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Abstract— In this preliminary study, we propose to investi-
gate the interaction between the parasympathetic (PNS) and
the sympathetic nervous system (SNS) during an isometric
handgrip task. SNS and PNS directed coupling was estimated
by applying a time-varying bivariate autoregressive model to
spectral features extracted from the heart rate variability and
the electrodermal activity signals. Significant changes in the
PNS-SNS interactions were observed in both directions and
between rest and handgrip conditions.

I. INTRODUCTION

The autonomic nervous system (ANS) is the primary
mechanism to unconsciously regulate most of the bodily
functions such as heart rate variability (HRV), respiratory
rate, electrodermal activity (EDA), urination, and digestion
[1]. The two branches of the ANS, i.e., the parasympathetic
(PNS) and the sympathetic nervous systems (SNS), are
generally recognized to exert antagonistic effects on the
regulation of autonomic functions. However, this oppos-
ing interplay is not algebraically additive, but complicated
interactions exist [2]. Indeed, plenty of experimental and
clinical studies have demonstrated the presence of multiple
interactions between PNS and SNS that are mediated through
several pathways and mechanisms at both central and periph-
eral levels [3].

In this preliminary study, we aim at characterizing the di-
rectional interdependence between the PNS and SNS through
the analysis of two widely used ANS correlates such as
the HRV and the EDA. In fact, the estimation of the
high frequency (HF) components of the HRV spectrum is
commonly considered a reliable measure of the PNS activity
on cardiac functioning [4]. The spectral power of the EDA,
in the range of 0.045 to 0.25 Hz (EDASYMP), has been
recently presented as an index of the SNS activity under
cognitive, orthostatic and physical stress (handgrip) condi-
tions [5]. To detect and quantify the bilateral interactions
between the two branches of the ANS, we adopted a bivariate
autoregressive (BVAR) model [6]. Due to the time-varying
relationships between these signals, we applied a modified
recursive Kalman filter to track model parameter changes.

This work was not supported by any organization
1 ALC, SG, EF, AL, NV, EPS, and AG, are with the Dipartimento di

Ingegneria dell’Informazione, University of Pisa, Largo Lucio Lazzarino, 1,
56122, Pisa, Italy.

2LS and ELS are with the Department of Physiology and Biochemistry
“G. Moruzzi”, University of Pisa, Via S. Zeno 31, 56127 Pisa, Italy

*Corresponding author email: alberto.greco@unipi.it
978-1-7281-5751-1/20/$31.00 c©2020 IEEE

II. MATERIALS AND METHODS

Twenty-five healthy subjects (aged 24 ± 2 years) under-
went an isometric handgrip test. The protocol consisted of
3 min of resting-state (rest0) and 2 min during which the
subject was asked to tighten a small hard ball in his/her
dominant hand at the maximum contraction strength (hg).
The hg session was considered divided into two halves (hg1
and hg2). The ECG and EDA signals were recorded using
the BIOPAC MP 150 system with a sampling frequency of
500 Hz.

EDA signal represents changes in the skin conductance
of the non-dominant hand due sweat gland activity. Since
sweat glands are innervated by the SNS, EDA is considered
an ideal way to estimate the SNS activity. ECG signals were
used to detect R-peaks in order to generate RR time series
that were subsequently resampled at 4 Hz (HRV). The EDA
signals were also resampled at 4 Hz.

From HRV and EDA, we estimated the HF power spec-
trum and EDASYMP, respectively. More in detail, the time-
frequency representation of both the HRV and EDA sig-
nals were calculated using the smoothed pseudo-Wigner-
Ville distribution method (SPWVD) [7]. SPWVD allowed
to achieve a better time-frequency resolution with respect to
non-parametric linear methods [8].

A. Parasympathetic-sympathetic causal interaction
For each subject, the HF and EDASYMP time-series were

used to construct bivariate autoregressive models from which
the HF-EDASYMP bilateral interactions were explored. In
particular, we exploited the framework presented in [6]
to estimate time-varying (TV-) model coefficients based
on an optimized kalman-filter approach. Furthermore, the
heteroskedasticity of model residuals was evaluated in order
to take into account possible TV- model residual variances.
Indeed, this represents a major issue in the estimation of
coupling measures obtained from TV-BVAR models, leading
to inaccuracies in both strength and directionality of coupling
estimates. To properly compare the amount of interaction
across different subjects we estimated the generalized Partial
Directed Coherence (gPDC) [9], [10] starting from the TV-
model coefficients and covariances. This results in a scale-
invariant estimator of granger-causal interactions between
different time-series. The statistical significance of observed
gPDC was assessed through a phase-randomization approach
[11]. Group level analysis was performed by averaging
surrogates distributions from each subject. The averaging was
performed for each direction of interaction, each frequency,
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Fig. 1. Within-subject ranks of the HF→EDASYMP index obtained for the
three sessions. Statistical pairwise comparisons found significant differences
in the cases indicated by the asterisks.
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Fig. 2. Within-subject ranks of the EDASYMP→HF index obtained for the
three sessions. Statistical pairwise comparisons found significant differences
in the cases indicated by the asterisks.

and each time-window, i.e for each (i, j, ω, t). Statistically
significant causality was obtained by comparing average
gPDC across subjects with the group-level null-distribution.
Finally, an inter-subject Wilcoxon test was used to com-
pare gPDC values among the resting session and the first
and second half of the handgrip session. The analysis was
performed for both HF→EDASYMP and EDASYMP→HF
directions. In all statistical tests, false discovery rate was con-
trolled through the Benjamini-Hockberg-Yekuteli correction
for multiple testing.

III. RESULTS

The statistical analysis through surrogate data evidenced
significant interactions between HF and EDASYMP. Particu-
larly, we observed that during both REST and HG conditions,
HF→EDASYMP and EDASYMP→HF connections signifi-
cantly differed from 0 according to the phase-randomization
surrogate testing (p < 0.05, FDR-corrected). Moreover, the
directionality of causal interactions changed according to
the experimental condition (Fig. 1 and 2). Specifically, we
observed a significant increase (p < 0.05) in the flow of
information going from HF to EDASYMP during the HG
task with respect to the REST condition (Fig. 1). On the
other hand a decrease of the EDASYMP to HF interaction
was observed during the first half of the HG task (Fig. 2).

IV. DISCUSSION AND CONCLUSION

In this preliminary study, we propose a novel approach to
investigate the interaction between the PNS and SNS during
a handgrip task. The activities of the PNS (HF) and SNS
(EDASYMP) were estimated through the spectral analysis
of the HRV and the EDA, respectively, by using the SPWD
method for a better time resolution. Our results highlighted a
dynamic interaction between HF and EDASYMP, that could

reflect a communication between the PNS and SNS. More in
detail, the TV-MVAR model revealed a significant increase
of information flow from HF to EDASYMP during the
whole handgrip task. Contrarily, the information flow from
EDASYMP to HF significantly decreased at the beginning of
HG and then recovered to the resting level during the second
half of the task.

It is worthwhile noting that the PNS is commonly respon-
sible for the regulation of activities occurring at rest, whereas
the SNS is responsible for the flight-or-fight response such
as the one arisen by the handgrip task. Interestingly, our
preliminary results may suggest that the flow of information
is driven by the ANS branch which is not principally involved
in the regulation of such a physiological condition.

It is important to underline that the observed influences,
although informative, might not be true causal relationships
between PNS and SNS. This hypothesis should be confirmed
by using a richer description of SNS and PNS activities (i.e.
by using more signals) and by better characterizing their
manifestation throughout the estimated indices. Future works
will try to solve these open questions. In addition, further
analyses will focus on the time-frequency characterization of
the interaction and on the application of the proposed method
to new experimental protocols that may involve orthostatic
and emotional stimuli.
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