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A B S T R A C T

The role of the different components of the respiratory network in the mediation of opioid-induced respiratory
depression is still unclear. We investigated the contribution of the preBötzinger Complex (preBötC) and the
neighbouring Bötzinger Complex (BötC) and inspiratory portion of the ventral respiratory group (iVRG) in
anesthetized, vagotomized, paralyzed and artificially ventilated adult rabbits making use of bilateral micro-
injections (30−50 nl) of the μ-opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO). Dose-
dependent effects were observed. In the preBötC and the BötC 0.1 mM DAMGO microinjections caused mainly
reductions in peak phrenic amplitude associated with tonic phrenic activity and irregular (ataxic) patterns of
breathing that were more pronounced in the preBötC. Apneic effects developed at 0.5 mM. In the iVRG DAMGO
provoked decreases in amplitude and frequency of phrenic bursts at 0.1 mM and apnea at 0.5 mM. Local 5 mM
naloxone reversed the apneic effects. The results imply that different components of the respiratory network may
contribute to opioid-induced respiratory disorders.

1. Introduction

It is well known that opioid overdose exerts potent depressant and
potentially fatal effects on respiration by activating μ-opioid receptors
(MORs; e.g. Pattinson, 2008; Dahan et al., 2010). Nevertheless, opioid
agonists acting on MORs are usually prescribed to relief pain due to
their powerful analgesic effects (Yaksh et al., 2015). The risk of opioid-
induced death appears to be correlated with progressive irregularities
in the breathing pattern rather than only with severe decreases in re-
spiratory rate leading to apnea (Bouillon et al., 2003; Pattinson, 2008).
The medullary preBötzinger Complex (preBötC) has been the first re-
gion of the respiratory network to be considered crucial for inducing
opioid-related respiratory depression (Gray et al., 1999; Lalley, 2003;
Montandon et al., 2011, 2016; Montandon and Horner, 2014; Qi et al.,
2017). This region plays an essential role in inspiratory rhythm gen-
eration. A subpopulation of glutamatergic neurons of the preBötC
characterized by the expression of neurokinin-1 receptors (NK1Rs)
contains MORs (Smith et al., 1991; Gray et al., 1999, 2001; Feldman
et al., 2003; McKay et al., 2005; Tan et al., 2008; Del Negro et al.,
2018). Of note, it has been found that the activation of MORs within the
preBötC of medullary slices from neonatal mice (see Sun et al., 2019
also for further Refs.) causes an inhibitory modulation of inspiratory

rhythmic activity by acting on burstlet-producing Dbx1-derived neu-
rons, an important glutamatergic subpopulation on which appears to
rely the process driving respiratory rhythmogenesis. Consistently, such
opioid-induced modulation is abolished in mice with genetic deletion of
MORs within this preBötC subpopulation. However, the role of the
preBötC in the opioid-induced respiratory depression has been heavily
questioned, at least in adult animals (Lonergan et al., 2003; Mustapic
et al., 2010; Prkic et al., 2012; Stucke et al., 2015; Miller et al., 2017).
In more detail, the attention has been focused on the pontine re-
spiratory region. It has been reported that in both dogs and rabbits the
medial parabrachial nucleus mediates part of the opioid-induced re-
spiratory depression (Prkic et al., 2012; Miller et al., 2017). Further-
more, recent findings (Levitt et al., 2015; Varga et al., 2020) strongly
suggest that the Kölliker-Fuse (KF) nucleus contributes to opioid-in-
duced respiratory disturbances, including respiratory depression and
impairment of the upper airway function, consistently with the primary
role of KF neurons in rate stabilization, upper airway patency and post-
inspiratory activity generation (e.g. Lumsden, 1923; St-John and Paton,
2004; Dutschmann and Herbert, 2006; Smith et al., 2007; Dutschmann
and Dick, 2012). Interestingly, Varga et al. (2020) using a conditional
genetic knockout approach in awake adult mice have shown that pre-
BötC neurons and, to a larger extent, KF neurons contribute to the
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MOR-induced respiratory depression. They conclude that opioids dif-
ferentially affect distributed key areas of the respiratory network and
that more than one of them has a role in the genesis of respiratory
disorders. In this context, it should be mentioned that evidence has
been provided in the mouse that a medullary neural network, named
post-inspiratory complex, generates post-inspiratory activity and is
highly responsive to the activation of MORs (Anderson et al., 2016;
Anderson and Ramirez, 2017). However, Toor et al. (2019) have re-
cently provided data showing that the intermediate reticular nucleus of
the rat, that corresponds well neuroanatomically and phenotypically to
the mouse post-inspiratory complex, contributes to the post-inspiratory
activity, but is not required for termination of inspiration or recruit-
ment of post-inspiratory activity during acute hypoxemia. They sug-
gested that this neuronal population may not represent a distinct cen-
tral pattern generator for post-inspiratory activity, but instead may
operate as a relay that distributes post-inspiratory activity generated
elsewhere.

Although MORs are expressed throughout the entire brainstem re-
spiratory network (e.g. Mansour et al., 1994; Lonergan et al., 2003;
Zhang et al., 2007, 2011), no information is available on the effects of
their activation within some very important regions of the medullary
respiratory network. Thus, the present study was undertaken to in-
vestigate the contribution of the preBötC and the neighbouring Böt-
zinger Complex (BötC) and inspiratory portion of the ventral re-
spiratory group (iVRG) to the MOR-induced respiratory depression.
Experiments were carried out on anesthetized, vagotomized, paralyzed
and artificially ventilated adult rabbits making use of microinjections of
the MOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO).

2. Materials and methods

2.1. Ethical approval

Experiments were carried out on 15 male New Zealand white rab-
bits (2.8–3.4 kg) purchased from the Pampaloni Farm and Laboratory
Animal Co. (Fauglia, Pisa, Italy). Rabbits were maintained on a 12-h
light/12-h dark cycle with food and water ad libitum. All animal care
and experimental procedures were conducted in accordance with the
Italian legislation and the official regulations of the European
Community Council on the use of laboratory animals (Decreto
Legislativo 4/3/2014 no. 26 and directive 2010/63/UE). The study was
approved by the Animal Care and Use Committee of the University of
Florence. All efforts were made to minimize animal suffering and to
reduce the number of animals used. At the end of the experiment the
animal was euthanized with an overdose of anesthetic.

2.2. Animal preparation

Experimental procedures and details on the methods employed have
previously been fully described (Bongianni et al., 1997, 2002, 2008,
2010; Mutolo et al., 2002, 2005; Pantaleo et al., 2011; Iovino et al.,
2019). The animals were anesthetized (ear marginal vein) with a mix-
ture of α-chloralose (40 mg/kg i.v.; Sigma-Aldrich, St. Louis, MO, USA)
and urethane (800 mg/kg i.v.; Sigma-Aldrich), supplemented (femoral
vein) when necessary (4 mg/kg and 80 mg/kg, respectively). The
adequacy of anesthesia was assessed by the absence of reflex with-
drawal of the hindlimb in response to noxious pinching of the hindpaw.
After cannulation of the trachea, polyethylene catheters were inserted
into a femoral artery and vein for monitoring arterial blood pressure
and for drug administration, respectively. Both C5 phrenic roots were
dissected free, cut distally and prepared for recordings. Both cervical
vagus nerves were separated from the sympathetic trunks for sub-
sequent vagotomy. The animal was placed in a prone position and fixed
in a stereotaxic instrument by a stereotaxic head holder and vertebral
clamps (Baltimore Instrument, Baltimore, MA, USA); the head was
ventroflexed to facilitate recordings from the medulla. The dorsal

surface of the medulla was widely exposed by occipital craniotomy, and
the dura and arachnoid membranes were removed. The posterior part
of the cerebellum was removed by gentle suction to provide access to
the rostral part of the medulla. All exposed tissues were covered with
warm paraffin oil (∼38 °C). Body temperature was maintained at
38.5−39 °C by a heating blanket controlled by a rectal thermistor
probe. The animals were vagotomized, paralyzed (gallamine triethio-
dide 4 mg/kg i.v., supplemented with 2 mg/kg every 30 min; Sigma-
Aldrich) and artificially ventilated. In paralyzed animals, the depth of
anesthesia was assessed by ascertaining the presence of a stable and
regular pattern of phrenic nerve activity as well as the absence of
fluctuations in arterial blood pressure whether spontaneous or in re-
sponse to somatic nociceptive stimulation. End-tidal CO2 partial pres-
sure was maintained approximately at the level of spontaneous
breathing (28.5−32 mmHg) by adjusting the frequency and stroke
volume of the respiratory pump.

2.3. Recording procedures

Efferent phrenic nerve activity was recorded with bipolar platinum
electrodes from desheathed C5 phrenic roots, amplified, full-wave
rectified and passed through a leaky integrator (low-pass RC filter, time
constant 100 ms) to obtain a ‘moving average’ of the activity, usually
referred to in the literature as ‘integrated’ activity. Recording condi-
tions were maintained constant throughout each experiment.
Extracellular recordings from medullary neurons were made with
tungsten microelectrodes (5−10 MΩ impedance as tested at 1 kHz).
The most rostral extent of the area postrema on the midline was defined
as the obex and used as a standard point of anatomic reference.
Neuronal activity (see Fig. 5A) was recorded from rostral expiratory
neurons of the BötC (3.0–4.5 mm rostral to the obex, 2.4–3.2 mm lateral
to the midline and 3.5–4.6 mm below the dorsal medullary surface),
from the inspiratory neurons of the iVRG (from 0.7 caudal to 2.0 mm
rostral to the obex, 2.3–3.2 mm lateral to the midline and 3.0–3.5 mm
below the dorsal medullary face) and from the transition zone between
the BötC and the iVRG where a mix of inspiratory and expiratory
neurons is present (2.1–2.9 mm rostral to the obex, 2.4–3.2 mm lateral
to the midline and 3.5–4.2 mm below the dorsal medullary surface).
The latter region has already been extensively investigated in the rabbit
with lesion and neuropharmacological approaches (Mutolo et al., 2002,
2005; Bongianni et al., 2008, 2010; Pantaleo et al., 2011; Stucke et al.,
2015; Iovino et al., 2019) and corresponds to the preBötC described in
adult cats and rats (see e.g. Connelly et al., 1992; Schwarzacher et al.,
1995; Rekling and Feldman, 1998; Solomon et al., 1999; Feldman and
Del Negro, 2006; Feldman et al., 2013; Del Negro et al., 2018). A strain-
gauge manometer was used for monitoring arterial blood pressure. End-
tidal CO2 partial pressure was monitored by an infrared CO2 analyzer
(Capnocheck Plus, Smiths Medical PM, Waukesha, WI, USA). Cardior-
espiratory variables were acquired and analyzed by using a personal
computer equipped with an analog-to-digital interface (Digidata 1440,
Molecular Devices, Sunnyvale, CA, USA) and appropriate software
(Axoscope, Molecular Devices). Integrated phrenic nerve activity as
well as the signals of all studied variables were also recorded on an
eight-channel rectilinearly writing chart recorder (model 8K20; NEC
San-ei, Tokyo, Japan).

2.4. Microinjection procedures and experimental protocol

Bilateral microinjections were performed into the BötC, preBötC
and the iVRG regions. Injection sites were localized by stereotaxic co-
ordinates well known from previous studies (e.g. Bongianni et al., 2002,
2008, 2010; Mutolo et al., 2002, 2005; Iovino et al., 2019) as well as by
extracellular recordings of neuronal activity with patterns of discharge
characteristic of each investigated region (see Fig. 5A). In each ex-
periment, the first step was to record neuronal activity. Then, preBötC
localization was ascertained on each side of the medulla (see Fig. 5B
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and C) by the presence of excitatory respiratory responses to micro-
injections (30−50 nl) of 20 mM D,L-homocysteic acid (DLH, 600−1000
pmol; Sigma-Aldrich), a broad-spectrum excitatory amino acid (EAA)
agonist, that are widely considered a functional marker of this region in
various animal models (e.g. Solomon et al., 1999; Wang et al., 2002;
Monnier et al., 2003; Krolo et al., 2005; Mutolo et al., 2005; Bongianni
et al., 2008, 2010; Radocaj et al., 2015; Stucke et al., 2015; Iovino et al.,
2019). Subsequently, bilateral DAMGO microinjections were performed
in one of the three medullary respiratory regions. This procedure
helped us to adequately space micropipette penetrations and to place
micropipette tip into the BötC or the iVRG sufficiently far (≥ 1.0 mm)
from the preBötC region (for the spread of the injectate see below).

Bilateral microinjections (30−50 nl) were performed in succession
using a single glass micropipette (tip diameter 10−25 μm) by applying
pressure using an air-filled syringe connected to the micropipette by
polyethylene tubing. The volume of the injectate was measured directly
by monitoring the movement of the fluid meniscus in the pipette barrel
with a dissecting microscope equipped with a fine reticule. The dura-
tion of each injection ranged from 5 to 10 s. Control injections of equal
volumes of the vehicle solution at the responsive sites were also made in
some occasions (two trials for each investigated region) before 0.1 mM
DAMGO. Relatively small volumes of drug solutions were microinjected
to restrict the spread of the injectate. Note that a volume of 50 nl should
spread less than 400 μm in any direction from the injection site, ac-
cording to our previous histological observations on the spread of in-
jectates ≤ 50 nl (Mutolo et al., 2002, 2005) and to theoretical calcu-
lations by Nicholson (1985). Of note, relatively high concentrations of
neuroactive drugs are required to achieve pharmacological effects in
microinjection studies in in vivo preparations probably due to several
complex factors that drastically reduce the actual drug concentration at
the level of neurons located within the injected area. These factors in-
clude the large dilution volume constituted by the extracellular space
and, possibly, the continuous washout by water and solute movements
across the capillary walls. For an extensive discussion on the micro-
injection procedures see also Lipski et al., 1988; Nicholson and Sykova,
1998; Bongianni et al., 1997, 2002, 2008, 2010, Iovino et al., 2019. In
two experiments, preBötC injection sites were marked by injecting
green fluorescent latex microspheres (LumaFluor, New City, NY, USA)
added to the 0.5 mM DAMGO solution. The following drugs were used:
20 mM DLH, 0.1 and 0.5 mM DAMGO (a μ-opioid receptor agonist;
Sigma-Aldrich) and 5 mM naloxone (a largely prevailing μ-opioid re-
ceptor antagonist; Sigma-Aldrich). Drugs were dissolved in 0.9 % NaCl
solution. The pH of the solutions was adjusted to 7.4 using either 0.1 N
NaOH or 0.1 N HCl. The two DAMGO concentrations were tested in the
same preparations. We waited for full recovery after the first injections
and, in addition, we scheduled a time lag ≥ 30 min to avoid as much as
possible receptor desensitization (see e.g. Dang and Christie, 2012).
Drug concentrations were selected in preliminary trials. They were in
the same range previously used in in vivo preparations (Mutolo et al.,
2008, 2010; Mustapic et al., 2010; Stucke et al., 2015; Qi et al., 2017).

2.5. Histology

At the end of the experiments in which fluorescent microspheres
were injected, the brain was perfused via a carotid artery with 0.9 %
NaCl solution and then with 10 % formalin solution. After at least a 48-
h immersion in 10 % formalin solution, the brain was placed in a hy-
pertonic sucrose solution. Frozen 20-μm coronal sections stained with
Cresyl violet were used for the histological control of injection sites.
Coronal sections of the medulla were examined by a light and epi-
fluorescence microscope (Eclipse E400, Nikon, Japan) equipped with
the Nikon Intensiligh C-HGFI mercury-fibre illuminator. A Nikon DS-Fi1
digital camera was used to take photomicrographs. Illustration were
prepared in Adobe Photoshop CS3 (Adobe Systems Incorporated). The
atlas of Shek et al. (1986) was used for comparison.

2.6. Data collection and statistical analysis

We measured the total duration of the respiratory cycle (TT) as well
as the inspiratory (TI) and expiratory (TE) times. The respiratory fre-
quency (breaths/min) was subsequently calculated (f = 60/TT). The
peak amplitude of the integrated phrenic nerve activity was adjusted in
all experiments at similar levels and measured in arbitrary units (AU,
cm) on original recordings. The phrenic minute output (neural minute
ventilation) was calculated as the product of phrenic tidal activity and
respiratory frequency. The slope of the straight line drawn from the
onset to 90 % of the maximum level of the phrenic ramp was considered
a reliable estimate of the inspiratory rate of rise (e.g. Bongianni et al.,
2002, 2008, 2010; Mutolo et al., 2002, 2005; Iovino et al., 2019). Re-
spiratory variables were measured for an average of ten consecutive
breaths in the period immediately preceding each trial and at selected
times during DAMGO-induced effects (see Results). In the same periods,
systolic and diastolic blood pressure were measured at 2-s intervals.
Mean arterial pressure was calculated as the diastolic pressure plus one-
third of the pulse pressure. Average values for each considered time
period were taken along with their coefficient of variation (CV, %) for
the purpose of statistical analysis (GraphPad Prism 7, GraphPad Soft-
ware, Inc., La Jolla, CA, USA). To investigate the excitatory effects of
DLH microinjections, average values of ten consecutive breaths were
considered before and 30 s after drug administration. In each pre-
paration, we considered respiratory activity fully recovered when re-
spiratory frequency and peak phrenic amplitude were within±3% of
control values. DAMGO-induced changes in the considered variables
were evaluated by means of one-way repeated-measures ANOVA fol-
lowed by Bonferroni’s multiple comparisons tests. DLH effects were
analysed by Student’s paired t-tests. All values are presented as
means± SEM; P<0.05 was considered as significant.

3. Results

3.1. Activation of μ-opioid receptors within the preBötC

Group data of the effects induced by bilateral microinjections of 0.1
and 0.5 mM DAMGO into the preBötC at selected times after the
completion of the injections are presented in Figs. 1A and 4 . Bilateral
microinjections of 0.1 mM DAMGO (3−5 pmol; n = 5) into this region
induced within 5 min slight, but consistent increases in respiratory
frequency. TT decreased from 1.33±0.05 to 1.1±0.06 s (P<0.01)
because of decreases in TI (from 0.48± 0.01 to 0.43± 0.01 s;
P<0.05) and TE (from 0.84±0.05 to 0.64±0.05 s; P< 0.05). These
effects were associated with reductions in peak phrenic amplitude (P<
0.01) and the presence of low levels of tonic activity. Slight, not sig-
nificant decreases in both inspiratory rate of rise and phrenic minute
output were present. Peak phrenic amplitude progressively decreased
and an irregular pattern of breathing, characterized by phrenic bursts of
different amplitudes superimposed on a low level of tonic activity,
developed within 10 min (see Fig. 1B). The coefficient of variation of
peak phrenic amplitude and time components of the breathing pattern
markedly increased (see Fig. 4). The recovery of control respiratory
activity occurred progressively and was complete within 60 min.

Bilateral microinjections of 0.5 mM DAMGO (15−25 pmol) in the
same five preparations caused within 5min significant increases in re-
spiratory frequency. TT changed from 1.3±0.06 to 0.96±0.05 s
(P<0.001) due to decreases in both TI (from 0.46±0.01 to
0.35±0.01 s; P<0.001) and TE (from 0.84±0.05 to 0.61±0.05 s;
P<0.01). These changes were associated with reductions in peak
phrenic amplitude (P< 0.05) and increments in inspiratory rate of rise
(P< 0.05), but not in phrenic minute output. An irregular pattern of
breathing consisting of fluctuations in peak phrenic amplitude, asso-
ciated with a low level of tonic activity ensued within 10 min (Fig. 1C).
The coefficient of variation of both time and intensity components of
the breathing pattern displayed significant increases (Fig. 4). Apneic
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effects, characterized by occasional, very weak (ineffective) phrenic
bursts superimposed on a higher level of tonic activity, developed
within 15 min and lasted for about 25 min (Fig. 1C). In three

preparations, respiratory activity recovered within 120 min. In two
preparations, the recovery was obtained within 5 min by means of bi-
lateral microinjections of 5 mM naloxone (150−250 pmol) into the

(caption on next page)
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same sites (Fig. 1D).

3.2. Activation of μ-opioid receptors within the BötC

Group data of the effects induced by bilateral microinjections of 0.1
and 0.5 mM DAMGO into the BötC at selected times after the comple-
tion of the injections are shown in Figs. 2A and 4 . Bilateral micro-
injections of DAMGO into the BötC (n = 5) at 0.1 mM caused within 5
min small, but consistent decreases in peak phrenic amplitude
(P<0.01) without significant changes in the total duration of the re-
spiratory cycle as well as in the inspiratory rate of rise and phrenic
minute output. Peak phrenic activity displayed progressive decreases
and within 10 min the pattern of breathing became slightly irregular
owing to sparse reductions in peak phrenic amplitude and the devel-
opment of tonic activity (Fig. 2B). The coefficient of variation of TT, TI,
TE and peak phrenic amplitude showed significant increases (Fig. 4).
The recovery occurred within 60 min.

Bilateral microinjections of 0.5 mM DAMGO in the same five ani-
mals produced within 5 min higher levels of tonic activity and marked
decreases in peak phrenic amplitude (P<0.001) without consistent
changes in respiratory timing. Both inspiratory rate of rise (P<0.01)
and phrenic minute output (P<0.001) decreased. Peak phrenic ac-
tivity progressively decreased on a background of tonic activity dis-
playing a slight irregular breathing pattern similar to that observed
with 0.1 mM DAMGO (not shown). Apnea, characterized by relatively
intense tonic phrenic activity, ensued within 25 min (see Fig. 2C). The
apneic period was long-lasting (20−30 min). A complete recovery was
observed within 120 min (3 animals). In two animals, the recovery was
achieved within 5 min after bilateral microinjections of 5 mM naloxone
performed during the apneic period (not shown).

3.3. Activation of μ-opioid receptors within the iVRG

Group data of the effects induced by bilateral microinjections of 0.1
and 0.5 mM DAMGO into the iVRG at selected times after the com-
pletion of the injections are illustrated in Figs. 3A and 4 . Bilateral
microinjections of 0.1 mM DAMGO (n = 5) into the iVRG induced
progressive decreases in peak amplitude and frequency of phrenic
bursts. The effects were small and inconsistent after 5 min and reached
their maximum about 15 min following the completion of the injec-
tions. Peak amplitude of phrenic activity decreased (P<0.001) in as-
sociation with moderate reductions in respiratory frequency. TT in-
creased from 1.29±0.03 to 1.73± 0.06 (P<0.001) due to increases
in both TI (from 0.5± 0.01 to 0.73±0.04 s; P<0.001) and TE (from
0.78±0.02 to 1.0±0.06 s; P<0.01). Both inspiratory rate of rise
(P<0.001) and phrenic minute output (P<0.001) decreased. A
complete recovery was observed within 60 min (see also Fig. 3B).

Bilateral microinjections of 0.5 mM DAMGO (same preparations)
induced within 5 min significant decreases in peak amplitude
(P<0.001) and frequency of phrenic nerve activity. TT varied from
1.3±0.02 to 1.57±0.02 s (P<0.01) due to increases in both TI (from
0.5±0.01 to 0.55± 0.02 s; P<0.05) and TE (from 0.83±0.02 to
1.03±0.03 s; P<0.01). These respiratory changes implied decreases
in inspiratory rate of rise (P<0.001) and phrenic minute output
(P<0.001). The variability of the breathing pattern slightly increased
(see Fig. 4). These depressing effects progressively augmented and

apnea ensued within 20 min and lasted for about 30 min (Fig. 3C).
Rhythmic activity gradually reached the complete recovery within 120
min (3 animals). In two preparations, DAMGO effects were completely
reversed within 5 min by bilateral microinjections of 5 mM naloxone
(not shown).

3.4. Controls

As in our previous studies on rabbits (e.g. Bongianni et al., 2002,
2008, 2010; Mutolo et al., 2002, 2005; Iovino et al., 2019), injection
sites were determined according to stereotaxic coordinates and extra-
cellular neuronal recordings characteristic of each region. Examples of
neuronal discharges recorded in each of the three investigated regions
are shown in Fig. 5A. The location of the preBötC was ascertained by
the presence of excitatory respiratory responses to microinjections of 20
mM DLH. Group data and an example of these excitatory effects are
presented in Fig. 5B and C. The location of this region was confirmed by
the presence of green fluorescent latex microspheres (Fig. 6). Control
microinjections of the vehicle solution in the three investigated regions
failed to produce any appreciable effects. All DAMGO-induced re-
spiratory responses occurred without any significant concomitant
changes in mean arterial blood pressure that ranged between 90 and
105 mmHg in the different preparations.

4. Discussion

This study provides evidence that not only the preBötC, but also the
neighbouring BötC and iVRG contribute to the MOR-induced re-
spiratory depression in the adult anesthetized rabbits. Dose-dependent
effects on respiratory activity were induced by MOR-activation in all
the investigated regions. At the lower concentration, DAMGO provoked
progressive decreases in peak phrenic amplitude that were accom-
panied by increases (preBötC), no changes (BötC) or decreases (iVRG)
in respiratory frequency. These responses occurred either without any
concomitant alterations or in association with the appearance of tonic
activity and very irregular (preBötC) or slightly irregular (BötC) pat-
terns of breathing. At the higher concentration, DAMGO induced more
intense respiratory effects and as final event apneic responses char-
acterized in the preBötC and the BötC by the presence of tonic phrenic
nerve activity. The responses to MOR activation by the lower agonist
concentration show that especially the preBötC and, to a minor extent,
the BötC have a role in the disruption of respiratory rhythmicity. The
specificity of DAMGO-induced responses is corroborated by the coun-
teracting action of naloxone and the ineffectiveness of control micro-
injections. In addition, since respiratory responses were not accom-
panied by appreciable changes in arterial blood pressure, any role of
baroreceptor reflex in their genesis can be ruled out (Daly, 1986). The
possible presence of a limited drug diffusion from the injected area to
the neighbouring regions cannot be completely ruled out. However, we
are confident that the observed DAMGO-induced effects are char-
acteristic of each investigated region since our procedure to reach mi-
croinjection target sites derives from results of previous studies in
which respiratory effects of different drugs microinjected into the same
medullary regions were investigated, and the histological control of
injection sites as well as of the spread of the injectate was performed
(see Methods). Furthermore, the time course of the development of

Fig. 1. Microinjections of the μ-opioid receptor agonist DAMGO into the preBötC. A: changes in respiratory variables after bilateral microinjections of 0.1 mM (○)
and 0.5 mM (△) DAMGO into the preBötC at selected times after the completion of the injections. Abbreviations: TT, total duration of the respiratory cycle; TI,
inspiratory time; TE, expiratory time; PPA, peak phrenic amplitude; IRR, inspiratory rate of rise; PMO, phrenic minute output. Individual data points along with
means± SEM are reported. * P<0.05, **P<0.01, ***P<0.001, compared with control (Ctr); ###P<0.001, compared with 5 min; §§§P<0.001, compared with
0.1 mM DAMGO. Original recordings showing examples of respiratory responses to bilateral microinjections of 0.1 mM (B) and 0.5 mM (C) DAMGO at different times
after the completion of the injections. A complete recovery occurred within 60 and 120 min, respectively. At the lower DAMGO concentration a partial recovery was
already appreciable at 20 min (data at that time not included in the statistical analysis). D: an example of reversion of the apneic effects observed about 20 min after
0.5 mM DAMGO by bilateral microinjections of 5 mM naloxone into the same sites. Recovery about 5 min after naloxone. PA, raw phrenic nerve activity; IPA,
integrated phrenic nerve activity; AU, arbitrary units (cm).
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DAMGO-induced changes and the final effects display clear differences
in the three regions (see Results). In agreement with previous findings
(Prkic et al., 2012; Levitt et al., 2015; Stucke et al., 2015; Varga et al.,
2020), present results indicate that different regions of the brainstem
respiratory network may be involved in the genesis of opioid-induced
respiratory disorders. They are also consistent with the view that

respiratory pattern formation engages distributed neuronal populations
within the different brainstem respiratory compartments (see e.g. Von
Euler, 1997; Mutolo et al., 2002; Smith et al., 2007; Dhingra et al.,
2019, 2020 also for further Refs.).

Fig. 2. Microinjections of the μ-opioid receptor agonist DAMGO into the BötC. A: changes in respiratory variables after bilateral microinjections of 0.1 mM (○) and
0.5 mM (△) DAMGO into the BötC at selected times after the completion of the injections. Individual data points along with means± SEM are reported. ** P<0.01,
***P<0.001, compared with control (Ctr); ###P<0.001, compared with 5 min; §§ P<0.01, §§§P<0.001, compared with 0.1 mM DAMGO. Original recordings
showing examples of respiratory responses to bilateral microinjections of 0.1 mM (B) and 0.5 mM (C) DAMGO at different times after the completion of the injections.
Recovery after 60 and 120 min, respectively. For abbreviations see Fig. 1.

E. Cinelli, et al. Respiratory Physiology & Neurobiology 280 (2020) 103482

6



4.1. DAMGO-induced respiratory responses in the preBötC

Our results are consistent with previous findings suggesting an im-
portant role of the preBötC in MOR-induced respiratory depression. It
has been shown that the preBötC contributes to respiratory depression
in medullary slices of neonatal rodents (Gray et al., 1999; Sun et al.,
2019) or in anesthetized or conscious adult rats (Montandon et al.,

2011, 2016) as well as in anesthetized, paralyzed and artificially ven-
tilated adult rats (Qi et al., 2017). However, doubts have been casted on
the role of the preBötC. It has been found that MOR activation within
this region causes consistent increases in respiratory frequency ac-
companied by inconsistent or relatively small decreases in peak phrenic
activity in adult anesthetized, paralyzed, vagotomized and artificially
ventilated rats (Lonergan et al., 2003) and in decerebrated, paralyzed,

Fig. 3. Microinjections of the μ-opioid receptor agonist DAMGO into the iVRG. A: changes in respiratory variables after bilateral microinjections of 0.1 mM (○) and
0.5 mM (△) DAMGO into the iVRG at selected times after the completion of the injections. Individual data points along with means± SEM are reported. * P<0.05,
** P<0.01, *** P<0.001, compared with control (Ctr); # P<0.05, ### P<0.001, compared with 5 min; §§ P<0.01, §§§ P<0.001, compared with 0.1 mM
DAMGO. Original recordings showing examples of respiratory responses to bilateral microinjections of 0.1 mM (B) and 0.5 mM (C) DAMGO at different times after
the completion of the injections. Recovery after 60 and 120 min, respectively. For abbreviations see Fig. 1.
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and artificially ventilated dogs (Mustapic et al., 2010). In addition,
DAMGO microinjections into the preBötC of the awake adult goat had
no effects on eupneic breathing (Krause et al., 2009). Stucke et al.
(2015) studied the effects of DAMGO microinjections into the preBötC
as well as those of the systemic administration of the opioid agonist
remifentanil in decerebrated, paralyzed, and artificially ventilated
young and adult rabbits. Both local DAMGO and systemic remifentanil
caused both respiratory depression and changes in respiratory timing.
Naloxone microinjections into the preBötC completely reversed the
effects of local DAMGO administration. Interestingly, remifentanil ef-
fects were completely antagonized by intravenous, but not by local
naloxone, thus leading to the conclusion that systemic opioids also af-
fect respiratory components outside the preBötC. Recently, both the
preBötC and the pontine parabrachial and KF nuclei have been shown
to play a role in the opioid-induced respiratory depression (Levitt et al.,
2015; Miller et al., 2017; Varga et al., 2020). In particular, Varga et al.
(2020) using a genetic approach to conditionally delete MORs within
the KF nucleus or the preBötC in awake adult mice demonstrated that

both regions have a role, with a major impact of the KF nucleus. They
concluded that opioids affect distributed areas of the respiratory net-
work and that opioid-induced respiratory disturbances cannot be as-
cribed to a single region. These results are not surprising owing to the
dense reciprocal connections between the KF nucleus and the preBötC
(Ezure and Tanaka, 2006; Tan et al., 2010; Song et al., 2012; Yokota
et al., 2015; Geerling et al., 2017; Yang and Feldman, 2018).

The cause of the conflicting results is obscure. Differences in the
animal species, the type of preparation and the experimental proce-
dures employed could be involved. In addition, all methodological
approaches have their own limitations that may affect the reliability of
obtained results. The state of consciousness may also strongly modify
the role of the preBötC (see e.g. McKay et al., 2005; Montandon and
Horner, 2013, 2014). In agreement with Varga et al. (2020), in most
studies, with the exception of that of Montandon et al. (2016), it is
unknown if the effects of systemic opioids are due to locally expressed
somatodendritic or presynaptic MORs or to MORs located on terminals
in projection regions. Furthermore, during systemic opioid

Fig. 4. DAMGO-induced changes in the coefficient of variation of the intensity and time components of the breathing pattern. Changes in the coefficient of variation
(CV, %) of some respiratory variables after bilateral microinjections of 0.1 mM (○) and 0.5 mM (△) DAMGO into the three investigated medullary regions at selected
times after the completion of the injections. Individual data points along with means± SEM are reported. ** P<0.01, *** P<0.001, compared with control (Ctr);
## P<0.01, ### P<0.001, compared with 5 min; §§§ P<0.001, compared with 0.1 mM DAMGO. Note that CV increases were particularly pronounced after
DAMGO microinjections into the preBötC. For abbreviations see Fig. 1.
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administration a locally applied antagonist will leave still inhibited
terminals in projection areas. In addition, opioids probably act not only
on the already well known components of the brainstem respiratory
network, but also on other brain areas, for instance those involved in
nociception, that may in turn affect respiration (e.g. Jiang et al., 2004).

It seems worth noting that an irregular (ataxic) breathing pattern
was already observed in response to microinjections of DAMGO at the
lower concentration (see Figs. 1B and 4). This is consistent with the
notion that irregular breathing is an important component of MOR-in-
duced respiratory depression (Bouillon et al., 2003; Pattinson, 2008)
and that a disrupted pattern of breathing could be life-threatening
likewise complete apnea (see also Varga et al., 2020). Ataxic breathing
was also induced by activation of MORs located in the KF nucleus that,
as already mentioned, has dense reciprocal connections with the pre-
BötC. DAMGO-induced responses in the preBötC characterized by in-
creases in respiratory frequency associated with decreases in peak

phrenic amplitude and the development of tonic phrenic activity are
reminiscent of those obtained with microinjections of the neurotoxin
kainic acid (Mutolo et al., 2002), the selective NMDA receptor an-
tagonist D-AP5 and the broad-spectrum EAA receptor antagonist ky-
nurenic acid (Mutolo et al., 2005). We did not observe “quantal
slowing”, i.e. increased expiratory periods resulting from skipped in-
spiration (Mellen et al., 2003; Pattinson, 2008; Lal et al., 2011; Baesens
and Mackay, 2013), probably due to differences in the preparation and
the drug employed. Accordingly, Mellen et al. (2003) observed quantal
slowing in anesthetized, vagotomized, juvenile rats in response to
fentanyl.

At present, an exhaustive explanation of all DAMGO respiratory
effects is not available. However, an important role of the removal of
inhibitory mechanisms in the generation of altered breathing patterns
has been suggested in previous reports (see e.g. Pierrefiche et al., 1998;
Mutolo et al., 2002, 2005; Bongianni et al., 2010; Varga et al., 2020). In

Fig. 5. Localization of injection sites. A: examples of extracellular recordings of the pattern of discharge of neurons encountered in each of the three investigated
regions. NA, neuronal activity. B: changes induced by 20mM D, L-homocisteic acid (DLH) microinjections into the preBötC in some variables of the pattern of
breathing (30 trials). Individual data points along with means± SEM are reported. *** P<0.001, compared with control (Ctr). C: characteristic excitatory response
to a unilateral microinjection of 20 mM DLH into the preBötC. For abbreviations see Fig. 1.
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addition, we can propose an involvement of pontine influences on both
the preBötC and the BötC (see below) in the development of apnea
associated with intense tonic phrenic nerve activity that reminds ap-
neusis (St John, 1998). Pontine influences on respiration imply both
excitatory and inhibitory pathways and are mediated, at least in part,
by parabrachial and KF nuclei (Von Euler, 1986; Chamberlin and Saper,
1994; Bianchi et al., 1995; Mutolo et al., 1998; Pierrefiche et al., 1998;
see also Dutschmann and Herbert, 2006; Dutschmann and Dick, 2012;
Jones et al., 2016).

4.2. DAMGO-induced respiratory responses in the BötC and the iVRG

DAMGO-induced irregular patterns of breathing associated with
tonic phrenic activity as well as the appearance of tonic apnea within
the BötC display similarities with the effects observed following MOR
activation in the preBötC. Since the BötC is one of the main source of
inhibition in the respiratory network (see e.g. Lipski and Merrill, 1980;
Fedorko and Merrill, 1984; Von Euler, 1986; Jiang and Shen, 1991;
Bianchi et al., 1995; Bongianni et al., 1997; Iscoe, 1998; Mutolo et al.,
2002), these results could be ascribed to a DAMGO-induced silencing of
BötC neurons and are consistent with the interpretation that a lack of
inhibitory mechanisms underlies respiratory responses elicited in the
BötC and, possibly, also those observed in the preBötC, if the activation
of MORs on terminals of BötC projections is hypothesized. Un-
expectedly, in the first period after the microinjections into the BötC
DAMGO did not produce consistent changes in respiratory frequency,
but only decreases in peak phrenic amplitude. This outcome is obscure.
However, it should be remembered that the population of BötC is far
from being homogenous since it contains both excitatory and inhibitory
neurons with different patterns of discharge (e.g. Bongianni et al.,
1997, 2010; for review see Iscoe, 1998).

Decreases in peak phrenic amplitude and, in particular, apnea
without concomitant tonic activity following DAMGO microinjections
into the iVRG are not surprising since they can be ascribed to an in-
hibitory action on inspiratory bulbospinal neurons that are largely
concentrated in this region (e.g. Von Euler, 1986; Bianchi et al., 1995).
Present findings are consistent with previous results obtained with
microinjections of EAA receptor antagonists into this region (Bongianni
et al., 2002). It seems relevant to mention that the respiratory depres-
sion due to reductions in respiratory frequency is a common feature of
systemic opioid administration (see e.g. Pattinson, 2008; Dahan et al.,
2010; Prkic et al., 2012). Interestingly, DAMGO-induced reductions in

respiratory frequency strongly suggest that this region does not merely
represent an inspiratory output system, but is also involved in the
timing control of the respiratory pattern generator via its connections
with other respiration-related areas (Ellenberger and Feldman, 1990;
Jones et al., 2016).

4.3. Concluding remarks

Present results provide further insights into the role of MORs in the
genesis of respiratory depression induced by systemically administered
opioids. They confirm that the preBötC may play a prominent role, but
also indicate that the action of opioids within other areas of the re-
spiratory network should be considered. The results also suggest that
various areas of the respiratory network differentially contribute to the
opioid-induced respiratory disturbances for instance causing reductions
in peak amplitude and frequency of inspiratory activity as well as ir-
regular patterns of breathing with a concomitant development of tonic
activity and apneustic effects or apneas. Finally, it cannot be ruled out
that also brain areas outside the brainstem respiratory network may
contribute to the depressing effects.
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Fig. 6. Histological localization of the preBötC. A: diagrammatic representation of the dorsal view of the rabbit medulla oblongata showing some components of the
respiratory network. AP, area postrema; BötC, Bötzinger complex; cVRG, caudal ventral respiratory group; DRG, dorsal respiratory group; iVRG, inspiratory ventral
respiratory group; preBötC, preBötzinger complex. B: photomicrograph of a coronal section of the medulla oblongata at the level indicated by the dashed line (about
2.5 mm rostral to the obex) showing an example of the location of fluorescent microspheres microinjected into the preBötC. The histological section is counterstained
with Cresyl violet. Light-field and fluorescent photomicrographs have been superimposed. NA, nucleus ambiguus; NOI, nucleus olivaris inferior; NTS, nucleus tractus
solitarii; NV, nucleus tractus spinalis nervi trigemini; P, tractus pyramidalis.
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