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A B S T R A C T

In mammalian cells, tyrosine phosphorylation is one of the main mechanisms responsible for regulating signal
transduction pathways and key cellular functions. Moreover, recent studies demonstrated that tyrosine phos-
phorylation influences the activity of some metabolic enzymes, even if it remains to be clarified whether tyrosine
phosphorylation can be considered a general mechanism involving most of the metabolic enzymes or only a
subset of these. To elucidate this aspect, we conducted a two-step analysis. First, we analyzed literature to
identify all the metabolic enzymes whose activity is affected by tyrosine phosphorylation. Second, we crossed
these data with those obtained from the PhosphoSitePlus database analysis. Collected information was used to
depict an exhaustive map showing the real spread of tyrosine phosphorylation among metabolic enzymes. In
summary, data reported in this review highlight that tyrosine phosphorylation is not a sporadic event but a
widespread post-translational modification, which is essential to promote the metabolic reprogramming of
cancer cells.

1. Introduction

The term “Warburg metabolism” has been coined in honour of Otto
Warburg who described for the first time a peculiar metabolic beha-
viour of cancer cells about 90 years ago. He highlighted that, in com-
parison to their healthy counterpart, cancer cells consume much more
glucose and release a larger amount of lactate in the extracellular
medium, even in the presence of oxygen. To explain this phenomenon,
Warburg suggested that cancer cells possess defective/non-functioning
mitochondria and have to rely on glycolysis to synthesize metabolic
intermediates and generate the ATP for cell growth and proliferation
[1].

Starting from these observations, several advances have been made
to understand the metabolic reprogramming of cancer cells [2]. Nu-
merous studies brought out that cancer cells possess a plastic metabo-
lism and retain active, although differently functioning, mitochondria.
These organelles not only regulate energy metabolism, but also control
cell viability by modulating the programmed cell death, are important
sources of reactive oxygen species (ROS), and can generate retrograde
signals able to affect nuclear gene expression. Moreover, mithocondria
produce many essential building block molecules, which are necessary
to synthesize nucleotides, lipids, and proteins [3]. Taken together, these
findings indicate that mitochondria play a key role in carcinogenesis
[4]. This hypothesis was confirmed by further studies showing that any

stimulus able to damage the mitochondria of cancer cells impairs their
tumorigenic potential [5]. Altogether, these observations suggest that
the phenomenon described as “cancer metabolic reprogramming” is not
simply characterized by an enhanced glycolytic flux, but it predicts
profound changes in almost all known metabolic pathways [6].

In recent years, many efforts have been made to identify the mo-
lecular mechanisms that promote such a metabolic deregulation of
cancer cells. First of all, we can find germline and somatic mutations of
genes encoding key metabolic enzymes [7], overexpression or con-
stitutive activation of oncogenes, and loss of function of tumor sup-
pressor genes such as MYC, RAS, BRAF and TP53 [8].

Among oncogenes, those belonging to the tyrosine kinases (TKs)
family represent one of the most important subgroups [9]. To date,
more than 30 oncogenic TKs have been identified and characterized in
cancer cells [10]. Some of these enzymes are plasma-membrane pro-
teins, while others are located in the cytoplasm, mitochondria or nu-
cleus, and are able to phosphorylate a broad number of targets, in-
cluding several signaling effectors, transcription factors, enzymes or
proteins involved in metabolic pathways [11]. More recently, it has
been demonstrated that cancer cells treated with TKs inhibitors reduce
glucose consumption and shift toward a respiratory phenotype [12–14].
Finally, it has been elucidated that overexpression or downregulation of
protein tyrosine phosphatases (PTPs), the enzymes that physiologically
counteract the activity of TKs, contribute to the metabolic rewiring of
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cancer cells [15,16]. Altogether, this evidence suggests that tyrosine
phosphorylation could play a more important role than that hitherto
attributed in the regulation of the energy metabolism of cancer cells
[17].

One aspect that still needs to be clarified is how this post-transla-
tional modification can influence the activity of the enzymes. By in-
troducing additional negative charges, phosphorylation can generate
attractive or repulsive phenomena which in turn can modify the posi-
tion of side chains of critical amino acids, such as those present in the
catalytic site. Hence, tyrosine phosphorylation can affect catalysis, or

modify the affinity of the enzyme for the substrate or cofactors, thereby
resulting in its activation or inhibition [18,19]. On the other hand,
depending on the position and on the number of residues involved,
tyrosine phosphorylation can also affect the overall tridimensional
structure of the enzymes. This event has often been described for en-
zymes harbouring tyrosine residues that can be phosphorylated loca-
lized at the interface between different domains, or subunits of multi-
meric enzymes. In all these cases, phosphorylation promotes the
assembling or the dissociation of enzymes subunits, inducing the acti-
vation or inhibition of the enzymes. That is the case of hexokinase (HK)

Fig. 1. Regulation of glycolytic and PPP enzymes by phosphorylation on tyrosine. The figure shows glycolytic enzymes the activity of which is positively (yellow) or
negatively (green) influenced by phosphorylation on tyrosine residues. The reactions that are activated or inhibited by phosphorylation are indicated by thick
( ) and dashed arrows ( ), respectively. Light blue boxes indicate the enzymes for which phosphorylation on tyrosine residues has been demonstrated,
but whose effects on enzyme activity are not yet known. White boxes indicate not tyrosine phosphorylated enzymes. The name of oncogenic tyrosine kinases
responsible for phosphorylation of metabolic enzymes is reported in red. In addition, the influence of glycolytic intermediates on breaching pathways is reported. PEP
inhibits activity of TPI, promoting diversion of DH3P into lipids biosynthetic pathway; TPI inhibition promotes the accumulation of G6P and its diversion into PPP;
PGAM1 activation converts 3PG into 2PG, thus inhibiting G6PD. Phosphate unit derived from PEP can be used for protein phosphorylation in a reaction catalysed by
the dimeric form of PKM2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and pyruvate kinase M2 (PKM2), for which it has been reported that the
phosphorylation of specific tyrosine residues triggers their dissociation,
resulting in the activation of HKs [20], but, conversely, leading to in-
activation of PKM2 [21]. Furthermore, it has been described that tyr-
osine phosphorylation can also affect the localization of metabolic en-
zymes inside the cell or can modulate their interaction with effectors
molecules, thereby boosting or dampening specific metabolic pathways
[22,23]. Thus, given the range of possible consequences related to
tyrosine residues phosphorylation, understanding the final effect of this
post-translational modification on metabolic enzymes that harbour
multiple phosphorylation sites targeted by different oncogenic TKs re-
sults to be very complicated. In these cases, it is possible to observe a
differential impact of each tyrosine residue on the overall enzyme ac-
tivity, as well as synergistic or antagonistic effects.

Despite numerous evidence proves the importance of tyrosine
phosphorylation in the regulation of cancer cell metabolism [24], the
real extension of this phenomenon among metabolic enzymes is still
largely unknown. This review aims to summarize all the findings
available so far correlating cancer metabolic adaptations with differ-
ential tyrosine phosphorylation in order to clarify the real impact of this
post-translational modification on metabolic enzyme activity. Data
obtained by a systematic study of literature and PhosphoSitePlus da-
tabase analysis [25] were used to build up a map of all the phos-
phorylated metabolic enzymes, providing, for the first time, a clear
overview of the real impact of tyrosine phosphorylation on metabolic
enzyme activity in cancer cells.

2. Enzymes with phosphotyrosine-regulated activity

2.1. Glycolysis

It is well known that cancer cells primarily use glycolysis as an
anabolic pathway to sustain cell growth and proliferation [26]. This
requires the increase of the glycolytic flux and the activation of corre-
sponding regulatory mechanisms, inducing the redirection of a large
part of metabolic intermediates into biosynthetic pathways. Accord-
ingly, almost all the glycolytic enzymes, including HK, glucose 6-
phosphate isomerase (G6PI), phosphofruttokinase-1 (PFK1), fructose-
1,6-bisphosphatase 1 (FBPase), aldolase (ALDO), triosephosphate iso-
merase (TPI), glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGAM), and
α-enolase (ENO), are activated by phosphorylation on tyrosine re-
sidues, thereby confirming that oncogenic TKs exert a capillary control
on enzymes involved in this pathway (Fig. 1, Supplementary Table S1).

2.1.1. Hexokinase (HK)
HK is the first and rate-limiting enzyme of glycolysis. It catalyses the

irreversible phosphorylation of glucose to glucose-6-phosphate (G6P),
using ATP as the phosphate donor. HK is localized in the cytosol and
four different isozymes of HK (namely, HK-I, II, III, IV), catalysing the
same reaction, have been described. HK2 expression is a specific feature
of several tumors, even those arising in tissues where normally only
HK1 is expressed. The importance of HK2 in supporting tumor pro-
gression is demonstrated by the promising results obtained thanks to
the application of targeted therapies developed specifically against HK2
[27].

In a recent study, Zhang and co-authors demonstrated that HK1 and
HK2 isoforms are phosphorylated by c-Src on Y732 and Y686 residues,
respectively. Tyrosine phosphorylation affects HK activity through two
mechanisms: it improves the affinity of HK for its substrate and it
promotes the dissociation of the homo-dimeric form of HK into the
monomeric form that has a higher catalytic activity. Thus, Src, by
phosphorylating both HK isoforms on tyrosine residues, contributes to
drive glucose into the glycolytic pathway, promoting cell proliferation
[20].

2.1.2. Phosphofruttokinase (PFK)
PFK-1 transfers a phosphate group from ATP to fructose-6-phos-

phate (F6P), converting it into fructose-1,6-bisphosphate (F-1,6-P2).
This reaction is essentially irreversible under intracellular conditions.
PFK-1 activity is strongly increased in cancer cell lines and primary
tumor tissues responding to the high requirement of neoplastic cells for
increased glycolysis [28,29]. This hypothesis is also supported by the
evidence that the oncogenes Ras and Src activate PFK in immortalized
cells [30].

Lee and co-authors demonstrated that, in glioblastoma, EGFR binds
and phosphorylates the platelet isoform of PFK1, namely PFKP, on Y64
residue. Consequently, tyrosine-phosphorylated PFK can bind the N-
terminal SH2 domain of p85α, promoting the activation of the phos-
phoinositide 3-kinase (PI3K). The subsequent PI3K-dependent AKT
activation results in enhanced phosphorylation of PFK2, which cata-
lyses the synthesis of fructose-2,6-bisphosphate (F-2,6-P2), a potent
allosteric activator of PFK1 [22]. Meanwhile, it has been recently de-
monstrated that AKT can also phosphorylate β-catenin, promoting its
nuclear translocation and transactivation, thus resulting in enhanced
expression of its downstream genes, such as CCND1 and MYC [31]. This
event is essential to trigger the expression of GLUT1, PKM2, and the A
isoform of lactate dehydrogenase (LDHA), thereby promoting glyco-
lysis, proliferation and migration in cancer cells [31].

2.1.3. Triosephosphate isomerase (TPI)
TPI is the enzyme that reversibly converts dihydroxyacetone phos-

phate (DHAP) into glyceraldehyde 3-phosphate (G3P) and it is known
that serine/threonine phosphorylation by the cyclin A/Cdk2 complex
promotes its inactivation [32]. Moreover, it has been recently demon-
strated that TPI is tyrosine phosphorylated in A375 melanoma cells and
a specific tyrosine phosphatase, the low molecular weight protein tyr-
osine phosphatase (LMW-PTP), is responsible for its dephosphorylation
[16]. LMW-PTP is overexpressed in many aggressive human tumors
[33]. Interestingly, its overexpression leads to enhanced oxidative
phosphorylation (OXPHOS) metabolism. On the contrary, LMW-PTP
silencing stimulates glucose uptake, lactate release, and promotes
cancer cell proliferation, while decreases oxygen consumption, cell
migration and invasiveness [16].

2.1.4. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
GAPDH is the sixth enzyme of glycolysis and it participates in the

energy-releasing phase of this metabolic pathway. It plays a funda-
mental role in both glycolysis and gluconeogenesis by reversibly cata-
lysing the oxidation and the phosphorylation of G3P in 1,3-
Bisphospshoglycerate (1,3-BPG), using NAD+ as co-substrate. In this
reaction, the aldehydic group of G3P is initially oxidized to a carboxylic
acid by NAD+, which in turn is converted in its reduced form NADH;
then, the carboxylic group reacts with orthophosphate (Pi), releasing
the product 1,3-BPG, a highly-energy phosphate compound.

Recent evidence indicates that GAPDH is involved in different
functions not specifically related to its role in glycolytic metabolism,
such as regulation of cell death, autophagy, DNA repair, and RNA ex-
port [34]. The elucidated correlation between different subcellular
compartmentalization of GAPDH and the induction of the autophagic
process in cancer cells is noteworthy. These additional roles of GAPDH
open the possibility of considering it as an interesting pharmacological
target [35]. Another non-metabolic role of GAPDH is the promotion of
Rab2 mediated vesicle fusion. Interestingly, it has been reported that
GAPDH is phosphorylated on Y41 by Src. Even if there is no evidence
that this specific modification influences GAPDH enzymatic activity in
glycolysis, it seems to impact on its role in inducing vesicle fusion [36].
A GAPDH mutant defective in Src-dependent tyrosine phosphorylation
(GAPDH Y41F) impedes Rab2-mediated events [37]. Moreover, GAPDH
is also phosphorylated on Y94 residue: indeed, evidence shows that
such modification alters the molecular dynamic parameters of intra-
nuclear GAPDH, probably by inhibiting its interactions with not yet
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identified nuclear biomolecules [38]. Recently, it has been demon-
strated that LMW-PTP is able to interact with and dephosphorylate
tyrosine-phosphorylated GAPDH [16]. However, the identity of the de-
phosphorylated tyrosine residue remains to be established.

2.1.5. Phosphoglycerate kinase (PGK)
PGK reversibly transfers the phosphate group of the highly-energy

compound 1,3-BPG, generated in the previous reaction catalysed by
GAPDH, to ADP in order to produce ATP and 3-phosphoglycerate (3-
PG). As nicely summarized in a recent review from He and co-authors,
PGK1 plays an important role in mediating cancer progression and drug
resistance, thanks to both its role in glycolysis and its kinase activity
towards different substrates [39].

Shetty and co-authors reported that the binding of urokinase-type
plasminogen activator (uPA) to its receptor (uPAR) promotes phos-
phorylation of the Y76 residue of PGK. Moreover, they also demon-
strated that tyrosine phosphorylation of PGK enhances uPAR mRNA
stabilization, thereby stimulating receptor synthesis [40]. To date, no
evidence is available about the effect of Y76 phosphorylation on the
enzyme activity but mutational studies revealed that inhibition of tyr-
osine phosphorylation increases PGK binding to uPAR mRNA and at-
tenuates uPA-induced uPAR expression [40]. Interestingly, it has been
shown that, upon overexpression, uPAR assembles with and activates
α5β1-integrin and EGFR, thereby favouring the activation of PI3K/
pAKT/mTOR/HIF-1α signaling pathway [41]. HIF-1α stabilization
promotes the expression of glycolytic genes, thereby sustaining the
Warburg effect. In conclusion, this evidence suggests that phosphor-
ylation at Y76 residue of PGK indirectly promotes the Warburg effect in
melanoma cells.

2.1.6. Phosphoglycerate mutase (PGAM1)
PGAM1 is the eighth enzyme of the glycolysis, that catalyses the

reversible transfer of the phosphate group between C-2 and C-3 of
glycerate, thereby converting 3-PG into 2-phosphoglycerate (2-PG). The
reaction consists in two different steps: initially, the phosphorylated
form of PGAM1 transfers its phosphate group from the histidine residue
(H11) to the C-2 of 3-PG, converting it into 2,3-bisphosphoglycerate
(2,3-BPG); then, the C-3 phosphate group of 2,3-BPG is released back to
the histidine residue of the enzyme, ultimately producing 2-PG. Recent
papers indicate that PGAM1 may promote the progression of the most
aggressive forms of several different types of tumor. In fact, PGAM1
overexpression correlates with cell proliferation and survival. The
cancer-specific role of PGAM1 and the possible application of specific
inhibitors for targeted therapy are well described in a recent review
from Sharif and co-authors [42].

In the context of tyrosine phosphorylation, it is attractive the paper
form Hitosugi and co-authors, who reported that PGAM1 is a target of
FGFR and other kinases, resulting in the phosphorylation of multiple
tyrosine sites, including Y26, Y92, Y119, and Y133 residues. However,
among all, only the Y26 phosphorylation influences the enzyme ac-
tivity. In particular, they demonstrated that Y26 phosphorylation
causes displacement of the E19 residue side chain away from the active
site of the enzyme, thus allowing the binding of 2,3-BPG cofactor, and
resulting in the phosphorylation of histidine 11 (H11) of PGAM1. The
active site of PGAM1, harbouring both Y26 and H11 residues in the
phosphorylated form, results more accessible to the substrate 3-PG. In
conclusion, Y26 phosphorylation promotes H11 phosphorylation and
enhances substrate binding, thereby contributing to PGAM1 activation
[19]. Moreover, in vitro studies on H1229 cancer cells and in vivo
analysis of xenograft nude mice revealed the importance of Y26 phos-
phorylation (which is a common modification in several cancer cell
types) for glycolysis, RNA biosynthesis, lipogenesis and in vivo tumor
growth [19]. Interestingly, it has been reported that the two glycolytic
intermediates, namely 3-PG and 2-PG, regulate the activity of extra-
glycolytic enzymes. Indeed, 3-PG inhibits 6-phosphogluconate dehy-
drogenase (6-PGD) of the oxidative branch of pentose phosphate

pathway (PPP), while 2-PG activates phosphoglycerate dehydrogenase
(PHGDH), the first enzyme of the serine biosynthetic pathway [43].
Therefore, it is reasonable to think that oncogenic TKs, regulating
glycolytic enzymes, that display multiple phosphorylable tyrosine re-
sidues, can modulate the functions of extra-glycolytic enzymes involved
in biosynthetic pathways, by changing the intracellular concentration
of regulatory metabolites [44]. Unfortunately, only in a few cases this
hypothesis is confirmed by mutational studies that further substantiate
that tyrosine phosphorylation is essential to promote the Warburg effect
and sustain cancer progression [19].

2.1.7. α-enolase (ENO1)
ENO1 converts 2-PG in phosphoenolpyruvate (PEP), by catalysing

the removal of a water molecule from 2-PG. Interestingly, in colorectal
cancer, ENO1 induces tumorigenesis and metastasis, acting on the
AMPK/mTOR pathway [45]. Moreover, the involvement of ENO1 in
promoting a more aggressive phenotype and in favouring the devel-
opment of chemoresistance has been demonstrated also in gastric
cancer [46]. A recent study performed on A375 and PC3 cells demon-
strated that ENO1 is one of the glycolytic enzymes whose phosphor-
ylation increases after the silencing of LMW-PTP [16]. Importantly, in
these cells tyrosine phosphorylation of ENO1 is required to promote
Warburg metabolism thus prompting cell proliferation [16].

Moreover, Cooper and co-workers showed that in fibroblasts
transfected with ROUS sarcoma virus, which encodes for pp60v-src, the
ENO1 resulted phosphorylated on a tyrosine residue. To date, the
identity neither of the tyrosine residue or its effect on the catalytic
enzyme activity is known [47].

2.1.8. Pyruvate kinase M2 (PKM2)
PKM2 is the muscle isozyme of the pyruvate kinase, the last enzyme

of the glycolytic pathway, transferring the phosphate group from PEP to
ADP in order to produce pyruvate and ATP. Several findings indicate
that in tumor cells PKM2 is generally upregulated and that it mainly
exists as dimer, with a lower catalytic activity. This adaptation pro-
motes the anabolic synthesis through the PPP pathway, thus supporting
cancer cell proliferation and growth. In addition, it has been assessed
that also the protein kinase activity of this enzyme contributes to tu-
morigenesis [48]. The therapeutic relevance of PKM2 inhibitors as
anticancer drugs has been recently suggested, also in light of the known
relationship between PKM2 expression and drug resistance in tumor
cells [49].

Phospho-proteomic analysis of extracts derived from different
cancer cells revealed that several tyrosine residues of PKM2 may be
regulated by opposite actions of protein TKs and phosphatases, such as
Y83, Y105, Y148, Y175, Y370, and Y390 [15,16,21]. Nevertheless,
mutational analysis revealed that only the phosphorylation of Y105 and
Y148 residues impairs enzyme activity [21,50]. Y105 phosphorylation
is triggered by various tyrosine kinases, such as FGFR1, BCR-ABL and
Jak2 [21]. From a mechanistic point of view, it has been demonstrated
that Y105 phosphorylation obstacles the binding of F-1,6-P2 to PKM2,
promoting the dissociation of PKM2 tetramer into the inactive dimeric
form [51]. As a consequence, PEP and other glycolytic intermediates
are redirected into anabolic pathways, while OXPHOS is inhibited [52].
Conversely, dephosphorylation of Y105 residue by TKs inhibitors in-
creases PKM2 activity, promotes pyruvate production and boost OX-
PHOS [21]. Furthermore, protein tyrosine phosphatase 1B (PTP1B) and
LMW-PTP are able to dephosphorylate PKM2 [15,16]. Indeed, substrate
trapping and mutagenesis experiments revealed that PTP1B contributes
to the dephosphorylation of PKM2 Y105 residue [15]. Moreover, a re-
cent study conducted on A375 and PC3 cells demonstrated that LMW-
PTP silencing triggers increased phosphorylation of PKM2 [16].

It is important to underline that PKM2 is the only glycolytic enzyme
to be inhibited by phosphorylation on tyrosine [51]. PKM2 phosphor-
ylation/inhibition allows the accumulation of glycolytic intermediates
and their rewiring in biosynthetic pathways, a condition described as

M.L. Taddei, et al. BBA - Reviews on Cancer 1874 (2020) 188442

4



“metabolic jam”, which is essential for sustaining cancer cell growth
[51]. Moreover, this phenomenon allows some metabolites to reach a
critical concentration and, thus, to act as “regulatory factors”, con-
trolling the activity of the upstream metabolic enzymes [53]. For ex-
ample, PEP inhibits the activity of TPI, thereby blocking the conversion
of DHAP into G3P. As a consequence, DHAP can be used to synthesize
glycerol, a scaffold molecule required for lipid synthesis [54]. At the
same time, TPI inhibition contributes to the accumulation of G6P
which, in turn, can be diverted into PPP, thereby enhancing the
synthesis of NADPH and ribose, improving the production of nucleo-
tides [55]. On the other hand, PEP can be used as a phosphate donor by
PKM2, which is stabilized in the dimeric form by tyrosine phosphor-
ylation and can migrate into the nucleus, where it acts as a TK and
phosphorylates different targets. By this mechanism, PKM2 contributes
to enhance the transcription of proteins and enzymes that finally sus-
tain the Warburg metabolism [56].

2.1.9. Lactate dehydrogenase (LDH)
It is well known that in cancer cells a large part of pyruvate is

converted into lactate and then released in the extracellular medium
[57]. This phenomenon can be explained by the fact that in cancer cells
LDHA, the enzyme that catalyses the conversion of pyruvate into lac-
tate, is usually more active than in normal cells [58]. Specifically, it has
been shown that LDHA, on one hand, is aberrantly over-expressed in
different kinds of cancer and, on the other, displays an elevated rate of
tyrosine phosphorylation, which leads to increased enzyme activity.
Both conditions are associated with malignant progression [57] and
sustain the Warburg effect in cancer cells [59]. Besides lactate synth-
esis, LDHA also converts cytosolic NADH into NAD+, which is neces-
sary to support the activity of GAPDH and other enzymes involved in
biosynthetic pathways, destined to amino acids, lipids, and nucleotides
production [60].

LDHA activity is strictly regulated by several oncogenic TKs, in-
cluding FOP2-FGFR1, HER2, Src, BCR-ABL, the Val617Phe mutant of
JAK2, FLT3-internal tandem duplication [ITD] mutant, and FIP1L1-
PDGFRA kinase [18,59]. Several tyrosine residues can be phosphory-
lated in LDHA, but only the phosphorylation of Y10 and Y83 residues
has been demonstrated to stimulate LDHA activity [18]. Indeed, it has
been established that Y10 phosphorylation promotes the assembling of
the active (tetrameric) LDHA form, while Y83 phosphorylation en-
hances the affinity of NADH for the enzyme active site [18]. Moreover,
Liu and co-workers recently demonstrated that phosphorylation of the
four tyrosine residues (Y10, Y83, Y172, Y239) of LDHA by FGFR1 ex-
tended the half-life of the enzyme in prostate cancer [61] (Fig. 2).

Interestingly, data obtained from the PhosphoSitePlus database
confirmed that the Y239 residue of LDHA is frequently phosphorylated
in cancer cells, even if it is still not described whether this residue has a
role in regulating LDHA activity [62].

Furthermore, it has been reported that some cancer cells over-
express also LDHB, the LDH isoform responsible for the conversion of
lactate to pyruvate. In these types of cancer, LDHB promotes the utili-
zation of lactate as a carbon source to sustain oxidative metabolism and
gluconeogenesis [63]. However, data obtained from PhosphositePlus
database show that in the majority of cancer cells this isoform is nor-
mally phosphorylated on Y94 and Y240 residues but not on Y10, the
residue that mediates the formation of the active LDHA tetramer. A
recent study reports that Aurora-A-mediated phosphorylation of LDHB
on Ser162 residue improves the affinity of LDHB for pyruvate, thereby
leading LDHB to convert pyruvate and NADH into lactate and NAD+,
respectively [64]. Altogether, these data suggest that the activity of
LDH isoforms is controlled by different post-translational modifications
and phosphorylation of Y10 residue represents the mechanism by
which oncogenic TKs can selectively activate LDHA. Accordingly, it has
been demonstrated that the tumor suppressor cyclin G2 interacts with
LDHA preventing the phosphorylation of Y10 residue, thus resulting in
the reduction of glycolysis and cancer cell proliferation [65].

2.2. Pentose Phosphate Pathway (PPP)

PPP plays an important role in cancer progression by providing
precursors for nucleic acid biosynthesis and NADPH for the main-
tenance of redox balance [66]. In the following sections, PPP enzymes
and their phosphorylation on tyrosine residues will be described (Fig. 1,
Supplementary Table S2).

2.2.1. Glucose-6-phosphate dehydrogenase (G6PD)
G6PD catalyses the first reaction of PPP and oxidizes G6P to 6-

phosphoglucono-δ-lactone. NADP+ acts as the electron acceptor in this
reaction and thus it is converted to NADPH. It has been demonstrated
that in many types of cancers the over-expression of G6PD enhances cell
proliferation and promotes cell survival thanks to its action in mod-
ulating redox signaling [67].

The only study available about the regulation of G6PD activity
through tyrosine phosphorylation was performed by Pan and co-
workers. By investigating whether G6PD may be regulated by tyrosine
phosphorylation in endothelial cells in response to VEGF stimulation,
they found that tyrosine phosphorylation induced by Src leads to the
translocation of the enzyme to the plasma membrane and to the in-
crease of its enzymatic activity. Y428 and Y507 are very likely the two
amino acids that undergo phosphorylation [23].

2.2.2. 6-phosphogluconate dehydrogenase (6PGD)
6-phosphoglucono-δ-lactone is converted in ribulose-5-phosphate

by 6PGD, that catalyses an oxidative decarboxylation reaction. It is
noteworthy that this step of the PPP pathway produces another mole-
cule of NADPH.

In a very recent paper [68] it has been shown that 6PGD is activated
upon tyrosine phosphorylation. EGFR activation elicits the Y481
phosphorylation, driven by the Src family kinase Fyn upon EGF sti-
mulation. Y481 is located very close to the NADP+ cofactor-binding site
and once phosphorylated it is able to improve the catalytic efficiency of
the enzyme, increasing both binding affinity to NADP+ and turnover
rate of 6PGD. This modulation results in higher NADPH and ribose-5-
phosphate production, favouring tumor growth. As assessed by the
analysis of a large set of tumor samples, phosphorylation of Y481 is
associated with Fyn expression and correlates with higher malignancy
and a worse prognosis in human glioblastoma.

2.2.3. Transketolase (TKT)
TKT plays a fundamental role in the PPP pathway, by allowing the

interconversion of the PPP intermediates to ultimately synthesize
NADPH and produce CO2 from G6P. Specifically, TKT catalyses the
transfer of a fragment with two carbon atoms from the ketose xylulose-
5-phosphate to the aldose ribulose-5-phosphate, leading to glycer-
aldehyde-3-phosphate and sedoeptulose-7-phosphate.

Although it is known that TKT is phosphorylated on tyrosine re-
sidues [23,68], to date, no data are available about the implications of
this post-translational modification on its activity.

Nevertheless, recent studies revealed the key role of TKT in pro-
moting the Warburg effect [69]. In cancer cells, TKT activity promotes
glucose uptake, recycling metabolic intermediates, such as G6P and
F6P, into the oxidative harm of PPP [69]. By this mechanism, TKT
contributes to maintain low levels of F-1,6-P2 and 3-PG, two metabo-
lites that have a regulatory role, acting the first as a potent PKM2 ac-
tivator, and the latter as a G6PD inhibitor. Meanwhile, by sustaining the
flux of metabolites into the oxidative branch of PPP, TKT promotes the
synthesis of NADPH, which is used by isocitrate dehydrogenase (IDH)
to promote reductive carboxylation of α-ketoglutarate (α-KG), thereby
regulating intracellular ROS [70]. Indeed, TKT silencing correlates with
increased intracellular levels of α-KG, which, in the absence of NADPH,
accumulates into the cells, thereby promoting hydroxylation and de-
gradation of HIF-1α and the shift of metabolism toward OXPHOS [71].
Finally, TKT knockdown causes a decrease of ADP, ATP, and GTP
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intracellular levels, suggesting that TKT also regulates the synthesis of
purine nucleotides [69]. Confirming its key role in promoting the
switch toward a glycolytic metabolism, TKT is overexpressed in the
majority of aggressive glycolytic tumors [71]. Interestingly, Phospho-
SitePlus database analysis underlined that TKT is highly phosphory-
lated in cancer cells. Although we do not know which is the effect of
phosphorylation of Y275 residue, considering all the above observa-
tions, we can expect that phosphorylation of this enzyme may be
functional to modulate its activity in cancer cells. Further analyses will
be necessary to confirm this hypothesis.

2.3. NAD and NADP synthesis

Reductive carboxylation of α-KG requires NADPH, which can be
directly generated into mitochondria by nicotinamide nucleotide
transhydrogenase (NNT), an enzyme that shows multiple phosphory-
lated tyrosine residues according to data obtained from
PhosphoSitePlus database. This enzyme catalyses the transfer of redu-
cing equivalents from NADH to NADPH. By modulating NNT activity, it
is possible to control glucose and glutamine metabolism, which can be
used as alternative sources of α-KG [72,73]. This finding suggests that
cancer cells expressing low NNT levels are not able to compensate for
NADPH production by PPP, and that NNT activity is essential to refill
the intracellular NADPH supply [73]. A recent study focused the at-
tention on the involvement of NNT in gastric cancer, demonstrating
that NNT overexpression correlates with increased cell survival, thanks

to the antioxidant activity of this enzyme. This hypothesis was also
confirmed by knockdown experiments which lead to higher ROS levels
and to an increase in apoptotic cell death. Finally, in vivo experiments
confirmed a role for NNT also in inducing metastatic dissemination of
gastric cancer [74].

Based on all these evidence, it is possible to suppose that, besides its
overexpression, the phosphorylation of NNT tyrosine residues mod-
ulates its activity and maintains the metabolic flexibility of cancer cells,
allowing them to enhance the flux of glutamine-derived carbons into
Krebs cycle under glucose deprivation, or, conversely, to increase glu-
cose metabolism when the availability of glutamine decreases.

Many oncogenes enhance the expression of the enzymes involved in
the nicotinamide adenine dinucleotide synthesis pathways, thus
meeting the increased demand of NAD+ in proliferating cells [75]. Data
reported in this review show that both nicotinate phosphoribosyl-
transferase, (NAPRT1) and nicotinamide phosphoribosyltransferase
(NAMPT) are phosphorylated on tyrosine residues in cancer cells,
suggesting that the activity of these enzymes is under the control of
oncogenic TKs. The NAD+ coenzyme is required to sustain the activity
of a plethora of metabolic and non-metabolic enzymes, such as sirtuins
[76]. These enzymes are generally activated when NAD+ level in-
creases, resulting in the inhibition of HIF-1α transcriptional activity, in
the reduction of glucose metabolism and in the modulation of the Krebs
cycle [77]. Although so far the impact of tyrosine phosphorylation on
the activity of NAPTR1 and NAMPT remains to be elucidated, it is
conceivable that this phenomenon could be another mechanism by

Fig. 2. Effect of Tyrosine phosphorylation on activity of LDHA. Oncogenic TKs phosphorylate LDHA, resulting in the enhancement of the enzyme activity. The LDHA-
catalysed lactate synthesis allows cancer cells to quickly regenerate NAD+ which is important to sustain GAPDH catalytic activity, and to maintain an elevate
glycolytic flow. Moreover, NAD+ is essential to PHGDH which converts 3-PG into 3-phosphonooxypyruvate (3PHP), an intermediate of the SSP. By this way, glucose-
derived carbon atoms can be used to synthesize serine and glycine. Finally, the inhibition of LDHA promotes the rapid conversion of pyruvate into aspartate, in a
glutamate-consuming reaction, catalysed by GPT2. The decrease in glutamate levels leads to the inhibition of GOT1. Therefore, LDHA activation is fundamental to
rescue glutamate and to redirect PEP toward the synthesis of aspartate. The figure shows glycolytic enzymes the activity of which is positively (yellow) or negatively
(green) influenced by phosphorylation on tyrosine residues. The reactions that are activated or inhibited by phosphorylation are indicated by thick ( ) and
dashed arrows ( ), respectively. Light blue boxes indicate the enzymes for which phosphorylation on tyrosine residues has been demonstrated, but whose effects
on enzyme activity are not yet known. White boxes indicate not tyrosine phosphorylated enzymes. The name of oncogenic tyrosine kinases responsible for phos-
phorylation of metabolic enzymes is reported in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

M.L. Taddei, et al. BBA - Reviews on Cancer 1874 (2020) 188442

6



which oncogenic TKs are able to control fluxes of metabolites and en-
ergy metabolism of cancer cells (Supplementary Table S3).

2.4. Krebs cycle

One of the most important consequences of cancer metabolic re-
programming is the strong reorganization of mitochondrial metabolism
and the switch from a catabolic to a biosynthetic use of the Krebs cycle
[6]. The effect of mutations of different TCA cycle enzymes on carci-
nogenesis is quite well documented. These mutations cause abnormal
accumulation of oncometabolites produced by the TCA cycle, stimu-
lating oncogenesis and cancer progression. In a recent review from
Sajnani and co-authors, the importance of TCA cycle in cancer pro-
gression is well summarized, pointing particular attention to the altered
activity of aconitase and IDH described in several types of cancer [78].
However, data reported in this review show that all the enzymes in-
volved in the Krebs cycle are phosphorylated in tyrosine residues by
oncogenic TKs (Figs. 3–4 and Supplementary Table S4). This finding
renfoces the hypothesis that tyrosine phosphorylation has a key role in
modulating the Krebs cycle.

2.4.1. Pyruvate dehydrogenase complex (PDC)
In mammalian cells, the mitochondrial PDC is responsible for the

conversion of pyruvate into acetyl coenzyme A (Acetyl-CoA), fuelling
the glucose-derived carbon atoms into the Krebs cycle. One of the most
important steps to achieve the shift to a biosynthetic use of the Krebs
cycle in cancer cells is to block the conversion of pyruvate into Acetyl-
CoA by inhibiting the activity of PDC. Indeed, most of the pyruvate
produced by cancer cells is not metabolized by mitochondria because
PDK, a TK in its turn activated by oncogenic TKs, phosphorylates on
tyrosine residues PDC thereby inactivating it [79,80].

PDC includes several enzymes, such as the pyruvate dehydrogenase
(PDH1, E1), the dihydrolipoyl transacetylase (E2), the dihy-
drolipoamide dehydrogenase (E3), the pyruvate dehydrogenase kinase
(PDHK1) and the pyruvate dehydrogenase phosphatase (PDP1).
Phosphorylation of PDC by PDHK1 leads to PDC inactivation, whereas
dephosphorylation by PDP1 re-establishes PDC activity. In differ-
entiated cells, PDH1 associates with PDP1 and with NAD+-dependent
deacetylase sirtuin-3 (SIRT3), which maintains PDH1 in the deacety-
lated (active) form [81].

Moreover, it has been demonstrated that different TKs, including
EGFR, FGFR1, FLT3 and JAK2, phosphorylate PDP1 on the Y381 re-
sidue. Phosphorylation of this residue leads to the dissociation of SIRT3
from the PDH1-PDP1 complex, thereby favouring the recruitment of
acetyl-CoA acetyltransferase (ACAT1). ACAT1 acetylates both PDH1
and PDP1 on lysine residues, promoting their dissociation.
Subsequently, acetylated PDH1 recruits PDHK1 that, in turn, phos-
phorylates PDH1 on Ser293 residue, inhibiting its activity [79]. Finally,
it is important to highlight that Y381 is not the only PDP1 tyrosine
residue phosphorylated by TKs in cancer cells. It has been recently
demonstrated that also phosphorylation of Y94 residue contributes to
the inhibition of PDC complex activity, promoting the Warburg effect in
cancer cells [80].

Further studies revealed that both PDH1 and PDHK1 are phos-
phorylated by oncogenic TKs [81,82]. In cancer cells several kinases,
including FGFR1, EGFR, BCR-ABL, JAK2, EOL1, KG-1a, Molm14, Mo91
and FLT3, catalyse PDH1 phosphorylation on Y301 residue, blocking
the binding of the pyruvate to the enzyme. These findings suggest that
Y301 phosphorylation inhibits OXPHOS and stimulates glycolysis,
providing a metabolic advantage to cell proliferation under hypoxia
[81]. On the other hand, it has been reported that mitochondrial-lo-
calized kinases, such as FGFR1, FLT3, BCR-ABL and JAK2, trigger

Fig. 3. Regulation of Krebs cycle by phosphorylation on tyrosine. All the enzymes of the Krebs cycle result to be phosphorylated on tyrosine residues. In particular,
IDH1 phosphorylation enhances its activity promoting the synthesis of α-KG from isocitrate favouring cancer progression through different mechanisms. Tyrosine
phosphorylation enhances GLS1 activity thereby increasing α-KG production and feeding the Krebs cycle. The figure shows glycolytic enzymes the activity of which is
positively (yellow) or negatively (green) influenced by phosphorylation on tyrosine residues. The reactions that are activated or inhibited by phosphorylation are
indicated by thick ( ) and dashed arrows ( ), respectively. Light blue boxes indicate the enzymes for which phosphorylation on tyrosine residues has been
demonstrated, but whose effects on enzyme activity are not yet known. White boxes indicate not tyrosine phosphorylated enzymes. The name of oncogenic tyrosine
kinases responsible for phosphorylation of metabolic enzymes is reported in red. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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PDHK1 phosphorylation on different tyrosine residues, thereby pro-
moting kinase activation [81]. These findings suggest that tyrosine
phosphorylation, together with serine phosphorylation [83], plays a
crucial role in inhibiting PDC activity and hence in promoting the
glycolytic pathway in proliferating cancer cells (Fig. 4).

2.4.2. Isocitrate dehydrogenase (IDH)
Mammalian cells express three different IDH isoforms, namely

IDH1, IDH2, and IDH3. IDH1 is localized in the cytoplasm, while IDH2
and IDH3 isoforms are mitochondrial enzymes [84]. The canonical
function of IDH1/2 is to convert isocitrate to αKG and NADP+ to
NADPH. While the activity of IDH1/2 is NADP+-dependent, the activity
of IDH3 isoform is strictly dependent on NAD+ [85]. However, recent
studies demonstrated that, under hypoxic conditions, IDH1/2 can also
play a significant role in the reductive carboxylation by converting α-
KG, generated from glutamine, into citrate, which is then released from
mitochondria and destined to refill fatty acid biosynthetic pathways.
This reductive, glutamine-dependent pathway is the main source of
citrate in growing cancer cells [86,87].

Interestingly, the two isoenzymes, IDH1 and IDH2, are differently
phosphorylated on tyrosine, suggesting that oncogenic TKs can exert a
differential control on these enzymes. Noteworthy, the analysis of
specimens derived from patients affected by different tumor types fur-
ther confirmed that IDH1 is highly phosphorylated in vivo and that
tyrosine phosphorylation of IDH1 is essential to maintain tumorigenic
potential and to sustain cancer cell proliferation [88]. Consistently, it
has been reported that the phosphorylation of Y42 and Y391 residues
enhances the activity of IDH1 [88], promoting the conversion of iso-
citrate into α-KG, which is an important substrate of several transa-
minases and an essential co-substrate for the Jumonji C-domain-con-
taining αKG -dependent histone demethylases [89].

Specifically, Chen and co-authors showed that IDH1 isoenzyme is a
target of two groups of TKs: the first group, including EGFR, JAK2,
ABL1, PDGFR, and FGFR1, phosphorylates the Y42 residue, while the
second group, composed by FLT3 and Src, enhances the

phosphorylation of the Y391 residue. Phosphorylation of Y42 residue
promotes the conversion of IDH1 from the monomeric (inactive) into
the dimeric (active) form, thereby inducing substrate binding, while the
phosphorylation of Y391 residue favours the binding of coenzyme
NADP+ [88].

Mutations in the genes encoding for IDH1/2 occur in various types
of malignancies, including the majority of malignant gliomas and acute
myeloid leukemia [90,91]. These mutations confer to IDH1/2 the
function to produce 2-hydroxyglutarate (2-HG) and therefore to reg-
ulate cancer epigenetic by competitively inhibiting αKG-dependent TET
enzymes [92].

Interestingly, the regulatory mechanism described by Chen and
collaborators is effective on both wild-type and mutant IDH1. Indeed,
oncogenic TKs can phosphorylate IDH1 mutated forms, stimulating the
synthesis of 2-HG [88]. In particular, it has been demonstrated that
tyrosine phosphorylation can affect the activity of IDH1 mutants, pro-
moting the NADPH-dependent reduction of α-KG into 2-HG, a compe-
titive inhibitor of α-KG-dependent dioxygenases [93].

In a recent paper, Ward and co-workers showed that cancer cells
harbouring Y139D mutation in IDH1 increase the production of 2-HG
[94]. Noteworthy, substitution of tyrosine with negatively charged re-
sidues was widely used to mimic constitutive phosphorylation of a
protein or an enzyme [95]. Thus, it is possible to speculate that phos-
phorylation on Y139 residue, which is located close to the IDH1 active
site, could contribute to the regulation of its activity, favouring the
accumulation of 2-HG and HIF-1α stabilization [96].

Together, these findings suggest that tyrosine phosphorylation has a
key role in modulating the activity of both wild-type and mutated forms
of IDH1.

Even if IDH is the only Krebs cycle enzyme for which the effect of
tyrosine phosphorylation has been investigated, data obtained from
PhosphoSitePlus database show that almost all the enzymes partici-
pating to the Krebs cycle, including citrate synthase (CS), aconitate
hydratase (ACO2), IDH, succinil-CoA ligase subunit β (SUCLA2β, suc-
cinate dehydrogenase (SDHA), fumarate hydratase (FH), malate

Fig. 4. Control of PDC activity through phosphorylation on tyrosine residues. In cancer cells, PDP1 is phosphorylated on Y94 and Y301 by oncogenic TKs.
Phosphorylation of Y94 causes PDP1 inhibition, while phosphorylation of Y301 favours dissociation of SIRT3 and recruitment of ACAT1 to the PDH-PDP complex.
After binding to the PDH-PDP complex, ACAT1, which is also activated by phosphorylation on tyrosine residue, acetylates PDP1 on K202 residue, impairing its ability
to interact with PDHA. Once dissociated by PDP1, PDH can assemble with PDHK, which phosphorylates PDH on a serine residue inactivating it. In addition, the
activity of PDHK is modulated by phosphorylation on tyrosine residue: several oncogenic TKs target PDHK, thus enhancing its activity. In addition, PDH is inhibited
by phosphorylation on a tyrosine residue. The name of oncogenic tyrosine kinases responsible for phosphorylation of metabolic enzymes is reported in red. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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dehydrogenase (MDH2), can be phosphorylated on tyrosine residues.
Among these enzymes, data focused on ACO2 are particularly in-

teresting in the context of cancer cells. The reductive carboxylation of
α-KG leads to the synthesis of a large amount of isocitrate, which must
be converted into citrate before the extrusion from mitochondria.
Therefore, we can argue that cancer metabolic reprogramming requires
the inhibition of aconitase, the enzyme which catalyses the conversion
of citrate into isocitrate. Studies performed on specimens from patients
with gastric cancer revealed that the expression of ACO2 is significantly
lower in gastric cancer tissues compared with matched adjacent non-
tumor tissues and that lower ACO2 expression is related to a poor
prognosis [97]. Moreover, a recent study conducted on breast cancer
cells showed that ACO2 expression decreases glucose consumption and
increases oxidative metabolism [98]. Based on these observations and
on the evidence that ACO2 is frequently phosphorylated on a tyrosine
residue, it is possible to hypothesize that oncogenic TKs phosphorylate
this enzyme in order to inhibit its activity, thereby promoting the
Warburg effect and cancer cells proliferation.

No information is available about the impact of tyrosine phos-
phorylation on the activity of other enzymes involved in the Krebs
cycle. However, it is important to notice that some intermediates of the
Krebs cycle can act as regulatory metabolites. α-KG is a co-substrate of
HIF-1α prolyl-hydroxylase, which catalyses HIF-1α degradation. When
the activity of α-ketoglutarate dehydrogenase is inhibited or down-
regulated, α-KG can accumulate and can be converted into L-2-HG by
LDHA and MDH1 or mitochondrial MDH2. In turn, L-2-HG inhibits
PDH, resulting in HIF-1α stabilization and in the promotion of Warburg
metabolism [99]. Similarly, inhibition of SDH promotes the accumu-
lation of succinate, while inhibition of FH induces accumulation of
fumarate, two well described inhibitors of PDH. Coherently, the in-
hibition of both SDH and FH favours the activation of HIF-1α, which in
turn up-regulates metabolic genes that promote the Warburg metabo-
lism [100]. This finding suggests that oncogenic TKs could control the
activity of these enzymes, finally leading to an increase of the in-
tracellular concentration of the so-called “oncometabolites” that pro-
mote cancer progression though different adaptations.

2.5. Mitochondrial electron chain complexes

It is becoming increasingly clear that cancer cells do not simply rely
on aerobic glycolysis for their bioenergetic and biosynthetic needs, thus
for many types of cancer an increase in oxidative metabolism has been
described [101]. Moreover, growing evidence demonstrates that cancer
stem cells and cancer cells that acquired drug resistance frequently
display an increase in mitochondrial metabolism [102–104], suggesting
that oxidative metabolism is correlated with a more aggressive phe-
notype in cancers. The importance of this metabolic modulation is de-
monstrated by the positive antitumoral effects of several different OX-
PHOS inhibitors [105], confirming, on one hand, the hypothesis
reported above that mitochondria play a key role in favouring cancer
cells proliferation and, on the other, suggesting that tumor metabolic
reprogramming includes deep modifications in the activity of mi-
tochondrial electron chain. Multiple findings underline that oncogenic
TKs, participating in these modifications, phosphorylating and reg-
ulating the activity of mitochondrial electron chain complexes, as dis-
cussed in the following sections. In addition, PhosphoSitePlus database
analysis revealed that all the mitochondrial complexes can be phos-
phorylated on tyrosine, indicating the importance of this post-tran-
scriptional modification in modulating the balance between glycolytic
and oxidative metabolism in cancer.

2.5.1. NADH-dehydrogenase (Complex I)
Complex I of the mitochondrial electron chain contains several Fe-S

clusters and a flavoprotein FMN, that play a central role in the transfer
of electrons to ubiquinone. NADH dehydrogenase acts as a proton pump
driven by electron transfer and directs protons from the mitochondrial

matrix to the intermembrane space of mitochondria, simultaneously
converting NADH to NAD+.

Complex I activity preserves a correct NAD+/NADH ratio, thus
controlling the synthesis of precursors such as aspartate, inducing
HIF1α signaling, and inhibiting mTORC1 signaling. In cancer cells,
these Complex I-related events support cell proliferation, resistance to
cell death, and promotion of metastasis [106]. Complex I has been
found overexpressed in different types of cancer including metastatic
colon carcinoma [107]. However, overexpression of Complex I could
result in an excessive ROS production, with the consequent risk of in-
ducing severe cell damage and impairing cell proliferation. Hence, it is
reasonable to suppose that oncogenic TKs should be able to regulate the
activity of this complex to meet the metabolic demand of cancer cells,
avoiding the production of elevated ROS levels and cell death
[108,109].

In this context, Src tyrosine kinase translocates into mitochondria,
where it phosphorylates the NDUFB10 subunit of Complex I, increasing
its activity and contributing to the maintenance of the mitochondrial
membrane potential. It has been suggested that this phosphorylation
could affect the assembly, activity and/or proton translocation ability
of Complex I [108]. It is noteworthy that the correct assembly of
Complex I prevents excessive production of ROS, protecting cells from
oxidative damage. Thus, it is reasonable to hypothesize that Src-medi-
ated NDUFB10 tyrosine phosphorylation minimises the production of
ROS by Complex I [109]. Moreover, Cesaro and co-workers showed that
other tyrosine residues of NDUFB10, namely Y55 and Y142, are phos-
phorylated, but the effect of their phosphorylation on Complex I ac-
tivity remains to be clarified [110]. An independent study on glio-
blastoma cells revealed that the Y193 residue of NADH dehydrogenase
[ubiquinone] flavoprotein 2 (NDUFV2) is phosphorylated by Src, and
treatment with a Src inhibitor impairs O2 consumption and reduces ATP
production. Similar effects have been observed by substituting Y193
with a residue that cannot be phosphorylated. Considering that
NDUFV2 is located in the NADH binding region of Complex I, it has
been proposed that Y193 phosphorylation could impair NADH dehy-
drogenase activity [111].

2.5.2. Succinate-ubiquinone oxidoreductase (Complex II)
Complex II is a four-subunits protein, containing a co-factor FAD,

three 2Fe-2S clusters, a succinate binding site and a ubiquinone binding
site. Specifically, it is involved in the electron transfer from succinate to
ubiquinone. Complex II plays an important role in supporting tumor
progression as demonstrated by the successful results obtained by the
application of Complex II inhibitors in the treatment of several types of
cancer [112].

Genes encoding for different subunits of Complex II are mutated and
epigenetically modulated in many types of cancer [113]. Moreover,
recent studies demonstrated that the activity of Complex II can be also
regulated by tyrosine phosphorylation [114,115]. Acin-Perez and co-
workers reported that mitochondrial Fgr tyrosine kinase phosphorylates
the Y604 residue of Complex II, increasing its activity and reducing the
expression of Complex I [29]. Therefore, cells enhance FADH2 oxida-
tion at the expense of NADH. Taking into account that NADH/FADH2

ratio is increased in glucose consuming cells and decreased in cells that
metabolize fatty acids, it has been speculated that tyrosine phosphor-
ylation of Complex II could promote the metabolic rewiring of cells
under stress conditions, such as glucose deprivation [29].

2.5.3. bc1 Complex (Complex III)
Complex III is a multi-subunit complex that couples the electron

transfer from the reduced ubiquinol to cytochrome c with proton
transport from the mitochondrial matrix to mitochondrial inter-
membrane space.

A study conducted by Augereau and co-workers revealed that
Complex III is tyrosine phosphorylated by Src kinase family members
under either direct exposure of mitochondria to ATP in vitro or during in
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situ mitochondrial ATP production. However, to date, the role of this
post-translational modification remains unknown [116].

2.5.4. Cytochrome c and cytochrome c oxidase (Complex IV)
Cytochrome c is a key modulator of mitochondrial activity. Its role

consists in transferring electrons from the mitochondrial Complex III to
the cytochrome c oxidase (CcO) complex, which in turn catalyses the
reduction of molecular oxygen in two water molecules, using four
electrons and four protons derived from the mitochondrial matrix.
Moreover, cytochrome c can be released in the cytoplasm, where it is
able to trigger apoptosis, leading to cell death [117]. Defective CcO has
been related to increased glycolysis and to the induction of retrograde
signaling which can induce tumor progression [118]. Independent
studies evidenced that CcO is phosphorylated on several tyrosine re-
sidues by different TKs. Immobilized metal affinity chromatography
(IMAC) coupled with mass spectrometry experiments revealed that two
tyrosine residues of cytochrome c, namely Y48 and Y97, are phos-
phorylated by a yet unknown TK [119]. Kinetic analyses, performed on
Y48 phosphorylated cytochrome c, showed that phosphorylation is
detrimental for cytochrome c activity, decreasing the respiration rate by
50% [119]. Moreover, Pecina and co-workers proved that the sub-
stitution of Y48 residue with a phospho-mimetic group results in the
inhibition of the apoptotic process [120]. Conversely, phosphorylation
of Y97 residue does not impair the respiration rate, suggesting a dif-
ferent role of this residue in regulating cytochrome c activity [119]. It
has been demonstrated that Y97 phosphorylation decreases the affinity
of cytochrome c for CcO, thereby modulating either the flux of electrons
through the mitochondrial electron chain and the ATP synthesis [121].
Furthermore, considering that Y97 residue is located in a hydrophobic
region implicated in the binding of phospholipids, the phosphorylation
of this tyrosine probably modulates the interaction of cytochrome c
with cardiolipin [122]. Notably, Y97 residue is phosphorylated in both
healthy heart and brain, but fully dephosphorylated during ischemic
events. Thus, Y97 dephosphorylation could contribute, on one hand, to
regulate electron flux through mitochondrial electron chain when
higher amounts of ATP are required, and, on the other, to limit cardi-
olipin oxidation, thereby protecting cells from apoptosis [123].

Lee and co-workers demonstrated that, in cow liver, the Y304 re-
sidue of CcO subunit I is phosphorylated following the treatment with
an activator of adenylate-cyclase or the stimulation with glucagon,
suggesting that a upstream TK is activated by the cAMP pathway. CcO
phosphorylation on Y304 results in a strong inhibition its activity,
promotes the dimerization of subunit I, thereby converting CcO in an
allosteric protein, and causes a decrease in the Vmax and an increase in
the Km for cytochrome c. Together these results confirm that Y304
phosphorylation leads to CcO inactivation in the liver [124]. Moreover,
Samavati and co-authors showed that also the signaling pathway acti-
vated by TNF-α, one of the most important mediators of inflammation,
causes the activation of a mitochondrial TK that phosphorylates CcO on
Y304 residue of subunit I, leading to CcO inhibition [125]. Similar
experiments enable to identify Y11 residue as an alternative phos-
phorylation site at CcO subunit IV-1. Y11 residue is located in the ATP/
ADP binding site of CcO. Despite no mutagenesis studies have been
performed to identify the functional role of Y11, computer modelling
analysis [126] suggested that Y11 phosphorylation could have a role in
modulating the allosteric behaviour of CcO, mainly due to the proxi-
mity of this residue to the binding site for ADP and ATP [127].

Moreover, in silico analysis revealed that Y113 residue, an addi-
tional phosphorylation site of CcO subunit II, could be the target of c-
Src tyrosine kinase. However, no data are available about the effect of
Y113 phosphorylation on CcO activity [128].

2.5.5. ATP synthase
Mitochondrial ATP synthase, also known as Complex V, consists of

two subunits (Fo and F1) and is located in the internal mitochondrial
membrane. It is responsible for the ATP synthesis from ADP and Pi. In

addition, the presence of the proton gradient across the mitochondrial
membrane allows the release of the newly synthesized ATP from the
enzyme.

The role of ATP synthase downregulation in reprogramming energy
metabolism of cancer cells has been summarized in a recent review
[129]. Following its downregulation, cells enhance glycolytic flux,
while reducing mitochondrial ATP production. Interestingly, the
downregulation of ATP synthase and the concomitant overexpression of
its inhibitory factor 1 (IF1) have been described in a subset of carci-
nomas, when compared to normal tissues [130,131]. Besides the reg-
ulation through IF1, ATP synthase activity seems to be also regulated
trough post-translational modifications such as phosphorylation. Pre-
liminary experiments performed in vitro on mouse cortical neurons re-
vealed that stimulation with PDGF leads to tyrosine phosphorylation of
the δ subunit of ATP synthase [132].

Further studies performed on mouse embryonic fibroblasts (NIH3T3
cells) and mesangial kidney cells confirmed that ATP synthase tyrosine
phosphorylation is not only a prerogative of neurons [133]. The authors
identified Y75 as the residue that undergoes phosphorylation following
stimulation with PDGF, even if a subsequent bioinformatic analysis
identified several other consensus sequences that should be targeted by
cellular kinases [133]. Considering that the δ subunit is fundamental for
the regulation of the “F1 motor unit” of the ATP synthase enzyme, it is
reasonable to hypothesize that tyrosine phosphorylation of this subunit
contributes to modulate ATP synthesis [133]. More recently, a study
conducted on ATP synthase in resting mitochondria showed that Y52
residue in the γ subunit is phosphorylated under steady-state condi-
tions. The functional role of Y52 phosphorylation remains to be eluci-
dated. Y52 residue is located at the foot of the γ subunit and near the δ
subunit [134]. Based on this evidence, we can suppose that phosphor-
ylation of tyrosine residues located in the foot of the γ subunit could be
essential to regulate the activity of the F1 complex and consequently
the synthesis of ATP.

2.5.6. Adenine nucleotide translocase (ANT)
After the addition of a phosphate moiety to ADP, the neo-synthe-

sized ATP is exported out of mitochondria using the ADP/ATP trans-
locase. In particular, ANT transfers ADP3- from the mitochondrial in-
termembrane space to the matrix, while transports ATP4- outside the
mitochondrial matrix. This transfer is favoured by the electrochemical
and proton gradient across the mitochondrial membrane.

Among the four different ANT isoforms, the isoform 2 (ANT2) is
directly related to the metabolic adaptation observed during tumoral
development and ensures the great metabolic flexibility that char-
acterizes cancer cells [135]. Interestingly, overexpression of ANT2 also
leads to apoptosis inhibition, thus favouring cancer cell survival [135].

NNT is a transmembrane protein, showing a deep binding site for
ATP and ADP, which includes at least three tyrosine residues, namely
Y186, Y190, and Y194. Interestingly, it has been observed that Y190
and Y194 residues are both phosphorylated and the mutagenesis of
these two residues impairs the ability of cells to grow on non-fermen-
table carbon sources. Taking into account the localization of these re-
sidues, it can be suggested that their phosphorylation may alter the
chemical-physical properties of the ADP/ATP binding site, thereby
changing the specificity of the binding or the transport rate [116].

2.6. Amino acid metabolism

One hallmark of metabolic reprogramming in cancer cells is the
reorganization of amino acid metabolism [136]. Cancer cells show a
remarkable heterogeneity in terms of quantity and modality of amino
acids utilization. Many cancer cells increase the consumption of glu-
tamine, which is the most abundant amino acid in plasma and a source
of nitrogen atoms, that in turn can be used to synthesize other amino
acids or nucleotides [137,138]. Compelling evidence shows that glu-
tamine-derived carbons can be used to refill the Krebs cycle [139,140].
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For instance, glutamine-derived α-KG can be used to synthesize citrate
through the reductive pathway, to generate malate and pyruvate, or to
produce oxaloacetate (OAA) and aspartate [141]. On the other hand, an
increase in amino acid metabolism leads to a greater production of
ammonium, a toxic by-product for mammalian cells. Nevertheless, it is
surprising to note that many cancer cells display a reduced production
of nitrogen waste since they redirect most of their nitrogen supplies
toward biosynthetic pathways [142]. However, to date, the mechan-
isms by which cancer cells are able to maximize the use of nitrogen and
carbon derived from amino acids remain to be fully explained.

Data obtained from the analysis of PhosphoSitePlus database reveal
that many enzymes involved in amino acid metabolism are phos-
phorylated on tyrosine residues, including glutaminase (GLS), gluta-
mate dehydrogenase 1 (GLUD1), glutamate dehydrogenase 2 (GLUD2),
cytosolic aspartate aminotransferase (GOT1), mitochondrial aspartate
aminotransferase (GOT2), alanine aminotransferase (GPT1), glutamine
synthetase (GLUL) and asparagine synthetase (ASNS) (Supplementary
Table S5). Moreover, also the enzymes of the urea cycle, including
mitochondrial carbamoyl-phosphate synthase (CPS1), argininosucci-
nate synthase (ASS1), and arginase 1 (ARG1), result to be phosphory-
lated on tyrosine residues (Supplementary Table S6). Together, these
findings suggest that oncogenic TKs exert strict control on amino acid
metabolism, allowing cancer cells to rewire their metabolism de-
pending on nutrient and oxygen availability.

2.6.1. Glutamine metabolism
Right after glucose, glutamine is the second most consumed meta-

bolite in cancer cells [139]. Glutamine is a key substrate for tumor
growth as demonstrated by the strong sensitivity to glutamine depri-
vation observed in the majority of human cancer cell lines [143].
Moreover, the importance of glutamine metabolism in cancer is un-
derlined by the fact that different anticancer treatments targeting dis-
tinct enzymes of this pathway have been successfully developed [144].

Oncogenic TKs are able to modulate different aspects of glutamine
metabolism. For instance, they are involved in increasing glutamine
uptake, through the upregulation of specific mitochondrial transporters
[145,146], and increasing the activity of GLS [147]. GLS hydrolyses
glutamine to glutamate, which can be further converted into α-KG by
GLUD1, thereby feeding the Krebs cycle. This pathway is crucial for
proliferating cells since it replenishes the Krebs cycle with carbon atoms
that can be used to different scopes, including the synthesis of nu-
cleotides, lipids, and NADPH [140]. In a recent paper, Huang and co-
workers showed that, in the liver, the MET kinase is able to increase the
activity of GLS through phosphorylation on tyrosine residues [147]. To
date, no information is available about the position and the number of
tyrosine residues involved in the regulation of GLS activity. Moreover,
it is interesting to note that MET kinase targets also PDC, leading to its
inhibition, thus simultaneously stimulating the Warburg effect and the
glutaminolysis, thereby promoting biogenesis and liver cancer cell
growth [147] (Fig. 3).

Under hypoxia, many cancer cells increase the consumption of
glutamine to sustain lipogenesis, nucleotide synthesis, and cell pro-
liferation [148,149]. Interestingly, it has been demonstrated that cells
excrete overflowed nitrogen and carbon in the form of dihydroorotate,
an intermediate of pyrimidine synthesis [150]. In this context, onco-
genic TKs could coordinate the activity of enzymes involved in amino
acids catabolism and nucleotide synthesis, thereby sustaining cancer
cell growth and avoiding toxic effect due to ammonia accumulation
[150]. We can speculate that oncogenic TKs could promote this phe-
nomenon by controlling the activity of CPS and GOT isoforms, the
enzymes involved in the synthesis of carbamoyl phosphate and aspar-
tate, two key metabolites required for purine and pyrimidine synthesis.
Under glutamine deprivation, different types of cancer enhance the
synthesis of glutamine starting from α-KG. For instance, it has been
reported that human breast cancer cells are able to incorporate nitrogen
atoms from ammonia through the reductive amination reaction,

catalysed by glutamate dehydrogenase (GDH), which converts α-KG
into glutamate. Moreover, glutamate can be used to sustain the synth-
esis of other amino acids such as proline and aspartate [142], or con-
verted into glutamine by the reaction catalysed by GULL [151]. The
finding that in cancer cells this enzyme results to be phosphorylated on
different tyrosine residues suggest that oncogenic TKs could modulate
its activity, thereby supporting cell survival and proliferation also under
the condition of glutamine deprivation.

2.6.2. Aspartate metabolism
Aspartate is one of the most important amino acids for cancer cells

because of its contribution to nucleotides biosynthesis [152]. Cancer
cells can synthesize aspartate through different pathways: a first pos-
sibility is by exploiting the activity of GOT1 (cytosolic form) and GOT2
(mitochondrial form), two transaminases which convert glutamate into
α-KG and OAA into aspartate [153]; a second one is by converting
asparagine into aspartate, using the enzyme asparaginase. It is inter-
esting to observe that, according to PhosphoSitePlus database, all these
enzymes are phosphorylated on tyrosine residues leading us to suppose
that their activity is controlled by oncogenic TKs. It is noteworthy that
the increase in aspartate levels can be obtained also by interfering with
the activity of ASS1, the enzyme that synthesizes argininosuccinate,
from aspartate and citrulline. It has been reported that, in melanoma
and osteosarcoma cells, the inhibition of ASS1 determines the upregu-
lation of the CAD complex, designated at the pyrimidine synthesis, and
the increase in tumor burden [154]. Data reported in this review show
that ASS1 possesses many tyrosine residues that can be phosphorylated
and on these bases, we can argue that oncogenic TKs could control also
its activity, promoting cancer cell proliferation.

2.6.3. Serine metabolism
Beside ribose, nucleotides biosynthesis requires carbon atoms de-

rived from different amino acids, including serine, glycine, and gluta-
mine. The first one can be synthesized starting from the intermediate of
the glycolysis 3-PG through the serine synthesis pathway (SSP) (Fig. 2).
Several studies showed that, in many tumor types, the increased ac-
tivity of SSP supports the synthesis of numerous molecules essential to
maintain the high proliferation rate of cancer cells, such as nucleotides
[155], amino acids, and phospholipids [156,157]. The increased flux
through the SSP in cancer cells is generally supported by the amplifi-
cation of PHGDH and by the 2-PG-induced activation of PHGDH
[158,159].

Moreover, patients with breast cancers overexpressing PHGDH have
a poorer survival rate, indicating the importance of this pathway in
tumorigenesis [157].

Interestingly, thanks to PosphoSitePlus database analysis we found
that, although PHGDH and phosphoserine phosphatase (PSPH) are not
targets of oncogenic TKs, both the phosphoserine aminotransferase
(PSAT1, the second enzyme of the SSP) and the cytosolic isoform of
serine hydroxymethyltransferase (SHMT1, the enzyme deputed to cat-
alyse the reversible conversion of serine and tetrahydrofolate to glycine
and 5,10-methylene tetrahydrofolate) are frequently phosphorylated on
tyrosine residues in cancer cells (Supplementary Table S7). Even
though no information is available to date, we could speculate that this
phosphorylation may be functional to improve the activity of these
enzymes, thereby enhancing the synthesis of serine and glycine.
Moreover, it is interesting to observe that the mitochondrial isoform of
SHMT (SHMT2) is not phosphorylated on tyrosine, suggesting that
oncogenic TKs can selectively control the activity of the two different
isoforms. Considering that mitochondrial serine metabolism produces a
larger amount of NADH than its cytosolic counterpart, we can suppose
that differential phosphorylation (and hence regulation) of both SHMT1
and SHMT2 isoforms could be functional, de facto, to sustain nucleotide
biosynthetic pathways without impairing glycolytic flux [160].
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2.7. Lipid metabolism

Lipids, together with glycerol, are the main constituents of cell
membranes. In order to regulate their proliferation rate, cancer cells
need to improve lipid biosynthesis, most of which is destined to support
phospholipid production [161,162]. Moreover, cancer cells also en-
hance lipid uptake [163] and increase de novo lipid biosynthesis from
glucose or glutamine [164], in order to meet their higher energetic
demands.

The relevance of tyrosine phosphorylation on lipid metabolism has
not yet received as much attention as for glucose or amino acid meta-
bolism. However, some studies identified tyrosine phosphorylated sites
on enzymes involved in lipid metabolism, suggesting new potential
roles still not completely discovered [165]. All the following enzymes
and their phosphorylation sites are mentioned in the Supplementary
Table S8 and in the Fig. 5.

2.7.1. ATP-citrate lyase (ACLY)
The role of ACLY is to convert coenzyme-A and citrate to acetyl-

CoA. ACLY is connected to different malignancies. In particular a cor-
relation has been identified between ACLY overexpression and poor
differentiation and prognosis in lung adenocarcinoma [166] and acute
myeloid leukemia [167]. In highly proliferating cells, the activation of
ACLY is essential to avoid the accumulation of citrate, which otherwise
could inhibit PFK1, thereby blocking the glycolytic pathway [168].
Citrate produced by reductive carboxylation of glutamine is exported
into the cytosol where it is converted into OAA and Acetyl-CoA, which
is therefore redirected toward the fatty acid biosynthesis. This is pos-
sible thanks to the activity of oncogenic TKs that phosphorylate and
activate both ACLY and ACAT1 enzymes [169,170].

Alongside the role of serine phosphorylation on ACLY activation,
Basappa and co-workers identified ACLY as a possible substrate of the
chimeric TK NPM-ALK. NPM-ALK is an oncogenic protein, typical of the
anaplastic large cell lymphoma (ALCL), and it results from the recurrent
translocations involving anaplastic lymphoma kinase (ALK) gene and

the nucleophosmin (NPM) gene [169]. Indeed, phospho-proteomic
analyses of three ALK-positive ALCL derived cell lines identified the
Y682 residue of ACLY as a novel phosphorylation site of NPM-ALK.
Expression of ACLY mutant Y682F or pharmacological inhibition of
ALK resulted in decreased ACLY activity, as well as decreased lipid
synthesis and increased fatty acid ß-oxidation when compared to ACLY-
WT. Moreover, ACLY-Y682F expression resulted in decreased cell pro-
liferation, reduced clonogenic potential, and impaired tumor growth in
xenograft mouse models. Thus, tyrosine phosphorylation of Y682 re-
sidue has been identified as a novel mechanism of ACLY regulation in
ALCL pathogenesis [169]. More recently, the same authors described
that Lyn and Src kinases directly phosphorylate ACLY on six and four
tyrosine residues, respectively. Interestingly, the three ACLY tyrosine
residues that are commonly phosphorylated bu Lyn and Src, namely
Y682, Y252, Y227, are located in the catalytic domain, the citrate-
binding domain, and the ATP-binding domain, respectively, suggesting
a key role for tyrosine phosphorylation in regulating the activation of
the enzyme. Moreover, Lyn inhibition strongly reduces ACLY activity
and impairs the growth of Acute Myeloid Leukemia patient derived
cells [170].

2.7.2. Fatty acid synthase (FASN)
FASN is a central biosynthetic enzyme in the lipid metabolism, that

plays a fundamental role in the de novo lipogenesis. Indeed, it is a
homodimeric enzyme complex that, essentially, condenses acetyl-CoA
and malonyl-CoA to produce long-chain fatty acids, using NADPH as co-
substrate. FASN has been found transcriptionally regulated by andro-
gens, estradiol, and progesterone in hormonally responsive tumors.
Moreover, FASN is overexpressed and hyperactivated in an aggressive
subset of sex-steroid-related tumors, including breast carcinoma [171].
Recently, Menendez and co-authors identified that the anomalous li-
pogenic activity of tumor-associated FASN regulates the response of
breast cancer cells to E2-stimulated ERα signaling. These authors de-
monstrated that FASN inhibition arrests E2-stimulated breast cancer
cell proliferation and anchorage-independent colony formation through

Fig. 5. Regulation of fatty acid synthesis by phosphorylation on tyrosine. The figure displays enzymes involved in fatty acid synthesis reporting in yellow those the
activity of which is enhanced by phosphorylation on tyrosine residues (ACLY, FASN), and in light blue those for which the effects of the phosphorylation on tyrosine
residues is still unknown. White boxes indicate not tyrosine phosphorylated enzymes. The name of oncogenic tyrosine kinases responsible for phosphorylation of
metabolic enzymes is reported in red. The reactions that are activated by phosphorylation are indicated by thick ( ). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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increased expression of the inhibitors p21WAF1/CIP1 and p27Kip1 and
inactivation of AKT [171]. This evidence paves the way for promising
therapeutic approaches for anticancer treatment based on FASN in-
hibitors. Indeed, small molecules inhibitors of FASN, including TVB-
2640, showed promising preclinical efficacy in several tumor types
[172].

In 2010, Jin and co-authors demonstrated that in human SKBR3
breast cancer cells heregulin (HRG) activates the HER2 TK, which, in
turn, interacts with and phosphorylates FASN. Tyrosine phosphoryla-
tion of FASN enhances enzyme activity, promoting de novo lipogenesis
and cell invasion. It is interesting to notice that the treatment of SKBR3
cells with the HER2 inhibitor lapatinib halts both FASN phosphoryla-
tion and activity, thus inhibiting cancer cell invasion [173]. Interest-
ingly, FASN phosphorylation on tyrosine residues suggests that onco-
genic TKs, by regulating the activity of this enzyme, coordinate the
production of fatty acid precursors with the synthesis of fatty acids.

2.7.3. Acetyl-CoA acetyltransferase (ACAT1)
ACAT1 is the mitochondrial isoform of Acetyl-CoA acetyl-

transferase. Besides, a cytosolic isoform has also been described,
namely ACAT2. Specifically, ACAT1 is involved in the synthesis of
acetoacetyl-CoA from two molecules of Acetyl-CoA during ketogenesis
and ketolysis. In addition, it plays an important role in the isoleucine
degradation pathway.

ACAT1 is commonly upregulated in different human cancer types
such as leukemia, lung, head and neck and prostate cancers [174]. Fan
and co-authors demonstrated that ACAT1 is active in its tetrameric
form and that its tetramerization is facilitated by phosphorylation on
Y407 residue, triggered by different TKs, such as EGFR, FGFR1, FLT3,
ABL and JAK2 [175]. ACAT1 Y407 phosphorylation is crucial for cancer
cell proliferation and tumor growth, favouring the metabolic switch
from OXPHOS to aerobic glycolysis in tumor cells through the inhibi-
tion of PDC. As previously mentioned, PDP1 and PDHA1 are also in-
hibited by acetylation at K202 and K321 residues, respectively. Inter-
estingly, as mentioned above, mitochondrial ACAT1 and SIRT3 are the
upstream acetyltransferase and deacetylase of PDHA1 and PDP1, re-
spectively [79]. In this scenario, oncogenic TKs are able to decrease
PDC functionality and conversely increase the Warburg effect, thus
promoting tumor growth, through the phosphorylation/activation of
ACAT1. ACAT1, in turn, inhibits PDHA1 and PDP1 by means of lysine
acetylation. In agreement, the Y407F ACAT1 mutant (or the pharma-
cological inhibition of ACAT1 with AH/arecoline, HBrn) leads to a
decrease in ACAT1 activity [79]. These events correlate with increased
PDHA1 activity (PDC flux rate) and OXPHOS, together with a con-
comitant decrease in glycolysis and lactate production, finally leading
to the reduction of cell proliferation and tumor growth.

2.7.4. Acyl-CoA synthetase
Long-chain fatty acyl-CoAs are synthesized by the long-chain acyl-

CoA synthetase (or ligase) isoforms. These isoforms are regulated in-
dependently and have different tissue expression patterns and sub-
cellular locations. All the isozymes of this family, although differing in
substrate specificity, subcellular localization, and tissue distribution,
have a crucial role in lipid biosynthesis and fatty acid degradation,
transforming free long-chain fatty acids into fatty acyl-CoA esters
[176].

Twenty-five phosphorylation sites, including tyrosine residues, have
been identified in long-chain-fatty-acid—CoA ligase isoform 1 (ACSL1)
by mass spectrometry, in the liver and brown adipocytes, sustaining the
importance of post-translational modifications in regulating ACSL1
activity [177].

ACSL4 is another isozyme of the long-chain fatty-acid-coenzyme A
ligase family and it preferentially utilizes arachidonate as substrate
[178]. It is interesting to notice that triple negative breast cancers
(TNBCs) preferentially express ACSL isoforms with respect to receptor
positive breast cancers (RPBC) [179]. In particular, the overexpression

of ACLS4 in TNBCs leads to increased levels of arachidonyl-CoA and
hence prostaglandins, thereby contributing to the more aggressive
phenotype generally observed in TNBCs compared to RPBC [179].
Different phosphoproteomic studies identified tyrosine residues that
can be phosphorylated on this protein, even if their functional sig-
nificance is still not known. However, it has been established a corre-
lation between ACSL4 protein expression and Src-homology region 2
domain-containing phosphatase-2 (SHP2) activity, although no in-
volvement of the phosphorylation level of a specific tyrosine residue in
ACSL4 has been highlighted. Indeed, overexpression of an active form
of SHP2 increases ACSL4 protein levels in MA-10 Leydig steroidogenic
cells, whereas knockdown of this phosphatase reduces ACSL4 mRNA
and protein levels [180], inducing increased or decreased steroid pro-
duction, respectively. Moreover, treatment with NSC87877, a specific
inhibitor of the tyrosine phosphatase SHP2, causes a substantial de-
crease in the proliferation of MDA-MB-231 cells [180].

3. Discussion

Data reported in this review highlight that tyrosine phosphorylation
is a widespread post-translational modification that regulates the ac-
tivity of numerous key metabolic enzymes (Supplementary Tables
S1–S8 and Fig. 6). The large number of records attributed to each single
phosphorylation event leads us to exclude that tyrosine phosphoryla-
tion could be merely considered as a random event in the large scenario
of cancer metabolism. Most importantly, among all the tyrosine re-
sidues identified through PosphoSitePlus database analysis, only a few
of them were already described for their ability to regulate enzyme
activity, while the function of other residues remains to be clarified
(Supplementary Table S9). This finding suggests that the role of phos-
phorylation on tyrosine as a mechanism to control the activity of me-
tabolic enzymes is still largely underestimated. In the last years, many
TKs have been identified as molecular targets for inhibitory therapeutic
strategies against tumors, either as monotherapy and in combination
with chemotherapy, immunotherapy or other TK inhibitors (TKIs)
[181–183]. TKIs generally inhibit the active site of tyrosine kinases,
preventing the activation of downstream signaling pathways involved
mainly in cell proliferation or angiogenesis. The relevance of this ap-
proach led to the approval, up to August 2019, of 43 receptor TKIs in
oncology by the Food and Drug Administration (FDA) [184]. The
widespread usage of TKIs in the clinic confirms the relevance of tyr-
osine phosphorylation in the progression of different tumor types. Be-
sides the largely described effects on the inhibition of tumor growth and
malignancy, TKIs often also promotes metabolic reprogramming. For
instance, Imatinib Gefitinib, Erlotinib and Capmatinib impair glycolytic
pathway and reactivate oxidative phosphorylation [185,186], while
Sorafenib promotes mitochondrial dysfunction to eradicate cancer cells
[187] However, to our knowledge, TKIs specifically targeting metabolic
enzymes still remains to be identified. Therefore, the aforementioned
relevance of tyrosine phosphorylation on metabolic enzymes and the
efficacy of drugs targeting their activity [4], might pave the way for the
development of therapeutics that specifically hinder the tyrosine
phosphorylation of these enzymes for clinical use.

3.1. Impact of tyrosine phosphorylation on the activity of metabolic
enzymes

The analyses of the data reported in the previous chapters revealed
that tyrosine phosphorylation often acts as a “reversible switch”, being
able to modulate, directly or indirectly, the enzyme activity. For in-
stance, tyrosine phosphorylation affects the association/dissociation of
multimeric enzyme subunits or the interaction of the enzymes with
other regulatory proteins, changes the affinity of the enzymes for their
substrates and co-factors, and modulates their catalytic rate. Regarding
the enzymes harbouring multiple phosphorylation sites, the prediction
of the overall impact of multiple phosphorylation events on the enzyme
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activity is further complicated by the fact that the effect of the phos-
phorylation on each site could synergize with, or counteract, the effects
due to the concomitant modification of other sites. Probably, these
peculiar enzymes could act as “data integration hubs”, being targets of
different oncogenic TKs, activated by various incoming stimuli at the
same time [24]. Multiple phosphorylation events will therefore result in
a specific response representing the integration of the effects of the
phosphorylation at all the different sites: this phenomenon could allow
cancer cells to find the most appropriate energy resource even in the
presence of divergent signals [188].

3.2. The galaxy of tyrosine-phosphorylated metabolic enzymes

Fig. 6 resumes all the data obtained from PhosphoSitePlus database
analysis, showing that the number of metabolic enzymes phosphory-
lated on tyrosine is much larger than that described up to now and
includes enzymes participating in glycolysis (Supplementary Table S1),
PPP (Supplementary Table S2), Krebs cycle (Supplementary Table S4),
OXPHOS, amino acid metabolism (Supplementary Tables S5 and S7)
and urea cycle (Supplementary Table S6), and fatty acid metabolism
(Supplementary Table S8). Although in most of the cases the effects of

Fig. 6. Impact of tyrosine phosphorylation on metabolism-related enzymes. Overview of all the data obtained from PhosphoSitePlus database analysis representing
the spread of tyrosine phosphorylation among metabolic enzymes, including those participating in glycolysis, PPP, Krebs cycle, oxidative phosphorylation, fatty acid
metabolism, amino acid metabolism, and urea cycle. The figure shows glycolytic enzymes the activity of which is positively (yellow) or negatively (green) influenced
by phosphorylation on tyrosine residues. The reactions that are activated or inhibited by phosphorylation are indicated by thick ( ) and dashed arrows (
), respectively. Light blue boxes indicate the enzymes for which phosphorylation on tyrosine residues has been demonstrated, but whose effects on enzyme activity
are not yet known. White boxes indicate not tyrosine phosphorylated enzymes. The name of oncogenic tyrosine kinases responsible for phosphorylation of metabolic
enzymes is reported in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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this post-translational modification on the enzyme activity are still
unknown, its great spreading suggests that it should represent a key
mechanism by which oncogenic TKs can control cancer metabolism.
Altogether, this information is extremely interesting because, for the
first time, reveals the true spread of tyrosine phosphorylation among
metabolic enzymes.

4. Conclusions

Phosphorylation on tyrosine is a reversible, short-life phenomenon
that involves key metabolic enzymes. We may suppose that it represents
a formidable mechanism to modulate mammalian cell metabolism.
Moreover, this post-translational modification can be used either to
generate local and transitory events, including confined fluctuations of
metabolic intermediates and long-term effects, such as a shift toward a
more glycolytic or respiratory metabolism, depending on the incoming
stimuli, the environmental conditions, the availability of nutrients and
oxygen levels.

Despite the evident importance of this post-translational modifica-
tion in establishing the metabolic profile of cancer cells, to date many
issues still need to be clarified. First of all, the identification of the
tyrosine phosphatases and kinases involved in this phenomenon is
lacking for several reported enzymes. Another missing point is a more
detailed characterization of the specific residues phosphorylated on the
metabolic enzymes. Altogether, a better molecular understanding of
these aspects may reveal new possible targets for the development of
therapeutic strategies directed against the specific metabolism of cancer
cells. Moreover, although data reported strongly support the key role of
tyrosine phosphorylation in modulating cancer cell metabolism, the
majority of them are the result of in vitro experimental settings, un-
derlining the necessity of confirming the obtained data in models closer
to clinical conditions.

Altogether, informations reported in this review provide, for the
first time, an exhaustive picture of the extension of tyrosine phos-
phorylation among metabolic enzymes, highlighting its potential im-
pact in regulating energy metabolism of cancer cells and encouraging
future investigations of these aspects.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bbcan.2020.188442.

Funding sources

This work was supported by Associazione Italiana Ricerca sul
Cancro (AIRC) (project code: 19515) for the project “Assaying tumor
metabolic deregulation in live cells”, by University of Florence (Fondo
ex-60%), and by AIRC fellowship to Erica Pranzini (project code:
24132) for the project “Metabolic adaptations driving epigenetics of 5-
Fluorouracil-resistant colon cancer: the role of one carbon metabolism”.

Author contributions

MLT, EP, EP, GR, PP: wrote the manuscript. PP: planned overall
concepts.

Declaration of Competing Interest

The authors declare that they have no conflict of interest.

References

[1] O. Warburg, F. Wind, E. Negelein, The metabolism of tumors in the body, J. Gen.
Physiol. 8 (6) (1927) 519–530.

[2] M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg
effect: the metabolic requirements of cell proliferation, Science 324 (5930) (2009)
1029–1033.

[3] E. Gaude, C. Frezza, Defects in mitochondrial metabolism and cancer, Cancer
Metab. 2 (2014) 10.

[4] P.E. Porporato, N. Filigheddu, J.M.B. Pedro, G. Kroemer, L. Galluzzi,
Mitochondrial metabolism and cancer, Cell Res. 28 (3) (2018) 265–280.

[5] L.R. Cavalli, M. Varella-Garcia, B.C. Liang, Diminished tumorigenic phenotype
after depletion of mitochondrial DNA, Cell Growth Differ. 8 (11) (1997)
1189–1198.

[6] P.S. Ward, C.B. Thompson, Metabolic reprogramming: a cancer hallmark even
warburg did not anticipate, Cancer Cell 21 (3) (2012) 297–308.

[7] R.A. Cairns, I.S. Harris, T.W. Mak, Regulation of cancer cell metabolism, Nat. Rev.
Cancer 11 (2) (2011) 85–95.

[8] A. Nagarajan, P. Malvi, N. Wajapeyee, Oncogene-directed alterations in cancer cell
metabolism, Trends Cancer 2 (7) (2016) 365–377.

[9] P. Blume-Jensen, T. Hunter, Oncogenic kinase signalling, Nature 411 (6835)
(2001) 355–365.

[10] M.K. Paul, A.K. Mukhopadhyay, Tyrosine kinase – role and significance in cancer,
Int. J. Med. Sci. 1 (2) (2004) 101–115.

[11] Y. Ding, Z. Liu, S. Desai, Y. Zhao, H. Liu, L.K. Pannell, H. Yi, E.R. Wright,
L.B. Owen, W. Dean-Colomb, O. Fodstad, J. Lu, S.P. LeDoux, G.L. Wilson, M. Tan,
Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cel-
lular metabolism, Nat. Commun. 3 (2012) 1271.

[12] T. Yamaoka, S. Kusumoto, K. Ando, M. Ohba, T. Ohmori, Receptor tyrosine kinase-
targeted cancer therapy, Int. J. Mol. Sci. 19 (11) (2018).

[13] D. Fabbro, S. Ruetz, E. Buchdunger, S.W. Cowan-Jacob, G. Fendrich, J. Liebetanz,
J. Mestan, T. O'Reilly, P. Traxler, B. Chaudhuri, H. Fretz, J. Zimmermann,
T. Meyer, G. Caravatti, P. Furet, P.W. Manley, Protein kinases as targets for an-
ticancer agents: from inhibitors to useful drugs, Pharmacol. Ther. 93 (2-3) (2002)
79–98.

[14] R. Roskoski, A historical overview of protein kinases and their targeted small
molecule inhibitors, Pharmacol. Res. 100 (2015) 1–23.

[15] A. Bettaieb, J. Bakke, N. Nagata, K. Matsuo, Y. Xi, S. Liu, D. AbouBechara,
R. Melhem, K. Stanhope, B. Cummings, J. Graham, A. Bremer, S. Zhang,
C.A. Lyssiotis, Z.Y. Zhang, L.C. Cantley, P.J. Havel, F.G. Haj, Protein tyrosine
phosphatase 1B regulates pyruvate kinase M2 tyrosine phosphorylation, J. Biol.
Chem. 288 (24) (2013) 17360–17371.

[16] G. Lori, T. Gamberi, P. Paoli, A. Caselli, E. Pranzini, R. Marzocchini, A. Modesti,
G. Raugei, LMW-PTP modulates glucose metabolism in cancer cells, Biochim.
Biophys. Acta Gen. Subj. 1862 (12) (2018) 2533–2544.

[17] S.J. Humphrey, D.E. James, M. Mann, Protein phosphorylation: a major switch
mechanism for metabolic regulation, Trends Endocrinol. Metab. 26 (12) (2015)
676–687.

[18] J. Fan, T. Hitosugi, T.W. Chung, J. Xie, Q. Ge, T.L. Gu, R.D. Polakiewicz,
G.Z. Chen, T.J. Boggon, S. Lonial, F.R. Khuri, S. Kang, J. Chen, Tyrosine phos-
phorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox
homeostasis in cancer cells, Mol. Cell. Biol. 31 (24) (2011) 4938–4950.

[19] T. Hitosugi, L. Zhou, J. Fan, S. Elf, L. Zhang, J. Xie, Y. Wang, T.L. Gu, M. Alečković,
G. LeRoy, Y. Kang, H.B. Kang, J.H. Seo, C. Shan, P. Jin, W. Gong, S. Lonial,
M.L. Arellano, H.J. Khoury, G.Z. Chen, D.M. Shin, F.R. Khuri, T.J. Boggon, S. Kang,
C. He, J. Chen, Tyr26 phosphorylation of PGAM1 provides a metabolic advantage
to tumours by stabilizing the active conformation, Nat. Commun. 4 (2013) 1790.

[20] J. Zhang, S. Wang, B. Jiang, L. Huang, Z. Ji, X. Li, H. Zhou, A. Han, A. Chen, Y. Wu,
H. Ma, W. Zhao, Q. Zhao, C. Xie, X. Sun, Y. Zhou, H. Huang, M. Suleman, F. Lin,
L. Zhou, F. Tian, M. Jin, Y. Cai, N. Zhang, Q. Li, c-Src phosphorylation and acti-
vation of hexokinase promotes tumorigenesis and metastasis, Nat. Commun. 8
(2017) 13732.

[21] T. Hitosugi, S. Kang, M.G. Vander Heiden, T.W. Chung, S. Elf, K. Lythgoe, S. Dong,
S. Lonial, X. Wang, G.Z. Chen, J. Xie, T.L. Gu, R.D. Polakiewicz, J.L. Roesel,
T.J. Boggon, F.R. Khuri, D.G. Gilliland, L.C. Cantley, J. Kaufman, J. Chen, Tyrosine
phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth,
Sci. Signal 2 (97) (2009) ra73.

[22] J.H. Lee, R. Liu, J. Li, Y. Wang, L. Tan, X.J. Li, X. Qian, C. Zhang, Y. Xia, D. Xu,
W. Guo, Z. Ding, L. Du, Y. Zheng, Q. Chen, P.L. Lorenzi, G.B. Mills, T. Jiang, Z. Lu,
EGFR-phosphorylated platelet isoform of phosphofructokinase 1 promotes PI3K
activation, Mol. Cell. 70 (2) (2018) 197–210 (e7).

[23] S. Pan, C.J. World, C.J. Kovacs, B.C. Berk, Glucose 6-phosphate dehydrogenase is
regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells,
Arterioscler. Thromb. Vasc. Biol. 29 (6) (2009) 895–901.

[24] P. Cohen, The regulation of protein function by multisite phosphorylation–a 25
year update, Trends Biochem. Sci. 25 (12) (2000) 596–601.

[25] P.V. Hornbeck, B. Zhang, B. Murray, J.M. Kornhauser, V. Latham, E. Skrzypek,
PhosphoSitePlus, 2014: mutations, PTMs and recalibrations, Nucleic Acids Res 43
(Database issue) (2015) D512–D520.

[26] M.V. Liberti, J.W. Locasale, The Warburg effect: how does it benefit cancer cells?
Trends Biochem. Sci. 41 (3) (2016) 211–218.

[27] S. Xu, A. Catapang, D. Braas, L. Stiles, H.M. Doh, J.T. Lee, T.G. Graeber,
R. Damoiseaux, O. Shirihai, H.R. Herschman, A precision therapeutic strategy for
hexokinase 1-null, hexokinase 2-positive cancers, Cancer Metab. 6 (2018) 7.

[28] A. Hennipman, J. Smits, B. van Oirschot, J.C. van Houwelingen, G. Rijksen,
J.P. Neyt, J.A. Van Unnik, G.E. Staal, Glycolytic enzymes in breast cancer, benign
breast disease and normal breast tissue, Tumour Biol. 8 (5) (1987) 251–263.

[29] R. Acín-Pérez, I. Carrascoso, F. Baixauli, M. Roche-Molina, A. Latorre-Pellicer,
P. Fernández-Silva, M. Mittelbrunn, F. Sanchez-Madrid, A. Pérez-Martos,
C.A. Lowell, G. Manfredi, J.A. Enríquez, ROS-triggered phosphorylation of com-
plex II by Fgr kinase regulates cellular adaptation to fuel use, Cell Metab. 19 (6)
(2014) 1020–1033.

[30] A. Yalcin, S. Telang, B. Clem, J. Chesney, Regulation of glucose metabolism by 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer, Exp. Mol. Pathol.
86 (3) (2009) 174–179.

M.L. Taddei, et al. BBA - Reviews on Cancer 1874 (2020) 188442

15

https://doi.org/10.1016/j.bbcan.2020.188442
https://doi.org/10.1016/j.bbcan.2020.188442
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0005
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0005
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0010
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0010
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0010
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0015
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0015
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0020
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0020
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0025
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0025
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0025
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0030
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0030
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0035
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0035
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0040
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0040
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0045
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0045
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0050
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0050
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0055
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0055
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0055
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0055
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0060
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0060
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0065
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0065
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0065
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0065
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0065
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0070
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0070
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0075
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0075
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0075
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0075
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0075
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0080
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0080
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0080
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0085
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0085
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0085
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0090
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0090
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0090
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0090
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0095
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0095
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0095
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0095
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0095
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0100
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0100
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0100
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0100
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0100
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0105
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0105
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0105
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0105
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0105
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0110
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0110
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0110
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0110
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0115
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0115
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0115
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0120
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0120
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0125
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0125
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0125
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0130
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0130
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0135
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0135
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0135
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0140
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0140
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0140
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0145
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0145
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0145
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0145
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0145
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0150
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0150
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0150


[31] J.H. Lee, F. Shao, J. Ling, S. Lu, R. Liu, L. Du, J.W. Chung, S.S. Koh, S.H. Leem,
J. Shao, D. Xing, Z. An, Z. Lu, Phosphofructokinase 1 platelet isoform promotes β-
Catenin transactivation for tumor development, Front. Oncol. 10 (2020) 211.

[32] W.H. Lee, J.S. Choi, M.R. Byun, K.T. Koo, S. Shin, S.K. Lee, Y.J. Surh, Functional
inactivation of triosephosphate isomerase through phosphorylation during eto-
poside-induced apoptosis in HeLa cells: potential role of Cdk2, Toxicology 278 (2)
(2010) 224–228.

[33] F. Malentacchi, R. Marzocchini, S. Gelmini, C. Orlando, M. Serio, G. Ramponi,
G. Raugei, Up-regulated expression of low molecular weight protein tyrosine
phosphatases in different human cancers, Biochem. Biophys. Res. Commun. 334
(3) (2005) 875–883.

[34] C. Tristan, N. Shahani, T.W. Sedlak, A. Sawa, The diverse functions of GAPDH:
views from different subcellular compartments, Cell. Signal. 23 (2) (2011)
317–323.

[35] G. Butera, N. Mullappilly, F. Masetto, M. Palmieri, M.T. Scupoli, R. Pacchiana,
M. Donadelli, Regulation of Autophagy by Nuclear GAPDH and Its Aggregates in
Cancer and Neurodegenerative Disorders, Int. J. Mol. Sci. 20 (9) (2019).

[36] E.J. Tisdale, Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by
protein kinase Ciota/lambda and plays a role in microtubule dynamics in the early
secretory pathway, J. Biol. Chem. 277 (5) (2002) 3334–3341.

[37] E.J. Tisdale, C.R. Artalejo, A GAPDH mutant defective in Src-dependent tyrosine
phosphorylation impedes Rab2-mediated events, Traffic 8 (6) (2007) 733–741.

[38] M. Phadke, N. Krynetskaia, A. Mishra, C. Barrero, S. Merali, S.A. Gothe,
E. Krynetskiy, Disruption of NAD(+) binding site in glyceraldehyde 3-phosphate
dehydrogenase affects its intranuclear interactions, World J. Biol. Chem. 6 (4)
(2015) 366–378.

[39] Y. He, Y. Luo, D. Zhang, X. Wang, P. Zhang, H. Li, S. Ejaz, S. Liang, PGK1-mediated
cancer progression and drug resistance, Am. J. Cancer Res. 9 (11) (2019)
2280–2302.

[40] P. Shetty, T. Velusamy, Y.P. Bhandary, M.C. Liu, S. Shetty, Urokinase receptor
expression involves tyrosine phosphorylation of phosphoglycerate kinase, Mol.
Cell. Biochem. 335 (1–2) (2010) 235–247.

[41] A. Laurenzana, A. Chillà, C. Luciani, S. Peppicelli, A. Biagioni, F. Bianchini,
E. Tenedini, E. Torre, A. Mocali, L. Calorini, F. Margheri, G. Fibbi, M. Del Rosso,
uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells, Int.
J. Cancer 141 (6) (2017) 1190–1200.

[42] F. Sharif, A. Rasul, A. Ashraf, G. Hussain, T. Younis, I. Sarfraz, M.A. Chaudhry,
S.A. Bukhari, X.Y. Ji, Z. Selamoglu, M. Ali, Phosphoglycerate mutase 1 in cancer: a
promising target for diagnosis and therapy, IUBMB Life 71 (10) (2019)
1418–1427.

[43] T. Hitosugi, L. Zhou, S. Elf, J. Fan, H.B. Kang, J.H. Seo, C. Shan, Q. Dai, L. Zhang,
J. Xie, T.L. Gu, P. Jin, M. Alečković, G. LeRoy, Y. Kang, J.A. Sudderth,
R.J. DeBerardinis, C.H. Luan, G.Z. Chen, S. Muller, D.M. Shin, T.K. Owonikoko,
S. Lonial, M.L. Arellano, H.J. Khoury, F.R. Khuri, B.H. Lee, K. Ye, T.J. Boggon,
S. Kang, C. He, J. Chen, Phosphoglycerate mutase 1 coordinates glycolysis and
biosynthesis to promote tumor growth, Cancer Cell 22 (5) (2012) 585–600.

[44] R.C. Oslund, X. Su, M. Haugbro, J.M. Kee, M. Esposito, Y. David, B. Wang, E. Ge,
D.H. Perlman, Y. Kang, T.W. Muir, J.D. Rabinowitz, Bisphosphoglycerate mutase
controls serine pathway flux via 3-phosphoglycerate, Nat. Chem. Biol. 13 (10)
(2017) 1081–1087.

[45] P. Zhan, S. Zhao, H. Yan, C. Yin, Y. Xiao, Y. Wang, R. Ni, W. Chen, G. Wei,
P. Zhang, α-enolase promotes tumorigenesis and metastasis via regulating AMPK/
mTOR pathway in colorectal cancer, Mol. Carcinog. 56 (5) (2017) 1427–1437.

[46] X. Qian, W. Xu, J. Xu, Q. Shi, J. Li, Y. Weng, Z. Jiang, L. Feng, X. Wang, J. Zhou,
H. Jin, Enolase 1 stimulates glycolysis to promote chemoresistance in gastric
cancer, Oncotarget 8 (29) (2017) 47691–47708.

[47] J.A. Cooper, F.S. Esch, S.S. Taylor, T. Hunter, Phosphorylation sites in enolase and
lactate dehydrogenase utilized by tyrosine protein kinases in vivo and in vitro, J.
Biol. Chem. 259 (12) (1984) 7835–7841.

[48] K. Zahra, T. Dey, S.P. Mishra Ashish, U. Pandey, Pyruvate Kinase M2 and cancer:
the role of PKM2 in promoting tumorigenesis, Front. Oncol. 10 (2020) 159.

[49] Q. Su, S. Luo, Q. Tan, J. Deng, S. Zhou, M. Peng, T. Tao, X. Yang, The role of
pyruvate kinase M2 in anticancer therapeutic treatments, Oncol. Lett. 18 (6)
(2019) 5663–5672.

[50] S.O. Lim, C.W. Li, W. Xia, H.H. Lee, S.S. Chang, J. Shen, J.L. Hsu, D. Raftery,
D. Djukovic, H. Gu, W.C. Chang, H.L. Wang, M.L. Chen, L. Huo, C.H. Chen, Y. Wu,
A. Sahin, S.M. Hanash, G.N. Hortobagyi, M.C. Hung, EGFR signaling enhances
aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth
and immune escape, Cancer Res. 76 (5) (2016) 1284–1296.

[51] P. Kalaiarasan, N. Subbarao, R.N. Bamezai, Molecular simulation of Tyr105
phosphorylated pyruvate kinase M2 to understand its structure and dynamics, J.
Mol. Model. 20 (9) (2014) 2447.

[52] C.V. Dang, PKM2 tyrosine phosphorylation and glutamine metabolism signal a
different view of the Warburg effect, Sci. Signal. 2 (97) (2009) pe75.

[53] A. Najafov, D.R. Alessi, Uncoupling the Warburg effect from cancer, Proc. Natl.
Acad. Sci. U. S. A. 107 (45) (2010) 19135–19136.

[54] C.V. Dang, Rethinking the Warburg effect with Myc micromanaging glutamine
metabolism, Cancer Res. 70 (3) (2010) 859–862.

[55] N.M. Grüning, D. Du, M.A. Keller, B.F. Luisi, M. Ralser, Inhibition of triosepho-
sphate isomerase by phosphoenolpyruvate in the feedback-regulation of glyco-
lysis, Open Biol. 4 (2014) 130232.

[56] G. Dong, Q. Mao, W. Xia, Y. Xu, J. Wang, L. Xu, F. Jiang, PKM2 and cancer: the
function of PKM2 beyond glycolysis, Oncol. Lett. 11 (3) (2016) 1980–1986.

[57] Y. Feng, Y. Xiong, T. Qiao, X. Li, L. Jia, Y. Han, Lactate dehydrogenase A: a key
player in carcinogenesis and potential target in cancer therapy, Cancer Med. 7 (12)
(2018) 6124–6136.

[58] L.R. Gray, S.C. Tompkins, E.B. Taylor, Regulation of pyruvate metabolism and
human disease, Cell. Mol. Life Sci. 71 (14) (2014) 2577–2604.

[59] L. Jin, J. Chun, C. Pan, G.N. Alesi, D. Li, K.R. Magliocca, Y. Kang, Z.G. Chen,
D.M. Shin, F.R. Khuri, J. Fan, S. Kang, Phosphorylation-mediated activation of
LDHA promotes cancer cell invasion and tumour metastasis, Oncogene 36 (27)
(2017) 3797–3806.

[60] A. Le, C.R. Cooper, A.M. Gouw, R. Dinavahi, A. Maitra, L.M. Deck, R.E. Royer,
D.L. Vander Jagt, G.L. Semenza, C.V. Dang, Inhibition of lactate dehydrogenase A
induces oxidative stress and inhibits tumor progression, Proc. Natl. Acad. Sci. U. S.
A. 107 (5) (2010) 2037–2042.

[61] J. Liu, G. Chen, Z. Liu, S. Liu, Z. Cai, P. You, Y. Ke, L. Lai, Y. Huang, H. Gao,
L. Zhao, H. Pelicano, P. Huang, W.L. McKeehan, C.L. Wu, C. Wang, W. Zhong,
F. Wang, Aberrant FGFR tyrosine kinase signaling enhances the Warburg effect by
reprogramming LDH isoform expression and activity in prostate cancer, Cancer
Res. 78 (16) (2018) 4459–4470.

[62] K.G. de la Cruz-López, L.J. Castro-Muñoz, D.O. Reyes-Hernández, A. García-
Carrancá, J. Manzo-Merino, Lactate in the regulation of tumor microenvironment
and therapeutic approaches, Front. Oncol. 9 (2019) 1143.

[63] D.M. Dawson, T.L. Goodfriend, N.O. Kaplan, Lactic dehydrogenases: functions of
the two types rates of synthesis of the two major forms can be correlated with
metabolic differentiation, Science 143 (3609) (1964) 929–933.

[64] A. Cheng, P. Zhang, B. Wang, D. Yang, X. Duan, Y. Jiang, T. Xu, J. Shi, C. Ding,
G. Wu, Z. Sang, Q. Wu, H. Wang, M. Wu, Z. Zhang, X. Pan, Y.Y. Pan, P. Gao,
H. Zhang, C.Z. Zhou, J. Guo, Z. Yang, Aurora-A mediated phosphorylation of
LDHB promotes glycolysis and tumor progression by relieving the substrate-in-
hibition effect, Nat. Commun. 10 (1) (2019) 5566.

[65] S. Li, J. Gao, X. Zhuang, C. Zhao, X. Hou, X. Xing, C. Chen, Q. Liu, S. Liu, Y. Luo,
Cyclin G2 inhibits the Warburg effect and tumour progression by suppressing
LDHA phosphorylation in glioma, Int. J. Biol. Sci. 15 (3) (2019) 544–555.

[66] K.C. Patra, N. Hay, The pentose phosphate pathway and cancer, Trends Biochem.
Sci. 39 (8) (2014) 347–354.

[67] H.C. Yang, Y.H. Wu, W.C. Yen, H.Y. Liu, T.L. Hwang, A. Stern, D.T. Chiu, The
redox role of G6PD in cell growth, cell death, and cancer, Cells 8 (9) (2019).

[68] R. Liu, W. Li, B. Tao, X. Wang, Z. Yang, Y. Zhang, C. Wang, H. Gao, J. Liang,
W. Yang, Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase
and promotes tumor growth and radiation resistance, Nat. Commun. 10 (1) (2019)
991.

[69] I.M. Xu, R.K. Lai, S.H. Lin, A.P. Tse, D.K. Chiu, H.Y. Koh, C.T. Law, C.M. Wong,
Z. Cai, C.C. Wong, I.O. Ng, Transketolase counteracts oxidative stress to drive
cancer development, Proc. Natl. Acad. Sci. U. S. A. 113 (6) (2016) E725–E734.

[70] M. Thapa, G. Dallmann, Role of coenzymes in cancer metabolism, Semin. Cell Dev.
Biol. 98 (2020) 44–53.

[71] C.W. Tseng, W.H. Kuo, S.H. Chan, H.L. Chan, K.J. Chang, L.H. Wang,
Transketolase regulates the metabolic switch to control breast cancer cell metas-
tasis via the α-Ketoglutarate signaling pathway, Cancer Res. 78 (11) (2018)
2799–2812.

[72] P.A. Gameiro, L.A. Laviolette, J.K. Kelleher, O. Iliopoulos, G. Stephanopoulos,
Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates
reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA)
cycle, J. Biol. Chem. 288 (18) (2013) 12967–12977.

[73] H.Y. Ho, Y.T. Lin, G. Lin, P.R. Wu, M.L. Cheng, Nicotinamide nucleotide trans-
hydrogenase (NNT) deficiency dysregulates mitochondrial retrograde signaling
and impedes proliferation, Redox Biol. 12 (2017) 916–928.

[74] S. Li, Z. Zhuang, T. Wu, J.C. Lin, Z.X. Liu, L.F. Zhou, T. Dai, L. Lu, H.Q. Ju,
Nicotinamide nucleotide transhydrogenase-mediated redox homeostasis promotes
tumor growth and metastasis in gastric cancer, Redox Biol. 18 (2018) 246–255.

[75] K. Yaku, K. Okabe, K. Hikosaka, T. Nakagawa, NAD metabolism in cancer ther-
apeutics, Front. Oncol. 8 (2018) 622.

[76] A.A. Sauve, D.Y. Youn, Sirtuins: NAD(+)-dependent deacetylase mechanism and
regulation, Curr. Opin. Chem. Biol. 16 (5–6) (2012) 535–543.

[77] N.J. German, M.C. Haigis, Sirtuins and the metabolic hurdles in cancer, Curr. Biol.
25 (13) (2015) R569–R583.

[78] K. Sajnani, F. Islam, R.A. Smith, V. Gopalan, A.K. Lam, Genetic alterations in Krebs
cycle and its impact on cancer pathogenesis, Biochimie 135 (2017) 164–172.

[79] J. Fan, C. Shan, H.B. Kang, S. Elf, J. Xie, M. Tucker, T.L. Gu, M. Aguiar, S. Lonning,
H. Chen, M. Mohammadi, L.M. Britton, B.A. Garcia, M. Alečković, Y. Kang,
S. Kaluz, N. Devi, E.G. Van Meir, T. Hitosugi, J.H. Seo, S. Lonial, M. Gaddh,
M. Arellano, H.J. Khoury, F.R. Khuri, T.J. Boggon, S. Kang, J. Chen, Tyr phos-
phorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate
the pyruvate dehydrogenase complex, Mol. Cell 53 (4) (2014) 534–548.

[80] C. Shan, H.B. Kang, S. Elf, J. Xie, T.L. Gu, M. Aguiar, S. Lonning, T. Hitosugi,
T.W. Chung, M. Arellano, H.J. Khoury, D.M. Shin, F.R. Khuri, T.J. Boggon, J. Fan,
Tyr-94 phosphorylation inhibits pyruvate dehydrogenase phosphatase 1 and
promotes tumor growth, J. Biol. Chem. 289 (31) (2014) 21413–21422.

[81] J. Fan, H.B. Kang, C. Shan, S. Elf, R. Lin, J. Xie, T.L. Gu, M. Aguiar, S. Lonning,
T.W. Chung, M. Arellano, H.J. Khoury, D.M. Shin, F.R. Khuri, T.J. Boggon, S. Kang,
J. Chen, Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking
substrate binding and promotes the Warburg effect, J. Biol. Chem. 289 (38) (2014)
26533–26541.

[82] T. Hitosugi, J. Fan, T.W. Chung, K. Lythgoe, X. Wang, J. Xie, Q. Ge, T.L. Gu,
R.D. Polakiewicz, J.L. Roesel, G.Z. Chen, T.J. Boggon, S. Lonial, H. Fu, F.R. Khuri,
S. Kang, J. Chen, Tyrosine phosphorylation of mitochondrial pyruvate dehy-
drogenase kinase 1 is important for cancer metabolism, Mol. Cell 44 (6) (2011)
864–877.

[83] E. Saunier, C. Benelli, S. Bortoli, The pyruvate dehydrogenase complex in cancer:
an old metabolic gatekeeper regulated by new pathways and pharmacological

M.L. Taddei, et al. BBA - Reviews on Cancer 1874 (2020) 188442

16

http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0155
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0155
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0155
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0160
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0160
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0160
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0160
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0165
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0165
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0165
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0165
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0170
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0170
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0170
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0175
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0175
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0175
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0180
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0180
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0180
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0185
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0185
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0190
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0190
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0190
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0190
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0195
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0195
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0195
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0200
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0200
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0200
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0205
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0205
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0205
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0205
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0210
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0210
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0210
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0210
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0215
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0215
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0215
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0215
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0215
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0215
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0220
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0220
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0220
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0220
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0225
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0225
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0225
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0230
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0230
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0230
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0235
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0235
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0235
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0240
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0240
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0245
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0245
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0245
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0250
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0250
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0250
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0250
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0250
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0255
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0255
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0255
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0260
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0260
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0265
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0265
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0270
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0270
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0275
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0275
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0275
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0280
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0280
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0285
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0285
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0285
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0290
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0290
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0295
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0295
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0295
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0295
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0300
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0300
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0300
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0300
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0305
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0305
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0305
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0305
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0305
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0310
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0310
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0310
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0315
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0315
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0315
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0320
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0320
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0320
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0320
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0320
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0325
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0325
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0325
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0330
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0330
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0335
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0335
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0340
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0340
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0340
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0340
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0345
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0345
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0345
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0350
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0350
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0355
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0355
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0355
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0355
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0360
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0360
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0360
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0360
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0365
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0365
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0365
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0370
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0370
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0370
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0375
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0375
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0380
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0380
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0385
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0385
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0390
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0390
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0395
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0395
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0395
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0395
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0395
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0395
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0400
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0400
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0400
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0400
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0405
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0405
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0405
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0405
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0405
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0410
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0410
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0410
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0410
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0410
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0415
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0415


agents, Int. J. Cancer 138 (4) (2016) 809–817.
[84] H. Al-Khallaf, Isocitrate dehydrogenases in physiology and cancer: biochemical

and molecular insight, Cell Biosci. 7 (2017) 37.
[85] C. Zhang, L.M. Moore, X. Li, W.K. Yung, W. Zhang, IDH1/2 mutations target a key

hallmark of cancer by deregulating cellular metabolism in glioma, Neuro-
Oncology 15 (9) (2013) 1114–1126.

[86] C.M. Metallo, P.A. Gameiro, E.L. Bell, K.R. Mattaini, J. Yang, K. Hiller,
C.M. Jewell, Z.R. Johnson, D.J. Irvine, L. Guarente, J.K. Kelleher, M.G. Vander
Heiden, O. Iliopoulos, G. Stephanopoulos, Reductive glutamine metabolism by
IDH1 mediates lipogenesis under hypoxia, Nature 481 (7381) (2011) 380–384.

[87] S.M. Fendt, E.L. Bell, M.A. Keibler, B.A. Olenchock, J.R. Mayers, T.M. Wasylenko,
N.I. Vokes, L. Guarente, M.G. Vander Heiden, G. Stephanopoulos, Reductive glu-
tamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells, Nat.
Commun. 4 (2013) 2236.

[88] D. Chen, S. Xia, M. Wang, R. Lin, Y. Li, H. Mao, M. Aguiar, C.A. Famulare,
A.H. Shih, C.W. Brennan, X. Gao, Y. Pan, S. Liu, J. Fan, L. Jin, L. Song, A. Zhou,
J. Mukherjee, R.O. Pieper, A. Mishra, J. Peng, M. Arellano, W.G. Blum, S. Lonial,
T.J. Boggon, R.L. Levine, J. Chen, Mutant and wild-type isocitrate dehydrogenase
1 share enhancing mechanisms involving distinct tyrosine kinase cascades in
cancer, Cancer Discov. 9 (6) (2019) 756–777.

[89] S. Inoue, F. Lemonnier, T.W. Mak, Roles of IDH1/2 and TET2 mutations in mye-
loid disorders, Int. J. Hematol. 103 (6) (2016) 627–633.

[90] H. Yan, D.W. Parsons, G. Jin, R. McLendon, B.A. Rasheed, W. Yuan, I. Kos,
I. Batinic-Haberle, S. Jones, G.J. Riggins, H. Friedman, A. Friedman, D. Reardon,
J. Herndon, K.W. Kinzler, V.E. Velculescu, B. Vogelstein, D.D. Bigner, IDH1 and
IDH2 mutations in gliomas, N. Engl. J. Med. 360 (8) (2009) 765–773.

[91] G. Montalban-Bravo, C.D. DiNardo, The role of IDH mutations in acute myeloid
leukemia, Future Oncol. 14 (10) (2018) 979–993.

[92] L. Dang, D.W. White, S. Gross, B.D. Bennett, M.A. Bittinger, E.M. Driggers,
V.R. Fantin, H.G. Jang, S. Jin, M.C. Keenan, K.M. Marks, R.M. Prins, P.S. Ward,
K.E. Yen, L.M. Liau, J.D. Rabinowitz, L.C. Cantley, C.B. Thompson, M.G. Vander
Heiden, S.M. Su, Cancer-associated IDH1 mutations produce 2-hydroxyglutarate,
Nature 462 (7274) (2009) 739–744.

[93] R. Chowdhury, K.K. Yeoh, Y.M. Tian, L. Hillringhaus, E.A. Bagg, N.R. Rose,
I.K. Leung, X.S. Li, E.C. Woon, M. Yang, M.A. McDonough, O.N. King, I.J. Clifton,
R.J. Klose, T.D. Claridge, P.J. Ratcliffe, C.J. Schofield, A. Kawamura, The onco-
metabolite 2-hydroxyglutarate inhibits histone lysine demethylases, EMBO Rep.
12 (5) (2011) 463–469.

[94] P.S. Ward, J.R. Cross, C. Lu, O. Weigert, O. Abel-Wahab, R.L. Levine,
D.M. Weinstock, K.A. Sharp, C.B. Thompson, Identification of additional IDH
mutations associated with oncometabolite R(-)-2-hydroxyglutarate production,
Oncogene 31 (19) (2012) 2491–2498.

[95] L.A. Kane, M.J. Youngman, R.E. Jensen, J.E. Van Eyk, Phosphorylation of the F(1)
F(o) ATP synthase beta subunit: functional and structural consequences assessed in
a model system, Circ. Res. 106 (3) (2010) 504–513.

[96] G. Jin, Z.J. Reitman, I. Spasojevic, I. Batinic-Haberle, J. Yang, O. Schmidt-Kittler,
D.D. Bigner, H. Yan, 2-hydroxyglutarate production, but not dominant negative
function, is conferred by glioma-derived NADP-dependent isocitrate dehy-
drogenase mutations, PLoS One 6 (2) (2011) e16812.

[97] P. Wang, C. Mai, Y.L. Wei, J.J. Zhao, Y.M. Hu, Z.L. Zeng, J. Yang, W.H. Lu,
R.H. Xu, P. Huang, Decreased expression of the mitochondrial metabolic enzyme
aconitase (ACO2) is associated with poor prognosis in gastric cancer, Med. Oncol.
30 (2) (2013) 552.

[98] F. Ciccarone, L. Di Leo, G. Lazzarino, G. Maulucci, F. Di Giacinto, B. Tavazzi,
M.R. Ciriolo, Aconitase 2 inhibits the proliferation of MCF-7 cells promoting mi-
tochondrial oxidative metabolism and ROS/FoxO1-mediated autophagic response,
Br. J. Cancer 122 (2) (2020) 182–193.

[99] W.M. Oldham, C.B. Clish, Y. Yang, J. Loscalzo, Hypoxia-mediated increases in L-2-
hydroxyglutarate coordinate the metabolic response to reductive stress, Cell
Metab. 22 (2) (2015) 291–303.

[100] M.A. Selak, S.M. Armour, E.D. MacKenzie, H. Boulahbel, D.G. Watson,
K.D. Mansfield, Y. Pan, M.C. Simon, C.B. Thompson, E. Gottlieb, Succinate links
TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase,
Cancer Cell 7 (1) (2005) 77–85.

[101] J. Zheng, Energy metabolism of cancer: glycolysis versus oxidative phosphoryla-
tion (review), Oncol. Lett. 4 (6) (2012) 1151–1157.

[102] P. Sancho, D. Barneda, C. Heeschen, Hallmarks of cancer stem cell metabolism, Br.
J. Cancer 114 (12) (2016) 1305–1312.

[103] A. Viale, P. Pettazzoni, C.A. Lyssiotis, H. Ying, N. Sánchez, M. Marchesini,
A. Carugo, T. Green, S. Seth, V. Giuliani, M. Kost-Alimova, F. Muller, S. Colla,
L. Nezi, G. Genovese, A.K. Deem, A. Kapoor, W. Yao, E. Brunetto, Y. Kang,
M. Yuan, J.M. Asara, Y.A. Wang, T.P. Heffernan, A.C. Kimmelman, H. Wang,
J.B. Fleming, L.C. Cantley, R.A. DePinho, G.F. Draetta, Oncogene ablation-re-
sistant pancreatic cancer cells depend on mitochondrial function, Nature 514
(7524) (2014) 628–632.

[104] D.S. Matassa, M.R. Amoroso, H. Lu, R. Avolio, D. Arzeni, C. Procaccini,
D. Faicchia, F. Maddalena, V. Simeon, I. Agliarulo, E. Zanini, C. Mazzoccoli,
C. Recchi, E. Stronach, G. Marone, H. Gabra, G. Matarese, M. Landriscina,
F. Esposito, Oxidative metabolism drives inflammation-induced platinum re-
sistance in human ovarian cancer, Cell Death Differ. 23 (9) (2016) 1542–1554.

[105] V. Sica, J.M. Bravo-San Pedro, G. Stoll, G. Kroemer, Oxidative phosphorylation as
a potential therapeutic target for cancer therapy, Int. J. Cancer 146 (1) (2020)
10–17.

[106] F.A. Urra, F. Muñoz, A. Lovy, C. Cárdenas, The mitochondrial Complex(I)ty of
cancer, Front. Oncol. 7 (2017) 118.

[107] J. Marquez, I. Kratchmarova, V. Akimov, F. Unda, G. Ibarretxe, A.S. Clerigué,

N. Osinalde, I. Badiola, NADH dehydrogenase complex I is overexpressed in in-
cipient metastatic murine colon cancer cells, Oncol. Rep. 41 (2) (2019) 742–752.

[108] E. Hebert-Chatelain, C. Jose, N. Gutierrez Cortes, J.W. Dupuy, C. Rocher,
J. Dachary-Prigent, T. Letellier, Preservation of NADH ubiquinone-oxidoreductase
activity by Src kinase-mediated phosphorylation of NDUFB10, Biochim. Biophys.
Acta 1817 (5) (2012) 718–725.

[109] E. Maranzana, G. Barbero, A.I. Falasca, G. Lenaz, M.L. Genova, Mitochondrial
respiratory supercomplex association limits production of reactive oxygen species
from complex I, Antioxid. Redox Signal. 19 (13) (2013) 1469–1480.

[110] L. Cesaro, M. Salvi, Mitochondrial tyrosine phosphoproteome: new insights from
an up-to-date analysis, Biofactors 36 (6) (2010) 437–450.

[111] M. Ogura, J. Yamaki, M.K. Homma, Y. Homma, Mitochondrial c-Src regulates cell
survival through phosphorylation of respiratory chain components, Biochem. J.
447 (2) (2012) 281–289.

[112] K. Kluckova, A. Bezawork-Geleta, J. Rohlena, L. Dong, J. Neuzil, Mitochondrial
complex II, a novel target for anti-cancer agents, Biochim. Biophys. Acta 1827 (5)
(2013) 552–564.

[113] A. Bezawork-Geleta, J. Rohlena, L. Dong, K. Pacak, J. Neuzil, Mitochondrial
complex II: at the crossroads, Trends Biochem. Sci. 42 (4) (2017) 312–325.

[114] M. Salvi, N.A. Morrice, A.M. Brunati, A. Toninello, Identification of the flavo-
protein of succinate dehydrogenase and aconitase as in vitro mitochondrial sub-
strates of Fgr tyrosine kinase, FEBS Lett. 581 (29) (2007) 5579–5585.

[115] E. Tomitsuka, K. Kita, H. Esumi, Regulation of succinate-ubiquinone reductase and
fumarate reductase activities in human complex II by phosphorylation of its fla-
voprotein subunit, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85 (7) (2009) 258–265.

[116] O. Augereau, S. Claverol, N. Boudes, M.J. Basurko, M. Bonneu, R. Rossignol,
J.P. Mazat, T. Letellier, J. Dachary-Prigent, Identification of tyrosine-phosphory-
lated proteins of the mitochondrial oxidative phosphorylation machinery, Cell.
Mol. Life Sci. 62 (13) (2005) 1478–1488.

[117] G. Kroemer, B. Dallaporta, M. Resche-Rigon, The mitochondrial death/life reg-
ulator in apoptosis and necrosis, Annu. Rev. Physiol. 60 (1998) 619–642.

[118] D.W. Dong, S. Srinivasan, M. Guha, N.G. Avadhani, Defects in cytochrome c oxi-
dase expression induce a metabolic shift to glycolysis and carcinogenesis, Genom.
Data 6 (2015) 99–107.

[119] H. Yu, I. Lee, A.R. Salomon, K. Yu, M. Hüttemann, Mammalian liver cytochrome c
is tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration,
Biochim. Biophys. Acta 1777 (7–8) (2008) 1066–1071.

[120] P. Pecina, G.G. Borisenko, N.A. Belikova, Y.Y. Tyurina, A. Pecinova, I. Lee,
A.K. Samhan-Arias, K. Przyklenk, V.E. Kagan, M. Hüttemann, Phosphomimetic
substitution of cytochrome C tyrosine 48 decreases respiration and binding to
cardiolipin and abolishes ability to trigger downstream caspase activation,
Biochemistry 49 (31) (2010) 6705–6714.

[121] A. Guerra-Castellano, A. Díaz-Quintana, G. Pérez-Mejías, C.A. Elena-Real,
K. González-Arzola, S.M. García-Mauriño, M.A. De la Rosa, I. Díaz-Moreno,
Oxidative stress is tightly regulated by cytochrome, Proc. Natl. Acad. Sci. U. S. A.
115 (31) (2018) 7955–7960.

[122] M. Rytömaa, P.K. Kinnunen, Evidence for two distinct acidic phospholipid-binding
sites in cytochrome c, J. Biol. Chem. 269 (3) (1994) 1770–1774.

[123] H.A. Kalpage, V. Bazylianska, M.A. Recanati, A. Fite, J. Liu, J. Wan, N. Mantena,
M.H. Malek, I. Podgorski, E.I. Heath, A. Vaishnav, B.F. Edwards, L.I. Grossman,
T.H. Sanderson, I. Lee, M. Hüttemann, Tissue-specific regulation of cytochrome c
by post-translational modifications: respiration, the mitochondrial membrane
potential, ROS, and apoptosis, FASEB J. 33 (2) (2019) 1540–1553.

[124] I. Lee, A.R. Salomon, S. Ficarro, I. Mathes, F. Lottspeich, L.I. Grossman,
M. Hüttemann, cAMP-dependent tyrosine phosphorylation of subunit I inhibits
cytochrome c oxidase activity, J. Biol. Chem. 280 (7) (2005) 6094–6100.

[125] L. Samavati, I. Lee, I. Mathes, F. Lottspeich, M. Hüttemann, Tumor necrosis factor
alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at
subunit I of cytochrome c oxidase, J. Biol. Chem. 283 (30) (2008) 21134–21144.

[126] M. Hüttemann, B. Kadenbach, L.I. Grossman, Mammalian subunit IV isoforms of
cytochrome c oxidase, Gene 267 (1) (2001) 111–123.

[127] I. Lee, A.R. Salomon, K. Yu, L. Samavati, P. Pecina, A. Pecinova, M. Hüttemann,
Isolation of regulatory-competent, phosphorylated cytochrome C oxidase,
Methods Enzymol. 457 (2009) 193–210.

[128] M. Hüttemann, I. Lee, A. Pecinova, P. Pecina, K. Przyklenk, J.W. Doan, Regulation
of oxidative phosphorylation, the mitochondrial membrane potential, and their
role in human disease, J. Bioenerg. Biomembr. 40 (5) (2008) 445–456.

[129] P.B. Esparza-Moltó, J.M. Cuezva, The role of mitochondrial H, Front. Oncol. 8
(2018) 53.

[130] L. Sánchez-Cenizo, L. Formentini, M. Aldea, A.D. Ortega, P. García-Huerta,
M. Sánchez-Aragó, J.M. Cuezva, Up-regulation of the ATPase inhibitory factor 1
(IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the me-
tabolic shift of cancer cells to a Warburg phenotype, J. Biol. Chem. 285 (33)
(2010) 25308–25313.

[131] L. García-Ledo, C. Nuevo-Tapioles, C. Cuevas-Martín, I. Martínez-Reyes,
B. Soldevilla, L. González-Llorente, J.M. Cuezva, Overexpression of the ATPase
inhibitory factor 1 favors a non-metastatic phenotype in breast cancer, Front.
Oncol. 7 (2017) 69.

[132] F.X. Zhang, W. Pan, J.B. Hutchins, Phosphorylation of F1F0 ATPase delta-subunit
is regulated by platelet-derived growth factor in mouse cortical neurons in vitro, J.
Neurochem. 65 (6) (1995) 2812–2815.

[133] Y.H. Ko, W. Pan, C. Inoue, P.L. Pedersen, Signal transduction to mitochondrial ATP
synthase: evidence that PDGF-dependent phosphorylation of the delta-subunit
occurs in several cell lines, involves tyrosine, and is modulated by lysopho-
sphatidic acid, Mitochondrion 1 (4) (2002) 339–348.

[134] F. Di Pancrazio, E. Bisetto, V. Alverdi, I. Mavelli, G. Esposito, G. Lippe, Differential

M.L. Taddei, et al. BBA - Reviews on Cancer 1874 (2020) 188442

17

http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0415
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0420
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0420
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0425
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0425
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0425
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0430
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0430
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0430
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0430
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0435
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0435
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0435
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0435
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0440
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0440
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0440
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0440
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0440
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0440
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0445
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0445
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0450
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0450
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0450
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0450
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0455
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0455
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0460
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0460
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0460
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0460
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0460
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0465
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0465
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0465
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0465
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0465
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0470
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0470
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0470
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0470
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0475
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0475
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0475
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0480
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0480
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0480
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0480
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0485
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0485
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0485
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0485
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0490
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0490
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0490
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0490
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0495
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0495
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0495
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0500
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0500
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0500
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0500
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0505
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0505
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0510
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0510
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0515
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0515
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0515
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0515
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0515
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0515
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0515
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0520
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0520
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0520
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0520
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0520
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0525
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0525
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0525
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0530
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0530
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0535
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0535
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0535
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0540
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0540
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0540
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0540
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0545
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0545
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0545
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0550
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0550
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0555
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0555
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0555
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0560
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0560
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0560
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0565
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0565
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0570
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0570
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0570
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0575
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0575
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0575
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0580
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0580
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0580
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0580
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0585
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0585
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0590
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0590
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0590
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0595
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0595
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0595
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0600
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0600
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0600
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0600
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0600
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0605
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0605
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0605
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0605
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0610
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0610
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0615
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0615
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0615
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0615
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0615
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0620
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0620
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0620
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0625
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0625
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0625
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0630
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0630
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0635
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0635
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0635
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0640
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0640
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0640
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0645
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0645
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0650
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0650
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0650
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0650
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0650
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0655
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0655
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0655
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0655
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0660
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0660
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0660
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0665
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0665
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0665
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0665
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0670


steady-state tyrosine phosphorylation of two oligomeric forms of mitochondrial
F0F1ATPsynthase: a structural proteomic analysis, Proteomics 6 (3) (2006)
921–926.

[135] A. Chevrollier, D. Loiseau, P. Reynier, G. Stepien, Adenine nucleotide translocase 2
is a key mitochondrial protein in cancer metabolism, Biochim. Biophys. Acta 1807
(6) (2011) 562–567.

[136] L. Vettore, R.L. Westbrook, D.A. Tennant, New aspects of amino acid metabolism
in cancer, Br. J. Cancer 122 (2) (2020) 150–156.

[137] A.M. Hosios, V.C. Hecht, L.V. Danai, M.O. Johnson, J.C. Rathmell,
M.L. Steinhauser, S.R. Manalis, M.G. Vander Heiden, Amino acids rather than
glucose account for the majority of cell mass in proliferating mammalian cells,
Dev. Cell 36 (5) (2016) 540–549.

[138] A.J. Bott, S. Maimouni, W.X. Zong, The pleiotropic effects of glutamine metabo-
lism in cancer, Cancers (Basel) 11 (6) (2019).

[139] J. Zhang, N.N. Pavlova, C.B. Thompson, Cancer cell metabolism: the essential role
of the nonessential amino acid, glutamine, EMBO J. 36 (10) (2017) 1302–1315.

[140] R.J. DeBerardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff, S. Wehrli,
C.B. Thompson, Beyond aerobic glycolysis: transformed cells can engage in glu-
tamine metabolism that exceeds the requirement for protein and nucleotide
synthesis, Proc. Natl. Acad. Sci. U. S. A. 104 (49) (2007) 19345–19350.

[141] T. Li, A. Le, Glutamine metabolism in cancer, Adv. Exp. Med. Biol. 1063 (2018)
13–32.

[142] J.B. Spinelli, H. Yoon, A.E. Ringel, S. Jeanfavre, C.B. Clish, M.C. Haigis, Metabolic
recycling of ammonia via glutamate dehydrogenase supports breast cancer bio-
mass, Science 358 (6365) (2017) 941–946.

[143] D.R. Wise, C.B. Thompson, Glutamine addiction: a new therapeutic target in
cancer, Trends Biochem. Sci. 35 (8) (2010) 427–433.

[144] Y.K. Choi, K.G. Park, Targeting glutamine metabolism for cancer treatment,
Biomol. Ther. (Seoul) 26 (1) (2018) 19–28.

[145] P. Gao, I. Tchernyshyov, T.C. Chang, Y.S. Lee, K. Kita, T. Ochi, K.I. Zeller, A.M. De
Marzo, J.E. Van Eyk, J.T. Mendell, C.V. Dang, c-Myc suppression of miR-23a/b
enhances mitochondrial glutaminase expression and glutamine metabolism,
Nature 458 (7239) (2009) 762–765.

[146] D.R. Wise, R.J. DeBerardinis, A. Mancuso, N. Sayed, X.Y. Zhang, H.K. Pfeiffer,
I. Nissim, E. Daikhin, M. Yudkoff, S.B. McMahon, C.B. Thompson, Myc regulates a
transcriptional program that stimulates mitochondrial glutaminolysis and leads to
glutamine addiction, Proc. Natl. Acad. Sci. U. S. A. 105 (48) (2008) 18782–18787.

[147] X. Huang, G. Gan, X. Wang, T. Xu, W. Xie, The HGF-MET axis coordinates liver
cancer metabolism and autophagy for chemotherapeutic resistance, Autophagy 15
(7) (2019) 1258–1279.

[148] Z.F. Jiang, M. Wang, J.L. Xu, Y.J. Ning, Hypoxia promotes mitochondrial gluta-
mine metabolism through HIF1α-GDH pathway in human lung cancer cells,
Biochem. Biophys. Res. Commun. 483 (1) (2017) 32–38.

[149] R.C. Sun, N.C. Denko, Hypoxic regulation of glutamine metabolism through HIF1
and SIAH2 supports lipid synthesis that is necessary for tumor growth, Cell Metab.
19 (2) (2014) 285–292.

[150] Y. Wang, C. Bai, Y. Ruan, M. Liu, Q. Chu, L. Qiu, C. Yang, B. Li, Coordinative
metabolism of glutamine carbon and nitrogen in proliferating cancer cells under
hypoxia, Nat. Commun. 10 (1) (2019) 201.

[151] C.L. Collins, M. Wasa, W.W. Souba, S.F. Abcouwer, Regulation of glutamine syn-
thetase in human breast carcinoma cells and experimental tumors, Surgery 122 (2)
(1997) 451–463 discussion 463-4.

[152] L.B. Sullivan, D.Y. Gui, A.M. Hosios, L.N. Bush, E. Freinkman, M.G. Vander
Heiden, Supporting aspartate biosynthesis is an essential function of respiration in
proliferating cells, Cell 162 (3) (2015) 552–563.

[153] H.F. Alkan, J.G. Bogner-Strauss, Maintaining cytosolic aspartate levels is a major
function of the TCA cycle in proliferating cells, Mol. Cell Oncol. 6 (5) (2019)
e1536843.

[154] S.C. Nagamani, A. Erez, A metabolic link between the urea cycle and cancer cell
proliferation, Mol. Cell Oncol. 3 (2) (2016) e1127314.

[155] M.A. Reid, A.E. Allen, S. Liu, M.V. Liberti, P. Liu, X. Liu, Z. Dai, X. Gao, Q. Wang,
Y. Liu, L. Lai, J.W. Locasale, Serine synthesis through PHGDH coordinates nu-
cleotide levels by maintaining central carbon metabolism, Nat. Commun. 9 (1)
(2018) 5442.

[156] K.R. Mattaini, M.R. Sullivan, M.G. Vander Heiden, The importance of serine me-
tabolism in cancer, J. Cell Biol. 214 (3) (2016) 249–257.

[157] M. Yang, K.H. Vousden, Serine and one-carbon metabolism in cancer, Nat. Rev.
Cancer 16 (10) (2016) 650–662.

[158] J.W. Locasale, A.R. Grassian, T. Melman, C.A. Lyssiotis, K.R. Mattaini, A.J. Bass,
G. Heffron, C.M. Metallo, T. Muranen, H. Sharfi, A.T. Sasaki, D. Anastasiou,
E. Mullarky, N.I. Vokes, M. Sasaki, R. Beroukhim, G. Stephanopoulos, A.H. Ligon,
M. Meyerson, A.L. Richardson, L. Chin, G. Wagner, J.M. Asara, J.S. Brugge,
L.C. Cantley, M.G. Vander Heiden, Phosphoglycerate dehydrogenase diverts gly-
colytic flux and contributes to oncogenesis, Nat. Genet. 43 (9) (2011) 869–874.

[159] R. Possemato, K.M. Marks, Y.D. Shaul, M.E. Pacold, D. Kim, K. Birsoy,
S. Sethumadhavan, H.K. Woo, H.G. Jang, A.K. Jha, W.W. Chen, F.G. Barrett,
N. Stransky, Z.Y. Tsun, G.S. Cowley, J. Barretina, N.Y. Kalaany, P.P. Hsu, K. Ottina,
A.M. Chan, B. Yuan, L.A. Garraway, D.E. Root, M. Mino-Kenudson, E.F. Brachtel,
E.M. Driggers, D.M. Sabatini, Functional genomics reveal that the serine synthesis
pathway is essential in breast cancer, Nature 476 (7360) (2011) 346–350.

[160] G.S. Ducker, J.D. Rabinowitz, One-carbon metabolism in health and disease, Cell
Metab. 25 (1) (2017) 27–42.

[161] C.R. Santos, A. Schulze, Lipid metabolism in cancer, FEBS J. 279 (15) (2012)

2610–2623.
[162] H.N. Abramson, The lipogenesis pathway as a cancer target, J. Med. Chem. 54 (16)

(2011) 5615–5638.
[163] J. Zhao, Z. Zhi, C. Wang, H. Xing, G. Song, X. Yu, Y. Zhu, X. Wang, X. Zhang, Y. Di,

Exogenous lipids promote the growth of breast cancer cells via CD36, Oncol. Rep.
38 (4) (2017) 2105–2115.

[164] F. Röhrig, A. Schulze, The multifaceted roles of fatty acid synthesis in cancer, Nat.
Rev. Cancer 16 (11) (2016) 732–749.

[165] M. Poliaková, D.M. Aebersold, Y. Zimmer, M. Medová, The relevance of tyrosine
kinase inhibitors for global metabolic pathways in cancer, Mol. Cancer 17 (1)
(2018) 27.

[166] T. Migita, T. Narita, K. Nomura, E. Miyagi, F. Inazuka, M. Matsuura, M. Ushijima,
T. Mashima, H. Seimiya, Y. Satoh, S. Okumura, K. Nakagawa, Y. Ishikawa, ATP
citrate lyase: activation and therapeutic implications in non-small cell lung cancer,
Cancer Res. 68 (20) (2008) 8547–8554.

[167] P. Icard, Z. Wu, L. Fournel, A. Coquerel, H. Lincet, M. Alifano, ATP citrate lyase: a
central metabolic enzyme in cancer, Cancer Lett. 471 (2020) 125–134.

[168] S. Vora, R. Oskam, G.E. Staal, Isoenzymes of phosphofructokinase in the rat.
Demonstration of the three non-identical subunits by biochemical, im-
munochemical and kinetic studies, Biochem. J. 229 (2) (1985) 333–341.

[169] J. Basappa, M.A. ElAzzouny, D. Rolland, T. Velusamy, S. Hwang, V. Basrur,
K. Conlon, L. Zhao, N.G. Bailey, C.F. Burant, K.S.J. Elenitoba-Johnson, M.S. Lim,
NPM-ALK mediated tyrosine phosphorylation of ATP citrate lyase regulates lipid
metabolism and promotes oncogenesis of anaplastic large cell lymphoma, ASH-
57th Annual Meeting and Exposition, 5–8 Dec 2015 Orlando.

[170] J. Basappa, M. Citir, Q. Zhang, H.Y. Wang, X. Liu, O. Melnikov, H. Yahya, F. Stein,
R. Muller, A. Traynor-Kaplan, C. Schultz, M.A. Wasik, A. Ptasznik, ACLY is the
novel signaling target of PIP, Heliyon 6 (5) (2020) e03910.

[171] J.A. Menendez, R. Lupu, Fatty acid synthase regulates estrogen receptor-α sig-
naling in breast cancer cells, Oncogenesis 6 (2) (2017) e299.

[172] D. Buckley, G. Duke, T.S. Heuer, M. O'Farrell, A.S. Wagman, W. McCulloch,
G. Kemble, Fatty acid synthase – modern tumor cell biology insights into a clas-
sical oncology target, Pharmacol. Ther. 177 (2017) 23–31.

[173] Q. Jin, L.X. Yuan, D. Boulbes, J.M. Baek, Y.N. Wang, D. Gomez-Cabello,
D.H. Hawke, S.C. Yeung, M.H. Lee, G.N. Hortobagyi, M.C. Hung, F.J. Esteva, Fatty
acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing
breast cancer cells, Breast Cancer Res. 12 (6) (2010) R96.

[174] A. Goudarzi, The recent insights into the function of ACAT1: a possible anti-cancer
therapeutic target, Life Sci. 116592 (2019).

[175] J. Fan, R. Lin, S. Xia, D. Chen, S.E. Elf, S. Liu, Y. Pan, H. Xu, Z. Qian, M. Wang,
C. Shan, L. Zhou, Q.Y. Lei, Y. Li, H. Mao, B.H. Lee, J. Sudderth, R.J. DeBerardinis,
G. Zhang, T. Owonikoko, M. Gaddh, M.L. Arellano, H.J. Khoury, F.R. Khuri,
S. Kang, P.W. Doetsch, S. Lonial, T.J. Boggon, W.J. Curran, J. Chen, Tetrameric
acetyl-CoA acetyltransferase 1 is important for tumor growth, Mol. Cell 64 (5)
(2016) 859–874.

[176] Y. Tang, J. Zhou, S.C. Hooi, Y.M. Jiang, G.D. Lu, Fatty acid activation in carci-
nogenesis and cancer development: essential roles of long-chain acyl-CoA syn-
thetases, Oncol. Lett. 16 (2) (2018) 1390–1396.

[177] J.L. Frahm, L.O. Li, T.J. Grevengoed, R.A. Coleman, Phosphorylation and acet-
ylation of Acyl-CoA synthetase-I, J. Proteomics Bioinform. 4 (7) (2011) 129–137.

[178] T.J. Grevengoed, E.L. Klett, R.A. Coleman, Acyl-CoA metabolism and partitioning,
Annu. Rev. Nutr. 34 (2014) 1–30.

[179] M.E. Monaco, Fatty acid metabolism in breast cancer subtypes, Oncotarget 8 (17)
(2017) 29487–29500.

[180] M. Cooke, U. Orlando, P. Maloberti, E.J. Podestá, F. Cornejo Maciel, Tyrosine
phosphatase SHP2 regulates the expression of acyl-CoA synthetase ACSL4, J. Lipid
Res. 52 (11) (2011) 1936–1948.

[181] Z. Yang, K.Y. Tam, Combination strategies using EGFR-TKi in NSCLC Therapy:
learning from the gap between Pre-clinical results and clinical outcomes, Int. J.
Biol. Sci. 14 (2) (2018) 204–216.

[182] A.W. Tolcher, W. Peng, E. Calvo, Rational approaches for combination therapy
strategies targeting the MAP kinase pathway in solid tumors, Mol. Cancer Ther. 17
(1) (2018) 3–16.

[183] E. Rassy, R. Flippot, L. Albiges, Tyrosine kinase inhibitors and immunotherapy
combinations in renal cell carcinoma, Ther. Adv. Med. Oncol. 12 (2020)
1758835920907504.

[184] C. Pottier, M. Fresnais, M. Gilon, G. Jérusalem, R. Longuespée, N.E. Sounni,
Tyrosine kinase inhibitors in cancer: breakthrough and challenges of targeted
therapy, Cancers (Basel) 12 (3) (2020).

[185] V. De Rosa, F. Iommelli, M. Monti, R. Fonti, G. Votta, M.P. Stoppelli, S. Del
Vecchio, Reversal of Warburg effect and reactivation of oxidative phosphorylation
by differential inhibition of EGFR signaling pathways in non-small cell lung
cancer, Clin. Cancer Res. 21 (22) (2015) 5110–5120.

[186] S. Gottschalk, N. Anderson, C. Hainz, S.G. Eckhardt, N.J. Serkova, Imatinib
(STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-
positive cells, Clin. Cancer Res. 10 (19) (2004) 6661–6668.

[187] V. Tesori, A.C. Piscaglia, D. Samengo, M. Barba, C. Bernardini, R. Scatena,
A. Pontoglio, L. Castellini, J.N. Spelbrink, G. Maulucci, M.A. Puglisi, G. Pani,
A. Gasbarrini, The multikinase inhibitor Sorafenib enhances glycolysis and sy-
nergizes with glycolysis blockade for cancer cell killing, Sci. Rep. 5 (2015) 9149.

[188] T. Hitosugi, J. Chen, Post-translational modifications and the Warburg effect,
Oncogene 33 (34) (2014) 4279–4285.

M.L. Taddei, et al. BBA - Reviews on Cancer 1874 (2020) 188442

18

http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0670
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0670
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0670
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0675
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0675
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0675
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0680
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0680
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0685
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0685
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0685
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0685
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0690
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0690
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0695
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0695
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0700
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0700
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0700
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0700
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0705
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0705
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0710
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0710
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0710
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0715
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0715
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0720
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0720
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0725
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0725
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0725
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0725
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0730
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0730
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0730
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0730
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0735
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0735
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0735
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0740
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0740
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0740
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0745
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0745
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0745
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0750
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0750
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0750
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0755
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0755
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0755
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0760
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0760
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0760
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0765
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0765
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0765
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0770
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0770
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0775
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0775
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0775
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0775
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0780
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0780
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0785
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0785
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0790
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0790
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0790
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0790
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0790
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0790
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0795
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0795
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0795
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0795
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0795
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0795
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0800
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0800
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0805
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0805
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0810
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0810
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0815
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0815
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0815
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0820
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0820
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0825
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0825
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0825
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0830
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0830
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0830
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0830
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0835
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0835
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0840
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0840
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0840
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0845
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0845
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0845
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0845
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0845
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0850
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0850
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0850
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0855
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0855
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0860
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0860
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0860
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0865
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0865
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0865
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0865
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0870
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0870
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0875
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0875
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0875
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0875
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0875
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0875
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0880
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0880
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0880
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0885
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0885
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0890
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0890
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0895
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0895
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0900
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0900
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0900
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0905
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0905
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0905
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0910
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0910
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0910
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0915
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0915
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0915
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0920
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0920
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0920
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0925
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0925
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0925
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0925
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0930
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0930
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0930
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0935
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0935
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0935
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0935
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0940
http://refhub.elsevier.com/S0304-419X(20)30161-X/rf0940

	Role of tyrosine phosphorylation in modulating cancer cell metabolism
	1 Introduction
	2 Enzymes with phosphotyrosine-regulated activity
	2.1 Glycolysis
	2.1.1 Hexokinase (HK)
	2.1.2 Phosphofruttokinase (PFK)
	2.1.3 Triosephosphate isomerase (TPI)
	2.1.4 Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
	2.1.5 Phosphoglycerate kinase (PGK)
	2.1.6 Phosphoglycerate mutase (PGAM1)
	2.1.7 α-enolase (ENO1)
	2.1.8 Pyruvate kinase M2 (PKM2)
	2.1.9 Lactate dehydrogenase (LDH)

	2.2 Pentose Phosphate Pathway (PPP)
	2.2.1 Glucose-6-phosphate dehydrogenase (G6PD)
	2.2.2 6-phosphogluconate dehydrogenase (6PGD)
	2.2.3 Transketolase (TKT)

	2.3 NAD and NADP synthesis
	2.4 Krebs cycle
	2.4.1 Pyruvate dehydrogenase complex (PDC)
	2.4.2 Isocitrate dehydrogenase (IDH)

	2.5 Mitochondrial electron chain complexes
	2.5.1 NADH-dehydrogenase (Complex I)
	2.5.2 Succinate-ubiquinone oxidoreductase (Complex II)
	2.5.3 bc1 Complex (Complex III)
	2.5.4 Cytochrome c and cytochrome c oxidase (Complex IV)
	2.5.5 ATP synthase
	2.5.6 Adenine nucleotide translocase (ANT)

	2.6 Amino acid metabolism
	2.6.1 Glutamine metabolism
	2.6.2 Aspartate metabolism
	2.6.3 Serine metabolism

	2.7 Lipid metabolism
	2.7.1 ATP-citrate lyase (ACLY)
	2.7.2 Fatty acid synthase (FASN)
	2.7.3 Acetyl-CoA acetyltransferase (ACAT1)
	2.7.4 Acyl-CoA synthetase


	3 Discussion
	3.1 Impact of tyrosine phosphorylation on the activity of metabolic enzymes
	3.2 The galaxy of tyrosine-phosphorylated metabolic enzymes

	4 Conclusions
	Funding sources
	Author contributions
	Declaration of Competing Interest
	References




