
Transformation Groups

SMOOTHNESS CONDITIONS IN

COHOMOGENEITY ONE MANIFOLDS

L. VERDIANI∗

University of Firenze

luigi.verdiani@unifi.it

W. ZILLER∗∗

University of Pennsylvania

wziller@math.upenn.edu

Abstract. We present an efficient method for determining the conditions that a metric
on a cohomogeneity one manifold, defined in terms of functions on the regular part, needs
to satisfy in order to extend smoothly to the singular orbit.

Introduction

A group action is called a cohomogeneity one action if its generic orbits are
hypersurfaces. Such actions have been used frequently to construct examples of
various types: Einstein metrics, soliton metrics, metrics with positive or non-
negative curvature and metrics with special holonomy. See [4], [6], [7], [8], [12]
for a selection of such results. The advantage of such a metric is that geometric
problems are reduced to studying its behavior along a fixed geodesic c(t) normal to
all orbits. The metric is described by a finite collection of functions of t, which for
each time specifies the homogeneous metric on the principal orbits. One aspect one
needs to understand is what conditions these functions must satisfy if regular orbits
collapse to a lower-dimensional singular orbit. These smoothness conditions are
often crucial ingredients in obstructions, e.g., to non-negative or positive curvature,
see [9], [14], [15]. The goal of this paper is to devise a simple procedure in order to
derive such conditions explicitly.

The local structure of a cohomogeneity one manifold near a collapsing orbit
can be described in terms of Lie subgroups H ⊂ K ⊂ G with K/H = S!, ! > 0.
The action of K on S! extends to a linear action on D = D!+1 ⊂ R!+1 and thus
M = G×K D is a homogeneous disc bundle, where K acts as (g, p) → (gk−1, kp),
and with boundary G×K∂ D = G×KK/H = G/H a principal orbit. The Lie group
G acts by cohomogeneity one on M by left multiplication in the first coordinate. A
compact (simply connected) cohomogeneity one manifold is the union of two such
homogeneous disc bundles. For simplicity we write M = G ×K V with V $ Rn.
Given a smooth G invariant metric on the open dense set of regular points, i.e.,
the complement of the lower-dimensional singular orbit, the problem is when the
extension of this metric to the singular orbit is smooth. We first simplify the
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problem as follows:

Theorem 1. Let G act by cohomogeneity one on M = G×K V and g be a smooth
cohomogeneity one metric defined on the set of regular points in M . Then g has
a smooth extension to the singular orbit if and only if it is smooth when restricted
to every 2-plane in the slice V containing ċ(0).

As we will see, it follows from the classification of transitive actions on spheres,
that it is sufficient to require the condition only for a finite set of 2-planes Pi =
{ċ(0), vi}, one for each irreducible summand in the isotropy representation of
the sphere K/H. Thus at most four 2-planes are necessary. Furthermore, Li =
exp(θvi) ⊂ K is a closed one-parameter group and hence the action of L on V and
on a K invariant complement of k in g splits into 2-dimensional invariant subspaces
!i isomorphic to C, on which L acts by multiplication with einiθ. The integers ni

are determined by the weights of the representation of K on V and the tangent
space of G/K. These integers will determine the smoothness conditions, see Tables
B and C.

To be more explicit, choose a normal geodesic c : [0,∞) → V orthogonal to all
orbits. The metric on the regular part is determined by its values along c, and via
the action of G this determines the metric on M . Denote by g, h the Lie algebras of
G and H, and let n be an AdH invariant complement of h ⊂ g. Since the stabilizer
group along c is constant equal to H, n can be identified with the tangent space
to the regular orbits along c using action fields, i.e., X ∈ n → X∗(c(t)). Thus
g = dt2 + ht, where ht, t > 0 is a family of G-invariant metrics on the regular
orbits g · c(t) = G/H, depending smoothly on t. Equivalently, ht is a smooth
family of AdH invariant inner products on n.

The metric is described in terms of the length of Killing vector fields. We choose
a basis Xi of n and let X∗

i be the corresponding Killing vector fields. Then X∗
i (c(t))

is a basis of ċ⊥(t) ⊂ Tc(t)M for all t > 0 and the metric is determined by the r
functions gij(t) = g(X∗

i , X
∗
j )c(t), i ≤ j.

Combining the finite set of smoothness conditions obtained from Theorem A,
we will show that:

Theorem 2. Let gij(t), t > 0 be a smooth family of positive definite matrices
describing the cohomogeneity one metric on the regular part along a normal geo-
desic c(t). Then there exist integers akij and dk, with dk ≥ 0, such that the metric
has a smooth extension to all of M if and only if

∑

i,j

akij gij(t) = tdkφk(t
2) for k = 1, . . . , r, and t > 0

where φ1, . . . ,φr are smooth functions defined for t ≥ 0.

We will show that this system of r equations can also be solved for the coeffi-
cients gij of the metric. The integers akij are determined by the Lie brackets
[Xi, Xj ], and dk by the integers ni. These equations hold for all t in the case
of a complete metric on a non-compact manifold, and on the complement of the
second singular orbit when the manifold is compact. We will illustrate in some
specific examples that it is straightforward to determine these integers.
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The problem of smoothness was studied in [5] as well. There it was shown that
smoothness is equivalent to showing that the k-th order Taylor polynomial of gij is
the restriction of an AdH invariant homogeneous polynomial of degree k in dimV
variables with values in S2n. In practice this description is difficult to apply, since
one needs explicit expressions for these polynomials.

In two future papers, we will show that our new description is useful in proving
general theorems about cohomogeneity one manifolds. In [16] we classify curvature
homogeneous cohomogeneity one metrics in dimension 4, where the smoothness
conditions at the singular orbit make the problem algebraically tractable. In [17] we
solve the initial value problem, starting at the singular orbit, for Einstein metrics,
soliton metrics or for prescribing the Ricci tensor. The equations can be described
in terms of the smooth functions φi, and the system is smooth if and only if the
values φi(0) satisfy certain compatibility conditions. These can be solved for some
of the values φi(0), and the remaining ones are free parameters. For this it is also
important to understand the smoothness conditions for a symmetric 2 tensor (in
particular the Ricci tensor), which we indicate in Section 3.4. The initial value
problem for Einstein metrics was solved in [5], only under strong assumptions on
the adjoint representation of H on n using different more complicated methods.

The paper is organized as follows. After discussing some preliminaries in Section
1, we prove Theorem A in Section 2. In Section 3 we describe how the action of the
one-parameter group L ⊂ K on V and on the tangent space to the singular orbit
is used to derive the smoothness conditions. This is an over determined system of
equations, and we will show how it can be reduced to the system in Theorem B. In
Section 4 we illustrate the method in some specific examples. There the reader will
also find step by step instructions of how the process works. In order to facilitate
the procedure we determine the integers dk for the action of K on V in Section 5.

1. Preliminaries

For a general reference for this Section see, e.g., [1], [2]. A noncompact coho-
mogeneity one manifold is given by a homogeneous vector bundle and a compact
one by the union of two homogeneous disc bundles. Since we are only interested in
the smoothness conditions near a singular orbit, we restrict ourselves to only one
such bundle. Let H, K, G be Lie groups with inclusions H ⊂ K ⊂ G such that
H,K are compact and K/H = S!. The transitive action of K on S! extends (up
to conjugacy) to a unique linear action on the disc V = R!+1. We can thus define
the homogeneous vector bundle M = G ×K V and G acts on M via left action
in the first component. This action has principal isotropy group H, and singular
isotropy group K at a fixed base point p0 ∈ G/K contained in the singular orbit.
A disc D ⊂ V can be viewed as the slice of the G action since, via the exponential
map, it can be identified G-equivariantly with a submanifold of M orthogonal to
the singular orbit at p0.

Given a G-invariant metric g on the regular part of the G action, i.e., on the
complement of G · p0, we want to determine when the metric can be extended
smoothly to the singular orbit. We choose a geodesic c parameterized by arc length
and normal to all orbits with c(0) = p0. Thus, with the above identification,
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c(t) ⊂ V . At the regular points c(t), i.e., t > 0, the isotropy is constant equal to
H. We fix an AdH invariant splitting g = h ⊕ n and identify the tangent space
Tc(t)G/H = ċ⊥ ⊂ Tc(t)M , with n via action fields: X ∈ n → X∗(c(t)). H acts on
n via the adjoint representation and a G invariant metric on G/H is described by
an AdH invariant inner product on n. For t > 0 the metric along c is thus given
by g = dt2 + ht with ht a one-parameter family of AdH invariant inner products
on the vector space n, depending smoothly on t. Conversely, given such a family
of inner products ht, we define the metric on the regular part of M by using the
action of G.

By the slice theorem, for the metric on M to be smooth, it is sufficient that
the restriction to the slice V is smooth. This restriction can be regarded as a map
g(t) : V → S2(n). The metric is defined and smooth on V \ {0}, and we need to
determine when it admits a smooth extension to V .

We choose an AdH invariant splitting

n = n0 ⊕ n1 ⊕ · · ·⊕ nr.

where AdH acts trivially on n0 and irreducibly on ni for i > 0. On ni, i > 0
the inner product ht is uniquely determined up to a multiple, whereas on n0 it
is arbitrary. Furthermore, ni and nj are orthogonal if the representations of AdH

are inequivalent. If they are equivalent, inner products are described by 1, 2 or 4
functions, depending on whether the equivalent representations are real, complex
or quaternionic.

Next, we choose a basis Xi of n, adapted to the above decomposition, and
thus the metrics ht are described by a collection of smooth functions gij(t) =
g(X∗

i (c(t)), X
∗
j (c(t))), t > 0. In order to be able to extend this metric smoothly to

the singular orbit, they must satisfy certain smoothness conditions at t = 0, which
we will discuss in the next two Sections. Notice that in order for the metric to be
well defined on M, the limit of ht, as t → 0, must exist and be AdK invariant at
the singular orbit.

Choosing an AdK invariant complement to k ⊂ g, we obtain the decompositions

g = k⊕m, k = h⊕ p and thus n = p⊕m.

where we can also assume that ni ⊂ p or ni ⊂ m. Here m can be viewed as the
tangent space to the singular orbit G/K at p0 = c(0) and p as the tangent space
of the sphere K/H ⊂ V .

It is important for us to identify V in terms of action fields. For this we send
X ∈ p to X̄ := limt→0 X∗(c(t))/t ∈ V . Since K preserves the slice V and acts
linearly on it, we thus have X∗(c(t)) = tX̄ ∈ V . In this language, V $ ċ(0) ⊕ p.
For simplicity we denote X̄ again by X and, depending on the context, use the
same letter if considered as an element of p or of V .

Notice that since K acts irreducibly on V , an invariant inner product on V is
determined uniquely up to a multiple. Since for any G invariant metric we fix a
geodesic c, which we assume is parameterized by arc length, this determines the
inner product on V , which we denote by g0. Thus g0 = gc(0)|V for any G invariant
metric for which c is a normal geodesic.
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K acts via the isotropy action Ad(K)|m of G/K on m and via the slice represen-
tation on V . The action on V is determined by the fact that K/H = S!. Notice
though that the action of K on S!, and hence on V is often highly ineffective. If
R ⊂ K is the ineffective kernel of the action, then there exists a normal subgroup
N ⊂ K with K = (R×N)/Γ where Γ is a finite subgroup of the center of R×N .
Thus N acts almost effectively and transitively on S! with stabilizer group N ∩H.
We list the almost effective actions by connected Lie groups acting transitively on
spheres in Table A. From this, one can recover the action of K on V simply from
the embedding H ⊂ K.

The smoothness conditions only depend on the Id component of K since, as we
will see, they are determined by certain one-parameter groups L $ S1 ⊂ K0. Since
also L ⊂ N , the smoothness conditions only depend on the Id component of N as
well.

We finally collect some specific properties of transitive actions on spheres.

Lemma 3. Let S! = K/H ⊂ V be a sphere, with K acting almost effectively and
H the stabilizer group of v0 ∈ V . If k = h⊕ p is an AdH invariant decomposition,
we have:

(a) If p1 ⊂ p is an AdH irreducible summand with dim p1 > 1, then H acts
transitively on the unit sphere in p1,

(b) If pi ⊂ p, i = 1, 2, are two AdH irreducible summands with dim pi > 1 and
X1, Y1 ∈ p1 and X2, Y2 ∈ p2 two pairs of unit vectors, then there exists an
h ∈ H such that Ad(h)Xi = Yi.

(c) If X ∈ p lies in an AdH irreducible summand, or a trivial one, then
exp(tX) is a closed one-parameter group in K and leaves invariant the
2-plane spanned by v0 and X∗(v0).

Proof. Part (a) can be verified for each sphere separately, using the description of
the adjoint representation, see, e.g., [18].

Part (b) is easily verified in case 5, 5′ and 6, 6′ in Table A. In the remaining
case of K = Spin(9) and H = Spin(7) we have p = p1 ⊕ p2 with Spin(7) acting
on p1 $ R7 via the 2-fold cover Spin(7) → SO(7), and on p2 $ R8 via its spin
representation. We can first choose an h ∈ H with Ad(h)(X1) = Y1. The claim then
follows since the stabilizer of H at Y1 ∈ R7 is Spin(6), and the restriction of the spin
representation of Spin(7) on R8 to this stabilizer is the action of Spin(6) = SU(4)
on C4, which is transitive on the unit sphere.

Since exp(tX) is the flow of the action field X∗, part (c) is equivalent to saying
that exp(tX) · v0 is a great circle in S!. Recall that for a normal homogeneous
metric, i.e., a metric on K/H induced by a biinvariant metric on K, the geodesics
are of the form exp(tX) · v0 for some X ∈ p. This implies the claim if AdH acts
irreducibly on p. In all other cases, one can view the irreducible summand as the
vertical or horizontal space of a Hopf fibration. The round metric on S! is obtained
from the metric induced by a biinvariant metric on K by scaling the fiber, see [10],
Lemma 2.4. But such a change does not change the geodesics whose initial vector
is vertical or horizontal. By part (a), the one-parameter groups exp(tX) are either
all closed in K, or none of them are. But for each transitive sphere one easily finds
one vector v where it is closed, see Section 6. !
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2. Reduction to a 2-plane

In this Section we show how to reduce the question of smoothness of the metric
on M = G×K V to a simpler one. If dim V = 1, i.e., the orbit G/K is exceptional,
smoothness (of order Ck or C∞) of the metric is equivalent to the invariance with
respect to the Weyl group since the slice is the normal geodesic. Recall that the
Weyl group element is an element w ∈ K such that w(ċ(0) = −ċ(0), and is hence
uniquely determined mod H. Hence we only need to discuss the conditions at
singular points. i.e., dim V > 1.

At a singular point, the slice theorem for the action of G implies that the
metric is smooth if and only if its restriction to a slice V , i.e., g|V : V → S2(p ⊕
m) is smooth. Indeed, in a neighborhood W of the slice we have an equivariant
diffeomorphism U × V → W : (x, p) → exp(x)p, where U is a sufficiently small
neighborhood of 0 ∈ n. We choose for each AdH irreducible summand in p an
(arbitrary) vector vi ,= 0. If there exists a 3-dimensional trivial module p0 ⊂ p, we
pick in p0 an arbitrary fixed basis.

Proposition 4. A cohomogeneity one metric g defined and smooth on the set of
regular points in M extends smoothly to the singular orbit if and only if it is smooth
when restricted to the 2-planes Pi ⊂ V spanned by ċ(0) and vi.

Proof. First notice that by Lemma 3(a), and since the metric is fixed along the
normal geodesic c, the assumption implies that the metric is smooth when rest-
ricted to a 2-plane spanned by ċ(0) and v, where v is any vector in an irreducible
p module.

It is sufficient to show that g(X,Y )|V is smooth for any non-vanishing smooth
vector fields X,Y defined on V , i.e., X,Y : V → TM . We will use equivariance of
the metric with respect to the action of K on V . i.e.,

g(X,Y )(p) = g(k∗X, k∗Y )(kp) for all p ∈ V \ {0}

for the metric g as well as all of its derivatives.
We first define the metric at 0 ∈ V and show it is K invariant, as required.

For this, define g(X,Y )(0) = limt→0 g(X,Y )(c(t)). If Pi is spanned by ċ(0) and
vi, then by Lemma 3 (c) the one-parameter group L = exp(tvi) preserves the
plane Pi, and equivariance with respect to L ⊂ K implies that g(0) is invariant
under L. By Lemma 3 (a), the same is true for exp(tv) for any vector v lying in an
AdH irreducible submodule of p. But such one-parameter groups, together with H,
generate all of K. Indeed, this follows from the fact that d/dt|t=0 (exp(tv) exp(tw))
= [v, w] and that h⊕ [p, p] is an ideal in g.

We next prove continuity. Let pi be a sequence of points pi ∈ V \ {0} such that
pi → 0. We want to show that g(X,Y )(pi) converges to g(X,Y )(0). For this, let
w0 be an accumulation point of wi = pi/|pi| and choose a subsequence wi → w0.
Since K acts transitively on a sphere in V , we can then choose ri ∈ K such that
riwi = w0 and ri → e ∈ K, as well as k0 ∈ K with k0w0 = ċ(0). Setting ki = k0ri,
it follows that kiwi = ċ(0) with ki → k0, which implies that kipi lies on the geodesic
c. Hence equivariance of the metric, and continuity of the metric along the normal
geodesic, implies that

g(X,Y )(pi) = g(ki∗X, ki∗Y )(ki · pi) → g(k0∗X, k0∗Y )(0) = g(X,Y )(0)
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where we also used that the metric at the origin is invariant under K. Since the
same argument holds for any accumulation point of the sequence wi, this proves
continuity.

Next, we prove the metric is C1. For simplicity we first assume that the action
of H on p is irreducible and non-trivial and hence H acts transitively on the unit
sphere in p. By assumption, the metric is smooth when restricted to the 2-plane P
spanned by v ∈ p and ċ(0). Given a vector w ∈ V , possibly w = ċ(0), we need to
show that the derivative with respect to w extends continuously across the origin,
i.e., that

lim
i→∞

∂

∂w
g(X,Y )(pi) =

∂

∂w
g(X,Y )(0) (1)

for any sequence pi ∈ V with pi → 0. Let us first show that the right-hand side
derivative in fact exists. For this, since K acts transitively on every sphere in V ,
we can choose k ∈ K such that kw ∈ P and hence:

∂

∂w
g(X,Y )(0) = lim

h→0

g(X,Y )(h · w)− g(X,Y )(0)

h
=

= lim
h→0

g(k∗X, k∗Y )(h · kw)− g(k∗X, k∗Y )(0)

h

where we have used K equivariance away from the origin and K invariance of g at
the origin. But the right side is the derivative

∂

∂(kw)
g(k∗X, k∗Y )(0)

which exists by assumption since kw ∈ P .
Now choose as before ki ∈ K such that kipi lies on the geodesic c. Since H

acts transitively on the unit sphere in p, and since p is the orthogonal complement
to ċ(0) ∈ V , we can choose hi ∈ H such that hikiw lies in P . As before, we can
assume that ki → k0 and hi → h0. Equivariance and smoothness of the metric
away from the origin implies that for each fixed i

∂

∂w
g(X,Y )(pi) =

∂

∂(hikiw)
g((hiki)∗X, (hiki)∗Y )(hikipi)

Since hikipi = kipi lies on the geodesic, and since hikiw ∈ P , we get

lim
i→∞

∂

∂w
g(X,Y )(pi)

=
∂

∂(h0k0w)
g((h0k0)∗X, (h0k0)∗Y )(0)

= lim
h→0

g((h0k0)∗X, (h0k0)∗Y )(h · h0k0w)− g((h0k0)∗X, (h0k0)∗Y )(0)

h

= lim
h→0

g(X,Y )(h · w)− g(X,Y )(0)

h
=

∂

∂w
g(X,Y )(0).
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Thus the metric is C1. The proof proceeds by induction. Assume the metric is Ck.

This means that T (w1, . . . , wk, X, Y )(p) = ∂k

∂w1...∂wk
g(X,Y )(p) is a smooth multi

linear form on the slice V which is equivariant in all its arguments. We can thus
use the same proof as above to show that

∂

∂w

(
∂k

∂w1 . . . ∂wk
g(X,Y )

)
(p)

extends continuously across the origin, and hence the metric is Ck+1.
We now extend the above argument to the case where p is not irreducible. Let

Pi be the 2-plane spanned by vi and ċ(0). We first observe that any vector in p,
can be transformed by the action of H into a linear combination of the vectors vi.
Indeed, if we look at the possible isotropy actions of K/H in Table A, one sees
that besides the trivial module (in which we chose a basis) there are at most two
non-trivial modules and Lemma 3(b) implies the claim. Following the strategy in
the previous case, we choose ki ∈ K such that kipi lies on the geodesic c, and
hi ∈ H such that hikiw =

∑
aijvj . Furthermore, ki → k0 and hi → h0 with

h0k0w =
∑

a0jvj . By linearity of the derivative, and since the metric is smooth
on Pi by assumption, we have

lim
i→∞

∂

∂(hikiw)
g((hiki)∗X, (hiki)∗Y )(hikipi)

= lim
i→∞

∑

j

aij
∂

∂vj
g((hiki)∗X, (hiki)∗Y )(hikipi)

=
∑

j

lim
i→∞

aij
∂

∂vj
g((hiki)∗X, (hiki)∗Y )(hikipi)

=
∑

j

a0j
∂

∂vj
g((h0k0)∗X, (h0k0)∗Y )(0)

=
∂

∂(h0k0w)
g((h0k0)∗X, (h0k0)∗Y )(0).

The proof now continues as before. !
Remark 1. Notice that unless the group K is Sp(n) or Sp(n) ·U(1), only one or two
2-planes are required. For the exceptions one needs four resp three 2-planes. Notice
also, that we can choose any vector v in an irreducible submodule in p. Indeed,
the condition is clearly independent of such a choice since H acts transitively on
the unit sphere in every irreducible submodule.

We point out that Proposition 4 also holds for any tensor on M invariant under
the action of G, using the same strategy of proof.

3. Smoothness on 2-planes

In this Section we show that smoothness on 2-planes can be determined expli-
citly in a simple fashion.
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Recall that on V we have the inner product g0 with g0 = gc(0)|V for any
G invariant metric with normal geodesic c. We fix a basis e0, e1, . . . , ek of V ,
orthonormal in g0, such that c is given by the line c(t) = te0 = (t, 0, . . . , 0). The
tangent space to M at the points c(t), t > 0 can be identified with ċ(t) ⊕ m ⊕ p
via action fields. The metric g = dt2 + ht on the set of regular points in M is
determined by a family of AdH invariant inner products ht on m⊕ p, t > 0, which
depend smoothly on t. Furthermore, m and p are orthogonal at t = 0, but not
necessarily for t > 0. The inner products ht extend in a unique and smooth way
to V \ {0} via the action of K. In order to prove smoothness at the origin, it is
sufficient to show that g(Xi, Xj) is smooth for some smooth vector fields which are
a basis at every point in a neighborhood of c(0). For this we use the action fields
X∗

i corresponding to an appropriately chosen basis Xi of m, restricted to the slice
V , and the (constant) vector fields ei on V . Recall also that we identify p with a
subspace of V by sending X ∈ p to limt→0 X∗(c(t))/t ∈ V and that X∗(c(t)) = tX.
Finally, we have the splitting p = p1 ⊕ · · ·⊕ ps into AdH irreducible subspaces.

According to Proposition 4, it is sufficient to determine smoothness on a finite
list of 2-planes. Let P ∗ ⊂ V be one of those 2-planes, spanned by e0 = ċ(0) and
X ∈ pi for some i. We normalize X such that L := {exp(θX) | θ ∈ R, 0 ≤ θ ≤ 2π}
is a closed one-parameter subgroup of K. By Lemma 3, the one-parameter group
L preserves P ∗, but may not act effectively on it, even if K acts effectively on V .
Since L $ S1, acting via rotation on P ∗, the ineffective kernel is L ∩H. Let a be
the order of the finite cyclic group L∩H. Equivalently, a is the largest integer with
exp

(
(2π/a)X

)
c(0) = c(0), or equivalently exp

(
(2π/a)X

)
∈ H. Thus X/a has unit

length in g0 and L operates on P ∗ as a rotation R(aθ) in the orthonormal basis
ċ(0), X/a. We can also assume a > 0 by replacing, if necessary, X by −X. This
integer a will be a crucial ingredient in the smoothness conditions. Notice that
a is the same for any vector X ∈ pi and we can thus simply denote it by ai. In
the Appendix we will compute the integers ai for each almost effective transitive
action on a sphere.

The action of L on m decomposes m:

m = !0 ⊕ !1 ⊕ · · ·⊕ !r with L|!0 = Id, and L|!i = R(diθ)

for some integers di. Similarly we have a decomposition of V :

V = !′−1 ⊕ !′0 ⊕ !′1 ⊕ · · ·⊕ !′s

with !′−1 = span{ċ(0), X}, L|!′−1
= R(aθ), L|!′0 = Id and L|!′i = R(d′iθ).We choose

the basis ei of V and Xi of m such that it is adapted to this decomposition and
oriented in such a way that a, di and d′i are positive. For simplicity, we denote the
basis of !i by Y1, Y2, the basis of !′i by Z1, Z2, and reserve the letter X for the
one-parameter group L = exp(θX). We choose the vectors Zi ∈ p such that they
correspond to ei+1 under the identification p ⊂ V and hence Z∗

i (c(t)) = tei+1 ∈ V ,
as well as X∗(c(t)) = te0. We determine the smoothness of inner products module
by module, and observe that an L invariant function f on P ∗ extends smoothly
to the origin if and only if its restriction to the line te0 is even, i.e., f(te0) = g(t2)
with g : (−ε, ε) → R smooth. Furthermore, we use the fact that the metric V →
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S2(p ⊕ m) is equivariant with respect to the action of K, and hence L. Once the
condition is determined when inner products are smooth when restricted to P ∗,
we restrict to the geodesic c to obtain the smoothness condition for ht.

In the following, φi(t) stands for a generic smooth function defined on an interval
(−ε, ε).

We will separate the problem into three parts: smoothness of scalar products of
elements in m, in p and mixed scalar products between elements of m and p. We
will start with the easier case of the metric on p.

3.1. Smoothness on p

Recall that on a 2-plane a metric given in polar coordinates by dt2 + f2(t) dθ2

is smooth if and only if f extends to a smooth odd function with f(0) = 0 and
f ′(0) = 1, see, e.g., [11]. If X has unit length in the Euclidean metric g0, we have
X∗ = ∂/∂θ in the 2-plane spanned by ċ(0) and X. Hence smoothness on p is
equivalent to:

gc(t)(X
∗, X∗) = t2 + t4φ(t2) for all X ∈ p with g0(X,X) = 1 (2)

for some smooth function φ, defined on an interval (−ε, ε).
Notice that pi and pj , for i ,= j, are orthogonal for any G invariant metric, unless

(K,H) = (Sp(n), Sp(n − 1)), in which case there exists a 3-dimensional module
p0 on which AdH acts as Id. We choose three vectors Xi ∈ p0, orthonormal in g0.
Applying (2) to (X∗

i +X∗
j )/

√
2, it follows that the metric is smooth on p0 if and

only if

gc(t)(X
∗
i , X

∗
j )= t2δij+t

4φij(t
2) where Xi∈p0,K=Sp(n) and g0(Xi, Xj)=δij (3)

for some smooth functions φij .
It may sometimes be more convenient, as we do in the proofs, to normalize X

such that L = {exp(θX) | 0 ≤ θ ≤ 2π} is a closed one-parameter group in K. In
that case, let t0 be the first value such that exp(t0X) ∈ H. Then t0 = 2π/a for
a = |L ∩H| and hence X/a has unit length in g0.

Thus in this normalization we need to replace (2) by:

gc(t)(X
∗, X∗) = a2i t

2 + t4φ(t2) for all X ∈ pi (4)

For a 3-dimensional module p0 we will see in Section 5 that ai = 1 and hence in
this case (3) remains valid.

See [13] for a more detailed description.

Remark 2. One easily modifies the smoothness conditions if the geodesic is not
necessarily parameterized by arc length, but still orthogonal to the regular orbits.
The only difference is that in this case gc(t)(ċ, ċ) = ψ(t)t2 and gc(t)(X

∗, X∗) =
φ(t)t2 for X ∈ p with φ,ψ even and φ(0) = ψ(0) > 0, where X has unit length in
g0. In the second normalization of X we need that φ(0) = a2ψ(0) if gc(t)(X

∗, X∗) =
φ(t)t2 .

3.2. Inner products in m

In the remaining sections L = {exp(θX) | 0 ≤ θ ≤ 2π} is a one-parameter group
acting via R(aθ) on !′−1. We first describe the inner products in a fixed module !i.
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Lemma 5. Let ! be an irreducible L module in m on which L acts via a rotation
R(dθ) in a basis Y1, Y2. If the metric on ! is given by gij = gc(t)(Y

∗
i , Y

∗
j ), then

(
g11 g12
g12 g22

)
=

(
φ1(t2) 0

0 φ1(t2)

)
+ t2d/a

(
φ2(t2) φ3(t2)
φ3(t2) −φ2(t2)

)

for some smooth functions φk, k = 1, 2, 3.

Proof. The metric on !, restricted to the plane P ∗ ⊂ V , can be represented by a
matrix G(p) whose entries are functions of p ∈ P ∗. We identify ! $ C and P ∗ $ C
such that the action of L is given by multiplication with eidθ on ! and eiaθ on P ∗.
The metric G must be L equivariant, i.e.,

G(p) =

(
g11 g12
g12 g22

)
with G(eiaθp) = R(dθ)G(p)R(−dθ).

The right-hand side can also be seen as a linear action of L on S2! $ R3 and we
may describe it in terms of its (complex) eigenvalues and eigenvectors. We then
get:

(g11 + g22)(e
iaθp) = (g11 + g22)(p),

(g12 + i(g11 − g22))(e
iaθp) = e2diθ(g12 + i(g11 − g22))(p),

(g12 − i(g11 − g22))(e
iaθp) = e−2diθ(g12 − i(g11 − g22))(p).

The first equality just reflects the fact that the trace is a similarity invariant. Let

w(p) = (g12 + i(g11 − g22))(p).

Then the second equality says that w(eiaθp) = e2idθw(p), and the third one is the
conjugate of the second. Setting p = te0, t ∈ R and replacing θ by θ/a, we get

w(eiθt) = e(2id/a)θw(t) = (teiθ)2d/a t−2d/aw(t).

If we let z = teiθ, then

w(z) = z2d/a
w(t)

t2d/a
or z−2d/aw(z) = t−2d/aw(t), where t = |z|.

The first equation says that if w(z) is smooth, then w(z) must have a zero of order
2d/a at z = 0. If so, the second equation says that the function z−2d/aw(z) is
L-invariant. This means that g11 + g22 and z−2d/aw(z) must be smooth functions
of |z|2. If we restrict z−2d/aw(z) to the real axis and we separate the real and the
imaginary part this is equivalent to the existence of smooth functions φi such that

(g11 − g22)(t) = t2d/aφ1(t
2), g12(t) = t2d/aφ2(t

2), (g11 + g22)(t) = φ3(t
2).

Conversely, given 3 functions g11, g22, g12 along the real axis that verify these
relations, they admit a (unique) smooth L-invariant extension to C. Indeed, the
first two equalities guarantee that z−2d/aw(z) and hence w(z) is a smooth function
on P ∗. The third equality guarantees that g11+g22, and hence G(p), has a smooth
extension to P ∗. !
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Remark 3. If a does not divide 2d, the proof shows that w(z) is smooth only if
w(t) = 0 for all t. But then g12 = 0 and g11 = g22 is an even function. Thus in
this Lemma, as well as in all following Lemmas, in case of a fractional exponent
of t, the term should be set to be 0. In practice, this will follow already from AdH

invariance.
Notice also that a Weyl group element is given by w = exp(i daπ). Thus if q = 2d

a
is odd, w rotates the 2-plane ! and hence this module is not changed when it is
necessary to select another one-parameter group L.

For inner products between different modules we have:

Lemma 6. Let !1 and !2 be two irreducible L modules in m with basis Y1, Y2 resp.
Z1, Z2 on which L acts via a rotation R(diθ)with di > 0. If the inner products
between !1 and !2 are given by hij = gc(t)(Y

∗
i , Z

∗
j ), then

(
h11 h12

h21 h22

)
= t|d1−d2|/a

(
φ1(t2) φ2(t2)
−φ2(t2) φ1(t2)

)
+ t|d1+d2|/a

(
φ3(t2) φ4(t2)
φ4(t2) −φ3(t2)

)

for some smooth functions φk.

Proof. L acts on !1 ⊕ !2 via conjugation with diag(R(d1θ), R(d2θ)) and hence
(
h11 h12

h21 h22

)
→ R(d1θ)

(
h11 h12

h21 h22

)
R(−d2θ).

This action has eigenvectors

w1 = h11 + h22 + i(h12 − h21), w2 = h12 + h21 − i(h11 − h22)

with eigenvalues e(d1−d2)iθ and e(d1+d2)iθ, and their conjugates. We set

w1(e
aiθp) = e|d1−d2|iθw1(p), w2(e

aiθp) = e(d1+d2)iθw2(p),

where we replaced, if necessary, w1 by its conjugate. A computation similar to the
previous ones shows that a smooth extension to the origin is equivalent to

(h11 + h22)(t) = t|d1−d2|/aφ1(t
2), (h11 − h22)(t) = t(d1+d2)/aφ2(t

2),

(h12 − h21)(t) = t|d1−d2|/aφ3(t
2), (h12 + h21)(t) = t(d1+d2)/aφ4(t

2)

where φi, i = 1, . . . , 4, are smooth real functions. Conversely, these relationships
enable one to extend h11±h22 and h12±h21, and hence all inner products, smoothly
to P ∗. !

For inner products with elements in !0 we have:

Lemma 7. Let !0 ⊂ m be the module on which L acts as Id, and ! an irreducible
L module with basis Y1, Y2 on which L acts via a rotation R(dθ).

(a) If Y ∈ !0, then gc(t)(Y
∗, Y ∗) is an even function of t.

(b) If Y ∈ !0 and hi = gc(t)(Y
∗, Y ∗

i ), then

h1(t) = td/aφ1(t
2), h2(t) = td/aφ2(t

2),

for some smooth functions φk.
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Proof. If Y ∈ !0, then g(Y ∗, Y ∗) is invariant under L and hence an even function.
In case (b), we consider the restriction of the metric to the three-dimensional

space spanned by ! and Y . This can be represented by a matrix

G(p) =




g11 g12 h1

g12 g22 h2

h1 h2 h





whose entries are functions of p ∈ P ∗. In particular, hi = g(Y ∗
i , Y

∗). The action
of L on G(p) is given by conjugation with diag(R(dθ), 1). Decomposing into eigen-
vectors, we get, in addition to the eigenvectors already described in Lemma 5, the
eigenvector w(z) = h1(z) + ih2(z) with eigenvalue ediθ. But w(eiaθp) = ediθw(p)
implies that z−d/aw(z) is an invariant function. Thus smoothness for the hi func-
tions is equivalent to

h1(t) = td/aφ1(t
2), h2(t) = td/aφ2(t

2)

for some smooth functions φi. !
3.3. Inner products between p and m

Recall that for an appropriately chosen basis e0, . . . , ek of V , we need to show that
the inner products g(ei, X∗

j ), where Xi is a basis of m, are smooth functions when
restricted to the plane P ∗ ⊂ V . When restricting to the geodesic c, we obtain the
smoothness conditions on the corresponding entries in the metric.

Recall also that the plane P ∗ is spanned by e0 = ċ and X ∈ p ⊂ V such that
L = {exp(θX) | θ ∈ R} is a closed one-parameter group in K. We also have the
decomposition of V :

V = !′−1 ⊕ !′0 ⊕ !′1 ⊕ · · ·⊕ !′s

with !′−1 = span{ċ(0), X}, L|!′−1
= R(aθ), L|!′0 = Id and L|!′i = R(d′iθ) which we

use in the following. Finally, recall that Z∗(c(t)) = tZ ∈ V for Z ∈ p and that
gc(t)(∂/dt,X

∗) = 0 for all X ∈ p⊕m.

Lemma 8. Let X ∈ !′−1. Then we have:

(a) If Y ∈ !0, then gc(t)(X
∗, Y ∗) = t2φ(t2).

(b) If Y1, Y2 a basis of the irreducible module ! = !i, on which L acts as R(dθ)
with d > 0, then gc(t)(X

∗, Y ∗
k ) = t2+d/aφk(t2)

for some smooth functions φ,φk.

Proof. For part (a) the proof is similar to Lemma 7. On the 3-space spanned by
e0 = ċ(0), e1 = X, e2 = Y , the one-parameter group L acts via conjugation with
diag(R(aθ), 1) and, using the fact that Y ∗ is orthogonal to ċ, the metric is given
by

G(p) =




1 0 0
0 1 h
0 h f





with h = g(e1, Y ∗) and f = g(Y ∗, Y ∗). We already saw that f is an even function,
and as in the proof of Lemma 7, we see, when restricted to the geodesic, h(t) =
ta/aφ(t2) = tφ(t2). Hence gc(t)(X

∗, Y ∗) = tgc(t)(e2, Y
∗) = t2φ(t2).
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For part (b) the proof is similar to Lemma 6. On the 4-dimensional space
spanned by e0, e1 and Y1, Y2 the group L acts via conjugation by diag(R(aθ, R(dθ))
and the metric is given by

G(p) =





1 0 0 0
0 1 h1 h2

0 h1 g11 g12
0 h2 g12 g22





with hk = g(e1, Y ∗
k ) and gkl = g(Y ∗

k , Y
∗
l ). As in the proof of Lemma 6 it follows

that
h2(t) = t|d−a|/aφ1(t

2) and h2(t) = t|d+a|/aφ2(t
2)

and hence h2(t) = td/a+1φ(t2), and similarly for h1(t). Thus gc(t)(X
∗, Y ∗

k ) =

tgc(t)(e2, Y
∗
k ) = td/a+2φk(t2). !

Next the inner products with !′0.

Lemma 9. For Z ∈ !′0 we have:

(a) If Y ∈ !0, then gc(t)(Z
∗, Y ∗) = t3φ(t2).

(b) If Y1, Y2 is a basis of the irreducible module !i, then

gc(t)(Z
∗, Y ∗

k ) = t1+di/aφk(t
2)

for some smooth functions φi.

Proof. For part (a), let Z = e1. Then g(e1, Y ∗) is L invariant and hence even.
Furthermore, it vanishes at t = 0 since the slice is orthogonal to the singular orbit
at c(0). Hence g(e1, Y ∗) = t2φ(t2), which implies gc(t)(Z

∗, Y ∗) = t t2φ(t2).
Similarly for (b), using the proof of Lemma 7, it follows that gc(t)(e1, Y

∗
k ) =

tdi/aφk(t2). Since di, a > 0, this already vanishes as required. The proof now fini-
shes as before. !

And finally the remaining inner products:

Lemma 10. Let !′i and !j with i, j > 0 be two irreducible L modules with basis Z1,
Z2 resp. Y1, Y2 on which L acts via a rotation R(d′iθ) resp. R(djθ) with d′i, dj > 0.

(a) The inner products hkl = gc(t)(Z
∗
k , Y

∗
l ) satisfy

(
h11 h12

h21 h22

)
= tb+|d′

i−dj |/a
(
φ1(t2) φ2(t2)
−φ2(t2) φ1(t2)

)

+ t1+|d′
i+dj |/a

(
φ3(t2) φ4(t2)
φ4(t2) −φ3(t2)

)

where b = 3 if d′i = dj, and b = 1 if d′i ,= dj.

(b) If Y ∈ !0, then gc(t)(Y
∗, Z∗

k) = t1+d′
i/aφk(t2)

for some smooth functions φi.
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Proof. (a) We repeat the proof of Lemma 6 for the basis e1 = Z1, e2 = Z2, e3 =
Y1, e4 = Y2 of !′i ⊕ !j . But if d′i = dj , we have to require in addition that the inner
products vanish at t = 0, i.e., φ1(0) = φ2(0) = 0, which means the first matrix
must be multiplied by t2. The proof then proceeds as before.

(b) We proceed as in Lemma 7(b). !
This finishes the discussion of all possible inner products in n = p⊕m.

3.4. Smoothness conditions for symmetric 2 × 2 tensors

The above methods can be applied to obtain the smoothness conditions for any
G invariant tensor, defined along a curve c transverse to all orbits. One needs to
take care though, since for a metric g the slice and singular orbit are orthogonal
at t = 0, whereas for a general tensor this may not be the case. For the purpose of
applying this to the Ricci tensor, we briefly discuss how to derive the smoothness
conditions for any symmetric 2 × 2 tensor T .

The proofs in Section 3.2 show that for the functions T (m,m) the conditions for
T and a metric g are the same.

For T (p, p) the only difference is that now T (X∗
i , X

∗
j ) = φ0t2δij + φij(t2)t4 for

Xi ∈ p, where Xi has unit length in g0 and φ0 is a real number, which is allowed
to be 0. Notice also that T (pi, pj) = 0 for 0 < i < j since the AdH representations
are inequivalent.

A new feature is that, unlike in the case of a metric, the mixed terms T (ċ(t), X∗)
do not have to vanish if X ∈ p ⊕ m lies in a module on which AdH acts trivially.
For the case of X ∈ p0 one easily sees that:

Tc(t)(ċ, ċ) = ψ1(t
2), Tc(t)(ċ, X

∗) = tψ2(t
2), Tc(t)(X

∗, X∗) = t2ψ3(t
2), (5)

with ψ1(0) = ψ3(0) = φ0.
For the case of T (ċ,m0), as well as T (p,m), one needs to examine the proof

of the Lemma’s in Section 3.3, keeping in mind that the values of T on the 2-
plane !−1 = {ċ, X} are now more generally given by (5). In some cases, for a
metric tensor, certain components are forced to have a zero of two orders higher
at t = 0 than a generic symmetric tensor since the regular orbits are orthogonal
to the geodesic c. One easily sees that the conditions in Lemma 8(a), Lemma 9(b)
and Lemma 10(b) are the same, whereas in Lemma 8(b), Lemma 9(a) and in
Lemma 10(a) when d′i = dj , the allowed order for T is two less. We summarize the
results in Table D. This difference is important when studying Einstein metrics,
or prescribing the Ricci tensor, see [17].

4. Examples

Before we illustrate the method with some examples, let us make some general
comments.

We can choose an inner product Q on g which is AdK invariant on m, equal to
g0 on p under the inclusion p ⊂ V , and such that the decomposition n = p⊕m is
orthogonal.

If G is compact, one often starts with a biinvariant metric Q on g. We point out
though, that then Q|p is not always a multiple of the metric g0. Thus one needs to
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determine the real numbers ri > 0 such that Q|pi = rig0, i = 1, . . . , s, which needs
to be used in order to translate the conditions in (2) into a basis of p orthonormal
in Q. We point out that if s > 1, ri depends on i since in that case the biinvariant
metric Q|K does not restrict to a constant curvature metric on K/H. See Table
2.5 in [10] for the values of ri.

Smoothness is determined by the one-parameter groups L = {exp(θv) | 0 ≤ θ ≤
2π}, one for each irreducible p module. Since the action of L on m is given by the
restriction of AdK , the exponents di can be determined in terms of Lie brackets,
i.e., on !i we have

[v, Y1] = diY2 and [v, Y2] = −diY2 (6)

where Y1, Y2 ∈ !i are Q orthogonal vectors of the same length. This also determines
the orientation of the basis so that di > 0. The decomposition under L can be
recovered from the weight space decomposition of the action of K on m with
respect to a maximal abelian subalgebra containing v. Thus, on each irreducible
K module in m, we have di = αi(v), for all weights αi, and hence the largest
integer is λ(v) where λ is the dominant weight.

The slopes d′i are not determined by Lie brackets. One needs to use the know-
ledge of the embedding H ⊂ K to determine the action of K, and hence L, on V .
For the almost effective actions of K on spheres, a choice of the vectors v and the
values of a and d′i will be described in Section 6.

The functions gij(t) determining the metric are usually given in terms of a
decomposition of h⊥ = n into AdH irreducible modules. But the decomposition of
m into irreducible modules under Li are usually quite different. Thus the entries of
the metric in the Lemmas of Section 3 are linear combinations of gij . Furthermore,
for different 2-planes P ∗

i , the decomposition under Li = exp(θvi) is again typically
not the same since the vectors vi do not lie in a common maximal torus. One may
thus obtain different smoothness conditions for different one-parameter groups Li

which need to be combined to obtain the full smoothness conditions.
One can now row reduce these equations, which gives rise to relationships

between the even functions. Substituting these, one can then express the k metric
coefficients in terms of k even functions.

The conditions of order 0 are equivalent to K invariance. The conditions of order
1 are equivalent to equivariance of the second fundamental form B : S2T → T⊥ =
V of the singular orbit G/K with tangent space T = Tp0K/H under the action of
K. Recall also that one has a Weyl group element w ∈ K with w(ċ(0)) = −ċ(0),
uniquely determined mod H. Clearly w ∈ Li for all i, in fact w = exp(πa vi) up to
a change by an element in AdH . The property of the length squared being even or
odd functions is already determined by the action of the Weyl group element on
m, see Remark 3 and Section 5.

Summarizing the method one needs to use the following steps:

(a) Decompose n into AdH irreducible modules, which determines the coeffi-
cients gij of the metric.

(b) Choose one-parameter groups L = exp(tX), one for each irreducible p
module. See Section 6 for convenient choices, as well as the value of the
integers a and d′i.
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(c) Decompose m into the sum of 2-dimensional modules !i under the action of
L and determine the integers di, using, e.g., the description (6).

(d) Express the coefficients of the inner products in !i in terms of the metric
coefficients gij .

(e) Use Tables A and B to express the smoothness conditions in terms of even
functions φi.

(f) Row reduce the equations coming from all one-parameter groups Li, and
replace some of the even functions in terms of others.

(g) Solve the resulting system of equations for the metric gij .

Example 1

A simple example is given by the groups G = Sp(1) × S1,K = {(ejθ, 1) | 0 ≤
θ ≤ 2π} · H and H $ Z4 with generator (i, i). There exists an infinite family of
inequivalent cohomogeneity one actions on S5 as a special case of the Kervaire
sphere examples, see [9], the simplest one being the tensor product action of
SO(3)SO(2) on S5. For all of them one half of the group diagram is given by
the above groups. Notice that the action of K on the slice V $ C is given by
(q, z) · v = zv.

If we let X1 = (i, 0), X2 = (j, 0), X3 = (k, 0) and Y = (0, i) then we have
the AdH invariant decomposition p = k = R · X2 and m = m0 ⊕ m1 with m0 =
span{X1, Y }, m1 = R ·X3. Since AdH acts as Id on m0 and as − Id on p⊕m1 the
nonvanishing inner products are given by

fi = 〈Xi, Xi〉, i = 1, 2, 3, g = 〈Y, Y 〉, h1 = 〈X1, Y 〉, h2 = 〈X2, X3〉.

There is only the one-parameter group L = {exp(θX2) | 0 ≤ θ ≤ 2π} to be
considered. L acts via R(θ) on !′−1 = span{ċ(0), X2}, trivially on !0 = R · Y , and
by R(2θ) on !1 = span{X1, X3}. Thus a = 1 and d1 = 2. According to Tables B
and C we have

f1 = φ5(t
2) + t4φ6(t

2), f3 = φ5(t
2)− t4φ6(t

2), g = φ2(t
2),

and
f2 = t2 + t4φ1(t

2), h1 = t2φ3(t
2), h2 = t4φ4(t

2).

See also [8] Appendix 1 for a further class of examples with K/H $ S1.

Example 2

In [3], the author studied cohomogeneity one Ricci flat metrics on the homoge-
neous disk bundle with H = T 2 ⊂ K = U(2) ⊂ G = SU(3), where we assume that
U(2) is the lower 2× 2 block. We illustrate that the smoothness conditions can be
obtained with our methods quickly.

Let Ekl, iEkl, k < l, be the usual basis of su(3). Then the decomposition of h⊥

into AdH irreducible representations is given by:

n1 = {E23, iE23}, n2 = {E12, iE12}, n3 = {E13, iE13}

Since they are all inequivalent, the metric is determined by:

f1 = |E23|2 = |iE23|2, f2 = |E12|2 = |iE12|2, f3 = |E13|2 = |iE13|2
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The module p = n1 is irreducible since K/H = S2 and we can choose L =
exp(θE23). Since exp(πE23) ∈ H, we have a = 2 and hence 1

2E23 has unit length
in the Euclidean inner product g0 on the slice. The decomposition under L is

m = !1 ⊕ !2 with !1 = {E12, E13, }, !2 = {iE12, iE13, } and d1 = d2 = 1

Since p is orthogonal to m, the decomposition of the slice V is not needed. Thus
the metric is smooth if and only if

f1 = 4t2, f2 + f3 = φ1(t
2), f2 − f3 = tφ2(t

2)

for some smooth functions φ1,φ2.

Example 3

Let H ⊂ K ⊂ G be given by SO(2) ⊂ SO(3) ⊂ SO(5), where the embedding
of SO(3) in SO(5) is given by the unique irreducible representation of SO(3) on
R5. The singular orbit G/K is the Berger space (which is positively curved in a
biinvariant metric).

We consider the following basis of g = so(5):

K1 = 2E12 + E34, K2 = E23 − E14 +
√
3E45, K3 = E13 + E24 +

√
3E35,

V1 =
1√
5
E12 −

2√
5
E34, V2 =

√
2√
5
E45 −

√
3√
10

(E23 − E14),

V3 =

√
2√
5
E35 −

√
3√
10

(E13 + E24), V4 = E25,

V5 = E15, V6 =
1√
2
(E24 − E13), V7 = − 1√

2
(E23 + E14).

Then K1,K2,K3 span the subalgebra k $ so(3) with [K1,K2] = K3 and cyclic
permutations. Thus Ki is orthonormal with respect to the biinvariant metric
Qso(3)(A,B) = − tr(AB)/2 which induces the metric of constant curvature 1
on SO(3)/SO(2) = S2. We choose the base point such that the Lie algebra of
its stabilizer group H is spanned by K1. Hence ċ(0),K2,K3 is an orthonormal
basis in the inner product g0 on V = R3. Notice that for the biinvariant metric
Qso(5)(A,B) = − tr(AB)/2 we have Qso(5)(A,B) = 5Qso(3)(A,B) for A,B ∈
so(3). Thus, if we abbreviate Q = Qso(5), we have Q(Ki,Kj) = 5δij . On the other
hand, Vi are orthonormal unit vectors in Q.

We have the following decomposition of p ⊕ m as the sum of irreducible H-
modules:

p = span(K2,K3), m0 = span(V1), m1 = span(V2, V3),

m2 = span(V4, V5), m3 = span(V6, V7).

AdH acts trivially on m0, with speed one on p and m1, and with speed 2 and 3
on m2 resp. m3; e.g., since H = {exp(tK1) | 0 ≤ t ≤ 2π}, one needs to check that
[K1, V4] = 2V5 and [K1, V5] = −2V4. Thus p and m1 are equivalent as H-modules
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while all the other modules are inequivalent. An AdH invariant metric g along c(t)
is thus defined by the following functions:

f = 〈K2,K2〉 = 〈K3,K3〉, g1 = 〈V1, V1〉, g2 = 〈V2, V2〉 = 〈V3, V3〉,
g3 = 〈V4, V4〉 = 〈V5, V5〉, g4 = 〈V6, V6〉 = 〈V7, V7〉,

h11 = 〈K2, V2〉 = 〈K3, V3〉, h12 = 〈K2, V3〉 = −〈K3, V2〉.

and all other scalar products are zero.
For the smoothness conditions, since AdH acts irreducibly on p, we need to

choose only one vector and set X = K2 with L = exp(tK2) ⊂ SO(3). Since
SO(3) acts standard on V , we have a = 1. Furthermore, V = !′−1 ⊕ !′0 with
!′−1 = span{ċ(0),K2} and !′0 = span{K3} since L acts via rotations in the ċ(0),K2

plane, and hence trivially on e3 = K∗
3 (0).

Under the action of L, one easily sees that m decomposes as the sum of the
following irreducible modules:

l0 = span(
√
6V2 +

√
10V7), l1 = span(V3 +

√
15V6,−

√
6V1 −

√
10V4),

l2 = span(
√
10V2 −

√
6V7, 4V5), l3 = span(−

√
15V3 + V6,

√
10V1 −

√
6V4),

and a Lie bracket computation shows that under the action of L we have di = i for
i = 1, 2, 3; e.g., [K2,−

√
15V3+V6] = 3(

√
10V1−

√
6V4) and [K2,

√
10V1−

√
6V4] =

−3(−
√
15V3 + V6).

1) Irreducible modules in m. We have three irreducible L-modules in m and for
each of them we apply Lemma 5, and use the notation gij therein. Notice that due
to AdH invariance, all vectors Vi are orthogonal to each other.

For !1 we have:

g11 = 〈V3 +
√
15V6, V3 +

√
15V6〉 = g2 + 15g4,

g22 = 〈−
√
6V1 −

√
10V4,−

√
6V1 −

√
10V4〉 = 6g1 + 10g3, g12 = 0.

Since d1 = 1 and a = 1, we need

(g2 + 15g4) + (6g1 + 10g3) = φ1(t
2), (g2 + 15g4)− (6g1 + 10g3) = t2 φ2(t

2).

For !2 we have:

g11 = 〈
√
10V2 −

√
6V7,

√
10V2 −

√
6V7〉 = 10g2 + 6g4,

g22 = 〈4V5, 4V5〉 = 16g3, g12 = 0.

Since d2 = 2, smoothness requires that

(10g2 + 6g4) + 16g3 = φ3(t
2), (10g2 + 6g4)− 16g3 = t4 φ4(t

2).

For !3 we have:

g11 = 〈−
√
15V3 + V6,−

√
15V3 + V6〉 = 15g2 + g4,

g22 = 〈
√
10V1 −

√
6V4,

√
10V1 −

√
6V4〉 = 10g1 + 6g3, g12 = 0.
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Since d3 = 3, we need

(15g2 + g4) + (10g1 + 6g3) = φ5(t
2), (15g2 + g4)− (10g1 + 6g3) = t6 φ6(t

2).

In particular, all functions g1, g2, g3, g4 are even, a fact that one could have
already obtained from invariance of the metric under the Weyl group element.

For !0, Lemma 7 says that 〈
√
6V2+

√
10V7,

√
6V2+

√
10V7〉 = 6g2+10g4 is even,

a condition that is already implied by the previous ones.

2) Products between modules in m. Inner products between !0 and !2, and
between !1 and !3 are not necessarily 0. For the first one, Lemma 7 implies that

〈
√
6V2 +

√
10V7,

√
10V2 −

√
6V7〉 =

√
60(g2 − g4)

and hence g2−g4 = t2 φ7(t2), a condition already implied by K invariance at t = 0.
For the second one, Lemma 6 and

〈V3 +
√
15V6,−

√
15V3 + V6〉 =

√
15(g4 − g2),

〈−
√
6V1 −

√
10V4,

√
10V1 −

√
6V4〉 =

√
60(g3 − g1)

as well as

〈V3 +
√
15V6,

√
10V1 −

√
6V4〉 = 〈−

√
6V1 −

√
10V4,−

√
15V3 + V6〉 = 0

implies that

(g4 − g2)− 2(g3 − g1) = t4 φ7(t
2), (g4 − g2) + 2(g3 − g1) = t2φ8(t

2).

3) Smoothness on the slice. Section 3.1 implies that f = t2+ t4φ(t2) since a = 1.

4) Products between m and the slice V . All of the modules li have nontrivial
inner products with the slice. For the 4 inner products between !′−1, i.e., K2, and
!i we get from Lemma 8:

h11 = t2φ(t2), h12 = t3φ(t2), h11 = t4φ(t2), h12 = t5φ(t2).

On the other hand, for the 4 inner products between !′0, i.e., K3, and !i we get
from Lemma 9:

h12 = t3φ(t2), h11 = t2φ(t2), h12 = t3φ(t2), h11 = t4φ(t2).

Thus we need:
h11 = t4φ(t2), h12 = t5φ(t2).

5)Combining all conditions. Summarizing the conditions in 1) and 2), we have
for the inner products in m:






(g2 + 15g4) + (6g1 + 10g3) = φ1(t2),
(g2 + 15g4)− (6g1 + 10g3) = t2 φ2(t2),
(10g2 + 6g4) + (16g3) = φ3(t2),
(10g2 + 6g4)− (16g3) = t4 φ4(t2),
(15g2 + g4) + (10g1 + 6g3) = φ5(t2),
(15g2 + g4)− (10g1 + 6g3) = t6 φ6(t2),
(g4 − g2)− 2(g3 − g1) = t4 φ7(t2),
g2 − g4 = t2 φ8(t2), g2 − g3 = t2 φ9(t2).
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Notice that the last two conditions imply that (g3 − g1) = t2 φ(t2) and hence K
invariance at t = 0 is encoded in the above equations.

This is an over determined linear system of equations in the metric functions.
Since we know there always exist solutions, we can row reduce in order to get the
following relationships between the smooth functions:






φ1 = φ5 − 16t2 φ7 − 2t4 φ8,
φ2 = t4 φ6 − 12φ7 + 2t2 φ8,
φ3 = φ5 − 10t2 φ7 − 5t4 φ8,
φ4 = t2 φ6 + 5φ8.

Thus necessary and sufficient conditions for smoothness in m are:






15g2 + 6g3 + g4 + 10g1 = φ5,
15g2 − 6g3 + g4 − 10g1 = t6φ6,

−2g3 + 2g1 = t2φ̃7,
−g2 − 2g3 + g4 + 2g1 = t4φ8.

which we can also solve for the metric and obtain (after renaming the even func-
tions):

g1 = φ1 + 6t2 φ2 + 6t4 φ3 − t6 φ4,

g2 = φ1 + 2t2 φ2 + t6 φ4,

g3 = φ1 − 10t2 φ2 − 10t4 φ3 − t6 φ4,

g4 = φ1 − 30t2 φ2 + t6 φ4

for some smooth functions φ1,φ2,φ3,φ4 of t2. Furthermore,

f = t2 + t4φ5(t
2), h11 = t4φ6(t

2), h12 = t5φ7(t
2).

Example 4

This example shows how to predict the exponents dk in terms of representation
theory. Let φn be the complex n-dimensional irreducible representation of SU(2).
Choose K = SU(2) ⊂ G = SU(2n) given by the embedding φ2n, and H =
SO(2) = diag(eiθ, e−iθ) ⊂ SU(2). Thus K/H = S2 with slice representation
φ3 and hence a = 2. By Clebsch-Gordon, the isotropy representation of G/K
is φ4n−2 ⊕ φ4n−4 ⊕ · · · ⊕ φ2. Thus the isotropy representation G/H is the sum
of 2-dimensional representations ni with multiplicity i and weight 4n − 2i for
i = 1, . . . , 2n− 2 and n2n−1 and n2n with multiplicity 2n− 2 and weight 2 resp. 0,
as well as n2n+1 with weight 2 coming from the isotropy representation of K/H.

We only need to consider the one-parameter group L = exp(tA) with A =(
0 1
−1 0

)
. Since A is conjugate to diag(i,−i), the decomposition under L has

the same weights and multiplicity. Thus in the description of the metric, we have
exponents tk for k = 1, . . . , 4n− 2.
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5. Proof of Theorem B

After we saw how the process works in concrete examples, we will now prove
Theorem B. One needs to first derive all smoothness conditions obtained from
Section 3, possibly for several circles Li. This gives rise to a highly over-determined
system of equations for the r metric functions gij , i ≤ j of the form

∑

i,j

akij gij(t) = tdkφk(t
2), k = 1, . . . , N.

for some smooth functions φk.
The coefficients akij do not depend on the metric, but only on the Lie groups

involved. We first want to show that each metric function must be involved in at
least one equation and hence N ≥ r. For this let w ∈ K be a Weyl group element.
Recall that w is defined by w(ċ(0)) = −c(0) which defines it uniquely mod H.
Furthermore, w normalizes H and w2 ∈ H. Let n ⊂ p ⊕ m be an irreducible
module under the action of H. Then we have either w(n) = n or w(n) = n′ with
n′ another irreducible module invariant under H and equivalent to n.

If w(n) = n and X,Y ∈ n then Q(X,Y ) = Q(wX,wY ) and hence

g(X∗, Y ∗)c(t) = g((wX)∗, (wY )∗)c(t) = g(X∗, Y ∗)c(−t)

implies that g(X∗, Y ∗) is an even function.
If wn = n′ with X ∈ n, Y ∈ n′, then we have

g(X∗, Y ∗)c(t) − g((wX)∗, (wY )∗)c(t) = g((wX)∗, (wY )∗)c(−t) − g(X∗, Y ∗)c(−t)

since w2 ∈ H. Thus g(X∗, Y ∗)−g((wX)∗, (wY )∗) is an odd function, and similarly
g(X∗, Y ∗) + g((wX)∗, (wY )∗) is an even function. Altogether, N ≥ r.

We can now row reduce the systems, which we denote for short AkG = Φ.
The last N − r rows in Ak will consist of zeroes which implies that there exists
a linear homogeneous relationship between the even functions φk. Solving for one
of the variables, and substituting into Φ we obtain a system of r equations in r
unknowns. In the row-reduced system we cannot have a further row of zeroes in
Ak since otherwise we can express the metric in terms of r − 1 even functions,
contradicting that the metric on the regular part consists of r arbitrary functions.
Thus Ak has maximal rank r and we can solve for gij in terms of the remaining
even functions. This proves Theorem B.

6. Actions on spheres

In order to facilitate the applications of determining the smoothness conditions
in examples, we discuss here the choice for the vectors X, the decomposition of
the action by L = exp(tX) on the slice, and the integers a, d′i. Since L ⊂ K0, we
can assume that K is connected. Although the action of K on V can be highly
ineffective, there exists a normal subgroup containing L acting almost effectively
and transitively on the sphere in V . In Table A we list the almost effective
transitive actions by connected Lie groups on spheres. The effective actions and
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the decomposition of p into irreducibles one can, e.g., find in [18], and from this
one easily derives the ineffective ones using representation theory.

Recall that the inclusion p ⊂ V is determined by the action fields of the action
of K on V . For each irreducible module we choose a vector X ∈ pi and normalize
X such that L = {exp(θv) | 0 ≤ θ ≤ 2π} ⊂ K is a closed one-parameter group.
Furthermore, the integer a = |L∩H| is the ineffective kernel of the action of L on
V and V is the sum of two-dimensional L invariant modules:

V = !′−1 ⊕ !′0 ⊕ !′1 ⊕ · · ·⊕ !′s with !′−1 = span{ċ(0), X}

and
L|!′−1

= R(aθ), L|!′0 = Id and L|!′i = R(d′iθ).

with a, d′i ∈ Z, which we can assume to be positive.
We choose a basis e1, e2, · · · of V and the geodesics c(t) = te1.
We now discuss each transitive action, one at a time, using the numbering in

Table A.

1) K/H = SO(n + 1)/SO(n) = Sn
K acts by matrix multiplication x → Ax on V = Rn+1 with orthonormal basis

e1, e2, . . . , en+1. We choose the geodesic such that c(t) = te1 and let H be the
stabilizer group of e1, i.e., H = {diag(1, A) | A ∈ SO(n)}.

As usual, we use the notation Eij for the skew symmetric matrix with non-
zero entries in the (i, j) and (j, i) spot and biinvariant inner product Q(A,B) =
− tr(AB)/2. Then p = span{E12, . . . E1(n+1)} and for the action fields we get
E∗

1i = ei.
We choose the closed one-parameter group L = {exp(θE12) | 0 ≤ θ ≤ 2π} which

induces a rotation R(θ) in the e1, e2 plane. Thus

L = {exp(θE12) | 0 ≤ θ ≤ 2π},
!′−1 = {ċ(0), E12} with a = 1, and !′0 = {E13, . . . E1(n+1)}.

1′) K/H = Spin(n + 1)/Spin(n) = Sn
Spin(n + 1) acts via the two-fold cover Spin(n + 1) → SO(n + 1) ineffectively

on V . Since L ⊂ SO(n + 1) is a generator in π1(SO(n + 1)) $ Z2, the lift of
L ⊂ SO(n+ 1) to Spin(n+ 1) has twice its length. Thus, if Ē12 is the lift of E12,
the one-parameter group L = {exp(θĒ12) | θ ∈ R} induces a rotation R(2θ) in the
e0, e1 plane. Hence !′−1 = {ċ(0), Ē12} with a = 2 and !′0 as before.

2) K/H = U(n + 1)/U(n) = S2n+1

K acts by matrix multiplication x → Ax on V = Cn+1 with orthonormal basis
e1, ie1, . . . , en+1, ien+1. H is the stabilizer of e1, i.e., H = U(n) = {diag(1, A) | A ∈
U(n)}. Besides Eij , we have the skew hermitian matrix iEij (by abuse of notation).
We use the inner product Q(A,B) = −Re(tr(AB))/2, and hence p = p0 ⊕ p1 with
p0 = R · F with F = diag(i, 0, . . . , 0), p1 = span{E12, iE12, . . . , E1(n+1), iE1(n+1)}.
For the action fields we have F ∗ = ie1 and E∗

1i = ei, iE∗
1i = iei, i = 2, . . . , n+ 1.

We need to choose two closed one-parameter subgroups, L1 = {exp(θE12) and
L2 = exp(θF ) with 0 ≤ θ ≤ 2π.
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L1 induces a rotation R(θ) in the e1, e2 plane, and in the ie1, ie2 plane as well.
Thus

L1 = {exp(θE12) | 0 ≤ θ ≤ 2π}

we have !′−1 = {ċ(0), E12}, with a = 1, !′1 = {F, iE12}, with d′1 = 1, and !′0 =
{E1r, iE1r, r ≥ 3}.

Next, L2 = {exp(θF ) | 0 ≤ θ ≤ 2π} induces a rotation R(θ) in the e1, ie1 plane,
and as Id on the rest. Thus

L2 = {exp(θF ) | 0 ≤ θ ≤ 2π},
!′−1 = {ċ(0), F}, with a = 1, and !′0 = {E1r, iE1r, r ≥ 2}.

2′) K/H = U(n + 1)/U(n)k = S2n+1

In this case U(n+1) acts as v → (detA)kAv for some integer k ≥ 1, and hence
the stabilizer group of e1 is H = SU(n) · S1k with S1k = diag(znk, z̄k+1, . . . , z̄k+1).
Thus we have p = p0 ⊕ p1 as in case 2), but now p0 = R · F with F = diag((k +
1)i, ki, . . . , ki) and hence F ∗ = (k + 1)ie1.

The case of L1 = exp(θE12) is as in the previous case, except that !′1 =
{(1/(k + 1))F, iE12}.

But now L2 = {exp(θF ) | 0 ≤ θ ≤ 2π} acts as R((k + 1)θ) in the e1, ie1 plane,
and R(kθ) in the er, ier plane, r ≥ 2. Hence

L2 = {exp(θF ) | 0 ≤ θ ≤ 2π},

!′−1 =
{
ċ(0),

1

k + 1
F
}
with a = k + 1, and !′r = {E1r, iE1r}, r ≥ 2, with d′r = k.

2′) K/H = U(1)/Zk = S2n+1

We list here separately the common case of K = U(1) acting on C as w → zkw
with stabilizer group Zk the k-th roots of unity. Here p = p0 spanned by F = i
with F ∗ = kie1. Thus !′−1 = {ċ(0), (1/k)F} with a = k.

3) K/H = SU(n + 1)/SU(n) = S2n+1

Same action and basis as in case 2, with H = SU(n) = {diag(1, A) | A ∈ SU(n)}.
But now F = diag(ni,−i, . . . ,−i) and hence F ∗ = nie1.

Thus the result for L1 = {exp(θE12) | 0 ≤ θ ≤ 2π} is as before, except that
!′1 = {F, iE12}.

Now L2 = {exp(θF ) | 0 ≤ θ ≤ 2π} induces a rotation R(nθ) in the e1, ie1 plane,
and R(−θ) in the ek, iek plane, k ≥ 2. Thus

L2 = {exp(θF ) | 0 ≤ θ ≤ 2π},

!′−1 =
{
ċ(0),

1

n
F
}
with a = n, and !′r = {iE1r, E1r}, r ≥ 2, with d′r = 1.

4) K/H = Sp(n + 1)/Sp(n) = S4n+3

K acts by matrix multiplication x → Ax on V = Hn+1, with orthonormal basis
e0, ie0, je0, ke0, . . . and H is the stabilizer of e0, i.e., H = {diag(1, A) | A ∈ Sp(n)},
acting on p = 0H ⊕ Hn as (s, x) → (s,Ax). We have the basis of k given by
Eij , iEij , jEij , kEij , where, by abuse of notation, the last three are skew hermitian,
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and F1 = diag(i, 0, . . . , 0), F2 = diag(j, 0, . . . , 0), F3 = diag(k, 0, . . . , 0). As before,
Q(A,B) = −Re(tr(AB))/2, and p = p0 ⊕ p1 with p0 = span(F1, F2, F3) and
p1 = span{E1r, iE1r, jE1r, kE1r, r = 2, . . . , n + 1}. For the action fields we have
F ∗
1 = ie1, F ∗

2 = je1, F ∗
3 = ke1 and E∗

1s = es, iE∗
1s = ies, jE∗

1s(c(1) = jes, kE∗
1s =

kes, s = 2, . . . , n+ 1.
We need to consider four 1-parameter groups L1 = {exp(θE12) | 0 ≤ θ ≤ 2π},

L2 = exp(θF1), L3 = exp(θF2) and L4 = exp(θF3) with 0 ≤ θ ≤ 2π.
For L1, acting on V , we get:

L1 = {exp(θE12) | 0 ≤ θ ≤ 2π}

we have !′−1 = {ċ(0), E12}, with a = 1, !′1 = {F1, iE12}, !′2 = {F2, jE12}, !′3 =
{F3, kE12} with d′r = 1, and !′0 = {E1r, iE1r, jE1r, kE1r, r ≥ 3}.

The one-parameter group L2 = exp(θF1) rotates the planes e1, ie1 and je1, ke1
by R(θ) and fixes all remaining vectors. Thus

L2 = {exp(θF1) | 0 ≤ θ ≤ 2π},
!′−1 = {ċ(0), F1} with a = 1, !′1 = {F2, F3} with d′1 = 1, and

!′0 = {E1r, iE1r, jE1r, kE1r, r ≥ 2},

and similarly for L3, L4.

5) K/H = Sp(n + 1) · Sp(1)/Sp(n) · ∆Sp(1) = S4n+3

The slice is V = Hn+1 with basis e1, ie1, je1ke1, · · · and (A, q) ∈ K acting as
v → Avq−1. Here we are considering the effective action and thus K = Sp(n+1)×
Sp(1)/Z2 with Z2 = (− Id,−1). The stabilizer group of e1 is H = Sp(n)∆Sp(1) =
{(diag(q, A), q) | A ∈ Sp(n), q ∈ Sp(1)} $ Sp(n)×Sp(1)/Z2 acting on p = 0H⊕Hn

as (s, x) → (qsq−1, Axq−1). Again, p = p0⊕p1 with p0 = span(F1, F2, F3) and p1 =
span{E1r, iE1r, jE1r, kE1r, r = 2, . . . , n+ 1}, but now F1 = (diag(i, 0, . . . , 0),−i),
F2 = (diag(j, 0, . . . , 0),−j), F3 = (diag(k, 0, . . . , 0),−k) with F ∗

1 = 2ie1, F ∗
2 =

2je1, F ∗
3 = 2ke1.

We need to consider only two 1-parameter groups L1 = {(exp(θE12), 1) | 0 ≤
θ ≤ 2π} and L2 = {exp(θF1) | 0 ≤ θ ≤ 2π}.

For L1 = exp(θE12) we get:

L1 = {(exp(θE12), 1) | 0 ≤ θ ≤ 2π},

!′−1 = {ċ(0), E12} with a=1, !′1 = { 1
2F1, iE12}, !′2 = { 1

2F2, jE12}, !′3 = { 1
2F3, kE12}

with d′r = 1 and !′0 = {E1r, iE1r, jE1r, kE1r, r ≥ 3}.
The one-parameter group L2 rotates the planes e1, ie1 by R(2θ) and fixes all

remaining vectors, including F2, F3. Thus

L2 = {exp(θF1) | 0 ≤ θ ≤ 2π},

!′−1 = {ċ(0), 1
2F1}, with a = 2, and !′0 = { 1

2F2,
1
2F3, E1r, iE1r, jE1r, kE1r, r ≥ 2}.
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5′) K/H = Sp(n + 1) × Sp(1)/Sp(n) × ∆Sp(1) = S4n+3

The action is as in the previous case, but now with an ineffective kernel Z2 =
(− Id,−1) ∈ Sp(n + 1) × Sp(1). The decompositions and the integers though are
the same.

6) K/H = Sp(n + 1)U(1)/Sp(n)∆U(1)k = S4n+3

This case is similar to the previous one, but here K acts as v → Avz̄k on V =
Hn+1 with ineffective kernel {(Id, z) | zk = 1}. Furthermore, H = Sp(n)∆U(1)k =
{(diag(zk, A), z) | A ∈ Sp(n), z ∈ U(1)}. If F1 = (diag(i, 0, . . . , 0),−ki), F2 =
(diag(j, 0, . . . , 0), 0), F3 = (diag(k, 0, . . . , 0), 0), then p = p0 ⊕ p1 ⊕ p2 with p0 =
span(F1), p1 = span(F2, F3), and p2 = span{E1r, iE1r, jE1r, kE1r, r = 2, · · ·n+1}.
Furthermore, (A, z) ∈ H acts on p as (s, x) → (zksz−k, Axz−1), where s ∈ 0H =
p0⊕p1. Notice that H acts trivially on p0 and that F ∗

1 = (k+1)ie1, F ∗
2 = je1, F ∗

3 =
ke1.

We need to consider the 1-parameter groups L1 = (exp(θE12), 1), L2 = exp(θF1)
and L3 = exp(θF2). For L1 = exp(θE12), similarly to case 6), we get:

L1 = {(exp(θE12), 1) | 0 ≤ θ ≤ 2π};
we have !′−1={ċ(0), E12}, with a = 1, !′1= {(1/(k + 1))F1, iE12}, !′2= {F2, jE12},
!′3 = {F3, kE12} with d′r = 1 and !′0 = {E1r, iE1r, jE1r, kE1r, r ≥ 3}.

For L2 on the other hand, we have

L2 = {exp(θF1) | 0 ≤ θ ≤ 2π},
!′−1 =

{
ċ(0), 1

2F1

}
with a = k + 1, !′1 = {F3, F2} with d′1 = k − 1 and

!′0 = {E1r, iE1r, jE1r, kE1r, r ≥ 2}.
For L3 we have:

L3 = {exp(θF2) | 0 ≤ θ ≤ 2π},
!′−1 = {ċ(0), F2} with a = 1, !′1 = {F3, F3} with d′1 = 1 and

!′0 = {E1r, iE1r, jE1r, kE1r, r ≥ 2}.

7) K/H = G2/SU(3) = S6
We regard G2 as the automorphism group of the Cayley numbers with basis

1, i, j, k, !, i!, j!, k!. This embeds G2 naturally into SO(7) and its action is transitive
on S6. On the Lie algebra level, a skew symmetric matrix (aij) ∈ so(7) belongs to
g2 iff

a23 + a45 + a76 = 0, a12 + a47 + a65 = 0, a13 + a64 + a75=0,

a14 + a72 + a36=0, a15 + a26 + a37=0, a16 + a52 + a43=0, a17 + a24 + a53=0.

Thus a basis for the Lie algebra g2 ⊂ so(7) is given by




0 x1 + x2 y1 + y2 x3 + x4 y3 + y4 x5 + x6 y5 + y6
−(x1 + x2) 0 α1 −y5 x5 −y3 x3

−(y1 + y2) −α1 0 x6 y6 −x4 −y4
−(x3 + x4) y5 −x6 0 α2 y1 −x1

−(y3 + y4) −x5 −x6 −α2 0 x2 y2
−(x5 + x6) y3 x4 −y1 −x2 0 α1 + α2

−(y5 + y6) −x3 y4 x1 −y2 −(α1 + α2) 0
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The stabilizer group at i is given by the complex linear automorphisms, which is
equal to SU(3). Thus its Lie algebra h is given by the constraints xi + xi+1 =
yi + yi+1 = 0 for i = 1, 3, 5, and the complement p by





0 2x1 2y1 2x3 2y3 2x5 2y5
−2x1 0 0 −y5 x5 −y3 x3

−2y1 0 0 x5 y5 −x3 −y3
−2x3 y5 −x5 0 0 y1 −x1

−2y3 −x5 −x5 0 0 x1 y1
−2x5 y3 x3 −y1 −x1 0 0
−2y5 −x3 y3 x1 −y1 0 0





Since the action of AdH on p is irreducible, it is sufficient to consider only one
one-parameter group, and we choose F = 2E12−E47+E56 ∈ p with L = exp(θF ).
It acts as a rotation in the e4, e7 plane and e5, e6 plane at speed 1, and in the e1, e2
plane at speed 2, and as Id on e3.

Thus

L = {exp(θF ) | 0 ≤ θ ≤ 2π},
!′−1={ċ(0), F} with a=2, !′1={2E14+E27−E36, 2E17+E35−E24} with d′1=1,

!′2={2E16+E25+E34, 2E15−E26−E37} with d′2=1, and

!′0={2E13+E57+E46.}

8) K/H = Spin(7)/G2 = S7
The embedding Spin(7) ⊂ SO(8), and hence the action of K on the slice, is

given by the spin representation. On the Lie algebra level we can describe this as
follows. A basis of g2 ⊂ so(8) is given by the span of

E24 + E68, E28 + E46, E26 − E48E23 + E67, E27 + E36, E34 + E78,

E38 + E47, E37 − E48, E27 − E45, E23 + E58, E24 − E57, E28 + E35,

E56 − E78, 2 E25 − E38 + E47

and the complement p by the span of

E12 +E56, E13 +E57, E14 +E58, E15 −E48, E16 +E25, E17 +E35, E18 +E45.

Since the action of AdH on p is irreducible, we need to consider only one one-
parameter group and we choose L = {exp(θF ) with F = E12 + E56. It acts as a
rotation in the e1, e2 plane and e5, e6 plane at speed 1, and as Id on e3, e4, e7, e8.

Thus

L = {exp(θF ) | 0 ≤ θ ≤ 2π},
!′−1 = {ċ(0), F} with a = 1, !′1 = {E15 − E48, E16 + E25} with d′1 = 1 and

!′0 = {E13 + E57, E14 + E58, E17 + E35, E18 + E45}.
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9) K/H = Spin(9)/Spin(7) = S15
The embedding of H in K is given by the spin representation of Spin(7) in

Spin(8) followed by the (lift of) the standard block embedding of Spin(8) in Spin(9).
Let Sij be the standard basis of spin(9) under the isomorphism so(9) $ spin(9)
and denote by Ei,j the standard basis of so(16). Furthermore, Spin(9) acts on the
slice V $ R16 via the spin representation and one easily computes the image of
Sij in so(16). We only need the basis of p = p1 ⊕ p2.

The irreducible 7-dimensional module p1 is spanned by

Z2 : = −S78 + S12 + S34 + S56 =2E1,2 + E9,10 + E11,12 + E13,14 − E15,16,

Z3 : = S68 + S13 − S24 + S57 =2E1,3 + E9,11 − E10,12 + E13,15 + E14,16,

Z4 : = S58 + S14 + S23 − S67 =2E1,4 + E9,12 + E10,11 + E13,16 − E14,15,

Z5 : = −S48 + S15 − S26 − S37 =2E1,5 + E9,13 − E10,14 − E11,15 − E12,16,

Z6 : = −S38 + S16 + S25 + S47 =2E1,6 + E9,14 + E10,13 − E11,16 + E12,15,

Z7 : = S28 + S17 + S35 − S46 =2E1,7 + E9,15 + E10,16 + E11,13 − E12,14,

Z8 : = S18 − S27 + S36 + S45 =2E1,8 + E9,16 − E10,15 + E11,14 + E12,13

and the irreducible 8-dimensional module p2 is spanned by Si,9

S19 = 1
2 (E1,9 + E2,10 + E3,11 + E4,12 + E5,13 + E6,14 + E7,15 + E8,16),

S29 = 1
2 (E1,10 − E2,9 − E3,12 + E4,11 − E5,14 + E6,13 + E7,16 − E8,15),

S39 = 1
2 (E1,11 + E2,12 − E3,9 − E4,10 − E5,15 − E6,16 + E7,13 + E8,14),

S49 = 1
2 (E1,12 − E2,11 + E3,10 − E4,9 − E5,16 + E6,15 − E7,14 + E8,13),

S59 = 1
2 (E1,13 + E2,14 + E3,15 + E4,16 − E5,9 − E6,10 − E7,11 − E8,12),

S69 = 1
2 (E1,14 − E2,13 + E3,16 − E4,15 + E5,10 − E6,9 + E7,12 − E8,11),

S79 = 1
2 (E1,15 − E2,16 − E3,13 + E4,14 + E5,11 − E6,12 − E7,9 + E8,10),

S89 = 1
2 (E1,16 + E2,15 − E3,14 − E4,13 + E5,12 + E6,11 − E7,10 − E8,9).

If e1, . . . , e16 is a basis of the slice, then Z∗
i = ei, i = 2, . . . , 8 and S∗

i9 = ei+8, i =
1, . . . , 8.

For the smoothness conditions we need to choose two one-parameter groups.
For L1 = exp(θZ2) we obtain

L1 = {exp(θZ2) | 0 ≤ θ ≤ 2π},

!′−1 = {ċ(0), Z2} with a = 2, !′i = {Si,9, Si+1,9}, i = 1, 3, 5, 7 with d′i = 1 for
i = 1, 3, 5, d′7 = −1 and !′0 = {Z3, . . . , Z8}.

In !′7 we should reverse the order of the basis so that d′7 = 1.
For L2 = exp(θS19) we have

L2 = {exp(θS19) | 0 ≤ θ ≤ 2π},
!′−1 = {ċ(0), S19} with a = 1, !′i = {Zi, Si,9}, i = 2, . . . , 8 with d′i = 1.
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7. Tables

Table A. Almost effective transitive actions on spheres

K H pi dim pi

1 SO(n+ 1) SO(n) p1 n

1′ Spin(n+ 1) Spin(n) p1 n

2 U(n+ 1) U(n) p0 + p1 1, 2n

2′ U(n+ 1) U(n)k p0 + p1 1, 2n

3 SU(n+ 1) SU(n) p0 + p1 1, 2n

4 Sp(n+ 1) Sp(n) p0 + p1 3, 4n

5 Sp(n+ 1) · Sp(1) Sp(n)∆ Sp(1) p1 + p2 3, 4n

5′ Sp(n+ 1)× Sp(1) Sp(n)×∆ Sp(1) p1 + p2 3, 4n

6 Sp(n+ 1) ·U(1) Sp(n)∆U(1) p0 + p1 + p2 1, 2, 4n

6′ Sp(n+ 1)×U(1) Sp(n)∆U(1)k p0 + p1 + p2 1, 2, 4n

7 G2 SU(3) p1 6

8 Spin(7) G2 p1 7

9 Spin(9) Spin(7) p1 + p2 8, 7

Table B. Smoothness Conditions I for G invariant metrics or symmetric 2× 2 tensors

〈m,m〉 !0 !i !j

!0 φ(t2) tdi/aφ(t2) tdj/aφ(t2)

!i tdi/aφ(t2)
g11 + g22 = φ1(t2)
g11−g22 = t2di/aφ2(t2)
g12 = t2di/aφ3(t2)

h11 + h22 = t|di−dj |/aφ1(t2),
h11 − h22 = t|di+dj |/aφ1(t2)
h12 − h21 = t|di−dj |/aφ1(t2),
h12 + h22 = t|di+dj |/aφ1(t2)
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Table C. Smoothness Conditions II for G invariant metrics

〈p,m〉 !0 !j

!′−1 t2φ(t2) t2tdj/aφ(t2)

!′0 t3φ(t2) t tdj/aφ(t2)

!′i t td
′
i/aφ(t2)

h11 + h22 = tbt|d
′
i−dj |/aφ1(t2),

h11 − h22 = t t|d
′
i+dj |/aφ2(t2)

h12 − h21 = tbt|d
′
i−dj |/aφ3(t2),

h12 + h21 = t t|d
′
i+dj |/aφ4(t2)

b = 3 if d′i = dj , and b = 1 if d′i ,= dj

Table D. Smoothness Conditions II for a G invariant symmetric 2× 2 tensor T

〈p,m〉 !0 !j

!′−1 t2φ(t2)

T (ċ, Y ∗
1 ) + T (X∗, Y ∗

2 ) = tdj/aφ1(t2),
T (ċ, Y ∗

1 )− T (X∗, Y ∗
2 ) = t2tdj/aφ2(t2)

T (ċ, Y ∗
2 )− T (X∗, Y ∗

1 ) = tdj/aφ1(t2),
T (ċ, Y ∗

2 ) + T (X∗, Y ∗
1 ) = t2tdj/aφ2(t2)

!′0 tφ(t2) t tdj/aφ(t2)

!′i t td
′
i/aφ(t2)

T11 + T22 = t t|d
′
i−dj |/aφ1(t2),

T11 − T22 = t t|d
′
i+dj |/aφ2(t2)

T12 − T21 = t t|d
′
i−dj |/aφ3(t2),

T12 + T21 = t t|d
′
i+dj |/aφ4(t2)

In Table D recall that !′−1 = {ċ, X} and !j = {Y1, Y2}.

References

[1] A. V. Alekseevsky, D. V. Alekseevsky, G-manifolds with one-dimensional orbit space,
Adv. in Sov. Math. 8 (1992), 1–31.

[2] M. Alexandrino, R. Bettiol, Lie Groups and Geometric Aspects of Isometric Actions,
Springer, Cham, 2015.

[3] H. Chi, Invariant Ricci flat metrics of cohomogeneity one with Wallach spaces as
principal orbits, arXive:1903.01641v1 (2019).

[4] A. Dancer, M. Wang, On Ricci solitons of cohomogeneity one, Ann. Glob. Anal.
Geom. 39 (2011), 259–292.



COHOMOGENEITY ONE MANIFOLDS

[5] J. H. Eschenburg, M. Wang, The initial value problem for cohomogeneity one Ein-
stein metrics, J. Geom. Anal. 10 (2000), 109–137.

[6] L. Foscolo, M. Haskins, New G2-holonomy cones and exotic nearly Khler structures
on S6 and S3 × S3 × S3, Ann. of Math. 185 (2017), 59–130.

[7] S. Goette, M. Kerin, K. Shankar, Highly connected 7-manifolds and non-negative
sectional curvature, Ann. of Math., to appear.

[8] K. Grove, L. Verdiani, W. Ziller, An exotic T1S
4 with positive curvature, Geom.

Funct. Anal. 21 (2011), 499–524.

[9] K. Grove, L. Verdiani, B. Wilking, W. Ziller, Non-negative curvature obstruction in
cohomogeneity one and the Kervaire spheres, Ann. del. Scuola Norm. Sup. 5 (2006),
159–170.

[10] K. Grove, W. Ziller, Cohomogeneity one manifolds with positive Ricci curvature, Inv.
Math. 149 (2002), 619–646.

[11] J. Kazdan, F. Warner, Curvature functions for open 2-manifolds Ann. of Math. 99
(1974), 203–219.

[12] N. Koiso, Y. Sakane, Nonhomogeneous Kähler–Einstein metrics on compact complex
manifolds, in: Curvature and Topology of Riemannian Manifolds (Katata, 1985), Lec-
ture Notes in Math., Vol. 1201, Springer, Berlin, 1986, pp. 165–179; Part II, Osaka
J. Math. 25 (1988), 933–959.

[13] L. Verdiani, Invariant metrics on cohomogeneity one manifolds, Geom. Dedicata 77
(1999), 77–111.

[14] L. Verdiani, W. Ziller, Concavity and rigidity in non-negative curvature, J. Diff.
Geom. 97 (2014), 349–375.

[15] L. Verdiani, W. Ziller, Seven-dimensional cohomogeneity one manifolds with nonne-
gative curvature, Math. Ann 371 (2018), 655–652.

[16] L. Verdiani, W. Ziller, Four-dimensional curvature homogeneous cohomogeneity one
metrics, in preparation.

[17] L. Verdiani, W. Ziller, On the initial value problem for Einstein metrics on cohomo-
geneity one manifolds, in preparation.

[18] W. Ziller, Homogeneous Einstein metrics on spheres and projective spaces, Math.
Ann. 259 (1982), 351–358.

Open Access funding provided by Universit  degli Studi di Firenze withinFunding Information

Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this
article are included in the article s Creative Commons licence, unless indicated

,

otherwise in a credit line to the material. If material is not included in the article s
,

the CRUI-CARE Agrrement.
à



Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

L. VERDIANI, W. ZILLER


