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Abstract
Chronic kidney disease (CKD) is a major health problem worldwide. Although relatively uncommon in children, it can be a
devastating illness with many long-term consequences. CKD presents unique features in childhood and may be considered,
at least in part, as a stand-alone nosologic entity. Moreover, some typical features of paediatric CKD, such as the disease
aetiology or cardiovascular complications, will not only influence the child’s health, but also have long-term impact on the life
of the adult that they will become. In this review we will focus on the unique issues of paediatric CKD, in terms of aetiology,
clinical features and treatment. In addition, we will discuss factors related to CKD that start during childhood and require
appropriate treatments in order to optimize health outcomes and transition to nephrologist management in adult life.
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Introduction
Chronic kidney disease (CKD) is a major health problem world-
wide with increasing incidence and prevalence that is threaten-
ing to bring on the onset of a real ‘epidemic’ [1–5]. Independent
of the initial cause, CKD is a clinical syndrome characterized by
a gradual loss of kidney function over time [6]. In particular, the
Kidney Disease: Improving Global Outcomes (KDIGO) guidelines
have defined CKD as abnormalities of kidney structure or func-
tion, present formore than 3months, with implications to health
[6]. This definition has been formulated for the adult population,
where CKD is a common andwell-knownhealth problem, but the
KDIGO guidelines for definition and staging are not fully
applicable to the paediatric population [6]. Indeed, paediatric
CKD, while sharing the basic physiopathologic mechanisms
with the same disease in the adult population, could be in
someways considered a stand-alone nosologic entity. Childhood
CKD presents clinical features that are specific and totally

peculiar to the paediatric age, such as the impact of the disease
on growth. In addition, some of the typical characteristics of
paediatric CKD, such as the aetiology or cardiovascular complica-
tions, represent variables, not only influencing the health of the
patient during childhood, but also having an impact on the life of
the adult that this child will become. This impact is often under-
recognized but should not be neglected. Moreover, CKD has a
great psychosocial impact, both on the patient and his family.
The parents not only have to fulfil the role of parents, but also
take on many tasks we normally associate with nurses and doc-
tors. Therefore, we must be aware that the increasing survival of
paediatric patientswith CKD, due to the improvement in the clin-
ical and therapeutic management, will lead to a large number of
affected adults facing problems that are specific to CKD that have
started during childhood.

In this review,wewill focus not onlyon theunique issues con-
cerning paediatric CKD, but especially on those factors related to
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CKD that start during childhood and require appropriate man-
agement to optimize health outcomes of the patient.

Epidemiology of CKD in children
According to the KDIGO guidelines, CKD is identified by the pres-
ence of kidney damage, either structural or functional, or by a de-
cline in glomerular filtration rate (GFR) below 60 mL/min/1.73 m2

of body surface area for more than 3 months [6]. Therefore, the
term CKD defines renal dysfunction as a continuum, rather than
a discrete change in renal function, either in children or in adults
[7]. This makes the epidemiology of CKD very difficult to study.
Moreover, epidemiologic data on CKD may underestimate its
real incidence and prevalence since CKD is often clinically
asymptomatic, especially in earlier stages [8]. This is in part the
result of the historical absence of a common definition of CKD
and of awell-defined classification of its severity [9], that have re-
cently, at least in part, been overcome by the introduction of the
KDIGO guidelines [6, 9]. For all these reasons, in the majority of
studies, estimates of CKD take into account patients withmoder-
ate to severe CKD or end-stage renal disease (ESRD) and are not
population-based in nature [8, 9]. In addition, childhood CKD
registries are usually limited by being restricted to small refer-
ence populations [10]. Despite these limitations, the paediatric
incidence of CKD in Europe is reported to be around 11–12 per
million of age-related population (pmarp) for stages 3–5, while
the prevalence is ∼55–60 pmarp (Figure 1, top) [11, 12, 13, 17].
Comparable amounts are reported in population-based registries
of other western countries [14], although no precise data on the
incidence and prevalence of pre-terminal CKD are available for
the majority of them (Figure 1, top) [9]. Some differences could
emerge if different age groups are analysed [10, 18]. The incidence
of paediatric CKD rose slowly during the 1980s, then marginally
until the first decade of the 21st century [19]. At the same time,
the prevalence of the disease has significantly increased since
survival and treatment of CKDhavemarkedly improved [20]. Spe-
cific reports on CKD epidemiology in children have been focused
onpatientswith ESRD requiring renal replacement therapy (RRT).
The median incidence of RRT in children < 20 years old is
∼9 pmarp worldwide, whereas the prevalence is reported as
∼65 pmarp (Figure 1, bottom) [9, 13, 21]. Moreover, higher values
for incidence and prevalence have been reported in the USA,
probably because RRT is started earlier, at higher levels of GFR,
in comparison with other developed countries [15]. In any case,
data coming from epidemiological studies in adults provide the
dramatic evidence that ESRD represents the ‘tip of the iceberg’
of CKD and suggest that the number patients with earlier stages
of the disease are likely to exceed those reaching ESRD by as
much as 50 times [22]. The same consideration could probably
be applied to the paediatric population, where CKD has only
recently been recognized as a non-marginal issue. Notably, 80%
of RRT in children is performed in Europe, Japan andNorth Amer-
ica, where the cost of these extremely expensive treatments can
be afforded [9]. As a consequence, the real impact of CKD in chil-
dren in developing countries is a long way from being clarified,
especially in those countries where the healthcare resource
allocation to RRT is inadequate or RRT is not available, and
children affected by CKD frequently die [9, 23, 24].

The incidence and prevalence of CKD is greater in males than
females because of the higher frequency of congenital abnormal-
ities of the kidney and urinary tract (CAKUT) in males [11]. Final-
ly, race is another factor specifically affecting the epidemiology
of CKD. In particular, in North America, the incidence of CKD
is two to three times higher in African-American children

compared with Caucasian children, irrespective of gender [14],
whereas in Australia andNew Zealand, the risk of ESRD is greater
in indigenous children (e.g. Aborigines andMaoris) than in the re-
mainder of the paediatric population [25].

Aetiology of CKD in children
Primary causes of CKD in children significantly differ from those
that are responsible for the adult onset of the disease. In fact,
the main aetiologic factors of CKD in children are represented
by CAKUT, steroid-resistant nephrotic syndrome (SRNS), chronic
glomerulonephritis (e.g. lupus nephritis, Alport syndrome) and
renal ciliopathies, that account for approximately 49.1, 10.4, 8.1
and 5.3% of cases, respectively [11, 26, 27] and for more than 70%
of all paediatric CKD cases when considered together, as recently
reported (Table 1) [26]. Less common causes of CKD in children in-
clude thrombotic microangiopathies (especially atypical haemo-
lytic uraemic syndrome), nephrolithiasis/nephrocalcinosis,
Wilms tumour, infectious and interstitial diseases, and others
(Table 1) [26].While structural causes (e.g. renal hypoplasia or pos-
terior urethral valves) clearly predominate in younger patients,
the incidence of glomerulonephritis increases in those >12 years
old (Figure 2) [9, 26]. However, minor reductions in nephron num-
bers that are seen in low-birthweight andsmall for gestational age
newborns are now emerging as important predisposing factors to
CKD and will come to represent an important issue for nephrolo-
gists as the number of premature children continues to grow [28–
31]. These conditions, together with the exploding burden of
paediatric obesity [32, 33], are probably destined to significantly
change the relative distribution of the causes of CKD.

Interestingly enough, if analysis of the causes is limited to the
population of children that have already reached ESRD, the rela-
tive percentage of glomerular diseases increases (approximately
doubling), whereas that of CAKUT decreases from around 50 to
39.5%, underscoring the discrepancy between the rate of progres-
sion of these two entities (Table 1). Indeed, congenital malforma-
tive disorders are characterized by a slower progression towards
ESRD in comparison with glomerular diseases so that, as men-
tioned before, the relative proportion of glomerular diseases
increases in groups of patients with more advanced stages of
CKD (Table 1) [9]. Somewhat different are the data from the
Japanese National registry and the Australia and New Zealand
Dialysis and Transplant (ANZDATA) registry, which reported
glomerulonephritis to be the most common cause of ESRD in
children and adolescents [16, 34]. Finally, although information
on the aetiology of ESRD from less-developed countries is almost
unavailable mainly due to the absence of renal registries, it is rea-
sonable to state that the burden of glomerulonephritis secondary
to infectious diseases (such as hepatitis C, tuberculosis, HIV) is
predominant and still far from being under control [9].

The recent advent of massive-parallel sequencing technolo-
gies (also referred to as next-generation sequencing, NGS) has
provided one of the most interesting and substantial clues in
unravelling the aetiology of early-onset CKD. In particular, stud-
ies performed over the past few years have demonstrated that a
significant proportion of cases of CKD manifesting before
25 years of age can be defined as monogenic. In other words, a
single gene can be detected as the cause of the disease in ∼20%
of early-onset patients [26]. Nowadays, more than 200 genes are
clearly recognized as causative of the most common aetiologic
categories of CKD in children (CAKUT, SRNS, chronic glomerulo-
nephritis and ciliopathies) [26, 35, 36]. NGS technology presents
the striking advantage of allowing us to simultaneously study
an elevated number of genes in a single run of sequencing, saving
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both time and costs while being extremely highly informative.
Therefore, by selecting an appropriate panel of genes to sequence
on the basis of the clinical phenotype of the patient or on a pre-
cise diagnostic suspicion, it is possible to address specific aetio-
logic questions in one-fifth of children with early-onset CKD
[26]. In addition, large population-based genetic studies (e.g. gen-
ome-wide association studies) are revealing that the genetic
background of patients with CKD is probably much more com-
plex than what was previously expected. Indeed, besides clearly
disease-causing genes, that are by themselves responsible for
disease determination, a number of other genes are now recog-
nized as playing an important role [26, 37]. The best known ex-
ample is represented by APOL1, whose variants confer a

considerably higher risk of developing focal segmental glomeru-
losclerosis and CKD progression [37–40].

These findings have substantial implications, either for the
single patient or for more generalized considerations. First of
all, patients with a recognized genetic cause of paediatric onset
of CKD might benefit from specific therapies or from the avoid-
ance of ineffective and even potentially health threatening
ones (e.g. immunosuppressive drugs in patients with genetic
forms of SRNS) [41, 42]. In addition, molecular diagnostics enable
prenatal testing in siblings of affected individuals and genetic
counselling to the family, and may be of great help in assessing
a patient prognosis. Finally, the categorization of disease entities
by means of genetic testing is fundamental in assuring that the

Fig. 1. Estimated prevalence of CKD (top) and ESRD (bottom) in children worldwide. Data are collected by NAPRTCS, the Italian registry, USRDS, ESPN/ERA-EDTA registry,

ANZDATA and the Japanese registry [9, 11–16]. Incidence and prevalence are reported as number of patients per million of age-related population (pmarp) per year and

number of patients pmarp, respectively. Data from the ESPN/ERA-EDTA registry are reported on the basis of the contribution to the European registry of each single

country, as available at www.espn-reg.org/index.jsp. CKD, chronic kidney disease; ESRD, end-stage renal disease.
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analysis of data from clinical research and pharmacological trials
is reliable.

Clinical features of CKD in children and future
implications
Growth impairment

Growth impairment is a common and perhaps the most visible
complication of CKD in children [43–45]. The degreeof growth im-
pairment increases as GFR declines, even though a significant de-
crease in growth was seen at all levels of kidney function [43, 44].
The 2006North American Pediatric Transplant Cooperative Study
carried out on over 5000 children, showed that over 35% of chil-
dren with CKD had a height less than the third percentile or a
median height standard deviation score (HtSDS) less than
−1.88. The same study found a correlation between GFR and
HtSDS with, respectively, −3.2, −1.9, −1.5 and −0.9 for GFR <10,
10–25, 25–50 and >50 mL/min/1.73 m2 [27, 45]. Evenmore striking
is the correlation between growth impairment and age at the
time of enrolment. The average HtSDS in infants (age 0–2 years)

and young children was −2.33 and −1.65, respectively, whereas it
was only −0.93 for adolescents [27]. This is not unexpected, con-
sidering that one-third of total growth occurs in the first 2 years
of life, so infants with CKD are at a great risk of severe growth re-
tardation with a serious long-term impact on final height [21, 46,
47]. In children with CKD the risk factors that contribute to im-
paired growth include: malnutrition, metabolic acidosis, mineral
and bone disorders, anaemia, and fluid and electrolyte abnormal-
ities [48–51]. However, especially after infancy and early child-
hood, growth failure is mainly due to disturbances in growth
hormone (GH) metabolism and its main mediator, insulin-like
growth factor-I (IGF-I) [52, 53]. In fact, in infants and young chil-
dren, growth is principally dependent on nutrition, which has a
much greater impact on growth than the GH-IGF-I axis [52]. There-
fore, inadequate nutrition (due to anorexia or vomiting) appears to
be the most important factor contributing to growth impairment
at that age and maximizing caloric intake to at least 80% of re-
quirements has been found to effectively improve growth in chil-
dren who developed CKD as infants [52, 53]. Treatment over
2 years with recombinant human growth hormone (rhGH) has
been shown to be effective without any major adverse effects
[45, 54–56]. A consensus paper on the use of rhGH in CKD recom-
mends that all children with HtSDS <3rd percentile or with height
velocity standard deviation score <−2 SD should be treated with
rhGHaftermetabolic andnutritional abnormalities have been cor-
rected [57]. Furthermore, the 2005 Kidney DiseaseOutcomes Qual-
ity Initiative (KDOQI) Clinical Practice Guidelines for Bone
Metabolism and Disease in ChildrenWith Chronic Kidney Disease
suggest avoiding rhGH therapy in children with poorly controlled
mineral and bone disease [58]. In summary, even though rhGH
therapy is unavoidable in most cases, an effective management
of growth impairment in children with CKD must take into ac-
count all the nutritional and metabolic aspects of this disease.

Chronic kidney disease–mineral and bone disorder

Chronic kidney disease–mineral and bone disorder (CKD-MBD) is
a systemic disorder of mineral and bone metabolism due to CKD
that is defined by the presence of one or a combination of the
following findings: abnormalities in calcium, phosphorus, para-
thyroid hormone (PTH) or vitamin D metabolism; abnormalities
in bone histology, linear growth, or strength; vascular or other
soft tissue calcifications [59]. Renal osteodystrophy is an aspect
of CKD-MBD that refers only to bone pathology. A prompt and
effective management of mineral and bone disorders of CKD
during childhood is of utmost importance. In fact, changes in cal-
cium and phosphorus metabolism can significantly alter bone

Table 1. Frequency of different diagnostic groups as causes of CKD and ESRD in children

Frequencyas cause
of CKD [12, 13, 26] Aetiology

Proportion of cases of CKD
determined by specific
diagnostic sub-groups [26]

Frequency as
cause of ESRD
[12–15, 19]

Glomerular diseases 6.8–20.5% SRNS 10.4% 15.2–24.3%
Glomerulonephritis 8.1%
Thrombotic microangiopathies (aHUS) 2.0%

Structural and other 56–57.6% CAKUT 49.1% 38.3–39.5%
Ciliopathies 5.3%
Nephrolithiasis, nephrocalcinosis 1.6%

Thedistribution of the frequency shows thatdifferent aetiologic groups are differentially responsible for CKD and ESRD,mainly because of the different rate of progression

towards ESRD of the different diagnostic categories (e.g. glomerular versus structural).

CKD, chronic kidney disease; ESRD, end-stage renal disease; CAKUT, congenital abnormalities of kidney and urinary tract; SRNS, steroid-resistant nephrotic syndrome;

aHUS, atypical haemolytic uraemic syndrome.

Fig. 2. Impact of different causes of CKD in children among age groups. The graph

shows the variation of the impact of different diagnostic groups in determining

CKD over time, highlighting how glomerular diseases significantly increase in

older children, while structural disorders are more common as causes of CKD in

infants and younger children. CKD, chronic kidney disease; FSGS, focal segmental

glomerulosclerosis; GN, glomerulonephritis; yrs, years.
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remodelling and somatic growth. Optimization of bone health,
growth and final adult height must be a focus of CKD manage-
ment in children [59, 60]. Furthermore, paediatric nephrologists
must be aware that an effective treatment of CKD-MBD affects
the progression of cardiovascular disease, as phosphate is also
a strong vascular toxin either in its own right or through its effect
on PTH and fibroblast growth factor 23 [61, 62]. Despite inter-
national guidelines for the management of CKD-MBD [58],
many patients still have a poorly controlledmineral metabolism,
especially in the later stages of CKD. This is shown in a report of
data collected by the International Pediatric Peritoneal Dialysis
Network on 900 children worldwide, where PTH levels were
over five times above the upper limit of normal values in ∼50%
of the patients. The highest levels were associated with higher
phosphate and lower calcium levels. Phosphate control begins
with dietary restriction. Thus, it is advisable for nephrologists
to work closely with a specialized dietician from the very early
stages of CKD. However, dietary restriction is very rarely ad-
equate and phosphate binders become necessary even earlier
than in adult patients [62–64], due especially to the unpleasant
taste of this medication and the need for its ingestion at every
meal. In general, the goal of therapy is to normalize mineral me-
tabolism with the aim of improving growth and bone strength
and, at the same time, reducing bone deformities and minimiz-
ing the progression of extra-skeletal calcification [65, 66].

Anaemia

Anaemia is a common complication in children with CKD caus-
ing many adverse clinical consequences, including poor quality
of life, depressed neurocognitive ability, reduced exercise cap-
acity and progression of cardiovascular risk factors, such as left
ventricular hypertrophy (LVH) [67–70]. In adult patients with
CKD, the diagnosis of anaemia is made and further evaluation
warranted when haemoglobin concentration is <13.5 g/dL in
men and <12 g/dL in women [71]. On the other hand, the diagno-
sis of anaemia in childrenwithCKD is not as straightforward. The
National Kidney Foundation KDOQI (NFK-KDOQI) clinical prac-
tice guidelines use reference data from National Health and
Nutrition Examination Survey (NHANES) III to define normal
values in the paediatric population and recommend initiating
an evaluation for anaemia when haemoglobin levels fall below
the age-specific and sex-specific 5th percentile value [71–73].
Anaemia increases in prevalence with advancing stages of CKD.
Data from the North American Pediatric Renal Trials and Collab-
orative Studies (NAPRTCS) show that the prevalence of anaemia
in children is 73% at CKD stage III, 87% at stage IV and >93% at
stage V [72, 74]. Anaemia of CKD is the result of many interacting
factors, but decreased production of erythropoietin by the un-
healthy kidney and iron dysregulation (including iron deficiency
and iron-restricted erythropoiesis) are the primary defects
[75–78]. Treatment with recombinant human erythropoietin
(rHuEPO) is safe and effective, both in childrenwith conservative-
ly treatedCKDand in those onmaintenance dialysis [79, 80]. As in
adults, the goal of this treatment is to achieve target haemoglobin
levels of approximately 11 g/dL or slightly greater. Evidence
shows that, both in adult and children, haemoglobin levels
>13 g/dL are not associated with improved patient outcomes (in-
cluding lower mortality, less frequent hospitalization, and less
severe LVH) [71]. Interestingly enough, the dosing requirements
of rHuEPO usually differ markedly between children and adults.
Data from NAPRTCS show that, to achieve and maintain target
haemoglobin levels, young children require higher rHuEPO
doses than adults, ranging from 275 U/kg to 350 U/kg per week

for infants, to 200–250 U/kg per week for older children [81, 82].
The underlying mechanism related to the need for such high
rHuEPO doses has not yet been fully understood, but is probably
due to a greater amount of non-hematopoietic erythropoietin
binding sites (e.g. kidney, endothelium, brain, heart, skeletal
muscle and retinal cells) in children, which decreases the bio-
availability of the drug at its therapeutic sites [72, 83]. Supple-
mental iron therapy (either oral or intravenous) is also
necessary for the treatment of anaemia in children with CKD.
However, normal or above-normal ferritin levels in CKD, as in
many other chronic diseases, could be a marker of inflammation
and may not reflect the total iron body stores [84–86].

Hypertension

Unlike many of the complications of CKD, hypertension can be
present from the earliest stages of the disease and its prevalence
increases as GFR progressively declines [87, 88]. A recent work by
the Chronic Kidney Disease in Children (CKiD) study group
showed that hypertension was present in 54% of participants at
the time of enrolment and, even more strikingly, 48% of the
children had high blood pressure (BP) levels despite the use of
antihypertensive medications, which rarely included renin-
angiotensin-aldosterone system inhibitors (RAAS-I). Interesting-
ly enough, when BP was measured with a 24-h ambulatory BP
monitoring (ABPM), children with CKD showed higher systolic
and diastolic variability and lower heart rate variability compared
with children without hypertension with CKD. These factors
represent potential precursors for cardiovascular morbidity in
adults [89]. Moreover, 38% of the CKiD cohort had so-called
masked hypertension (normal office BP but elevated ambulatory
BP), which is another known risk factor for LVH [88, 89]. Studies
performed in adults have clearly demonstrated that an effective
control of BP reduces not only cardiovascularmorbidity andmor-
tality, but also the rate of progression of CKD [89–91]. Similarly,
the renoprotective effect of RAAS-I, especially for proteinuric CKD
patients, is now considered an unquestionable fact [91]. In the
paediatric population, the ESCAPE trial of 385 children with
CKD showed that patients randomly assigned to intensified BP
control (BP <50th percentile) had a 35% relative risk reduction in
reaching the primary endpoint of a decline of 50% in the GFR or
ESRD compared with those in the conventional BP control
group (BP 50th–90th percentile). All patients were treatedwith ra-
mipril and, when needed, other antihypertensive medications
that did not target the renin-angiotensin system were added in
order to achieve targeted BP control [90, 92].

In summary, data from CKiD and other studies show that un-
derdiagnosis and inadequate control of BP occurs in children
with CKD. To improve the recognition of hypertension in paediat-
ric CKD patients, a 24-h ABPM monitoring should be performed
whenever possible and the use of RAAS-I should be part of an
effective antihypertensive medication management, especially
in children with proteinuric disease.

Cardiovascular complications and death

It iswell known that adultswith CKDhave significantly increased
rates of cardiovascular morbidity and mortality compared with
the general population [61, 93, 94]. However, increased cardiovas-
cular risk is not unique to adultswithCKDand several reports con-
firm that cardiovascular disease (CVD) is the leading cause of
death also in the paediatric CKD population, with a risk 1000
times higher in the ESRD group compared with the age-matched
non-CKD population [87, 95, 96]. The American Heart
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Association’s guidelines for cardiovascular risk reduction in high-
risk paediatric patients classified childrenwith CKD in the highest
risk group for the development of CVD, alongside individuals with
homozygous familial hypercholesterolaemia, diabetes mellitus
type 1, heart transplantation or coronary aneurisms due to Kawa-
saki disease [97].

Epidemiological and clinical studies have provided evidence
that cardiovascular anomalies begin early in the course of renal
failure, irrespective of the age of onset, and rapidly progress
when dialysis is initiated [95, 98]. CVD in the CKD population
ensues from a combination of traditional (e.g. hypertension,
dyslipidaemia, abnormal glucose metabolism and obesity) and
CKD-related risk factors (e.g. increased calcium-phosphorus
product, hyperparathyroidism and anaemia) [87]. As CKD and
dialysis are relatively uncommon in childhood, large multi-
centre and longitudinal studies are difficult to perform. Conse-
quently, establishing and predicting the cardiovascular risk in
this population is even more difficult [95, 99]. What is well
known is that the cardiovascular causes of mortality are slightly
different in children with CKD compared with adults with CKD.
Adult cardiovascular deaths are mainly determined by coronary
artery disease and congestive heart failure, while the leading
causes of cardiac death in children with CKD are arrhythmias,
valve diseases, cardiomyopathy and cardiac arrest [61, 94]. The
difference between the two populationsmay in part be attributed
to the lower prevalence of classic risk factors for atherosclerosis
in children with CKD.

From a pathophysiologic point of view, all the cardiovascular
abnormalities that occur in adults with CKD are also present,
to some extent, in children with CKD. As in adults, endothelial
dysfunction appears early in the course of renal disease and has
been observed in children with CKD undergoing conservative
therapy as well as in children on dialysis [99, 100]. Arterial

stiffening due to intimal calcification is commonly found in
older patientswith ESRD and is associatedwith classic risk factors
for atherosclerosis, such as age, diabetes mellitus, smoking, high
low-density lipoprotein cholesterol levels and inflammation [99].
On the other hand, diffuse and non-occlusive arterial stiffening
found in children and young adults with ESRD is more often due
to medial calcification and is strongly associated with uraemia-
related specific factors, such as hypertension, long-term dialysis
and high serum phosphate levels [99–101]. Furthermore, most
studies show that LVH is the most common cardiac abnormality
in children with CKD, and it develops even when CKD is mild
and progresses as kidney function declines [87, 102]. This remod-
elling causes firstly a predominantly diastolic dysfunction and ul-
timately leads to systolic dysfunction and cardiac failure. LVH
influences also the conductive properties of the myocardium
and exacerbates the risk of dangerous arrhythmias [96, 103].

In conclusion, even though classic risk factors for atheroscler-
osis are less prevalent in children than in adults with CKD,
markers of subclinical cardiovascular damage are present also
in paediatric patients [99, 104]. Several modifiable risk factors,
including hyperphosphataemia, hyperparathyroidism, anaemia
and hypertension, independently predict the presence of cardio-
vascular abnormalities in these cases. An effective control of
these non-traditional risk factors of CVD could improve the
survival and the future global health of these patients.

Concluding remarks
CKD is a sly disease. Although relatively uncommon in children,
CKD can be a devastating illness with many long-term conse-
quences (Figure 3). In fact, the mortality rate for children with
ESRD receiving dialysis therapy is 30–150 times higher than in
the general paediatric population and the life expectancy for a

Fig. 3. Clinical complications of CKD: a double perspective. The picture shows the correspondence between clinical features and complications of CKD with onset during

childhood (left, top) and the relative consequences in adult life (right, top). On the other hand, clinical and laboratory findings of kidney disease in an adult (right, bottom)

may find an explanation in kidney functional and/or structural abnormalities that already existed during infancy and childhood (left, bottom) but that may have been

missed or underdiagnosed because of being clinically silent. Therefore, nephrologists, should have a global vision of their patients, regardless of whether the patient

with CKD is a child or an adult: the first with a look towards the future, the other to the past. To underline this aspect, each box on the left side of the picture

corresponds to one on the right side, as highlighted by the colour code. CKD, chronic kidney disease; GH-IGF-I, growth hormone and insulin-like growth factor I; LVH,

left ventricular hypertension; CKD-MBD, chronic kidney disease–mineral and bone disorder; CV, cardiovascular; FSGS, focal segmental glomerulosclerosis.
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child on dialysis is ∼50 years less than a healthy child [9, 19, 105].
Kidney transplantation is characterized by a significant improve-
ment in prognosis and is the best therapeutic option for children
with ESRD. However, most of the complications of this clinical
syndrome have consequences on the patients’ health well before
kidney function is irreversibly lost, even when it is maintained
stable over time with conservative therapy.

In addition, despite similarities to the adult disease, CKD in
children presents unique features and challenges that are not
usually faced by adult patients and that make paediatric CKD a
stand-alone nosologic entity. Nevertheless, paediatric nephrolo-
gists should be aware that complications in childhood CKD will
have consequences well beyond paediatric age and influence
outcomes of affected young adults with CKD (Figure 3). On the
other hand, nephrologists who take care of young adults with
CKD or adultswith childhood CKD should understand the unique
characteristics that CKD presents in children, especially the aeti-
ology, in order to significantly ameliorate their patients’ care
(Figure 3).

In summary, nephrologists, whether caring for children or for
adults with CKD, should have a global vision of their patients: the
first with a look towards the future, the other to the past.
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