)) and (Bm, ĝµ(∞)) be the sequences of geometric models as-
sociated with µ(n) and µ(∞), respectively. Here, we recall that Bm := Bst(0,π) ⊂
Rm. By IV.5.4, it comes that if (µ(n)) converges infinitesimally to µ(∞) in the
sense of Lauret, then ∂q(ĝµ(n))`r(0) → ∂q(ĝµ(∞))ij(0) as n → +∞, for any multi-
index q, and so (µ(n)) converges infinitesimally to µ(∞) according to Definition
III.3.9. On the other hand, if (µ(n)) converges infinitesimally to µ(∞) according
to Definition III.3.9, then there exists a sequence of matrices (a(n)) ⊂ O(m) such
that a(n) → Im and

a(n) · Rmk(µ(n))→ Rmk(µ(∞)) as n→ +∞ ,

for any integer k ≥ 0, where a(n) acts by change of basis. Therefore, Proposition
IV.5.1 implies that

(a(n))`i(a
(n))rj ∂

q(ĝµ(n))`r(0)→ ∂q(ĝµ(∞))ij(0) as n→ +∞ ,

for any multi-index q, and this completes the proof.



Chapter V

Diverging sequences of unit
volume invariant metrics with
bounded curvature

V.1 Statement of results

In this Chapter we study the space MG
1 of G-invariant, unit volume metrics on a

given compact, connected, almost-effective homogeneous space Mm = G/H. In
particular, we focus on diverging sequences, i.e. which are not contained in any
compact subset of MG

1 , and we prove some structure results for those which have
bounded curvature.

In [12] the authors introduced the notion of 0-Palais-Smale sequences, that are
sequences (g(n)) ⊂ MG

1 such that scal(g(n)) → 0 and
∣∣Rico(g(n))

∣∣
g(n) → 0. Here,

Rico(g(n)) is the traceless Ricci tensor of g(n) and | · |g(n) is the norm induced by
g(n) on the tensor bundle over M . Moreover, they proved the following result:
if M admits a 0-Palais-Smale sequence, then there exists a closed, connected in-
termediate subgroup Ho ( Ko ⊂ Go such that the quotient Ko/Ho is a torus. (see
[12, Thm 2.1]). Here, Ho and Go denote the identity components of H and G,
respectively. This last theorem is optimal if the isotropy group H is connected. In
case H is disconnected, the authors conjectured that G/H is itself a homogeneous
torus bundle (see [12, p. 697]).

Notice that a 0-Palais-Smale sequence (g(n)) cannot have convergent subse-

85



86 ChapterV. Diverging sequences with bounded curvature

quences if M is not a torus. This means that (g(n)) goes off to infinity on the
set MG

1 and consequently we say that such sequences are divergent. Moreover,
the Gap Theorem [11, Thm 4] implies that any sequence (g(n)) ⊂ MG

1 with
scal(g(n)) → δ ≥ 0 and

∣∣Rico(g(n))
∣∣
g(n) → 0 has bounded curvature and hence,

assuming that M is not a torus, 0-Palais-Smale sequences are special examples of
diverging sequences with bounded curvature.

The first main result proved in this chapter is

Theorem V.1.1. Let Mm = G/H be a compact, connected homogenous space. If
there exists a diverging sequence (g(n)) ⊂ MG

1 with bounded curvature, i.e. with
| sec(g(n))| ≤ C for some constant C > 0, then there exists an intermediate closed
subgroup H ( K ⊂ G such that the quotient K/H is a torus.

We stress that the proof of Theorem V.1.1 is purely algebraic and constructive.
In fact, we show that the sum of the eigenspaces associated to all the shrinking
eigenvalues of any diverging sequence (g(n)) ⊂ MG

1 with bounded curvature is a
reductive complement of h = Lie(H) into an intermediate Ad(H)-invariant Lie
subalgebra h ( l ( g = Lie(G), which uniquely detects a strictly intermediate
Lie subgroup H ( L ( G, possibly not closed, such that the quotient L/H is a
torus. Clearly Theorem V.1.1 follows by setting K := L. Actually, we know more
about the structure of any such a sequence: (g(n)) approaches asymptotically, in a
precise sense, a submersion-type metric with respect to the (locally) homogeneous
fibration L/H → G/H → G/L whose fibers shrink as n → +∞. We refer to
Theorem V.3.3 for more details.

Since 0-Palais-Smale sequences are, in particular, diverging sequences with
bounded curvature and we require neither that the Lie groups H,G are connected,
nor that the traceless Ricci goes to zero, Theorem V.1.1 generalizes [12, Thm 2.1].
We stress that this proves the previously mentioned conjecture in [12, p. 697]. On
the other hand, we point out that [12, Thm 2.1] allows for changing the transitive
group actions, while our Theorem V.1.1 does not.

Letting NG(Ho) be the normalizer of Ho in G, from Theorem V.1.1 we imme-
diately obtain the following

Corollary V.1.2. If there exists no intermediate closed subgroup H ( K ⊂ G

such that the quotient K/H is a torus, e.g. when rank(H) = rank(NG(Ho)), then
any diverging 1-parameter family in MG

1 has unbounded curvature. In particular,
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in such a case the scalar curvature functional satisfies the Palais-Smale condition
on all of the space MG

1 .

We remark that, again by means of the Gap Theorem [11, Thm 4], 0-Palais-
Smale sequences get flatter and flatter as they go off to infinity. This last obser-
vation, together with the aim of providing an algebraic proof of the Palais-Smale
condition for the functional scal (e.g. see [9, Sec 2] for an algebraic proof of the
Bochner Theorem), brought us to study diverging sequences inside the subsets
(MG

1 )ε, with ε > 0. The second main result proved in this chapter is

Theorem V.1.3. Let Mm = G/H be a compact, connected homogenous space
and let ε > 0. Assume that there exists a diverging sequence (g(n)) ⊂ (MG

1 )ε

with bounded curvature and let K be the intermediate closed subgroup determined
by (g(n)) as in Theorem V.1.1. Then, there exists a second intermediate closed
subgroup K ( K′ ⊂ G such that the quotient K′/H is not a torus.

As above, the proof of Theorem V.1.3 is purely algebraic and constructive.
In fact, we show that the sum of the eigenspaces associated to all the generalized
bounded eigenvalues of any diverging sequence (g(n)) ⊂ (MG

1 )ε with bounded cur-
vature is a reductive complement of h into a second intermediate Ad(H)-invariant
Lie subalgebra h ( l ( l′ ( g, which uniquely detects a strictly intermediate Lie
subgroup L ( L′ ( G, possibly not closed, such that the quotient L′/H is not a
torus. Again, Theorem V.1.3 follows by setting K′ := L′.

We also exhibit an example of a sequence of unit volume invariant metrics
on the Stiefel manifold V3(R5) = SO(5)/SO(2) which diverges with bounded
curvature and whose scalar curvature converges to a positive constant. In that
case, referring to the notation above, the intermediate subgroups are L = K =

SO(2)×SO(2) and L′ = K′ = SO(4). We stress here that, unlike the previous case,
this example shows that a sequence (g(n)) ⊂ (MG

1 )ε which diverges with bounded
curvature does not necessarily approach asymptotically a submersion-type metric
with respect to the (locally) homogeneous fibration L′/H → G/H → G/L′ given
by the bigger Lie subgroup L′ (see Subsection V.3.2).

Finally, we relate our results on diverging sequences with bounded curvature
to the algebraic convergence introduced in Chapter III. Of course algebraically
collapsed sequences are necessarily divergent. Remarkably, the following weaker
converse assertion follows from Theorem V.3.3.
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Proposition V.1.4. Let Mm = G/H be a compact, connected homogenous space
and suppose that π1(M) is finite. If (g(n)) ⊂ MG

1 is a diverging sequence with
bounded curvature, then it is algebraically collapsed.

Notice that Proposition V.1.4 is optimal. In fact, we provide an easy example
of a sequence of unit volume invariant metrics on the product S1×S2 which di-
verges with bounded curvature whose associated sequence of brackets converges
algebraically to (R3, gflat).

V.2 H-subalgebras, submersion metrics and submer-
sion directions

V.2.1 H-subalgebras

We consider a compact, connected and almost effective m-dimensional homoge-
neous space M = G/H, with G and H compact Lie groups, and a fixed Ad(G)-
invariant Euclidean inner product Q on the Lie algebra g := Lie(G). Notice that
we call Lie subgroup of G any immersed submanifold of G which is also a subgroup.
We refer to [7, 8] for what concerns H-subalgebras and submersion directions.

Since G is compact it is well known that g is reductive, i.e. its radical coincides
with its center z(g). We observe also that every Lie subalgebra k ⊂ g is reductive
itself. This last claim can be easily proved by noticing that restriction of Q to k

is an Ad(Ko)-invariant Euclidean inner product on k, where we indicated with Ko

the connected Lie subgroup of G with Lie algebra k. Hence, any Lie subalgebra
k ⊂ g splits as k = [k, k] ⊕ z(k). We denote also by Ko the closure of Ko in G,
which is itself a Lie group, and by k its Lie algebra, which coincides with the
Malcev-closure of k in g (see Definition I.4.3). Then, k is a compact subalgebra of
g, possibly k = g, and moreover [k, k] = [k, k] by [58, Thm 3, p. 52].

Definition V.2.1. A H-subalgebra of g is an Ad(H)-invariant intermediate Lie
subalgebra k which lies properly between h = Lie(H) and g. An H-subalgebra k is
called toral if [k, k] ⊂ h, non-toral if [k, k] 6⊂ h.

Notice that if H is connected, then the condition of Ad(H)-invariance in the
definition above is redundant. However, in the general case proper intermediate
subalgebras which are not Ad(H)-invariant can occur.
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Let us consider now an H-subalgebra k ⊂ g and let Ko be the only connected
Lie subgroup of G with Lie algebra Lie(Ko) = k. Of course, if H is connected then
H ⊂ Ko. However, in general it only holds that the identity component of H stays
in H ∩ Ko and there is no need for the whole subgroup H to be contained in Ko.
Anyway, we stress the following important fact.

Proposition V.2.2. Let k be an H-subalgebra of g and Ko be the only connected
Lie subgroup of G such that Lie(Ko) = k. Then, the subgroup K generated by H

and Ko is a Lie subgroup of G, not necessarily closed, with Lie(K) = k. Moreover,
H is closed in K and the quotient K/H is connected. Finally, k is toral if and only
if K/H is a torus.

Proof. Since k is Ad(H)-invariant, it follows that H normalizes Ko, i.e. C(h)(Ko) ⊂
Ko for any h ∈ H. Here, C(·) indicates the conjugation inside G. Therefore the
subgroup K ⊂ G generated by H and Ko coincides with the set HKo = {hk : h ∈
H , k ∈ Ko}. Since

HKo ' (H×Ko)/H ∩ Ko ,

where H ∩ Ko acts freely on H×Ko on the right by (h, k) · h′ := (hh′, (h′)−1k), it
comes that K is a Lie subgroup of G which is closed if and only if Ko is closed
in G. Since the identity component of H is contained in Ko, it follows that the
identity component of K coincides with Ko and hence Lie(K) = k.

We notice now that K is Hausdorff and H is compact, hence H is necessarily
closed in K. Moreover, by the Second Isomorphism Theorem we get K/Ko '
H/(H ∩ Ko) and hence K/H is connected.

Let us suppose now that k is toral. We can also assume that Ko is closed
in G. Otherwise, one can just reply the same argument as below by replacing k

with its Malcev-closure k̄ inside g. We notice that by the Second Isomorphism
Theorem K/H ' Ko/(H ∩ Ko) and that the subgroup H ∩ Ko is normal in Ko.
To prove this last claim, firstly we observe that it is straightforward to show
that the commutator [Ko,Ko] is connected. Therefore, since [k, k] ⊂ h it holds
that [Ko,Ko] ⊂ H ∩ Ko and hence C(k)(h) = [k,h]h ∈ H ∩ Ko for any k ∈ Ko,
h ∈ H ∩ Ko. This actually proves that K/H is a compact, connected Lie group.
Finally, by using the fact that [k, k] ⊂ h, the Lie algebra k splits as

k = h⊕ a , with [h, a] = [a, a] = {0}
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and therefore K/H is a torus. On the other hand, it is easy to check that if K/H
is a torus, then [k, k] = [̄k, k̄] ⊂ h and this completes the proof.

From now on, we will always associate to any H-subalgebra k ⊂ g the Lie
subgroup K ⊂ G defined as in Proposition V.2.2. If K is closed in G, then it gives
rise to the homogeneous fibration K/H→ G/H→ G/K whose standard fiber K/H,
which is not almost-effective in general, is a torus if and only if k is toral. If K is
not closed in G, then we get a fibration of local factor spaces K/H→ G/H→ G/K

whose standard fiber K/H is a dense submanifold of K/H, which is a torus if and
only if k is toral.

Any H-subalgebra k determines an Ad(H)-invariant Q-orthogonal decomposi-
tion

g = h + mk︸ ︷︷ ︸
k

+

m︷ ︸︸ ︷
m⊥k , with [k,m⊥k ] ⊂ m⊥k . (V.2.1)

Since k is reductive, k is toral if and only if mk lies in the center of k, i.e.
[h,mk] = [mk,mk] = {0}. If k is not compact, i.e. if the subgroup K is not closed
in G, from the equality [k, k] = [k, k] we get a finer Ad(H)-invariant Q-orthogonal
decomposition

g = k + ak︸ ︷︷ ︸
k

+

m⊥k︷ ︸︸ ︷
m⊥

k
= h + mk̄ + m⊥k̄ , with [k, ak] = [ak, ak] = {0} . (V.2.2)

We remark also that any submodule of m is Ad(K)-invariant if and only if is
Ad(K)-invariant.

Finally, if we suppose that the group G is semisimple, given any not necessarily
compact toral H-subalgebra k, the following result holds.

Lemma V.2.3. Let k be an H-subalgebra of g. If G is semisimple and k is toral,
then k is faithfully represented by its adjoint action on m⊥k .

Proof. Since G is compact and K is closed in G, the quotient G/K is a reductive
homogeneous space. Let now N be the maximal normal subgroup of G contained in
K and n := Lie(N). We consider also the Q-orthogonal decomposition n = n1+n2,
with n1 := h ∩ n. Since n is an ideal of g and n ⊂ k̄, it follows that [n,m⊥

k̄
] = {0}.

Moreover, since n2 ⊂ mk̄ and k is toral, it holds that [n2, h] = [n2,mk̄] = {0}.
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But then n2 ⊂ z(g) = {0} and so n = n1 ⊂ h. Being G/H almost-effective by
assumption, it follows that n = {0} and so G/K is almost-effective. Hence, its
isotropy representation is faithful (see e.g. [67, Cor 6.15]). But then

{X ∈ k : [X,m⊥k ] = {0}} ⊂ {X ∈ k̄ : [X,m⊥k̄ ] = {0}} = {0}

and so the claim follows.

V.2.2 Submersion metrics and submersion directions

As a standard reference for what concerns Riemannian submersion, we refer to
[3, Ch 9]. We recall here the following

Definition V.2.4. Let k ⊂ g be an H-subalgebra. An invariant metric g ∈ MG

is called k-submersion metric if g(mk,m
⊥
k ) = {0} and its restriction on m⊥k ⊗ m⊥k

is Ad(K)-invariant. The set of all k-submersion metrics is denoted by MG(k) and
the set of unit volume k-submersion metrics is denoted by MG

1 (k) := MG
1 ∩MG(k).

This definition is due to the fact that, given an H-subalgebra k, any metric
g ∈MG(k) gives rise to a (locally) homogeneous Riemannian submersion

K/H→ (G/H, g)→ (G/K, g|m⊥k ⊗m⊥k ) . (V.2.3)

Moreover, by means of the following lemma, the submersion (V.2.3) has totally
geodesic fibers.

Lemma V.2.5. Let k ⊂ g be an H-subalgebra and g ∈MG. If g(mk,m
⊥
k )={0} with

respect to the decomposition (V.2.1), then K/H is totally geodesic in (G/H, g).

Proof. Let X1,X2 ∈ mk and X3 ∈ m⊥k . Since by hypothesis g(mk,m
⊥
k ) = {0},

from [3, Lemma 7.27] we directly get that

2g
(
∇gX∗1X

∗
2 ,X∗3

)
= g([X∗1 ,X∗2 ],X∗3 ) + g([X∗1 ,X∗3 ],X∗2 ) + g([X∗2 ,X∗3 ],X∗1 )

= −g([X1,X2]m,X3) + g([X3,X1]m,X2) + g([X3,X2]m,X1)

= 0 ,

where we indicated with X∗x := d
dt exp(tX)·x

∣∣
t=0

the action vector field associated
to X ∈ g, with ∇g the Levi-Civita connection of g and we used the fact that
[X,Y ]∗ = −[X∗,Y ∗] for any X,Y ∈ g. This is equivalent of saying that the
second fundamental form of K/H in (G/H, g) is identically zero, and so K/H is
totally geodesic.
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Let now MG
1 be the space of unit volume G-invariant metrics on M = G/H

and Σ ⊂ TQmM
G
1 the unit tangent sphere defined in (I.5.7). Fix v ∈ Σ and a good

decomposition ϕ for v. Let also

v̂1 < . . . < v̂`v

be the distinct eigenvalues of v ordered by size, and let Iv1 (ϕ), . . ., Iv`v(ϕ) ⊂ I =

{1, . . ., `} be the index sets defined by the condition

vi = v̂s ⇐⇒ i ∈ Ivs (ϕ) for every s ∈ {1, . . ., `v}, i ∈ I . (V.2.4)

Lemma V.2.6 ([7], Lemma 4.12 and Lemma 4.13). Let v ∈ Σ and let ϕ be a good
decomposition for v. Then `v > 1 and there exists a constant c = c(G/H) > 0,
which does not depend neither on v nor ϕ, such that v̂1 < −c and v̂`v > c.
Furthermore, for any 1 ≤ i, j, k ≤ `v, the real number [Ivi (ϕ)Ivj (ϕ)Ivk (ϕ)]ϕ does
not depend on the choice of the good decomposition ϕ.

From (I.5.25) it follows that the scalar curvature along the geodesic γv(t) is

scal(γv(t)) =
1

2

∑
i∈I

dibie
−tvi − 1

4

∑
i,j,k∈I

[ijk]ϕe
t(vi−vj−vk) . (V.2.5)

We recall now the following definition, firstly introduced by Böhm.

Definition V.2.7 ([7], Def 5.11). Let SΣ denote the set of all v ∈ Σ with the
following property: if ϕ is any good decomposition for v, then for all (i, j, k) ∈ I3

it holds that
[ijk]ϕ > 0 =⇒ vi − vj − vk + v̂1 ≤ 0 . (V.2.6)

Any element v ∈ SΣ is called submersion direction.

Notice that (V.2.6) does not depend on the choice of the good decomposition
ϕ for v. Moreover, submersion directions (or non-negative directions, as originally
named by Böhm) have the following remarkable property, which comes directly
from (V.2.6).

Proposition V.2.8 ([7], Lemma 5.16). Let v ∈ SΣ and let ϕ be a good decompo-
sition for v. Then

[Iv1 (ϕ)Ivj1(ϕ)Ivj2(ϕ)]ϕ = 0 for any 1 ≤ j1 < j2 ≤ `v . (V.2.7)

In particular, k1 := h + mIv1 (ϕ) is an H-subalgebra.
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This last proposition gives rise to a partition of the set SΣ into the sets of
k1-submersion directions, which are defined by

SΣ(k1) := {v ∈ SΣ : mIv1 (ϕ) = mk1 for any good decomposition ϕ for v} ,

(V.2.8)
for any H-subalgebra k1 ⊂ g. As a direct generalization of (V.2.8), we are going to
introduce a descending chains of subsets of SΣ, which will play a role in the next
section. First, we define flag of H-subalgebras any ordered set ζ := (k1, . . ., kp) of H-
subalgebras of g such that k1 ( . . . ( kp. The lenght of ζ is the cardinality |ζ| = p.
Notice that, by Proposition V.2.2, any flag of H-subalgebras determines univocally
a finite sequence of intermediate Lie subgroups H ( K1 ( . . . ( Kp ( G.

Definition V.2.9. Let ζ := (k1, . . ., kp) be a flag of H-subalgebras. A unit tangent
vector v ∈ Σ is called ζ-submersion direction if it satisfies the following conditions
for any good decomposition ϕ of v:
i) k1 = h + mIv1 (ϕ) , k2 = k1 + mIv2 (ϕ) , . . ., kp = kp−1 + mIvp (ϕ) ;
ii) for any 1 ≤ q ≤ p, for any (i, j, k) ∈ {q, . . ., `v}3 it holds

[Ivi (ϕ)Ivj (ϕ)Ivk (ϕ)]ϕ > 0 =⇒ v̂i − v̂j − v̂k + v̂q ≤ 0 .

The set of all ζ-submersion directions is denoted by SΣ(ζ) or SΣ(k1, . . ., kp), equiv-
alently.

Given a flag of H-subalgebras ζ := (k1, . . ., kp), it follows from the very defini-
tion that

SΣ(ζ) = SΣ(k1, . . ., kp) ⊂ SΣ(k1, . . ., kp−1) ⊂ . . . ⊂ SΣ(k1, k2) ⊂ SΣ(k1) .

Furthermore, the set SΣ(ζ) of ζ-submersion directions is related with the notion
of submersion type metrics by the following

Proposition V.2.10. Let ζ = (k1, . . ., kp) be a flag of H-subalgebras. Then, it
holds that

SΣ(ζ) ⊂ SΣ ∩ TQmM
G
1 (kq) for any 1 ≤ q ≤ p , (V.2.9)

i.e. γv(t) ∈MG
1 (kq) for any v ∈ SΣ(ζ), for any t > 0, for any 1 ≤ q ≤ p.

Proof. Let v ∈ SΣ(ζ) and ϕ be a good decomposition for v. Fix 1 ≤ q ≤ p.
We have to show that the submodule mIvi (ϕ) is Ad(Kq)-invariant for any q ≤
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i ≤ `v. Since every submodule mIvi (ϕ) is Ad(H)-invariant, it follows from the
very definition of Kq (see Proposition V.2.2) that it is sufficient to show that
mIvi (ϕ) is ad(kq)-invariant for any q ≤ i ≤ `v. We already know from (V.2.1) that
[kq,m

⊥
kq

] ⊂ m⊥kq . From condition (ii) in Definition V.2.9, we get

[Ivq (ϕ)Ivj1(ϕ)Ivj2(ϕ)] = 0 for any q ≤ j1 < j2 ≤ `v .

In particular, Q
(
[mkq ,mIvi (ϕ)],mIvj (ϕ)

)
= 0 for any q < i, j ≤ `v, i 6= j. So, we can

conclude that [mkq ,mIvi (ϕ)] ⊂ mIvi (ϕ) for any q < i ≤ `v.

By means of Proposition V.2.10, the following geometric interpretation for the
set of submersion directions arises. Given an element v ∈ SΣ(k1), moving along the
geodesic γv(t) is equivalent to shrinking the fibers of the (locally) homogeneous
Riemannian submersion associated to k1 as in V.2.3 and to rescaling the base
space, while the volume is keeped fixed.

The set SΣ ⊂ Σ of submersion directions has originally raised from the study
of the scalar curvature functional scal : MG

1 → R, aimed to get results of existence
and non-existence for homogeneous Einstein metrics (see e.g. [87, 7]). It turns out
that it plays a crucial role in studying the asymptotic behavior of the curvature
tensor along geodesic rays γv. More concretely

Theorem V.2.11. Let v ∈ Σ and γv the corresponding geodesic ray in MG
1 .

a) [7, Thm 5.18] If v ∈ Σ \ SΣ, then

lim
t→+∞

scal(γv(t))→ −∞ .

b) If v ∈ SΣ(k1) for a non-toral H-subalgebra k1 ⊂ g, then

lim
t→+∞

∣∣Ric(γv(t))
∣∣
γv(t)

→ +∞ .

Proof. Fix v ∈ Σ and a good decomposition ϕ for v. If v ∈ Σ\SΣ, then there exists
ε > 0 and a triple (io, jo, ko) ∈ I3 such that [iojoko]ϕ > ε and vio−vjo−vko+v̂1 > ε.
Since v̂1 < 0 by Lemma V.2.6, from (V.2.5) we get

scal(γv(t)) <
1
2

(
bG/H − εetε

)
e−tv̂1 → −∞

and this completes the proof of the first claim.
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Let now k1 be a non-toral H-subalgebra of g and suppose that v ∈ SΣ(k1).
Then, if i ∈ Iv1 (ϕ), for any j, k ∈ I it follows from (V.2.7) that

[ijk]ϕ
(
1− et(vk−vj)

)
= 0 for any t > 0 ,

[ijk]ϕ > 0 only if j, k ∈ Ivs (ϕ) for some 1 ≤ s ≤ `v .
(V.2.10)

So, for any i ∈ Iv1 (ϕ), from (I.5.21) we get

rici(γv(t))
(I.5.13)

=
bi
2
e−tvi − 1

2di

∑
j,k∈I

[ijk]ϕe
t(vk−vi−vj) +

1

4di

∑
j,k∈I

[ijk]ϕe
t(vi−vj−vk)

(I.5.13)
=

(
ci +

1

2di

∑
j,k∈I

[ijk]ϕ

)
e−tv̂1 − 1

2di
e−tv̂1

∑
j,k∈I

[ijk]ϕe
t(vk−vj)+

+
1

4di
etv̂1

∑
j,k∈I

[ijk]ϕe
−t(vj+vk)

(V.2.10)
= cie

−tv̂1 +
1

4di
etv̂1

∑
j,k∈Ivs (ϕ)
1≤s≤`v

[ijk]ϕe
−2tv̂s

(I.5.13)
=

1

2di

(
2dici +

1

2

∑
j,k∈Iv1 (ϕ)

[ijk]ϕ

)
e−tv̂1+

1

4di

∑
j,k∈Ivs (ϕ)
2≤s≤`v

[ijk]ϕe
−t(2v̂s−v̂1) .

Since k1 is non toral, there exists io ∈ Iv1 (ϕ) such that

2diocio +
1

2

∑
j,k∈Iv1 (ϕ)

[iojk]ϕ > 0

and so the second claim follows.

Remark V.2.12. To prove the second claim, it is possible to argue also like
this. Let v ∈ SΣ(k1) for a given non-toral H-subalgebra k1 and ϕ ∈ FG be a good
decomposition for v. Since γv(t)|K1/H = etv̂1QIv1 (ϕ) and v̂1 < 0, it follows that
the intrinsic sectional curvature of K1/H blows up as t → +∞. Moreover, from
Lemma V.2.5 and Proposition V.2.10, we know that K1/H is totally geodesic in
(G/H, γv(t)) for any t > 0 and so also its extrinsic sectional curvature blows up.
Then, claim (b) follows directly from [11, Thm 4].

As a consequence of Theorem V.2.11, the only way of reaching the boundary of
the space MG

1 , moving along a geodesic γv while keeping the curvature bounded,
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is to choose v ∈ SΣ(k1) for some toral H-subalgebra k1 ⊂ g. By the way, we stress
the fact that this last condition is far form being sufficient.

Example V.2.13 (Berger spheres). Let M = G = SU(2). Consider the
Ad(SU(2))-invariant inner product Q(A1,A2) := −1

2 Tr(A1·A2) on su(2), the stan-
dard Q-orthonormal basis (X0,X1,X2) such that

[X0,X1] = −2X2 , [X1,X2] = −2X0 , [X2,X0] = −2X1

and set k := span(X0). By means of (I.5.7) and (V.2.7), it is easy to check that
SΣ(k) = {v̄}, where the tangent direction v̄ is given by

v̄ =

 −
√

6
3 √

6
6 √

6
6

 .

Let us indicate now with
(
X0(t) := e

√
6

6
tX0,X1(t) := e−

√
6

12
tX1,X2(t) := e−

√
6

12
tX2

)
the γv̄(t)-orthonormal basis for su(2) obtained by normalizing (X0,X1,X2). Then,
one can directly check that the curvature tensor

Rm(γv̄(t)) : su(2) ∧ su(2)→ su(2) ∧ su(2)

is diagonal and explicitly given by

Rm(γv̄(t))(X1(t)∧X2(t)) = e−
2
3

√
6tX1(t)∧X2(t) ,

Rm(γv̄(t))(X1(t)∧X3(t)) = e−
2
3

√
6tX1(t)∧X3(t) ,

Rm(γv̄(t))(X2(t)∧X3(t)) =
(

4e−
√

6
6
t − 3e−

2
3

√
6t
)
X2(t)∧X3(t) .

Hence, we conclude that limt→+∞
∣∣Rm(γv̄(t))

∣∣
γv̄(t)

= 0. Notice that (SU(2), γv̄(t))

is a Berger sphere for any t ≥ 0 (see Section IV.3.1).

V.3 Proofs of Theorem V.1.1 and Theorem V.1.3

V.3.1 Main results

Let us consider a sequence (g(n)) ⊂ MG
1 . Then, for every n ∈ N there exist

v(n) ∈ Σ and t(n) > 0, univocally determined, such that g(n) = γv(n)(t(n)). Since
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Σ is compact, there exist a sequence (ni) ⊂ N and a direction v(∞) ∈ Σ such that
v(ni) → v(∞). For the sake of simplicity, in this section we will assume that the
whole sequence (v(n)) converges to some v(∞) ∈ Σ, which we call limit direction
of (g(n)). We also say that (g(n)) is divergent if t(n) → +∞.

For any n ∈ N we choose a good decomposition ϕ(n) = (m
(n)
1 , . . .,m

(n)
` ) of m

for v(n), so that

g(n) = λ
(n)
1 Q

m
(n)
1

+ . . .+ λ
(n)
` Q

m
(n)
`

, with λ
(n)
i := et

(n)v
(n)
i . (V.3.1)

Since v(n) → v(∞), we can suppose that the sequence (ϕ(n)) ⊂ FG converges as
n→ +∞ to a good decomposition ϕ(∞) = (m

(∞)
1 , . . .,m

(∞)
` ) for the limit direction

v(∞) of (g(n)). For simplicity of notation, since we do not need to specify the
particular choice of ϕ(n) and ϕ(∞), we will write [ijk](n) and [ijk](∞) instead
of [ijk]ϕ(n) and [ijk]ϕ(∞) , respectively. Being the map ϕ 7→ [ijk]ϕ continuous,
it holds that [ijk](n) → [ijk](∞) as n → +∞. Furthermore, the coefficients
introduced in (I.5.11) and (I.5.10) will be indicated by b(n)

i , c(n)
i when they refer

to the decomposition ϕ(n) and by b(∞)
i , c(∞)

i when they refer to the decomposition
ϕ(∞), respectively. Again, it holds that b(n)

i → b
(∞)
i and c(n)

i → c
(∞)
i as n→ +∞.

From now on, up to passing to a subsequence we will always assume that the
decompositions ϕ(n) are ordered in such a way that

v
(n)
1 ≤ v(n)

2 ≤ . . . ≤ v(n)
` for any n ∈ N . (V.3.2)

For simplicity of notation, we set I := {1, . . ., `}, I(∞)
s := Iv

(∞)

s (ϕ(∞)) for any
1 ≤ s ≤ `v(∞) and we define the map r : {0, . . ., `v(∞)} → {0, . . ., `} by imposing
the conditions

r(0) := 0 , I(∞)
s = {r(s− 1) + 1, . . ., r(s)} for any 1 ≤ s ≤ `v(∞) . (V.3.3)

Moreover, we set I(∞)
≥q :=

⋃`
v(∞)
s=q I

(∞)
s . Let us fix for each n ∈ N a Qm-orthonormal

ϕ(n)-adapted basis
(
e

(n)
α

)
for m. Since v(n) → v(∞) we can suppose that there

exists a Qm-orthonormal ϕ(∞)-adapted basis
(
e

(∞)
α

)
for m such that e(n)

α → e
(∞)
α
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as n→ +∞. For the sake of shortness we set

seci
(
g(n)

)
:=

∑
e
(n)
α ,e

(n)

α′ ∈m
(n)
i

sec(g(n))(e(n)
α ∧e

(n)
α′ ) for any i ∈ I , (V.3.4)

secij
(
g(n)

)
:=

∑
e
(n)
α ∈m

(n)
i

e
(n)
β ∈m

(n)
j

sec(g(n))(e(n)
α ∧e

(n)
β ) for any i, j ∈ I, i < j . (V.3.5)

From (I.5.9), (I.5.14) and (I.5.23) we obtain

seci
(
g(n)

)
=

∑
e
(n)
α ,e

(n)

α′ ∈m
(n)
i

{∣∣[e(n)
α , e

(n)
α′ ]h

∣∣2
Q

+
1

4

∣∣[e(n)
α , e

(n)
α′ ]

m
(n)
i

∣∣2
Q

+

+
∑

k∈I\{i}

∣∣[e(n)
α , e

(n)
α′ ]

m
(n)
k

∣∣2
Q
− 3

4

∑
k∈I\{i}

∣∣[e(n)
α , e

(n)
α′ ]

m
(n)
k

∣∣2
Q

λ
(n)
k

λ
(n)
i

}
1

λ
(n)
i

=

(
dic

(n)
i +

1

4
[iii](n) +

∑
k∈I\{i}

[iik](n) − 3

4

∑
k∈I\{i}

[iik](n)λ
(n)
k

λ
(n)
i

)
1

λ
(n)
i

.

(V.3.6)
Moreover, from (I.5.9) and (I.5.15) we get

secij
(
g(n)

)
=

=
∑

e
(n)
α ∈m

(n)
i

e
(n)
β ∈m

(n)
j

{∑
k∈I

∣∣[e(n)
α , e

(n)
β ]

m
(n)
k

∣∣2
Q

(
λ

(n)
i

)2
+
(
λ

(n)
j −λ

(n)
k

)(
−2λ

(n)
i +λ

(n)
j +3λ

(n)
k

)
4λ

(n)
i λ

(n)
j λ

(n)
k

}

=
1

4

∑
k∈I

[ijk](n) λ
(n)
i

λ
(n)
j λ

(n)
k

+
1

4

∑
k∈I

[ijk](n)
(λ(n)

j

λ
(n)
k

− 1
)(
− 2

λ
(n)
i

λ
(n)
j

+ 1 + 3
λ

(n)
k

λ
(n)
j

) 1

λ
(n)
i

.

(V.3.7)
Up to passing to a subsequence we assume that each coefficient λ(n)

i is mono-
tonic. Moreover, we introduce the following notation

p
(n)
ij :=

λ
(n)
i

λ
(n)
j

(V.3.8)

and, up to passing to a further subsequence, we assume that the limits
p

(∞)
ij := limn p

(n)
ij ∈ [0, +∞] do exist. Moreover, we define

a
(n)
ijk := [ijk](n)

(
p

(n)
jk − 1

)(
− 2p

(n)
ij + 1 + 3p

(n)
kj

)
(V.3.9)
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and we set a(∞)
ijk := limn a

(n)
ijk ∈ R ∪ {±∞} whenever it exists.

The next theorem is an intermediate result, which will be crucial in the proof
of Theorem V.3.3. Nonetheless, we stress that it would be enough for proving
Theorem V.1.1.

Theorem V.3.1. Let us assume that (g(n)) ⊂ MG
1 is divergent and has bounded

curvature. Then, v(∞) ∈ SΣ(k1) for some toral H-subalgebra k1. Moreover, the
following necessary conditions hold.
A) For any i ≤ j ≤ k such that i ∈ I(∞)

1 , we have

[ijk](∞) = 0 =⇒ lim
n→+∞

[ijk](n)p
(n)
kj = 0 .

B) For any j, k ∈ I we have

[I
(∞)
1 jk](∞) > 0 =⇒ p

(∞)
kj = 1 .

Proof. From (V.2.5) it follows that

scal(g(n)) =
1

2

∑
i∈I

dib
(n)
i e−t

(n)v
(n)
i − 1

4

∑
i,j,k∈I

[ijk](n)et
(n)(v

(n)
i −v

(n)
j −v

(n)
k )

≤ 1

4

(
2bG/H −

∑
i,j,k∈I

[ijk](n)et
(n)(v

(n)
i −v

(n)
j −v

(n)
k +v

(n)
1 )
)
e−t

(n)v
(n)
1 ,

where bG/H is defined in (I.5.12). Since by assumption scal(g(n)) is bounded from
below, there exists a constant C > 0 such that∑

i,j,k∈I
[ijk](n)et

(n)(v
(n)
i −v

(n)
j −v

(n)
k +v

(n)
1 ) ≤ C for any n ∈ N . (V.3.10)

We observe also that if v(∞) ∈ Σ \ SΣ, then (V.3.10) is never satisfied. In fact, in
that case we can fix ε > 0 and a triple (io, jo, ko) ∈ I3 such that [iojoko](n) > ε

and v(n)
io
− v(n)

jo
− v(n)

ko
+ v

(n)
1 > ε, so that

[iojoko](n)et
(n)(v

(n)
io
−v(n)

jo
−v(n)

ko
+v

(n)
1 ) > εet

(n)ε → +∞ .

Then, it holds that v(∞) ∈ SΣ(k1) with k1 := h + m
(∞)

I
(∞)
1

(see Proposition V.2.8).

Since by assumption the sectional curvature is bounded, using (V.3.6) and (V.3.7),
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for any i, j ∈ I such that i ∈ I(∞)
1 , i < j we get

λ
(n)
i seci(g

(n)) = dic
(n)
i +

1

4
[iii](n)+

∑
k∈I\{i}

[iik](n)−3

4

∑
k∈I\{i}

[iik](n)p
(n)
ki −→ 0 ,

(V.3.11)

4λ
(n)
i secij(g

(n)) =
∑
k∈I

(
[ijk](n)p

(n)
ik p

(n)
ij + a

(n)
ijk

)
−→ 0 (V.3.12)

as n→ +∞, where seci(g
(n)), secij(g

(n)) were defined in (V.3.4), (V.3.5), respec-
tively, and the coefficients p(n)

ij , a(n)
ijk were introduced in (V.3.8), (V.3.9), respec-

tively.
Step 1. We are going to apply (V.3.12) by restricting ourselves to the case

j ∈ I(∞)
≥2 . At first we notice that, since i ≤ r(1) < j, for any k ∈ I we have

2v
(n)
i − v(n)

k − v(n)
j −→ 2v̂

(∞)
1 − v(∞)

k − v(∞)
j ≤ v̂(∞)

1 − v̂(∞)
2 < 0 ,

where v̂(∞)
i are the distinct eigenvalues of v(∞) ordered by size, and so

lim
n→+∞

[ijk](n)p
(n)
ik p

(n)
ij = 0 for any i, j, k ∈ I such that i ∈ I(∞)

1 , j ∈ I(∞)
≥2 .

(V.3.13)
Therefore, from (V.3.12) and (V.3.13) we obtain for any fixed j ∈ I(∞)

≥2

lim
n→+∞

{∑
k∈I

a
(n)
ijk

}
= 0 , for any i ∈ I(∞)

1 . (?j)

Notice that, under the assumption i ∈ I(∞)
1 and j ∈ I(∞)

≥2 , it comes p(∞)
ij = 0 and

so from (V.3.9) we directly get the following implications:

p
(∞)
jk = +∞ =⇒ a

(n)
ijk ∼ [ijk](n)p

(n)
jk ≥ 0

p
(∞)
jk ∈ [1, +∞) =⇒ a

(∞)
ijk = [ijk](∞)

(
p

(∞)
jk − 1

)(
1 + 3p

(∞)
kj

)
≥ 0

p
(∞)
jk ∈ (0, 1) =⇒ a

(∞)
ijk = −[ijk](∞)

(
1− p(∞)

jk

)(
1 + 3p

(∞)
kj

)
≤ 0 .

p
(∞)
jk = 0 =⇒ a

(n)
ijk ∼ −3[ijk](n)p

(n)
kj ≤ 0

(V.3.14)
For any q ∈ {0, 1, . . ., `−r(1)−1}, we set j = `−q and we consider the following

claim, which we denote by P (q): the limit a(∞)
i(`−q)k exists for any i ∈ I(∞)

1 , k ∈ I

and a(∞)
i(`−q)k = 0.
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First, we consider the case q = 0, i.e. j = `. From (V.3.2), we directly get
that p(∞)

`k ∈ [1, +∞]. But then, by means of (V.3.14) and (?`), it follows that
P (0) holds.

Let us fix now 0 ≤ q ≤ ` − r(1) − 2 and assume that P (q′) holds for any
0 ≤ q′ ≤ q. In particular, this means that a(∞)

i(`−q′)k = 0 for any i ∈ I(∞)
1 , k ∈ I

and hence for any 1 ≤ q′ ≤ q we have
limn→+∞[i(`−q′)k](n)p

(n)
(`−q′)k = 0 for any i ∈ I(∞)

1 , k ∈ I \ {`−q′}
such that [i(`−q′)k](∞) = 0 ,

p
(∞)
(`−q′)k = 1 for any k ∈ I

such that [I
(∞)
1 (`−q′)k](∞) > 0 .

(V.3.15)
Then, for any i ∈ I(∞)

1 , k ∈ I we obtain:

· if p(∞)
(`−q−1)k ∈ [1, +∞], then, by (V.3.14), we directly get that a(n)

i(`−q−1)k is
definitely non negative;
· if p(∞)

(`−q−1)k ∈ [0, 1), then, by (V.3.2), it follows that there exists 1 ≤ q′ ≤ q

such that k = `−q′ and so (V.3.14), (V.3.15) imply that the limit a(∞)
i(`−q−1)k

exists and a(∞)
i(`−q−1)k = 0.

By means of (?`−q−1), this actually proves that P (q+ 1) holds. Hence, we proved
by induction that P (q) holds for any 0 ≤ q ≤ ` − r(1) − 1. In particular, this
means that

a
(∞)
ijk = 0 for any i ∈ I(∞)

1 , j ∈ I(∞)
≥2 , k ∈ I

and hence the following two conditions must hold:

i ∈ I(∞)
1 , j ∈ I(∞)

≥2 , k ∈ I and [ijk](∞) = 0 =⇒ lim
n→+∞

[ijk](n)p
(n)
jk = 0 ,

(V.3.16)

j, k ∈ I(∞)
≥2 and [I

(∞)
1 jk](∞) > 0 =⇒ p

(∞)
jk = 1 . (V.3.17)

Step 2. We are going to apply (V.3.12) by restricting ourselves to the case
j ∈ I(∞)

1 . For the sake of clarity, we set i1 := i and i2 := j. At first we notice
that, since i1 < i2 ≤ r(1), for any k ∈ I(∞)

≥2

a
(n)
i1i2k

∼ −3[i1i2k](n)p
(n)
ki2

(V.3.16)−→ 0 . (V.3.18)
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Moreover, by changing indexes in (V.3.13), we get

lim
n→+∞

[i1i2k](n)p
(n)
i1k
p

(n)
i1i2

= 0 for any k ∈ I(∞)
≥2 . (V.3.19)

So, from (V.3.12), (V.3.18) and (V.3.19), we get for any fixed i1, i2 ∈ I(∞)
1 , i1 < i2

lim
n→+∞

{ ∑
k∈I(∞)

1

(
[i1i2k](n)p

(n)
i1k
p

(n)
i1i2

+ a
(n)
i1i2k

)}
= 0 . (4i1i2)

Let us notice that∑
k∈I(∞)

1

(
[i1i2k](n)p

(n)
ik p

(n)
i1i2

+ a
(n)
i1i2k

)
=

=

i1∑
k=1

[i1i2k](n)

(
(p

(n)
i2i1
− 1)2(p

(n)
i1k

)2 + 2(p
(n)
i2i1

+ 1)p
(n)
i1k
− 3

p
(n)
i2i1

p
(n)
i1k

)
+

+

r(1)∑
k=i1+1

[i1i2k](n)p
(n)
i1k
p

(n)
i1i2

+

r(1)∑
k=i1+1

a
(n)
i1i2k

. (V.3.20)

Furthermore, if k ≤ i1 < i2, then p
(n)
i2i1

, p
(n)
i1k
≥ 1 by (V.3.2) and hence

(p
(n)
i2i1
− 1)2(p

(n)
i1k

)2 + 2(p
(n)
i2i1

+ 1)p
(n)
i1k
− 3

p
(n)
i2i1

p
(n)
i1k

≥ 1 for any k ≤ i1 < i2 . (V.3.21)

For any i1 ∈ {1, . . ., r(1)−1} and for any q ∈ {0, . . ., r(1)−i1−1}, we set
i2 = r(1)−q and we consider the following claim, which we denote by P̂ (i1, q):
the limit a(∞)

i1(r(1)−q)k exists for any k ∈ {i1+1, . . ., r(1)} and a(∞)
i(r(1)−q)k = 0.

First, we are going to prove that P̂ (i1, 0) holds for any 1 ≤ i1 ≤ r(1)−1. By
the very definition (V.3.9), it follows that each a(n)

i1r(1)k, with i1+1 ≤ k ≤ r(1) is
definitely non negative. Hence, by applying (4i1r(1)) and (V.3.20), we get the
claim.

Let us fix now 1 ≤ i1 ≤ r(1)−1 and 0 ≤ q ≤ r(1)−i−2 and assume that
P̂ (i1, q′) holds for any 0 ≤ q′ ≤ q. By means of (4i1(r(1)−q′)) and (V.3.20), we
get a(∞)

i1(r(1)−q′)k = 0 for any i1+1 ≤ k ≤ r(1). Again, for any i1+1 ≤ k ≤ r(1), we
have:
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· if p(∞)
(r(1)−q−1)k ∈ [1, +∞], then, by the very definition (V.3.9), we directly get

that a(n)
i1(r(1)−q−1)k is definitely non negative;

· if p(∞)
(r(1)−q−1)k ∈ [0, 1), then, by (V.3.2), it follows that there exists 1 ≤ q′ ≤ q

such that k = r(1)−q′ and so the limit a(∞)
i1(r(1)−q−1)k exists and a

(∞)
i1(r(1)−q−1)k =

0.
By means of (4i(`−q−1)), this actually proves that P̂ (i1, q+1) holds. Hence, we
proved by induction that P̂ (i, q) holds for any 1 ≤ i1 ≤ r(1) − 1, 0 ≤ q ≤
r(1)−i1−1. In particular, by (V.3.20) we obtain

(4i1i2)⇐⇒

⇐⇒



lim
n→+∞

[iii2k]
(n)

(
(p

(n)
i2i1

− 1)2(p
(n)
i1k

)2 + 2(p
(n)
i2i1

+ 1)p
(n)
i1k

− 3

p
(n)
i2i1

p
(n)
i1k

)
= 0 1 ≤ k < i1

lim
n→+∞

[i1i1i2]
(n)p

(n)
i2i1

= 0

lim
n→+∞

[i1i2k]
(n)p

(n)
i1k

p
(n)
i1i2

= 0 i1+1 ≤ k ≤ r(1)

a
(∞)
i1i2k

= 0 i1+1 ≤ k ≤ r(1)

=⇒


lim

n→+∞
[i1i2k]

(n) = 0 1 ≤ k ≤ i1

lim
n→+∞

[i1i1i2]
(n)p

(n)
i2i1

= 0

lim
n→+∞

[i1i2k]
(n)(p(n)i2k

− 1
)
= 0 i1+1 ≤ k ≤ r(1)

.

Therefore, we get

lim
n→+∞

[i1i2i3](n)p
(n)
i3i2

= 0 for any i1, i2, i3 ∈ I(∞)
1 , i1 ≤ i2 < i3 . (V.3.22)

Step 3. We are going to apply (V.3.11). Notice that, by changing indexes in
(V.3.16), it holds

lim
n→+∞

[iik](n)p
(n)
ki = 0 for any i ∈ I(∞)

1 , k ∈ I(∞)
≥2 . (V.3.23)

Therefore from (V.3.11) and (V.3.23) we directly get

lim
n→+∞

{ ∑
k∈I(∞)

1 \{i}

[iik](n)

(
p

(n)
ki −

4

3

)}
=

4

3
dic

(∞)
i +

1

3
[iii](∞) , i ∈ I(∞)

1 . (Oi)

By applying (V.3.22) it follows that for any i ∈ I
(∞)
1 all the summands inside

the curly brackets in the left-hand side of (Oi) are infinitesimal or definitely non
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positive, while all the summands in the right-hand side are non negative. Hence,
it holds necessarily

c
(∞)
i1

= 0 , [i1i1i2](∞) = 0 for any i1, i2 ∈ I(∞)
1 . (V.3.24)

The thesis follows now from (V.3.16), (V.3.17), (V.3.22) and (V.3.24).

Next, we aim to extend Theorem V.3.1 by considering not only the most
shrinking direction, but all the shrinking directions of (g(n)). First, we need the
following

Proposition V.3.2 ([7], Lemma 5.55). Assume that there exists a flag of H-
subalgebras ζ = (k1, . . ., kp) such that v(∞) ∈ WΣ(ζ). If kq is toral for some
1 ≤ q ≤ p, then

scal
(
g(n)

)
≤ 1

2

∑
i>r(q)

dib
(n)
i e−t

(n)v
(n)
i − 1

4

∑
i,j,k>r(q)

[ijk](n)et
(n)(v

(n)
i −v

(n)
j −v

(n)
k ) ,

(V.3.25)
where the map r : s 7→ r(s) is defined in (V.3.3).

Since the estimate (V.3.25) plays a fundamental role in the proof of our main
results, we present a proof of Proposition V.3.2 in the next section.

Let us consider p ∈ {1, . . ., `v(∞)−1} in such a way that λ(n)
r(p−1)+1 is bounded

and λ(n)
r(p)+1 → +∞. We set Igb := ∪pq=1 I

(∞)
q = {1, . . ., r(p)} and we call it index

set of the generalized bounded eigenvalues of (g(n)). This name is due to the fact
that for any i ∈ I, if λ(n)

i is bounded then i ∈ Igb. Notice that it can happen that
λ

(n)
i → +∞ for some i ∈ Igb.
Let also Ish := {1, . . ., r̃} ( I be the index set of the shrinking eigenvalues of

(g(n)), i.e. λ(n)
r̃ → 0 and λ(n)

r̃+1 is bounded away from zero. We define then

k1 := h + m
(∞)

I
(∞)
1

, k2 := k1 + m
(∞)

I
(∞)
2

, . . . , kp−1 := kp−2 + m
(∞)

I
(∞)
p−1

,

l′ := kp := kp−1 + m
(∞)

I
(∞)
p

= h +
∑
i∈Igb

m
(∞)
i

(V.3.26)
and also

l := h +
∑
i∈Ish

m
(∞)
i . (V.3.27)
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Notice that it necessary holds that r(p− 1) ≤ r̃ ≤ r(p), and hence kp−1 ⊂ l ⊂ l′.

We are ready to prove our main result. Notice that both Theorem V.1.1 and
Theorem V.1.3 are consequences of the following

Theorem V.3.3. The set ζ := (k1, . . ., kp−1, l′) defined in (V.3.26) is a flag of
H-subalgebras of g and v(∞) ∈ SΣ(ζ). Moreover, the subspace l defined in (V.3.27)
is a toral H-subalgebra of g and the following conditions hold true.
A) For any i ≤ j ≤ k such that i ∈ Ish, we have

[ijk](∞) = 0 =⇒ lim
n→+∞

[ijk](n)p
(n)
kj = 0 .

B) For any j, k ∈ I we have

[Ishjk](∞) > 0 =⇒ lim
n→+∞

p
(n)
kj = 1 .

Finally, if l′ is toral, e.g. if l = l′, then lim
n→+∞

scal
(
g(n)

)
≤ 0.

Proof. If p = 1, i.e. if λ(n)
r(1)+1 → +∞, then the first part of the theorem coincide

with the statement of Theorem V.3.1. Let us suppose then that p > 1. If p = 2,
one can skip the next part of the proof.

We suppose now that p > 2. For any q ∈ {1, . . ., p − 1}, we consider the
following claim, which we denote by P̃ (q): kq is a toral H-subalgebra, v(∞) ∈
WΣ(k1, . . ., kq) and both (A), (B) hold after having replaced the index set Ish

with I(∞)
q .

Notice that P̃ (1) follows directly from Theorem V.3.1. Let us fix now 1 ≤ q ≤
p− 2 and assume that P̃ (q′) holds for any 1 ≤ q′ ≤ q. From (V.3.25) we get

scal
(
g(n)

)
≤ 1

2

∑
i>r(q)

dib
(n)
i e−t

(n)v
(n)
i − 1

4

∑
i,j,k>r(q)

[ijk](n)et
(n)(v

(n)
i −v

(n)
j −v

(n)
k )

≤ 1

4

(
2
∑
i>r(q)

dib
(n)
i −

∑
i,j,k>r(q)

[ijk](n)e
t(n)
(
v

(n)
i −v

(n)
j −v

(n)
k +v

(n)
r(q)+1

))
1

λ
(n)
r(q)+1

and so, since by assumption scal
(
g(n)

)
is bounded from below, there exists neces-

sarily C > 0 such that∑
i,j,k>r(q)

[ijk](n)e
t(n)
(
v

(n)
i −v

(n)
j −v

(n)
k +v

(n)
r(q)+1

)
≤ C for any n ∈ N .
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Then, by arguing as at the beginning of the proof of Theorem V.3.1, we directly
get

i, j, k > r(q) , [ijk](∞) > 0 =⇒ v
(∞)
i − v(∞)

j − v(∞)
k + v̂

(∞)
q+1 ≤ 0 . (V.3.28)

As a consequence kq+1 is an H-subalgebra of g and v(∞) ∈WΣ(k1, . . ., kq+1). Since
λ

(n)
r(q+1) → 0 as n→ +∞, for any i, j ∈ I such that i ∈ I(∞)

q+1 , i < j it follows that

seci(g
(n)) · λ(n)

i = dic
(n)
i +

1

4
[iii](n) +

∑
k∈I\{i}

[iik](n) − 3

4

∑
k∈I\{i}

[iik](n)p
(n)
ki −→ 0 ,

(V.3.29)

secij(g
(n)) · 4λ(n)

i =
∑
k∈I

(
[ijk](n)p

(n)
ik p

(n)
ij + a

(n)
ijk

)
−→ 0 , (V.3.30)

where seci(g
(n)) and secij(g

(n)) are defined in (V.3.4) and (V.3.5), respectively,
and the coefficients a(n)

ijk were introduced in (V.3.9). So, one can apply, mutatis
mutandis, Step 1, Step 2 and Step 3 already seen in the proof of Theorem V.3.1
to conclude that P̃ (q + 1) holds true. Hence, it follows by induction that P̃ (q)

holds for any 1 ≤ q ≤ p− 1.
From now on, it does not matter if p = 2 or p > 2. Since kp−1 is toral and

λ
(n)
r(p−1)+1 is bounded, from (V.3.25) it follows that l′ is an H-subalgebra of g and
v(∞) ∈ SΣ(k1, . . ., l′). Moreover, by repeating once again Step 1, Step 2 and Step
3 letting the index i run from 1 to r̃, one can prove that l is a toral subalgebra
and that both conditions (A), (B) hold true.

Finally, for the proof of the last claim, we do not assume anymore that p > 1,
i.e. we allow p to be 1. Let us suppose by contradiction that l′ is toral and
scal(g(n)) > δ definitely, for some δ > 0. By (V.3.25) it holds that for any n large
enough

1

2

∑
i>r(p)

dib
(n)
i e−t

(n)v
(n)
i − 1

4

∑
i,j,k>r(p)

[ijk](n)et
(n)(v

(n)
i −v

(n)
j −v

(n)
k ) > δ .

Hence, there exists a constant C ′ > 0 such that

4δλ
(n)
r(p)+1 +

∑
i,j,k>r(p)

[ijk](n)e
t(n)(v

(n)
i −v

(n)
j −v

(n)
k +v

(n)
r(p)+1

)
< C ′ for any n ∈ N

(V.3.31)
which is clearly not possible, since all the terms in (V.3.31) are non negative and
λ

(n)
r(p)+1 is unbounded.
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V.3.2 An explicit example on V3(R5)

We exhibit an example of a sequence of SO(5)-invariant metrics on the Stiefel
manifold V3(R5), i.e. the space of orthonormal 3-frames in R5, which diverges
with bounded curvature.

Let M = V3(R5) = SO(5)/SO(2) and consider the Ad(SO(5))-invariant inner
product Q(A1,A2) := −1

2 Tr(A1·A2) on so(5). We choose the Q-orthonormal
basis for the Lie algebra so(5) given by

E := e4⊗e5−e5⊗e4 , X1 := e2⊗e3−e3⊗e2 ,

X2 := e3⊗e4−e4⊗e3 , X3 := e3⊗e5−e5⊗e3 ,

X4 := e2⊗e4−e4⊗e2 , X5 := e2⊗e5−e5⊗e2 , X6 := e1⊗e4−e4⊗e1 ,

X7 := e1⊗e5−e5⊗e1 , X8 := e1⊗e3−e3⊗e1 , X9 := e1⊗e2−e2⊗e1 ,

where we denoted by (e1, . . ., e5) the standard basis of R5 and by (e1, . . ., e5) its
dual frame. Then, the isotropy algebra is so(2) = span(E) and its Q-orthogonal
reductive complement m decomposes into six Ad(SO(2))-irreducible submodules:

m1 = span(X1) , m2 = span(X2,X3) , m3 = span(X4,X5) ,

m4 = span(X6,X7) , m5 = span(X8) , m6 = span(X9) .

Notice that m2 ' m3 ' m4 are equivalent to the standard representation of SO(2),
while m1 ' m5 ' m6 are trivial. One can directly check that the coefficients
related to this decomposition are

c1 = 0 , c2 = c3 = c4 = 1 , c5 = c6 = 0 ,

b1 = b2 = b3 = b4 = b5 = b6 = 6 ,

[123] = 2 , [156] = 1 , [245] = 2 , [346] = 2 .

(V.3.32)

We define also

k1 := h + m1 ' so(2)⊕ so(2) , k2 := k1 + m2 + m3 ' so(4) ,

which are SO(2)-subalgebras of so(5). Notice that k1 is toral, while k2 is non-toral.
Let us consider the sequence (g(n)) ⊂M

SO(5)
1 defined by

g(n) := 1
4n4Qm1 +Qm2 +Qm3 + nQm4 + 2nQm5 + 2nQm6 . (V.3.33)
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Notice that the eigenvalues of the tangent direction v(n) are

v
(n)
1 = − 2+4 log2 n√

20(log2 n)2+20 log2 n+6
, v

(n)
2 = v

(n)
3 = 0 ,

v
(n)
4 = log2 n√

20(log2 n)2+20 log2 n+6
, v

(n)
5 = v

(n)
6 = 1+log2 n√

20(log2 n)2+20 log2 n+6

and so v(n) ∈ SΣ(k1), but v(n) /∈ SΣ(k1, k2). From (V.2.9) it follows that (g(n))

lies in the space MG
1 (k1) of unit volume k1-submersion metrics. One can directly

check that the Ricci operator of g(n) is diagonal, with eigenvalues

ric1

(
g(n)

)
= 8n2+1

32n6 , ric2

(
g(n)

)
= ric3

(
g(n)

)
= 14n4+2n2−1

8n4 ,

ric4

(
g(n)

)
= −3n2−6n+1

2n2 , ric5

(
g(n)

)
= ric6

(
g(n)

)
= 48n6+48n5−16n4−1

32n6 .

By [11, Thm 4] it follows that (g(n)) has bounded curvature. For the sake of
thoroughness, we provide the explicit expression of all the components of the
curvature operator Rm(g(n)). Let us consider the g(n)-orthonormal frame

X
(n)
1 := 2n2X1 , X

(n)
2 := X2 , X

(n)
3 := X3 , X

(n)
4 := X4 , X

(n)
5 := X5 ,

X
(n)
6 := 1√

n
X6 , X

(n)
7 := 1√

n
X7 , X

(n)
8 := 1√

2n
X8 , X

(n)
9 := 1√

2n
X9 .

Then, the curvature operator Rm(g(n)) : Λ2m→ Λ2m takes the following form.

Rm(g(n))(X
(n)
1 ∧X

(n)
2 ) = 1

16n4X
(n)
1 ∧X

(n)
2 + 3n−1

16
√
2n4

X
(n)
6 ∧X

(n)
9

Rm(g(n))(X
(n)
1 ∧X

(n)
3 ) = 1

16n4X
(n)
1 ∧X

(n)
3 + 3n−1

16
√
2n4

X
(n)
7 ∧X

(n)
9

Rm(g(n))(X
(n)
1 ∧X

(n)
4 ) = 1

16n4X
(n)
1 ∧X

(n)
4 − 3n−1

16
√
2n4

X
(n)
6 ∧X

(n)
8

Rm(g(n))(X
(n)
1 ∧X

(n)
5 ) = 1

16n4X
(n)
1 ∧X

(n)
5 − 3n−1

16
√
2n4

X
(n)
7 ∧X

(n)
8

Rm(g(n))(X
(n)
1 ∧X

(n)
6 ) = 2n2+n−1

16
√
2n4

X
(n)
2 ∧X

(n)
9 − 2n2+n−1

16
√
2n4

X
(n)
4 ∧X

(n)
8

Rm(g(n))(X
(n)
1 ∧X

(n)
7 ) = 2n2+n−1

16
√
2n4

X
(n)
3 ∧X

(n)
9 − 2n2+n−1

16
√
2n4

X
(n)
5 ∧X

(n)
8

Rm(g(n))(X
(n)
1 ∧X

(n)
8 ) = 1

64n6X
(n)
1 ∧X

(n)
8 − n−1

8
√
2n3

X
(n)
4 ∧X

(n)
6 − n−1

8
√
2n3

X
(n)
5 ∧X

(n)
7

Rm(g(n))(X
(n)
1 ∧X

(n)
9 ) = 1

64n6X
(n)
1 ∧X

(n)
9 + n−1

8
√
2n3

X
(n)
2 ∧X

(n)
6 + n−1

8
√
2n3

X
(n)
3 ∧X

(n)
7

Rm(g(n))(X
(n)
2 ∧X

(n)
3 ) = X

(n)
2 ∧X

(n)
3 + 16n4−1

16n4 X
(n)
4 ∧X

(n)
5 − n2−6n+1

8n2 X
(n)
6 ∧X

(n)
7

Rm(g(n))(X
(n)
2 ∧X

(n)
4 ) = 16n4−3

16n4 X
(n)
2 ∧X

(n)
4 + 8n4−1

8n4 X
(n)
3 ∧X

(n)
5 −
− 2n5−12n4+2n3+1

16n5 X
(n)
8 ∧X

(n)
9

Rm(g(n))(X
(n)
2 ∧X

(n)
5 ) = − 1

16n4X
(n)
3 ∧X

(n)
4

Rm(g(n))(X
(n)
2 ∧X

(n)
6 ) = n−1

8
√
2n3

X
(n)
1 ∧X

(n)
9 − 7n2−2n−1

8n2 X
(n)
2 ∧X

(n)
6 − n−1

2n X
(n)
3 ∧X

(n)
7

Rm(g(n))(X
(n)
2 ∧X

(n)
7 ) = − (n+1)(3n−1)

8n2 X
(n)
3 ∧X

(n)
6

Rm(g(n))(X
(n)
2 ∧X

(n)
8 ) = 5n2−2n+1

8n2 X
(n)
2 ∧X

(n)
8 + 8n5+8n4−1

32n5 X
(n)
4 ∧X

(n)
9

Rm(g(n))(X
(n)
2 ∧X

(n)
9 ) = (n+1)(2n−1)

16
√
2n4

X
(n)
1 ∧X

(n)
6 + 12n5−16n4+43+1

32n5 X
(n)
4 ∧X

(n)
8
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Rm(g(n))(X
(n)
3 ∧X

(n)
4 ) = − 1

16n4X
(n)
2 ∧X

(n)
5

Rm(g(n))(X
(n)
3 ∧X

(n)
5 ) = − 8n4−1

8n4 X
(n)
2 ∧X

(n)
4 + 16n4−3

16n4 X
(n)
3 ∧X

(n)
5 −

− 2n5+2n3−12n4+1
16n5 X

(n)
8 ∧X

(n)
9

Rm(g(n))(X
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3 ∧X
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8n2 X
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2 ∧X
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1 ∧X

(n)
9 − n−1

2n X
(n)
2 ∧X
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7 ) = −n2−6n+1

8n2 X
(n)
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(n)
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8n2 X
(n)
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(n)
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nX
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7
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√
2n4
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8n2 X
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9 ) = 3n−1

16
√
2n4
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8n2 X
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9
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√
2n4
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8n2 X
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8
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8n2 X
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16n5 X
(n)
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(n)
4 − 2n5−12n4+2n3+1

16n5 X
(n)
3 ∧X

(n)
5 +

+ 32n5−3
64n6 X

(n)
8 ∧X

(n)
9

This example shows that, in some sense, Theorem V.3.3 is optimal. Indeed, we
have

p = 2 , I
(∞)
1 = I

(∞)
p−1 = Ish = {1} , I

(∞)
2 = I(∞)

p = {2, 3} ,

Igb = {1, 2, 3} , I
(∞)
3 = {4, 5, 6}

(V.3.34)

and so l = k1, l′ = k2. Moreover

[245] > 0 ,
λ

(n)
5

λ
(n)
4

= 2 6= 1 . (V.3.35)

So, even though v(∞) ∈ SΣ(l, l′) because

v
(∞)
1 = − 4√

20
, v

(∞)
2 = v

(∞)
3 = 0 , v

(∞)
4 = v

(∞)
5 = v

(∞)
6 = 1√

20
,
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from (V.3.35) it follows that claim (B) is not true anymore if one replaces the
index set Ish with Igb. This means that (g(n)) does not approach asymptotically
a l′-submersion metric.

Moreover
scal

(
g(n)

)
= 224n6+288n5−32n4−8n2−1

32n6 → 7 > 0

and this shows that: it is possible for a sequence of invariant metrics to diverge
with bounded curvature and positive scalar curvature bounded away from zero.

Finally, along the geodesic γv(n)(t) we have

scal(γv(n)(t)) = 12− 2et(v
(n)
5 −v(n)

4 ) − etv
(n)
1 − 6e−tv

(n)
4 − 6e−tv

(n)
5 −

− 1
2e
−t(2v(n)

5 −v(n)
1 ) − 2e−t(v

(n)
4 +v

(n)
5 ) − 2e−t(v

(n)
5 −v(n)

4 )

and so limt→+∞ scal(γv(n)(t)) = −∞ for any n ∈ N. On the other hand, one can
directly check that along the limit geodesic γv(∞)(t), the Ricci operator is diagonal
with eigenvalues

ric1(γv(∞)(t)) = etv
(∞)
1 +1

2e
−t(2v(∞)

4 −v(∞)
1 ) ,

ric2(γv(∞)(t)) = ric3(γv(∞)(t)) = 2−1
2e
tv

(∞)
1 +1

2e
−2tv

(∞)
4

ric4(γv(∞)(t)) = 3e−tv
(∞)
4 −e−2tv

(∞)
4 ,

ric5(γv(∞)(t)) = ric6(γv(∞)(t)) = 3e−tv
(∞)
4 −e−2tv

(∞)
4 −1

2e
−t(2v(∞)

4 −v(∞)
1 )

and so, by applying again [11, Thm 4],
∣∣Rm(γv(∞)(t))

∣∣
γ
v(∞) (t)

is bounded. The

limit values of the Ricci eigenvalues along the original sequence (g(n)) are

lim
n→+∞

ric1

(
g(n)

)
= 0 , lim

n→+∞
ric2

(
g(n)

)
= lim

n→+∞
ric3

(
g(n)

)
= 7

4 ,

lim
n→+∞

ric4

(
g(n)

)
= −3

2 , lim
n→+∞

ric5

(
g(n)

)
= lim

n→+∞
ric6

(
g(n)

)
= 3

2 ,

while along the limit geodesic γv(∞)(t)

lim
t→+∞

ric1(γv(∞)(t)) = 0 , lim
t→+∞

ric2(γv(∞)(t)) = lim
t→+∞

ric3(γv(∞)(t)) = 2 ,

lim
t→+∞

ric4(γv(∞)(t)) = lim
t→+∞

ric5(γv(∞)(t)) = lim
t→+∞

ric6(γv(∞)(t)) = 0 .

This actually shows that a diverging sequence (g(n)) ⊂ MG
1 with bounded cur-

vature and limit direction v(∞) can develop a different asymptotic behavior with
respect to to the limit geodesic γv(∞)(t).
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Finally, let us mention that in our previous example r̃ = r(p − 1). It is also
easy to exhibit examples where r̃ = r(p), e.g. by considering again Berger spheres
as in Example V.2.13. However, it is not clear whether it is actually possible to
construct a sequence of invariant metrics which diverges with bounded curvature
with r(p − 1) < r̃ < r(p). We stress that, for this to be the case, it is necessary
that the limit direction v(∞) admits the eigenvalue v̂(∞)

p = 0 and the module
m
I

(∞)
p

needs to be Ad(Kp−1)-reducible.

V.4 Proof of Proposition V.3.2

For the convenience of the reader, we provide here a proof of Proposition V.3.2
following Böhm’s original approach. First, we need the following estimate.

Proposition V.4.1. Let G be a compact N -dimensional Lie group with a
fixed Ad(G)-invariant Euclidean inner product Q on g := Lie(G), a ⊂ g an
abelian Lie subalgebra and (e1, . . ., eN ) a Q-orthonormal basis for g such that
a = span(e1, . . ., eq+1) for some 0 ≤ q ≤ N − 1. Let also (e

(n)
1 , . . ., e

(n)
N ) be a

sequence of Q-orthonormal bases for g such that e(n)
i → ei as n → +∞ for any

1 ≤ i ≤ N . Then, there exist n̄ ∈ N and C > 0 such that∑
i,j≤q+1

Q
(
[e

(n)
1 , e

(n)
i ], e

(n)
j

)2 ≤ C ∑
i≤q+1
k>q+1

Q
(
[e

(n)
1 , e

(n)
i ], e

(n)
k

)2 for any n ≥ n̄ .

(V.4.1)

Proof. Of course (V.4.1) holds true if g is abelian or q = 0, 1. Hence, we assume
that 1 < q < N−1 and that g is not abelian. Let I := {1, . . .,N}, I1 := {2, . . ., q+

1} and I2 := {q + 2, . . .,N}. Notice that we will pass whenever convenient to a
subsequence without mentioning it explicitly. Moreover, for any subspace p ⊂ g,
we denote by p⊥ its Q-orthogonal complement inside g.

Let us suppose by contradiction that∑
i,j∈I1

Q
(
[e

(n)
1 , e

(n)
i ], e

(n)
j

)2
> c(n)

∑
i∈I1
k∈I2

Q
(
[e

(n)
1 , e

(n)
i ], e

(n)
k

)2 for any n ∈ N ,

(V.4.2)
for some sequence c(n) → +∞.
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Let also t ⊂ g be a maximal abelian Lie subalgebra of g such that e1 ∈ t. We
claim that it is possible to assume that e(n)

1 ∈ t for any n ∈ N. In fact, we can
choose a sequence (t(n)) of maximal abelian subalgebras of g such that e(n)

1 ∈ t(n)

and t(n) → t as n→ +∞. But then, there exists a sequence (x(n)) ⊂ G such that
Ad(x(n))(t(n)) = t and x(n) → 1G. Therefore, by setting e′i

(n) := Ad(x(n))(e
(n)
i ) for

any i ∈ I, we obtain a new Q-orthonormal basis (e′1
(n), . . ., e′N

(n)) which converges
to (e1, . . ., eN ).

For any i ∈ I1 we write

t⊥ 3 [e
(n)
1 , e

(n)
i ] =

∑
j∈I1\{i}

a
(n)
ij e

(n)
j + z

(n)
i , with z(n)

i ∈ span(e
(n)
q+2, . . ., e

(n)
N )

(V.4.3)
and we choose j(i) ∈ I1 \ {i} such that |a(n)

ij(i)| ≥ |a
(n)
ij | for any j ∈ I1 \ {i},

for any n ∈ N. Moreover, up to reorder the index set I1, we may assume that
|a(n)

23 | ≥ |a
(n)
ij(i)|. So, by means of (V.4.2) and (V.4.3), we get

∣∣a(n)
23

∣∣2 ≥ 1

q

∑
i∈I1

∣∣a(n)
ij(i)

∣∣2 > c(n)

q2

∑
i∈I1

|z(n)
i |

2
Q for any n ∈ N . (V.4.4)

We claim now that it is possible to assume that for any i ∈ I1

lim
n→+∞

∣∣a(n)
ij(i)

∣∣∣∣a(n)
23

∣∣ > 0 . (V.4.5)

In fact, let I ′1 := {i ∈ I1 : i satisfies (V.4.5)} and I ′′1 := I1 \ I ′1. Of course
{2, 3} ⊂ I ′1. Then, by (V.4.4)

(1 + |I ′′1 |)
∣∣a(n)

23

∣∣2 =
∣∣a(n)

23

∣∣2 +
∑
i∈I′′1

∣∣a(n)
23

∣∣2∣∣a(n)
ij(i)

∣∣2 ∣∣a(n)
ij(i)

∣∣2
>
c(n)

q2

∑
i∈I1

|z(n)
i |

2
Q +

1

q

∑
i∈I′′1

j∈I1\{i}

∣∣a(n)
23

∣∣2∣∣a(n)
ij(i)

∣∣2 ∣∣a(n)
ij

∣∣2 , (V.4.6)

≥ c̃(n)
∑
i∈I′1

k∈I′′1 ∪I2

Q
(
[e

(n)
1 , e

(n)
i ], e

(n)
k

)2
where

c̃(n) := min

{
c(n)

q2
,
1

q
min
i∈I′′1

{ ∣∣a(n)
23

∣∣2∣∣a(n)
ij(i)

∣∣2
}}
→ +∞ .
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On the other hand∑
i∈I′1

∣∣a(n)
ij(i)

∣∣2 ∼ C ′ ∣∣a(n)
23

∣∣2 for some C ′ > 0 (V.4.7)

and so by (V.4.6) and (V.4.7) we directly get that∑
i,j∈I′1

Q
(
[e

(n)
1 , e

(n)
i ], e

(n)
j

)2
> ĉ(n)

∑
i∈I′1

k∈I′′1 ∪I2

Q
(
[e

(n)
1 , e

(n)
i ], e

(n)
k

)2 for any n ∈ N

for some sequence ĉ(n) → +∞.
So, from now on, we assume I1 = I ′1 and hence

∣∣a(n)
ij(i)

∣∣ > 0 for any n ∈ N,
i ∈ I1. Let also d := dim(t) be the rank of g.

We are going to prove by induction that there exists a Q-orthonormal basis
(e1,1, e1,2, . . ., e1,d) for t and a set of vectors E(∞)

i ∈ a \ {0}, i ∈ I1, such that
for any s ∈ {1, . . ., d} the following claim, which we denote by P̄ (s), holds: there
exist a sequence (e

(n)
1,s ) ⊂ span(e1,s, . . ., e1,d) ⊂ t, with e

(n)
1,s → e1,s and, for any

i ∈ I1, a sequence of real numbers â(n)
i,s > 0, with â(n)

i,s → 0, such that, if we set

e
(n)
i,s :=

e
(n)
i if s = 1

prcg(e1,1)∩...∩cg(e1,s−1)(e
(n)
i ) if s > 1

,

then

1

â
(n)
i,s

[e
(n)
1,s , e

(n)
i,s ] → E

(∞)
i , e

(n)
i,s → ei as n→ +∞ , for any i ∈ I1 .

(V.4.8)
First, we consider the case s = 1 and we set

e1,1 := e1 , e
(n)
1,1 := e

(n)
1 , â

(n)
i,1 := a

(n)
ij(i) for any i ∈ I1 .

Next, we define

E
(n)
i,1 :=

1

â
(n)
i,1

∑
j∈I1\{i}

a
(n)
ij e

(n)
j,1 , Z

(n)
i,1 :=

1

â
(n)
i,1

z
(n)
i

in such a way that

1

â
(n)
i,1

[e
(n)
1,1 , e

(n)
i,1 ] = E

(n)
i,1 + Z

(n)
i,1 for any i ∈ I1 . (V.4.9)
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By (V.4.4) and (V.4.5), it follows that∑
i∈I1

∣∣Z(n)
i,1

∣∣2
Q
≤ ε(n) for some ε(n) → 0 ,

while, by construction, E(∞)
i := limn→+∞E

(n)
i,1 6= 0 and E(∞)

i ∈ a ∩ t⊥. Hence,
it follows that P̄ (1) holds. Let us fix now 1 ≤ s ≤ d − 1 and assume that P̄ (s′)

holds true for any 1 ≤ s′ ≤ s. Notice that, by the inductive hypothesis, we get
[e1,s′ , ei] = 0 for any 1 ≤ s′ ≤ s, i ∈ I1 and then a ⊂ cg(e1,1)∩ . . .∩ cg(e1,s). Here,
we denoted by cg(X) the centralizer of X ∈ g in g.

We consider now the following Q-orthogonal decompositions:

e
(n)
1,s := α(n)

s e1,s + ẽ
(n)
1,s+1 ,

e
(n)
i,s := T

(n)
i + V

(n)
i,s+1 +W

(n)
i,s+1 , i ∈ I1 ,

with ẽ
(n)
1,s+1 ∈ t and T

(n)
i ∈ t, V (n)

i,s+1 ∈ cg(e1,1) ∩ . . . ∩ cg(e1,s) ∩ t⊥, W (n)
i,s+1 ∈(

cg(e1,1) ∩ . . . ∩ cg(e1,s)
)⊥. Then

[e
(n)
1,s , e

(n)
i,s ] = [ẽ

(n)
1,s+1,V

(n)
i,s+1] + [e

(n)
1,s ,W

(n)
i,s+1] ,

with [ẽ
(n)
1,s+1,V

(n)
i,s+1] ∈ cg(e1,1) ∩ . . . ∩ cg(e1,s) ∩ t⊥ and [e

(n)
1 ,W

(n)
i,s+1] ∈

(
cg(e1,1) ∩

. . . ∩ cg(e1,s)
)⊥. If we set

Ẽ
(n)
i,s :=

1

â
(n)
i,s

[e
(n)
1,s , e

(n)
i,s ] ,

we get
[ẽ

(n)
1,s+1,V

(n)
i,s+1] = â

(n)
i,s prcg(e1,1)∩...cg(e1,s)(Ẽ

(n)
i,s ) (V.4.10)

and hence, since prcg(e1,1)∩...cg(e1,s)(Ẽ
(n)
i,s ) → E

(∞)
i 6= 0 as n → +∞, we deduce

that ẽ(n)
1,s+1 6= 0. Next, we set

e
(n)
1,s+1 :=

ẽ
(n)
1,s+1

|ẽ(n)
1,s+1|Q

, e1,s+1 := lim
n→+∞

e
(n)
1,s+1 , â

(n)
i,s+1 :=

â
(n)
i,s

|ẽ(n)
1,s+1|Q

.

Since e(n)
i,s+1 = T

(n)
i + V

(n)
i,s+1, it follows that

1

â
(n)
i,s+1

[e
(n)
1,s+1, e

(n)
i,s+1] = prcg(e1,1)∩...cg(e1,s)(Ẽ

(n)
i,s ) = E

(n)
i,s+1 + Z

(n)
i,s+1 ,
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where

E
(n)
i,s+1 := pr

span(e
(n)
2,s+1,...,e

(n)
q+1,s+1)

(
prcg(e1,1)∩...cg(e1,s)(Ẽ

(n)
i,s )
)

,

Z
(n)
i,s+1 := pr

(span(e
(n)
2,s+1,...,e

(n)
q+1,s+1))⊥

(
prcg(e1,1)∩...cg(e1,s)(Ẽ

(n)
i,s )
)

.

Since by inductive hypothesis a ⊂ cg(e1,1)∩. . .∩cg(e1,s), it follows that e
(n)
i,s+1 → ei

for any i ∈ I1 and hence

E
(n)
i,s+1 → E

(∞)
i , Z

(n)
i,s+1 → 0 as n→ +∞ .

Since [e1,s+1, ei] = â
(∞)
i,s+1E

(∞)
i , with â(∞)

i,s+1 := limn→+∞ â
(n)
i,s+1, and ei,E

(∞)
i ∈ a,

it follows that â(∞)
i,s+1 = 0. This proves that P̄ (s+1) holds and hence, by induction

that P̄ (s) holds for any 1 ≤ s ≤ d.
By (V.4.8), it follows that

[e1,s, ei] = 0 , E
(∞)
i ∈ a ∩ t⊥ for any i ∈ I1, 1 ≤ s ≤ d ,

and hence [t, a] = {0}, a∩ t⊥ 6= {0}. Therefore, t+ a is an abelian Lie subalgebra
of g and t ( t + a, which is not possible since t is maximal by assumption.

Proof of Proposition V.3.2. From now until the end of the proof, we adopt the
notation introduced at the beginning of Section V.3. Assume that v(∞) ∈
SΣ(k1, . . ., kp) and that kq is toral for some 1 ≤ q ≤ p. From (I.5.25) it follows
directly that

scal
(
g(n)

)
=

=
1

2

∑
i∈I

dib
(n)
i e−t

(n)v
(n)
i − 1

4

∑
i,j,k∈I

[ijk](n)et
(n)(v

(n)
i −v

(n)
j −v

(n)
k )

=
1

2

∑
i≤r(q)

e−t
(n)v

(n)
i

{ ∑
j,k≤r(q)

[ijk](n)
(

1− 1

2
et

(n)(v
(n)
j −v

(n)
k )
)

+

+
∑
j≤r(q)
k>r(q)

[ijk](n)
(

2− 1

2
et

(n)(v
(n)
k −v

(n)
j )
)
−

−
∑

j,k>r(q)

[ijk](n)
(1

2
et

(n)(v
(n)
j −v

(n)
k ) +

1

2
et

(n)(v
(n)
k −v

(n)
j ) − 1

)
−
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−
∑
j≤r(q)
k>r(q)

[ijk](n)et
(n)(v

(n)
j −v

(n)
k ) − 1

2

∑
j,k>r(q)

[ijk](n)et
(n)(2v

(n)
i −v

(n)
j −v

(n)
k )

}
+

+
1

2

∑
i>r(q)

dib
(n)
i e−t

(n)v
(n)
i − 1

4

∑
i,j,k>r(q)

[ijk](n)et
(n)(v

(n)
i −v

(n)
j −v

(n)
k ) .

Since kq is toral, it splits as kq = h + a, with [h, a] = [a, a] = {0} and a 6= {0}.
Hence, from (V.4.1), it follows that there exist n̄ ∈ N and a constant C > 0 such
that ∑

j,k≤r(q)

[ijk](n) ≤ C
∑
j≤r(q)
k>r(q)

[ijk](n) for any n ≥ n̄ , 1 ≤ i ≤ r(q) . (V.4.11)

We can also assume that there exists ε > 0 such that v(n)
k − v

(n)
j > ε for any

j ≤ r(q), k > r(q) and n ≥ n̄. Then∑
j,k≤r(q)

[ijk](n)
(

1− 1

2
et

(n)(v
(n)
j −v

(n)
k )
)

+
∑
j≤r(q)
k>r(q)

[ijk](n)
(

2− 1

2
et

(n)(v
(n)
k −v

(n)
j )
)
≤

≤
∑

j,s≤r(q)

[ijk](n) +
∑
j≤r(q)
k>r(q)

[ijk](n)
(

2− 1

2
et

(n)ε
)

≤ −1

2

∑
j≤r(q)
k>r(q)

[ijk](n)
(
et

(n)ε − C̃
)

with C̃ := 2C + 4. Since

1
2e
t(n)(v

(n)
j −v

(n)
k ) + 1

2e
t(n)(v

(n)
k −v

(n)
j ) = cosh t(n)(v

(n)
j − v(n)

k ) ≥ 1 ,

the claim follows.

V.5 Algebraically collapsed sequences of G-invariant
metrics

In this last section, we are going to apply Theorem V.3.3 to give a characteriza-
tion of algebraically collapsed sequences of invariant metrics on a given compact
homogeneous manifold.
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Let M = G/H be again a fixed compact, connected and almost effective m-
dimensional homogeneous space, with G and H compact Lie groups, and fix an
Ad(G)-invariant product Q on g. If q = dim(H), then one can embed the space
MG into Hq,m by associating to any g ∈ MG the unique µ ∈ Hq,m such that
(Gµ/Hµ, gµ) = (G/H, g). We aim to prove the following

Proposition V.5.1. Let (g(n)) ⊂MG
1 be a diverging sequence with bounded cur-

vature and (µ(n)) the corresponding sequence of brackets. If π1(M) is finite, then
(µ(n)) is algebraically collapsed.

which coincides with Proposition V.1.4.
To this purpose, let g ∈ MG, ϕ ∈ FG a good decomposition for g, i.e. it

takes the form (I.5.5), and µ the bracket corresponding to g. We consider also
the Q-orthogonal splitting

µ = (µ|h∧g) + µh + µm , with µh : m ∧m→ h , µm : m ∧m→ m . (V.5.1)

Let (eα) be a ϕ-adapted Qm-orthonormal basis for m and (zγ) be a Qh-
orthonormal basis for h. Then, we obtain

|µ|2st =
∣∣(µ|h∧g)∣∣2st + |µh|2st + |µm|2st (V.5.2)

with ∣∣(µ|h∧g)∣∣2st =
∣∣(µ|h∧h)∣∣2st +

∑
i∈I

∑
eα∈mi
zγ∈h

∣∣∣[zγ , eα√
λi

]
mi

∣∣∣2
g

=
∣∣(µ|h∧h)∣∣2st +

∑
i∈I

∑
eα∈mi
zγ∈h

∣∣[zγ , eα]
∣∣2
Q

=
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∑
i∈I

dici

(V.5.3)

and

|µh|2st =
∑
i,j∈I

∑
eα∈mi
eβ∈mj
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=
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dici
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,

|µm|2st =
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eβ∈mj
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λi
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eβ√
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]
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=
∑
i,j,k∈I

[ijk]ϕ
λk
λiλj

.

(V.5.4)
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Proof of Proposition V.5.1. Since M is connected and the fundamental group
π1(M) is finite, up to enlarging the space MG of invariant metrics, we can assume
that the group G is connected and semisimple. Let us fix a sequence (g(n)) ⊂MG

1

which diverges with bounded curvature. From now until the end of the proof,
we adopt the notation introduced in Section V.3. By Lemma V.2.3 and Theorem
V.3.3, we can choose io ∈ Ish and jo, so ∈ I \ Ish such that [iojoso](∞) > 0. Then,
by Theorem V.3.3 and (V.5.4) we directly get

∣∣µ(n)
m

∣∣2
st
≥ [iojoso](n) λ

(n)
so

λ
(n)
io
λ

(n)
jo

∼ [iojoso](∞) 1

λ
(n)
io

→ +∞

and so the claim follows.

The next easy example shows that the finiteness hypothesis on the fundamen-
tal group π1(M) cannot be removed.

Example V.5.2. Let M3 = S1×S2 = G/H, with G := U(1)×SU(2) and
H := {1}×U(1) ⊂ G. Let us fix an Ad(G)-invariant inner product Q on g = Lie(G)

and a Q-orthonormal basis (X0,X1,X2,X3) for g such that

g = h + m1 + m2 , h = span(X1) , m1 = span(X0) , m2 = span(X2,X3) ,

[X0,Xi] = 0 , [X1,X2] = −2X3 , [X2,X3] = −2X1 , [X3,X1] = −2X2 .

We consider now the sequence of metrics g(n) := 1
n2Qm1 + nQm2 , together with

the g(n)-normalized frame

X
(n)
0 := nX0 , X

(n)
2 := 1√

n
X2 , X

(n)
3 := 1√

n
X3 .

Then, one can directly check that the curvature operator Rm(g(n)) : Λ2m→ Λ2m

is diagonal and explicitly given by

Rm(g(n))(X
(n)
0 ∧X

(n)
2 ) = Rm(g(n))(X

(n)
0 ∧X

(n)
3 ) = 0 ,

Rm(g(n))(X
(n)
2 ∧X

(n)
3 ) = 4

nX
(n)
2 ∧X

(n)
3 ,

while
[X

(n)
0 ,X

(n)
2 ] = [X

(n)
0 ,X

(n)
3 ] = 0 , [X

(n)
2 ,X

(n)
3 ] = − 2

nX1 .

So, the sequence (g(n)) diverges with bounded curvature and it is algebraically
non-collapsed.
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Finally, let us consider a sequence (g(n)) ⊂MG and, up to a normalization, for
any n ∈ N fix the scale of the most shrinking direction to be 1. This is equivalent
of saying that, with respect to a diagonal decomposition as (V.3.1) in the previous
section, min

{
λ

(n)
1 , . . .,λ

(n)
`

}
= 1 for any n ∈ N. In this case, we say that (g(n)) is

normalized with respect to the most shrinking direction. Notice that any such a
sequence is divergent if and only if vol(g(n))→ +∞.

Proposition V.5.3. If (g(n)) ⊂MG is normalized with respect to the most shrink-
ing direction and has bounded curvature, then it is algebraically non-collapsed.

Proof. Let (g(n)) be a divergent sequence of G-invariant metrics with bounded
curvature and suppose that it is normalized with respect to the most shrinking
direction. As in the proof of Proposition V.1.4, from now on we adopt the notation
introduced at the beginning of Section V.3. By (I.5.21), the diagonal terms of the
Ricci tensor along the sequence are given by

rici(g
(n)) =

b
(n)
i

2λ
(n)
i

− 1

2di

∑
j,k∈I

[ijk](n) λ
(n)
k

λ
(n)
i λ

(n)
j

+
1

4di

∑
j,k∈I

[ijk](n) λ
(n)
i

λ
(n)
j λ

(n)
k

. (V.5.5)

Suppose by contradiction that (g(n)) is algebraically collapsed. Since from our
normalization λ(n)

i ≥ 1 for any n ∈ N, 1 ≤ i ≤ `, from (V.5.4) we get necessarily
that |µm|g(n) → +∞. So, again by (V.5.4) there exists a triple (i1, i2, i3) ∈

I3 such that [i1i2i3](n) λ
(n)
i1

λ
(n)
i2
λ

(n)
i3

→ +∞. Since rici1(g(n)) is bounded, by (V.5.5)

there exist i4, i5 ∈ I such that [i1i4i5](n) λ
(n)
i4

λ
(n)
i1
λ

(n)
i5

→ +∞. By the way, rici4(g(n))

is bounded too and then there exist i6, i7 ∈ I such that [i4i6i7](n) λ
(n)
i6

λ
(n)
i4
λ

(n)
i7

→

+∞. Iterating this procedure, we obtain two sequences (is), (js) ⊂ I such that

[isjsjs+1](n)
λ

(n)
js+1

λ
(n)
is
λ

(n)
js

→ +∞. Since I = {1, . . ., `} is finite and the relation defined

on the set
{
λ

(n)
1 , . . .,λ

(n)
`

}
by

a(n) ≺ b(n) ⇐⇒ b(n)

a(n) → +∞

is asymmetric and transitive, the sequences (is) and (js) are necessarily finite too,
i.e. they are of the form (i1, . . ., iso) and (j1, . . ., jso), respectively. So, it follows
that ricjso (g(n))→ +∞ and this is a contradiction.
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