

Teesside University

> Enabling The Development And Implementation of Digital Twins

> > Proceedings of the 20th International Conference on Construction Applications of Virtual Reality

Edited By:

Nashwan Dawood Farzad Rahimian Saleh Seyedzadeh Moslem Sheikhkhoshkar

20th

30th Sep -2 Oct 2020

Teesside University Southfield Rd, Middlesbrough United Kingdom

Enabling the Development and Implementation of Digital Twins

Proceedings of the 20th International Conference on Construction Applications of Virtual Reality

Editors

Nashwan Dawood

Teesside University

Middlesbrough, UK

Farzad Pour Rahimian

Teesside University

Middleborough, UK

Saleh Seyedzadeh

University of Strathclyde Glasgow, UK

Moslem Sheikhkhoshkar Iran University of Science and Technology Tehran, Iran

ISBN 978-0-9927161-2-7 CONVR2020

Welcome to the 20th International Conference on Construction Applications of Virtual Reality (CONVR 2020). This year we are meeting on-line due to the current Coronavirus pandemic. The overarching theme for CONVR2020 is "Enabling the development and implementation of Digital Twins".

CONVR is one of the world-leading conferences in the areas of virtual reality, augmented reality and building information modelling. Each year, more than 100 participants from all around the globe meet to discuss and exchange the latest developments and applications of virtual technologies in the architectural, engineering, construction and operation industry (AECO). The conference is also known for having a unique blend of participants from both academia and industry.

This year, with all the difficulties of replicating a real face to face meetings, we are carefully planning the conference to ensure that all participants have a perfect experience. We have a group of leading keynote speakers from industry and academia who are covering up to date hot topics and are enthusiastic and keen to share their knowledge with you. CONVR participants are very loyal to the conference and have attended most of the editions over the last eighteen editions. This year we are welcoming numerous first timers and we aim to help them make the most of the conference by introducing them to other participants.

Middlesbrough, UK September 2019 Nashwan Dawood Farzad Pour Rahimian Saleh Seyedzadeh Moslem Sheikhkhoshkar

Contents

Part 1. Introduction

1	Enabling the development and implementation of Digital Twins	1
Part	Nashwan Dawood, Farzad Rahimian, Saleh Seyedzadeh & Moslem Sheikhkhoshkar 2. AR & VR, Serious Games & Wearables	
2	Superimposing Building Information Models in Augmented Reality	11
	Vishak Dudhee & Vladimir Vukovic	
3	Active Personalized Training of Construction Safety Using Run Time Data Collection in Virtual Reality	19
	Alex Solberg, Jens K. Hognestad, Olga Golovina, Jochen Teizer	
4	Developing a Mixed-Reality Based Application for Bridge Inspection and Maintenance	31
	Duy Cuong Nguyen, Chang Su Shim, The Quan Nguyen, Ruoyu Jin, Chi Ho Jeon	
5	Vision-based Construction Site Monitoring: A Review from Construction Management Point of View	44
	Aritra Pal & Shang-Hsien Hsieh	
6	AR-based and User-Centered Approach to the On-site Design Decision Support for Building Remodel Projects	56
	Sanghoon Lee, Jinsung Kim, Dahngyu Cho & Jin-Kook Lee	
7	Improving Construction Risk Assessment via Integrating Building Information Modeling (BIM) with Virtual Reality (VR)	64
	Rolim A. L, Valente G. A., Keskin B	
8	Collaborative Scheduling with 4D Extended to Virtual Reality	73
	Mikael Viklund Tallgren, Mattias Roupé, Mikael Johansson	

9	Virtual Reality in Construction Health and Safety Education: Students Experience through Video Elicitation - A Pilot Study	86
	Mark Swallow and Sam Zulu	
10	The Application of Virtual Reality in Construction Education: A South Africa Case Study	95
	Nishani Harinarain	
11	Using Virtual Reality to Evaluate the Impact of Dispersion of Elements on Kinetic Façade	104
	Mojgan Rezakhani and Sung-Ah Kim	
12	The House Configurator: Configuring BIM Variables Using Game Interfaces.	116
	Lilia Potseluyko Amobi and Farzad Rahimian	
Part	3. Digital Twins	
13	Digital Twin Uses Classification System for Urban Planning & Infrastructure Program Management	128
	Ramy Al-Sehrawy, Bimal Kumar and Richard Watson	
14	Digital Twin Driven Musculoskeletal Injury Prevention System	139
	Omobolanle Ogunseiju, Johnson Olayiwola & Abiola Akanmu	
15	Holographic Learning Environment for Bridging the Technical Skill Gap of the Future Smart Construction Engineering Students	151
	Omobolanle Ogunseiju, Abiola Akanmu, and Diana Bairakt	
16	Immersive Video Capture Technology for Construction Management Education	163
	Alireza Shojaei, Saeed Rokooei, Lee Carson, George Ford	
Part	4. Building Information Modelling	
17	Converting Open Standard CAD Formats Into Decentralised Common Data Environment	174
	Stephen Oliver & Farzad Pour Rahimian & Nashwan Dawood & Sergio Rodriguez	
18	A Proposal of a Site Object Library for Construction Workers' Safety Training Using BIM-based Immersive Virtual Reality	184

Vito Getuli, Pietro Capone, Alessandro Bruttini & Tommaso Sorbi

19	Automated Progress Monitoring via Fusion of 4D BIM and AI through Schedule Updating by Convolutional Networks and a Specialized Labelled Dataset for the Construction Components
	Reza Hedayat Nejad, Ali Ghaffarianhoseini & Amirhosein Ghaffarianhoseini
20	Automatic Generation of 3D Building Models for BIM by Polygon Partitioning and Rectification 209
	Kenichi Sugihara, Zhenjiang Shen & Takahiro Murase
21	Automated BIM-based Formwork Quantity Take Off 220
	Yasar Cepni, Asli Akcamete & Ralf Klein
22	Developing an Intensional Definition Satisfying the Philosophy of Definitions to Appraise the Theory of BIM 228
	Githyon Prabhu & Henry Abanda
23	Employing BIM-based Geostatistical Analysis to Design a Monitoring Arrangement
	Mahmoudi E & Yilmaz F & König M
24	Illuminating the Ideological Developments of BIM to Appraise the Terminology BIM
	Githyon Prabhu & Henry Abanda
25	Towards BIM-Based Assembly Capacity Analysis for Community Construction Site Planning and Simulation
	Wei Zhou & Praveen Pushpala
26	Towards an Intelligent BIM Integrated Structural Design
	Tofigh Hamidavi & Sepehr Abrishami
Part	5. Monitoring & Inspection
27	Indrone: Visualizing Drone Flight Patterns for Indoor Building Inspection Tasks 281
	Ricardo Eiris, Gilles Albeaino, Masoud Gheisari, Brett Benda & Randi Faris
28	Visual Dust Emission Monitoring for Construction Activities 291
	Ruoxin Xiong & Pingbo Tang
29	Non-monotonic Reasoning for Automated Progress Analysis of Construction Operations
	Karsten W. Johansen, Rasmus O. Nielsen, Carl Schultz, Jochen Teizer

30	Automatic Generation of 3D Terrain Models for Debrics Flow Simulation	312
	Takahiro Murase, Kenichi Sugihara & Zhenjiang Shen	
Part	6. Artificial Intelligence	
31	Web-based Construction Collaboration Tools: Text Mining of User Perceptions	324
	Mahmuda Chowdhury, M. Reza Hosseini, Igor Martek,	
	David John Edwards & Tandeep Singh	
32	An Image Feature Classification System for Piers Based on Semantic Segmentation with Deep Learning	333
	Natthapol Saovana, Nobuyoshi Yabuki, and Tomohiro Fukuda	
33	Awareness of Big Data concept in the Dominican Republic Construction Industry: An Empirical Study	344
	Paola F. Reyes-Veras, Suresh Renukappa and Subashini Suresh	
34	Facilitating Information Exchange for 3D Retrofit Models of Existing Assets Using Semantic Web Technologies	358
	Farhad Sadeghineko & Bimal Kumar	
35	Conceptualizing 3D Model Development and Validation via the Integration of Speech Cognitive Processing	372
	Andrew Pidgeon & N Dawood	
36	Image-based Verification and Mapping of Physical Barrier for Wheelchairs	380
	Rio Takahashi, Hiroshige Dan, and Yoshihiro Yasumuro	

A PROPOSAL OF A SITE OBJECT LIBRARY FOR CONSTRUCTION WORKERS' SAFETY TRAINING USING BIM-BASED IMMERSIVE VIRTUAL REALITY

Vito Getuli*

University of Florence - Department of Architecture, Florence, Italy **Corresponding author – e-mail address:* <u>vito.getuli@unifi.it</u>

Pietro Capone, Alessandro Bruttini, Tommaso Sorbi

University of Florence – Department of Civil and Environmental Engineering, Florence, Italy

ABSTRACT: Workforce Health and Safety (HS) training in the construction sector has recently witnessed the growing adoption of immersive Virtual Reality technologies (VR) reaping the benefits of the enhanced workers' involvement and safety contents' transfer of on-site training while cancelling the related risks and costs.

However, despite the diffusion of Building Information Modeling (BIM) and of BIM tools for construction simulation and planning, most VR training experiences are still based on generic construction site environments and are not included in a comprehensive training program that takes into account and leverages project-specific information and contents comprised in BIM Site models.

For this reason, in previous work (Getuli, Capone and Bruttini, 2020) the authors proposed a prototype implementation protocol of BIM and VR for the planning, management and administration of three typologies of VR safety training (Layout, Activity and Emergency) via a game technology-based workflow encountering in the production of the VR training experiences a limitation in the lack of a standard categorization and informative requirements definition for construction site objects.

In order to address this issue, the present work proposes a BIM-based Site Object Library oriented to the production of VR safety training experiences as a result of a three-step process with the definition of: 1) Object list and categories from the analysis of construction sector's regulations, case studies and site scenarios' imagery; 2) Object requirements from the analysis of their real features (e.g. visual aspects, sounds, motion patterns); 3) Object Information Sheet for the inclusion of any site objects in the library.

The implementation and validation of the proposed Site Object Library is currently in progress for the production of BIM-Based VR safety training experiences on a case study project and will be discussed in future works.

KEYWORDS: Site Object Library, BIM, Health & Safety training, Construction workers, Virtual Reality, Game technology.

1. INTRODUCTION

In recent years the adoption of advanced visualization technologies, such as Virtual and Augmented Reality (VR/AR), in the AECO industry has increased for several purposes (e.g. design review, stakeholder's engagement, training, etc) during the whole project lifecycle, from early design iterations to construction and operation, but, despite promising outcomes, still struggles to gain momentum due to existing development gaps (Davila Delgado et al., 2020).

In this context, the adoption of immersive VR for workforce Health and Safety (HS) training represents one of the most interesting use-cases both for the academy and the industry because of the reported benefits in terms of safety contents' transfer related to an enhanced workers' involvement and of the reduction of risks and costs related to on-site training (Sacks, Perlman and Barak, 2013; Li et al., 2018).

The introduction of users in immersive virtual environments comprising the vivid and interactive reproductions of real building and site configuration for construction education and training produced interesting results enabled by a real-scale first-person space perception (Bashabsheh, Alzoubi and Ali, 2019; Castronovo et al. 2019)

The adoption VR-enabled systems for the visualization of the project information demonstrated to provide significant improvements in term of collaboration and information sharing among different stakeholders (Pour Rahimian, 2019). Interactive VR reproductions of site layout configurations in the different planned phases (Boton,

2018) and, moreover, of relevant construction activities placed in their expected site environments proved to be an effective tool for the evaluation of safety procedures and for the inclusion of the elicitated workers' field knowledge in the H&S management process (Getuli et al., 2020).

Furthermore, concerning workers' safety training, document-based traditional training methods are overcome by VR-based methods and experiences due to the higher level of involvement and presence provided to the trainees (Perlman, Sacks and Barak, 2014). In this regard, the immersion in multi-user interactive VR environments have been proven highly effective in the training for complex tasks and construction site activities such as tower crane operation and oil and gas facilities' maintenance simulation (Guo et al., 2012; Hou et al., 2017).

Nonetheless, the diffusion of immersive VR for safety training is still limited to few early adopters mainly due to the existing implementation barriers related to the required specialistic know-how and to the poor integration with other established technologies and methodologies in the field.

For this reason, acknowledging Building Information Modeling (BIM) as the leading methodology and the common ground for the development of innovative applications, the authors already identified in previous works the opportunity to integrate BIM and game technology to foster VR safety training (Getuli et al., 2018; Getuli Capone and Bruttini, 2019). Moreover, in order to demonstrate a larger-scale feasibility of immersive VR for workers' safety training, an implementation protocol for planning, management and administration of HS contents with BIM and VR has been proposed and tested on a real case study project (Getuli, Capone and Bruttini, 2020). From the development and the results obtained in the aforementioned research work, it emerged among other issues the urgent need for an asset of resources that supported this implementation.

Therefore, this work aims to address this issue with a proposal of a BIM-based Site Object Library oriented to the production of VR safety training experiences. Since the study is currently ongoing, the results related to the problem analysis and to the library framework definition are here discussed, along with the proposition of a dedicated implementation support tool, leaving the discussion of the library implementation and validation to future works.

2. RESEARCH CONTEXT

The present work is to be considered as a branch of a broader authors' research effort regarding the development and implementation of a prototypical protocol for the integration of BIM and immersive VR technologies for construction workers' safety training as can be found in (Getuli, Capone and Bruttini, 2020). For this reason, in this paragraph a brief overview of the cited protocol is reported with reference to the issues that motivated this work (see Figure 1).

The proposed protocol aims to define a workflow for the implementation of workers' safety training sessions via immersive VR centred on the exploitation of the site model resulting from a BIM-based construction planning process for the representation of the workers' training scenario. It consists in a five-stepped cross-platform workflow which starts in a BIM authoring environment (1) with the acquisition of a multidisciplinary BIM model which is then enriched (2) with construction planning and H&S data oriented to the definition of site-specific workers' training scenarios (3). For this purpose, three training typologies, with the related aims and contents, have been defined (see Table 1) along with a decision support tool based on the identification of specific training typology, the site's layout geometries and information are exported to a game-engine environment for their integration with additional multimedia contents and for the scripting of the necessary users' interactions (4). As final step of the process, the proper VR training experiences are eventually delivered according with the training schedule and administered to the workers via a supported immersive VR device (5).

The protocol was tested in a real case study project that comprised the production and administration of three VR training experiences and pointed out several implementation issues. Among these, it emerged the need for an organised asset of digital safety contents dedicated to the identified training typologies and optimized both for the BIM-based site modeling and the VR experience production (steps 2-4).

In particular, to facilitate the protocol's implementation the authors focused in the development of a Site Object Library with the following characteristics:

• Progressive objects classification system oriented to the scope of the different typologies of safety training and suitable for various site configurations, construction activities and emergency events occurrences.

- BIM-ready version for each site object whose representation in the BIM model of the site has relevance for a safety training purpose, including object's geometry and the related H&S data and workspaces. This version is intended for a BIM-authoring environment and is mostly replaced later in the game-engine environment whit more suitable versions for their VR representation.
- VR-ready version for each site object intended to the production of realistic and interactive experiences able to foster the trainee involvement and therefore the training effectiveness and the safety contents' transfer. In this regard all the multimedia aspects contributing to the immersivity of the VR experience must be considered: graphic fidelity, audio contents and interactivity features.

All site objects included in the site layout modelled in the BIM authoring environment are usually present also in the delivered VR training scenario, whether they are directly transferred or replaced with more suitable VR versions. Nonetheless, depending on the objects or on the training typologies, site objects can present just a VR implementation due to their subsidiary function for immersivity and interactivity purposes related to the VR training experience (e.g. materials in storage areas, risks placeholders, PPE, manual tools, emergency equipment, etc).

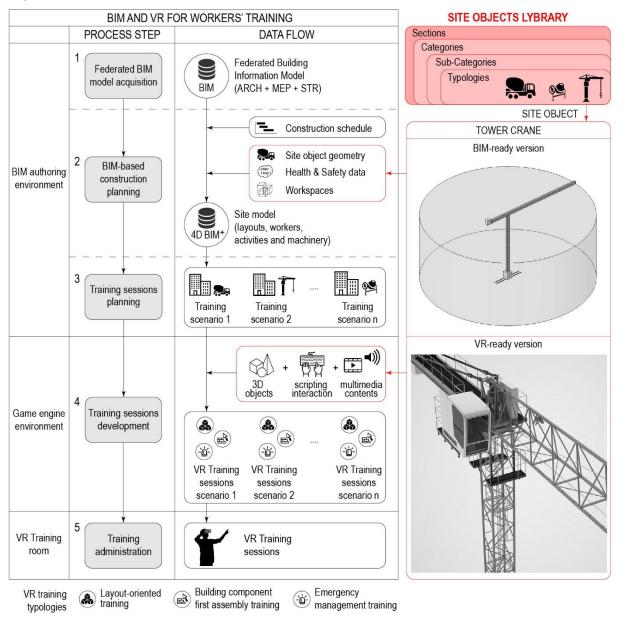


Fig. 1: Integration of the Site Objects Library in the proposed BIM-based implementation protocol for workers' safety training with Virtual Reality

Training typology	Aims and contents						
Layout-oriented training	The workers can experience the virtual reproduction of a forthcoming specific site layout configuration						
	acknowledging the position, safety procedures and access and usage authorization for: site areas,						
	equipment, facilities, plants, circulation paths, activity workspaces and specific risk zones.						
Building component first	The workers can experience the virtual reproduction of a relevant construction activity (e.g. Building						
assembly training	component first assembly occurrence) in the specific site layout in which it will take place, visualizing and						
	interacting with the planned workspaces and learning about both the site and activities-related risks and the						
	safety procedures to implement.						
Emergency management	The workers can experience the virtual reproduction of an emergency situation that could occur during a						
training	specific construction phase (and site layout/activities configuration), learning and implementing the planned						
	emergency procedures, emergency equipment position and functioning, escapes route and rescue vehicles'						
	paths. For the training purposes two typologies of emergency are distinguished: 1) Workers' illness or						
	accident; 2) Fire.						

Table 1: Typologies of safety training.

3. RESEARCH OBJECTIVES AND METHOD

In order to provide a coherent framework for a library of virtual objects dedicated to the production of BIM-based immersive VR experiences for construction workers' safety training according to the aforementioned implementation protocol, the research focused on the following objectives:

- 1) *Site Objects' classification*: Identify and classify the objects required for the modeling and simulation of virtual reproductions of construction sites to be used for workers' safety training via immersive VR.
- 2) Site Objects' requirements definition: Define the objects' requirements in terms of geometry, information, graphics and interactivity features with reference to their uses; namely: worker's Health and Safety training, construction site BIM-based modeling and planning (4D) and construction site and activities simulation via immersive VR technologies.
- 3) *Site Objects' Information Sheet*: Design an information sheet common to all the objects' categories and serving as a library implementation support tool. In fact, all the relevant information identified for every object in the library are reported in the sheet allowing for a consistent object's choice and implementation in the construction site model dedicated for workers' training.
- 4) *Site Object Library's implementation and validation*: Implement the library with objects related to every identified category and according to the defined requirements. Validate the implemented objects with their adoption for the production of immersive VR safety training simulations based on the BIM model of the construction site.

The library implementation and validation are currently object of an on-going research and concerns the production of several immersive VR training experiences to be tested directly with the workers involved in the construction of the children's hospital "Stella Maris" in the city of Pisa (Italy). Therefore, leaving the detailed discussion of the related approach and results to future works, in the following steps is presented the method adopted for the library development (see Figure 2):

- 1) *Characterization of a generic construction site for workers' safety training purpose*: The first step in the development of the proposed site object library consisted in answering the following questions:
 - Which tangible objects, different from the building components, can be found in a construction site and are relevant for workers' safety training purposes? (equipment, scaffolding, fences, machinery, workers, etc.)
 - Which non-tangible objects could be relevant for workers' safety training purposes? (workspaces, site areas definitions, risks identification, etc.)
 - How could these objects be classified for their consistent implementation of BIM and VR site models for a generic construction project?

In order to address these questions, it has been conducted the analysis of different knowledge sources, namely: literature (case studies); construction site imagery and national (Italian) Health and Safety regulation about construction site and workers' training.

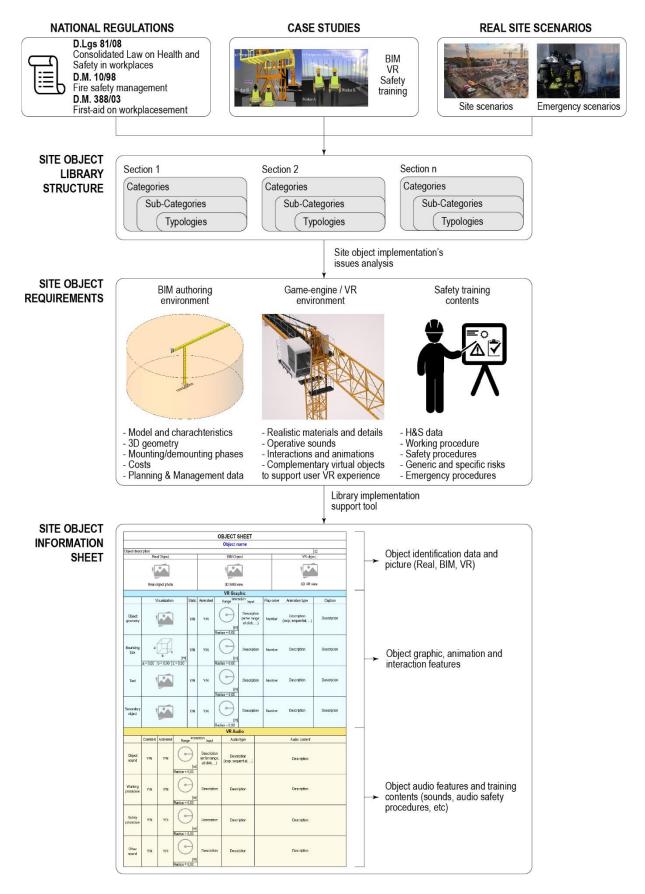
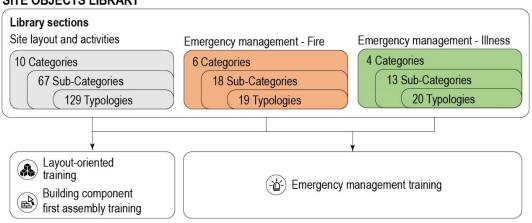


Fig. 2: Site Object Library development workflow


- 2) *BIM and VR site objects' requirements:* In order to define the objects' requirements in terms of geometry, information, graphics and interactivity features, the authors focused on their implementation processes in the BIM authoring environment (site planning) and in the game-engine environment (VR training experience production), keeping in mind the objects' purpose in term of transfer of H&S contents.
- 3) *Site objects' Information Sheet design:* After the identification of the objects' requirements, a further research effort regarded the design of a single-page sheet comprising all the relevant information of each object. Thereby the H&S managers using the library are provided with an effective implementation support tool, so that they could search and choose the most suitable object just going through their information sheets, before importing them in BIM or VR authoring environment.

4. SITE OBJECT LIBRARY FOR BIM-BASED WORKERS' SAFETY TRAINING WITH VIRTUAL REALITY

4.1 Structure of the Site Object Library

The results of the analysis conducted for the characterization of the general construction site (literature, case studies, national regulation) with the purpose of the production of workers' safety training-oriented contents, determined the division of the proposed Site Object Library into the following three main sections (see Fig. 3):

- 1) Construction site layout and activities: This section comprises all the tangible and non-tangible objects which can be identified in a construction site and are relevant for the description of its layout configuration and on-going activities. The objects classified under this section are used to represent in a virtual site model not only the physical components and equipment but also the workspaces and the risks related to the environment and construction activities. They allow the production of BIM site models and VR scenarios dedicated to "Layout-oriented" and "Building component first assembly" training typologies.
- 2) *Emergency management Fire*: This section comprises all the objects which can be identified in case of fire on a construction site and are relevant for the emergency management training.
- 3) *Emergency management Illness*: This section comprises all the objects which can be identified in case of workers' illness or accident on a construction site and are relevant for the emergency management training.

SITE OBJECTS LIBRARY

Fig. 3: Structure of the Site Object Library

Each section presents a three-level progressive classification for the objects based on categories, sub-categories and typologies. The "Emergency management" sections of the library dedicated to both Fire and Illness emergency training are currently in progress and will be discussed in future works. The object classification of the "Site layout and activities" section is reported in the following Table 2-3.

	O 1 1 1	Real site		BIM	V
	Construction site			X	2
	Main entrance	Main gate guard house		X	2
		Access barrier		<u> </u>	
		Mechanical materials are		X	2
	Materials staging areas	Instrumentation materials	s area	X	2
X7 1	0.0	Garbage area		X	2
Workspaces		Excavation ground area		X	2
			Iron	X	2
	Machine areas	Fabrication area	Wood	X	7
			Concrete	Х	2
	Working area	Dig			
	Parking	Worker		X	2
	-	Site construction machin	es	X	
	Office			X	1
	Sanitary facilities			X	
	Portable toilet			X	1
	Changing facilities			Х	
Warehouses	Storage of personal protective	equipment		Х	
	Perishable materials			Х	
	Refectory			Х	
	Dormitory			Х	
	Medical room			Х	
	Waste container			Х	
Worker	Workman				
WOIKEI	Engineer				
	Electricity			Х	
	Grounding set				
Service lines	Water aver h	Service water			
	Water supply	Sewage			
	Gas line			X	2
		Polyethylene orange net		Х	
		Stand alone panel		Х	
	Fences for construction site	Hiding fence		Х	
		Road barriers			
		Concrete road barriers		Х	
Preparations	Parapet			Х	
	Scaffolding			Х	
	Wheeled tower			Х	
	Forklift			Х	
	Construction site elevator			X	
	Driveway entrance			X	
	Driveway exit			X	
	Pedestrian entrance			X	
	Pedestrian exit			X	
Viability	Pedestrian exit	Internet			
	Driveway	Internal		X X	
		External		Λ	
	Walkway	Internal			
		External			
	High-altitude fall				
	Slipping				
	Opening in the floor				
Risk identity	Material falling from above				
	Interaction with other works				
	Risk of burning				
	Risk of electrocution				
			Excavator	Х	
		Digging and loading	Dredge		
		- •	Loader	Х	
		-	Dumper		
Site construction	Heavy earth moving	Transport	Lorry	Х	
nachines			Bulldozer	21	
			Trailblazer		
		Dissions and the second	11411014201		
		Digging and transport	Leveler		
		Digging and transport	Leveler Telehandler		

Table 2: Site Object Librar	: Construction site layout an	d activities modeling (continues).

		Real site	11 C 00 11	BIM	V
			Jib crane for scaffolding		
	Lifting and material handling		Column slewing jib		
	machinery	Crane	Bridge crane		
	machinery		Gantry crane		
			Tower crane	Х	1
		Batching plant		Х	
Site construction		Concrete mixer truck		Х	-
machines	Concrete machine	Concrete mixer		Х	
		Truck concrete pump		X	
	Forklift	Truck concrete pump		71	-
	Truck			Х	3
				Λ	
	Truck crane				
	Bobcat				
	Red speaker				
	Private cars				
	Van			Х	
	Bag of cement				
	Block of cement				
Various	Cable reel				
	Pallet				
	Worktable				
	Ground aggregation				
	Text - Score				
	Text - Input				
	Construction site poster				
		No access for unautho			
		Smoking and naked fl	ames forbidden		
	5. 1 H L .	Work in progress			
	Prohibition	Do not extinguish with	h water		
		Not drinkable			
			ercency devices and protections		
			erectively devices and protections		
		Corrosive material			
		Toxic material			
		Explosive material			
		High temperature			
		Drop			
		Opening on the ground	d		
		Oxidant material			
		Overhead load			
	Warning				
		Danger:electricity			
		Danger: digging			
		Work in progress			
		High-altitude fall mate	erial		
Poster advertising		Obstacles			
roster advertising		Industrial vehicles			
		Scaffolding under con	struction		
		Vehicles exit			
		Wear respiratory			
		Wear ear protection			
		Wear safety helmet			
		Wear safety shoes			
		Wear safety gloves			
	Mandatory	Wear safety overall			
	Walldatory	Wear safety harness			
		Wear eye protection			
		Wear face protection			
		Pedestrians on right			
		Check ropes and chair			
		Vehicle at walking pac			
	Safety	See related Library see	ction		
	Fire fighting	See related Library se	ction		
		Sign for marking obst			
	Signs	Sign for marking dang			
	~-DII0				
		Sign for marking traff	ic routes		

Table 3: Site Object Library: Construction site layout and activities modeling.

4.2 Requirements of the Site Objects (BIM vs VR)

From the implementation of the cited BIM-based protocol for the development and administration of VR experiences for workers' safety training and from the analysis of similar applications in case studies, real site scenarios and national health and safety regulation, emerged that the virtual representation of a site object has the following different requirements depending of the purpose and the environment for which they are intended to be used.

4.2.1 BIM Site object

BIM site objects commonly used for the construction site planning process have different graphical and informative development levels (LOD-LOI) set depending on the project phase and requirements. In order to leverage the site layouts resulting from this process for the development of site-specific VR safety training scenarios, the graphical detail of the site objects should be limited in order not to affect the file performance in the selected BIM authoring platform, considering moreover that they are mostly replaced with more detailed objects in the VR development environment for immersivity purposes. Nonetheless, is crucial that the information regarding the following safety training aspects is added to the site model via dedicated objects or customized parameters: workspace and paths, risks evaluation results and placeholders, workers' positions, working and safety procedures. This information serves then for the development and customization of the VR objects' features: multimedia contents (audio/video), animation, interaction.

4.2.2 VR Site object

The production of immersive VR experience for workers' safety training based on site-specific scenarios exported from BIM models involves the replacement of the most part of the implemented site objects with their dedicated VR-oriented counterparts. According to the exported safety training-related contents cited above, the VR site objects are in fact customized in terms of audio, graphic and interactivity features to enhance the experience realism and immersivity and therefore to improve the trainee involvement and the safety contents transfer. In this regard, the identified features which characterizes a VR-oriented site objects can be distinguished for Graphic and Audio contents as reported below (see also Fig. 4):

- VR Graphic: The visualization of the site object in the VR environment comprises 4 aspects that exceed the BIM object capabilities:
 - object geometry with an appropriate level of detail and realism depending on the selected VR technology,
 - object tridimensional *bounding box*
 - possible additional *text information* (e.g. labels with identification references, etc)
 - *secondary objects* for safety training purposes (e.g. virtual object for training supports such as direction arrows, interaction placeholders, etc).

Depending on the training purposes and object characteristics, each cited aspect can be visualized with graphic elements which are static, animated or both. In case of animations, they can be activated within a certain *range* or in response of an user *input* in the VR environment and they can be presented in various *types* (e.g loop, sequential, etc) and in *ordered* combinations with other animations.

• VR Audio: The delivery of appropriate audio contents adds depth to the VR experience and strongly contribute to the training contents transfer in several ways. Considering the immersivity aspect of the VR experience, specific sound related to the site objects, construction activities and even the background sound of the construction site, can raise the realism of the experience and the involvement of the trainee if carefully controlled in order not to be too distracting for the training purposes. Nonetheless, the most important aspects regarding the audio features consists in the chance the offer to deliver training contents related to *working procedures, safety procedure* and interaction-related sounds (e.g. training notifications, objects activations etc). The mentioned procedures can be implemented on the scripted instructions included in the BIM version of the site object with dedicated voice recording or directly "read" from a speech synthesizer. As discussed above for the graphical animations, also the audio contents can be presented in different types (e.g. loop, sequential, etc), can be constant or activated within a certain *range* or in response of an user *input* in the VR environment.

4.3 Site Object Information Sheet

The following Site Object Information Sheet (Fig. 4) has been designed accordingly to the requirements identified above and in order to provide an operative tool which could both facilitate the implementation of the site objects

in the proposed library and drive and support the choices of the H&S manager during the production of the safety training experiences both in the BIM and VR environments. The proposed single-page sheet comprises all the relevant site object data in three sections, namely: *Object identification, VR Graphic* and *VR Audio*. Since the characteristics of the BIM version of the site objects is more limited and dependent on the safety contents which have to be transferred in the VR experience, the sheet focuses mainly on the VR graphical and audio aspects related to the requirements discussed in the previous paragraph and leaves the BIM information to the object representation in the top section (Object identification).

SITE OBJECT SHEET														
Site object name Object														
Object description ID Real Object BIM Object VR object												ID		identification
														- Name - Brief description
			١								- ID - Pictures			
	Real of	bject pho	to			30) BIM v	view			3D VR v	iew		
						۷	R Grap						-	
	Vi	isualizatio	n	Static	Animated	Range	Intera	action	Input	Play orde	er Animation type	Caption		
Object geometry	1			Y/N	Y/N	Radius =	[m] Descript (enter rar at click,		ange;	Numbe	Description (loop; sequential,)	Description		Object
Bounding box	c h		c Y/N		Y/N	(= 0,00 Descrip		otion	Numbe	r Description	Description		VR graphic Visualization, animation and interaction features:
Text	1			Y/N	Y/N	Radius =) [m] = 0,00	Description		Numbe	r Description	Description		 Object geometry Bounding box Text information Secondary object
Secondary object	1			Y/N	Y/N	Radius =	[m] Descriptiv		otion	Numbe	Description	Description		
						١	VR Au	dio						
	Constant	Activated	Range	Intera	action Ir	nput	Audio	o type			Audio content			
Object sound	Y/N	Y/N	Radius =) [m] 0,00	Descripti (enter rar at click,	nge;	Descr op; sequ	iption uential,)		Description			Object
Working procedure	Y/N	Y/N	Radius =	_ [m]	Descript	ion	Descr	iption			Description	ption		VR audio Characteristics, interaction and contents for: - Object sound
Safety procedure	Y/N	Y/N	Radius =) [m]	Descript	ion	Descr	iption			Description			 Working procedure Safety procedure Other sound
Other sound	Y/N	Y/N	Radius =)	Descript	ion	Descr	iption		Description				

Fig. 4: Site Object Information Sheet (blank fac-simile)

5. CONCLUSIONS

At this development stage, the research achieved its first three objectives with the proposition of a Site Object Library for the BIM-based production of VR experiences for workers' safety training according to a prototypical dedicated protocol. In fact:

- Site objects that are relevant for H&S purposes have been identified and classified within a three-level framework comprising three sections with three progressive sub-categories for a total of 168 objects' typologies;
- 2) The information requirements for the virtual site objects for safety training purposes have been outlined considering both the BIM and VR contents' development environments comprised in the safety training protocol, stressing the importance of the multimedia and interaction features that they should provide for they effectiveness during the training experiences.
- 3) A Site Object Information Sheet has been designed as an operative support tool for the library implementation and in order to support H&S managers during the VR training scenarios and contents' production.

The next steps of the research, that is currently focused on the production of VR safety training experiences for the workers involved in the construction of the new children's hospital "Stella Maris" in the city of Pisa (Italy), will concern the full library implementation, along with all the objects identified at this stage and its use and validation for the cited case study project. Therefore, the analysis and the discussion of the related results will be reported in a future comprehensive work.

ACKNOWLEDGEMENTS

The authors acknowledge the contribution of Eng. Clara Barsotti and Eng. Valentina Fornasari who collaborated to the development of the present research as part of their master thesis in Building Engineering at the University of Florence.

REFERENCES

Bashabsheh A. K., Alzoubi H. H. and Ali M. Z. (2019), "The application of virtual reality technology in architectural pedagogy for building constructions", *Alexandria Engineering Journal*, Vol. 58, pp. 713-723, available at: https://doi.org/10.1016/j.aej.2019.06.002.

Boton C. (2018), "Supporting constructability analysis meetings with Immersive Virtual Reality-based collaborative BIM 4D simulation", *Automation in Construction*, Vol. 96, pp. 1-15, available at: https://doi.org/10.1016/j.autcon.2018.08.020.

Castronovo F., Nikolic D., Mastrolembo Ventura S., Akhavian R., Gaedicke C. and Yilmaz S. (2019), "Design and development of a virtual reality educational game for architectural and construction reviews", *Proceeding of 126th ASEE American Society for Engineering Education Annual conference & Exoposition*, Tampa FL.

Davila Delgado J. M., Oyedele L., Demian P. and Beach T. (2020), "A research agenda for augmented and virtual reality in architecture, engineering and construction", *Advanced Engineering Informatics*, Vol. 45, 101122, available at: https://doi.org/10.1016/j.aei.2020.101122

Getuli V., Giusti T., Capone P., Sorbi T. and Bruttini A. (2018), "A Project Framework to Introduce Virtual Reality in construction Health and Safety", *AlmaDL Journals, in_bo, New Frontiers of Construction Management Workshop*, Vol. 09 No. 13, pp. 166-175.

Getuli V., Capone P. and Bruttini A. (2019), "Game technology and Building information Modelling for the adoption of Virtual Reality in construction safety training: a prototype protocol", *Proceedings of the 36th CIB W78 Conference - Advances in ICT in Design, Construction and Management in Architecture, Engineering, Construction and Operations (AECO) (Newcastle, UK)*, Newcastle (UK), pp. 594–607

Getuli V., Capone P. and Bruttini A. (2020), "Planning, management and administration of HS contents with BIM and VR in construction: an implementation protocol", *Engineering, Construction and Architectural Management*,

ahead-of-print, available at: https://doi.org/10.1108/ECAM-11-2019-0647.

Getuli V., Capone P., Bruttini A. and Isaac S. (2020), "BIM-based immersive Virtual Reality for construction workspace planning: A safety-oriented approach", *Automation in Construction*, Vol. 114, 103160, available at: https://doi.org/10.1016/j.autcon.2020.103160.

Guo H., Li H., Chan G. and Skitmore M. (2012), "Using game technologies to improve the safety of construction plant operations", *Accident Analysis and Prevention*, Vol. 48, pp. 204-213, available at: https://doi.org/10.1016/j.aap.2011.06.002.

Hou L., Chi H., Tarng W., Chai J. and Panuwatwanich K. (2017), "A framework of innovative learning for skill development in complex operational tasks", Automation in Construction, Vol. 83, pp. 29-40, available at: http://dx.doi.org/10.1016/j.autcon.2017.07.001.

Li X., Yi W., Chi H., Wang X. and Chan A. P. C. (2018), "A critical review of virtual and augmented reality (VR/AR) applciations in construction safety", *Automation in Construction*, Vol. 86, pp. 150-162, available at: https://doi.org/10.1016/j.autcon.2017.11.003.

Pour Rahimian F., Chavdarova V., Oliver S. and Chamo F. (2019), "OpenBIM-Tango integrated virtual showroom for offsite manufactured production of self-build housing", *Automation in Construction*, Vol. 102, pp. 1-16, doi: 10.1016/j.autcon.2019.02.009.

Sacks R., Perlman A. and Barak R. (2013), "Construction safety training using immersive virtual reality", *Construction Management and Economics*, Vol. 31, No. 9, pp. 1005-1017, available at: https://doi.org/10.1080/01446193.2013.828844.