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Abstract In this paper, we compute, by means of a non equilibrium alchemical
technique, the water-octanol partition coefficients (LogP) for a series of drug-like
compounds in the context of the SAMPL6 challenge initiative. Our blind predic-
tions are based on three of the most popular non-polarizable force fields, CGenFF,
GAFF2, and OPLS-AA and are critically compared to other MD-based predictions
produced using free energy perturbation or thermodynamic integration approaches
with stratification. The proposed non-equilibrium method emerges has a reliable
tool for LogP prediction, systematically being among the top performing submis-
sions in all force field classes for at least two among the various indicators such
as the Pearson or the Kendall correlation coefficients or the mean unsigned error.
Contrarily to the widespread equilibrium approaches, that yielded apparently very
disparate results in the SAMPL6 challenge, all our independent prediction sets,
irrespective of the adopted force field and of the adopted estimate (unidirectional
or bidirectional) are, mutually, from moderately to strongly correlated.

Keywords SAMPL6, LogP, solvation free energy, Non-equilibrium, Crooks
theorem, fast switching, fast growth, Hamiltonian Replica Exchange, HREX,
Solute Tempering, Torsional tempering

1 Introduction

The second round of the SAMPL6 challenge was aimed at predicting the 1-octanol-
water partition coefficient, LogP, for the neutral forms of the eleven compounds
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shown in Figure 1. The experimentally measured LogP coefficients are reported
in Ref. [1]. These molecules, are based on the quinazoline, imidazole or pyridine
heteroaromatic moieties, and are characterized by the presence of chemical groups
that are ubiquitous in drug-like compounds, such as amide, amine, halogen, oxo,
hydroxy and carboxy moieties. LogP’s are important physical quantities in drug
discovery, since they provide, in principle, valuable indications on the distribution
of a molecule between a hydrophobic (e.g. lipid bilayer) and a cytosolic, aqueous
environment.[2]

In the context of the “physical” approaches in SAMPL6 challenge, the LogP
is computed by evaluating independently the solvation free energy in water and
1-octanol of the neutral species in standard conditions:

LogP = Log
[solute]oct
[solute]wat

= −∆Goct −∆Gwat

RT ln 10
(1)

The best ranking among the 47 submissions using physical methods were all
based on high level quantum chemical (QM) calculations with implicit solvent
parametrizations. QM approaches were among the top performing submissions
also for the preceding SAMPL5 challenge on water/cyclohexane distribution co-
efficients.[3] QM ”winners” in the recent LogP and past LogD challenges actu-
ally won a Pyrrhic victory. These good performances were largely expected as
the approach based on high-level QM calculation using implicit solvation models
with adjustable parameters specifically trained on experimental data-set fits well
with the fact the solute is surrounded by a homogeneous environment. By the
same token, inexpensive atom-based or fragment-based empirical methods like the
xLogP3,[4] ClogP/AlogP[5] or miLogP[6], using thousands of compound for the
training sets, all yields very good root mean square error (RMSE) and Pearson
correlation coefficient (R) for the series of compounds of Figure 1.

Fig. 1 SM-type compounds in the SAMPL6 LogP challenge.
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However, the ambitious scope of SAMPL challenges for physical properties is
eventually that of testing the predictive power of computational methodologies in
perspective drug design projects, that is to evaluate ”solvation energies” when the
solute/ligand is embedded in a highly heterogeneous environment, modulated in
a complicated way by the fluctuating protein scaffold where micro-solvation phe-
nomena, related to the atomistic nature of the “solvent”, can play a crucial role. As
the host-guest SAMPL6 blind challenges have shown,[7,8] even these kinds of sim-
ple ligand-receptor systems seem to be out of the reach of QM-based approaches
with implicit solvation schemes. In the two latest host-guest SAMPL challenges,[7,
8] QM-based submissions for binding free energies of small guest molecules hosted
in octa-acids or cucurbit[n]uril-type molecular containers were in fact consistently
outperformed by those obtained using classical molecular Dynamics (MD) tech-
niques with explicit solvent.

MD-based methods with explicit solvent appear on the overall to yield consis-
tent performances in SAMPL challenges, whether they are applied to the distribu-
tion or partition coefficients or to the more challenging tests of host-guest binding
free energies. The accuracy in MD schemes is related to the bias or systematic er-
ror due to the adopted atomistic interaction potential or force field. The precision,
that is the reproducibility of the datum, is affected by the inherent variance of the
implemented MD methodologies. While the latter can be in principle minimized
by investing more and more computational resources (i.e. improving the statistical
convergence of the simulations), the sources of the force field error are disparate
and complex and can involve any combination of the bonded and non bonded
solute-solute solute-solvent and solvent-solvent parametrizations. In this regard,
SAMPL6 challenges are extremely useful since they provide an ideal collaborative
platform on which force fields performances can be rigorously assessed and new
avenues for their improvements can be discovered.

In this paper, we will present and discuss the results of a MD-based approach
using non equilibrium switching (NES) for the solvation energies and the LogP
coefficients for the series of compounds of Figure 1. The methodology computes
the LogP according to Eq. 1, relying on the enhanced sampling of the end-states
(fully coupled and fully decoupled solute in water and in 1-octanol) with Hamil-
tonian Replica Exchange (HREX) and in the subsequent production of hundreds
of concurrent and independent non-equilibrium (NE) trajectories where the so-
lute is alchemically driven from the starting canonical ensemble of one end-state
to the corresponding nonequilibrium ensemble of the arrival end-state in matter
of few hundreds of picoseconds.[9,10] The solvation free energies in water and in
1-octanol are recovered from the NE work distributions using the Jarzynski and
the Crooks fluctuation theorems.[11,12]

Calculations were done using three popular general force fields for drug-like
molecules, namely GAFF2[13,14], CGenFF[15] and OPLS-AA[16,17]. For each
force field, two blind predictions were uploaded: i) a “challenge” and computa-
tionally expensive submission, done with a precise[18,19] bidirectional approach
based on the Bennett Acceptance Ratio[20] (BAR) estimator; ii) a less precise
and faster submission, obtained with the fast-growth unidirectional method ex-
ploiting the Crooks theorem for normal work distributions.[21–24] We will try
to put our contribution to the SAMPL6 initiative into the context of the other
MD-based submissions. These were done, in the vast majority of cases, adopting
the CGenFF, OPLS-AA or GAFF force fields, or refined variants of them, with
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equilibrium methodologies relying on the alchemical stratification[25,26] and ex-
ploiting the thermodynamic integration[27] (TI) or the Free energy perturbation
methods[28] (FEP).

The paper is organized as follows. In the Section 2, we succinctly introduce
the equilibrium and nonequilibrium approaches in the context of the MD-based
physical methods. In the section 3, we provide the detailed methodological in-
formation concerning the NES submissions, including force field parametrization,
atomistic description of the water and 1-octanol solvent, simulation parameters for
the HREX stage and for the subsequent NE computational task. In the section 4
a global assessment of the MD-based submissions in LogP/SAMPL6 is presented,
highlighting common patterns and discrepancies, as well as force field-related crit-
ical issues. In the section 4, the results obtained using NES methodologies, in the
two variants fast switching growth/annihilation method (NES-2) and fast switch-
ing growth method (NES-1) and for each of the three general force fields, are
critically discussed and compared to the related equilibrium FEP or TI blind pre-
dictions. Conclusions and perspectives are sketched out in the last section.

2 Alchemical transformations: theoretical background

Virtually all MD-based submissions in the challenge were done by evaluating
the solvation free energies in Eq. 1 by way of the so-called alchemical approach
whereby the solute-solvent interaction is gradually turned off or on, using a decou-
pling/recoupling inter-molecular alchemical parameter λ such that: Vλ = Vsolv +
Vsolute + λVsolute−solvent. At λ = 1 the molecule is fully solvated; at λ = 0 the
molecule is totally decoupled from the solvent acting as if it were in the gas-
phase. Such methodology can be implemented in the context of equilibrium simu-
lations using the stratification strategy or multistage sampling, or, in the context
of nonequilibrium thermodynamics, producing many concurrent and independent
fast switching trajectories. To make the paper self contained, here we briefly out-
sketch the theoretical background of the two approaches, referring the reader, for
a more complete treatment of this subject, to excellent recent reviews.[26,29,19]

In the equilibrium techniques, the system is simulated at constant pressure
and temperature in an appropriate number n of intermediate states correspond-
ing to values of the λ coupling parameter between 0 and 1. The Gibbs solvation
free energy is recovered in an inexpensive post-processing stage by summing up
contributions obtained by applying the FEP Zwanzig formula[28] for each of the
contiguous λ states, i.e.

∆Gsolv = −β−1
∑
i

ln〈e−β(Vλi−Vλi+1
)〉λi (2)

where β is the reciprocal of the thermodynamic temperature and 〈·〉λi denotes
the isothermal-isobaric average taken with potential energy Vλi . Precision can be
increased at a very limited cost by storing during the simulations both the λi+1

and the λi−1 value of the potential energy so that the free energy can be recovered
as a sum of BAR contributions.[26,29,19,30] Alternatively, and equivalently, the
λ-derivatives of the potential energies can be stored in the stratification, recovering
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the solvation free energy via numerical thermodynamic integration[27]:

∆Gsolv =
∑
i

〈∂Vλ/∂λ〉λi ∆λ (3)

It is important to stress that in FEP or TI approaches the simulation must be well
converged on each of the n alchemical λ strata, with a canonical sampling of the
relevant solute and solvent conformational space. The convergence rate for a given
stratum is an unknown function of the corresponding λ coupling parameter and can
vary substantially in the range [0,1]. Typically, barriers between conformational
state becomes higher at low coupling (i.e. when λ → 0) due to the lack of the
screening effect of the solvent on the intramolecular electrostatic interactions,[31]
making harder the convergence of the simulation with weakly coupled solutes. Also,
in setting up the FEP or TI simulations, due care must be taken in “choosing the
alchemical protocol so that the total uncertainty for the transformation is the
one which has an equal contribution to the uncertainty across every point along
the alchemical path”[32], or equivalently so that the overlap between contiguous
potential energy distributions is significant and approximately constant in the
whole range [0,1], a task that would require the prior knowledge of the dependence
of ∆G on λ.[26]

In the nonequilibrium approach, equilibrium sampling in the isothermal iso-
baric ensemble is required only for the end-states, which can be effectively imple-
mented using specialized and highly efficient HREX enhanced sampling schemes.[33]
Starting from a representative HREX-sample of n phase-space points (from few
tens to few hundreds) of a given end-state, the system is rapidly driven to the
other end-state by continuously varying the λ alchemical parameter in a swarm
of corresponding n concurrent and independent NE trajectories, typically lasting
from a time τ of few tens to few hundreds of picoseconds and eventually produc-
ing an alchemical NE work computed as W =

∫ τ
0
∂U
∂λ λ̇dt. The fast switching stage

can be straightforwardly implemented on a single embarrassingly parallel job on
modern HPC platforms, allowing the computation of the NE work distribution in
a matter of wall-time minutes.

The NES process can be conducted in the two senses, with the 0 ≤ λ ≤ 1 and
1 ≤ λ ≤ 0 processes conventionally indicated[26] as the forward growth and the
reverse annihilation of the solute, respectively. The growth and annihilation NES
simulations produce two independent unidirectional estimates of the solvation free
energy, namely

∆G =
1

n

n∑
i=1

e−βWi(G) (4)

∆G = − 1

n

n∑
i=1

e−βWi(A) (5)

The above unidirectional estimates based on the Jarzynski exponential average,
while asymptotically exact, are nonetheless affected by a bias error that decreases
with the number of work values, n, and with the dissipation,[34] defined as the
difference between the mean NE work and the underlying free energy. Provided
that the fast growth and annihilation transformations are conducted with inverted
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time schedules, the two estimates of Eqs. 4 and 5 can be combined in a bidirec-
tional, statistically efficient and unbiased[18] BAR estimator where ∆G is given
by the root of the equation

n∑
i=1

1

1 + eβ(Wi(G)−∆G)
−

n∑
i=1

1

1 + eβ(Wi(A)+∆G)
= 0 (6)

If the the, e.g., growth work distribution PG(W ) is found to be normal then,
as a trivial consequence of the Crooks theorem[35], the annihilation distribution,
PA(−W ), done with inverted time schedule, must be normal too with the same
variance, σA = σG. The two forward and reverse distributions are symmetrical
with respect to the crossing point at W = ∆G. For normal distribution(s), the
free energy can be hence recovered with the unbiased unidirectional estimators:

∆G = 〈WG〉 −
1

2
βσ2 (7)

∆G = −〈WA〉+
1

2
βσ2 (8)

where 〈WG/A〉 are the mean values of the growth work and of the annihilation

work with inverted sign. The quantity 1
2βσ

2
G = 1

2βσ
2
A = Wdiss is the dissipated

work in the transformations, which must be identical in either directions. Provided
that the sampling of the starting end-states has been adequate, the precision (e.g.
the 95% confidence interval) of the two independent NES Gaussian estimates in
Eqs. 7 and 8 increases or decrease with the square root of n and depends only
on the sample variance σ2.[36,26,23,24] The normality of the distributions can be
instantly checked[24] using standard procedures such as the Kolmogorv-Smirnov,
the Wilk-Shapiro, the Jarque-Bera or the Anderson-Darling tests.[37]

3 Materials and methods in NES submissions

3.1 System preparation

In order to assess the performance of the “official” versions of the most popular
force fields (FF), we submitted multiple NES predictions adopting: the CgenFF pa-
rameter sets as obtained from the web interface “paramchem”[38,39]; the GAFF2
topological and parameter files as obtained form the web interface “PrimaDO-
RAC”[14]; the OPLS-AA parameter sets as obtained from the web interface “Lig-
ParGen”.[17] The GAFF2 atomic charges are computed by PrimaDORAC at the
AM1/BCC level. For the OPLS-AA charges, the LigParGen option “1.14*CM1A-
LBCC” was used. The charges in the CGenFF are assigned by analogy[39] by the
paramchem web toolkit. All calculation were done with the program ORAC.[40]
For each of the three FF’s, the parameter files were converted “as is” to the ORAC
format with no further adjustment. The ORAC suite, inlcuding source code and
documentation, can be freely downloaded from the website www.chim.unifi.it/orac.

For all submissions, solvation free energies were evaluated by dissolving the
solutes in 1240 water molecules or 125 molecules of octanol in a cubic MD box.
Hence in all cases we used “dry” 1-octanol as a solvent. The parametrization
of the explicit water solvent in hydration free energy calculations is done using
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CgenFF GAFF2 OPLS-AA Exp.
ρ 0.815 ± 0.03 0.809 ± 0.03 0.812 ± 0.03 0.83
ε 4.9 ± 0.5 4.1 ± 0.3 4.9 ± 0.3 10.3

Table 1 Computed static dielectric constant and density (g/cm3) of pure 1-octanol in stan-
dard conditions using various force fields. Experimental values are taken from Ref. [46].

the recently developed OPC3[41] three-point site model. For 1-octanol as a sol-
vent, in the force field specific submissions, the parametrizations provided by the
paramchem (CgenFF), PrimaDORAC (GAFF2) and LigParGen (OPLS-AA) web
toolkits were adopted. The use of the common OPC3 model in all our NES sub-
mission is motivated by the fact that OPC3 reproduces with accuracy both the
static dielectric constant and the density of water at standard conditions. Besides,
as shown in Ref. [51], we showed that, while the effect of the selected force field for
the solute molecule is important for the LogP prediction, the choice of the force
field for the solvent water molecule is much less critical, with bearly detectable
differences in the hydration energies when switching water models.

All simulations were done in the NPT isothermal-isobaric ensemble under pe-
riodic boundary conditions, yielding a mean side-length around 32-33 Å in both
water and 1-octanol in all cases. The external pressure was set to 1 atm using a
Parrinello-Rahman Lagrangian[42] with isotropic stress tensor. The temperature
was held constant at 298 K using three Nosé Hoover-thermostats coupled to the
translational degrees of freedom of the systems and to the rotational/internal mo-
tions of the solute and of the solvent. The equations of motion were integrated using
a multiple time-step r-RESPA scheme[43] with a potential subdivision specifically
tuned for bio-molecular systems in the NPT ensemble.[44,42]. The long range cut-
off for Lennard-Jones interactions was set to 13 Å. Long range electrostatic were
treated using the Smooth Particle Mesh Ewald method,[45] with an α parameter
of 0.38 Å−1, a grid spacing in the direct lattice of about 1 Å and a fourth order
B-spline interpolation for the gridded charge array.

In Table 1, we show the computed density, ρ, and static dielectric constant, ε,
of pure 1-octanol using the three FF’s compared to the experimental values.[46]
The average density and dielectric constant were calculated on 125 molecules of
1-octanol in the NPT ensemble at T=298 K and P=1 atm, running for 12 ns.
The three force fields yield essentially the same ε and ρ values and are in ac-
ceptable agreement with the experimental counterpart. The density and dielectric
constant of OPC3 water in standard condition are 0.996 ± 0.01 g/cm3 and 78 ±
4, respectively.[41] The corresponding experimental values are 0.997 g/cm3 and
79[46]

3.2 end-states HREX simulations

The Hamiltonian Replica exchange simulations in (w/o) solution and gas-phase
for each of the 11 solute molecules are done using torsional tempering. Torsional
tempering, a specialized solute tempering[47] scheme described in detail in Ref.
[33], allows to surgically enhance the sampling on the relevant degrees of freedom
of the system keeping the replica number to a minimum. For the compounds of
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Figure 1, the scaling involves all the torsional potentials (including 1-4 non bonded
interactions) around the rotable bonds connecting the planar rigid units, using a
minimum scaling factor of c = 0.1, corresponding to a “torsional temperature” of
3000 K. Only the scaling factors are communicated among replicas, minimizing
inter-processor communications. The torsional GE space is covered using only four
replicas, with the scale factors[33] given by cm = c(m−1)/3. Each system at the
end-states λ = 0 and λ = 1 was simulated using HREX for 8 ns in the target state
(hence 32 ns in total for each solute molecule), saving 420 phase space point every
20 ps for the later NES stage. Further technical details on the HREX simulations
(round trip times, torsional energy overlap, GE state distributions of the walkers)
are provided in Ref. [31] for specific examples.

3.3 NES stage

In the NES stage, for each compound of Figure 1, in a single parallel job, 420 anni-
hilation trajectories were started in the isothermal-isobaric ensemble in standard
conditions, reading the initial phase points, harvested in the preceding HREX at
full coupling λ = 1. In each of these NE annihilation trajectories, the solute was
decoupled up to λ = 0 in 150 ps in water and 300 ps in 1-octanol. The annihilation
times are chosen such that the mean dissipated work is approximately the same
in the two solvents. The detail of decoupling protocol involves the linear discharg-
ing of the solute in the first 30 ps (water) and 60 ps (1-octanol), followed by the
Lennard-Jones decoupling in the remaining 120 ps (water) and 240 ps (1-octanol).
For the Lennard-Jones decoupling, we used a soft-core Beutler potential[48] regu-
larization as λ→ 0. Such NES protocol was chosen on the basis of past experience
on NES solvation free energy calculation for molecules of comparable size.[49,
10,50,51] For each of the 11 compounds, 4 work histograms were produced, i.e.
PG(W ), PA(−W ) in water and in 1-octanol. All 44 work histograms for the three
FF’s, produced in the NES stage, are reported in Figures S1-S3 of the Supporting
Information (SI).

The fast-growth NES stage was started combining 420 HREX phase space
points of the solute in the gas-phase with equilibrated and decorrelated snapshots
of the pure solvent, that is, inserting the solute as a ghost molecule in a random
position and with random orientation in the equilibrated solvent configurations.
The fast growth NES protocol corresponds to the inverted time schedule of the
annihilation stage, i.e. in water and in 1-octanol the solute-solvent Lennard-Jones
potential with soft-core regularization is first switched on in 120 and 240 ps, fol-
lowed by the recharging process up to 150 and 300 ps, respectively.

3.4 LogP estimates

For each of the three FF, we submitted two blind predictions. The “challenge”
prediction (NES-2) is done using both the growth and annihilation NE work val-
ues, exploiting the BAR bidirectional estimate, Eq. 6. The error was computed
using bootstrap with resampling and corresponds to 1.96 times the square root
of the ∆G variance (i.e. α = 0.05, 95% confidence interval). In the second “fast”
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prediction (NES-1), the LogP was determined using only the fast-growth unidi-
rectional estimates for the solvation free energies. The forward work distribution,
PG(W ), was checked for normality according to the Anderson Darling (AD) test
defined via the quantity A2 =

∑n
i=1

2i−1
n [ln(Φ(wi) + ln(1− Φ(wn+1−i)], where Φ

is the Gaussian cumulative distribution function with sample mean and variance
and wi are the work values sorted in ascending order. The critical value of A2 at
the level α = 0.05 is 0.752.[52]. If A≤0.752, the work distributions were assumed
to be normal and the solvation free energies were computed using the unbiased
unidirectional Gaussian estimate, Eq. 7. In case of AD failure, the unidirectional
Jarzynski estimate, Eq 4, was used. As for the first blind prediction, also for the
forward (growth) unidirectional estimates the error on the solvation free ener-
gies are evaluated using bootstrap with resampling. Raw results for all six blind
predictions are reported in the SI (Table S1-S6).

3.5 Efficiency considerations

The “challenge” BAR-based blind prediction, on a per solute molecule basis, re-
quired a total of 424 ns for a system of approximately 3000 atoms (64 ns for the
HREX stage and 360 ns for the forward and reverse NES stages). The fast-growth
blind prediction, on a per solute basis, required a total of 180 ns (with a negligible
cost of the HREX on the isolated molecule) for a system of approximately 3000
atoms. All computations were done with the OpenMP/MPI hybrid version of the
ORAC program[40] on the 24K cores CRESCO6 ENEA cluster equipped with
Intel Skylake 48 cores CPU 2.4 GHz. The “challenge” prediction were computed
submitting four batch parallel job scripts, each processing sequentially all 11 com-
pounds, namely two HREX simulations (water and 1-octanol) at full coupling and
two subsequent NES (water and 1-octanol) and were completed in two wall clock
days. The fast-growth predictions were obtained by submitting just one batch par-
allel job script (computing sequentially the fast-growth in water and in 1-octanol
for all compounds) and was completed in few wall clock hours. Examples of these
batch submission scripts are reported in the SI.

4 Overview on MD-based SAMPL6 submissions

31 MD-based submission were uploaded in the SAMPL6/LogP challenge. Of these,
30 were performed using the alchemical approach; 24 submissions used the FEP
or TI equilibrium technique, and 6 the NES method. No other group, except for
ourselves, used the NES method for LogP calculations. In 8 submissions (6 FEP,
2 NES) the CgenFF was used. In some cases, refined versions of the same force
field were used processing the paramchem parameters with the “lsfitpar” refine-
ment program[53] ; In 9 submissions (6 FEP, 1 TI, 2 NES), the GAFF1 or GAFF2
force field was used with atomic charges computed at the AM1/BCC level or at
higher QM level. In 6 submission (3 TI, 1 FEP, 2 NES) the OPLS-AA LigParGen
parameter sets in all cases. The latter six submissions used the very same LigPar-
Gen generated force field setup for the solute molecule and hence provide a subset
for comparing the performances of equilibrium and non equilibrium methodolo-
gies. In one case (submission nh6c0, one of the best performing MD-based blind
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CgenFF OPLS-AA GAFF(1/2) POLAR
R 0.17(0.56) 0.54(0.79) 0.64(0.79) -0.04

MUE 1.25(0.98) 1.85(1.06) 1.85(2.07) 1.97
τ 0.14(0.49) 0.39(0.45) 0.41(0.53) -0.05

slope 0.38(1.0) 0.98(1.33) 1.34(1.38) -0.10
Nsub 8 6 9 6

Table 2 Overall performances (in bold font) of the MD-based alchemical approach for the
the GAFF, CGenFF and OPLS-AA parametrization. R, MUE, τ and “slope” indicate to the
Pearson’s correlation coefficient, the mean unsigned error, the Kendall rank coefficient and
the slope of the regression line. In parenthesis the results of the “challenge” (BAR) NES
submissions are reported.

predictions), the FF original GAFF1 parameters were manually adjusted. The re-
maining MD-based submissions used polarizable force fields. Water was described
using the OPC3 model (only in the 6 NES submission), the TIP3P model[54] (4
submissions), the TIP4P model[54] (4 submissions) and the SPCE model[55] (2
submissions). In remaining MD-based instances the water model was not specified.
In all submissions using classical non polarized FF’s, the 1-octanol was modeled
using the reference force field. Dry and wet 1-octanol was used in 15 and in 8
submission, respectively. The FEP or TI protocols used a number of λ windows
from a minimum of 12 to a maximum of 20, and each λ state was simulated from
few ns in water up to 20 ns for 1-octanol. Details of all MD-based submissions
using non polarizable force fields are reported in Table S7 of the SI.
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Fig. 2 Experimental-calculated LogP correlation plots for MD-based submission for CGenFF,
GAFF and OPLS-AA force fields. NES-2 and NES-1 indicate the bidirectional and unidirec-
tional NES submissions, respectively
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In the Table 2 and in Figure 2 we show the overall performances of the alchem-
ical methods as a function of the adopted FF (whether refined or not). Except for
the submissions using polarizable force fields (not reported in Figure 2) showing
consistently (and surprisingly) poor results, the performances for the three fixed-
charges FF’s reported in Table 2 are somewhat contradictory depending on the
selected quality indicator. CgenFF appears to be the best performing FF for the
MUE, but has the lowest Pearson and Kendall coefficients. Surprisingly, among
the less accurate CgenFF submissions, some (see Table S7 in the SI for details)
were done using a refined force field due to a positive “penalty score” obtained
from the paramchem toolkit. This is somewhat puzzling given that, apparently, the
“refined” CGenFF submissions were done using exactly the same FEP protocol of
the best performing standard (paramchem) CGenFF predictions.

At variance with CgenFF, GAFF yields larger MUE, consistently overestimat-
ing the LogP for virtually all uploaded submission (see Figure 2, central panel).
On the other hand, GAFF outperforms CGenFF for both the Pearson and the
Kendall rank coefficients with no striking degradation or increase of performances
when the AM1-BCC charges are replaced by high level QM atomic charges (see
Table SI7 in the SI for details). The OPLS-AA FF lies somewhat in between the
CgenFF and GAFF FF’s. The systematic overestimation of the LogP’s, although
still evident (see Figure 2), is less pronounced with respect to GAFF, as measured
by a somewhat smaller overall MUE. All six OPLS submissions, on the other hand,
exhibit a good overall correlation and ranking coefficients. The LogP overestima-
tion in GAFF and OPLS-AA is likely due to the fact that the Lennard-Jones and
electrostatic balance in the parametrization has been in general trained over hydra-
tion free energies of small molecules[16,13]. Thus, the electrostatic contribution to
the solvation energy could be somewhat overestimated using water trained atomic
charges in the apolar 1-octanol solvent, eventually producing systematically higher
LogP values.

On the overall, as Table S7 in the SI shows, the use of wet 1-octanol did not
appear to improve appreciably the performances. Both FF and reported method-
ological errors (ranging from 0.1 to 2 LogP units) are seemingly larger than the
differences obtained in specific cases for wet or dry 1-octanol. For example, for
OPLS-AA, the best performing submission was obtained using dry octanol, as
for CGenFF. For GAFF, the submission bearing the lowest MUE highest R and
Kendall coefficients, done using wet 1-octanol, is only marginally better than other
submissions obtained using dry 1-octanol. This is so since in wet 1-octanol, in spite
of the high molar water fraction of 0.27, one molecule of water per four molecules
of 1-octanol translates in a water/octanol volume fraction of only ' 0.03 with a
limited impact (a slight decrease) on the static dielectric constant.[56]

Further details of the MD-based submissions are shown in Figure 3, where we
report the statistics of all MD-based prediction sets (classified according to the FF)
in the SAMPL6 challenge for each of the compounds of Figure. 1 The experimental
values, the NES-2 and NES-1 submissions are indicated as green circles, red filled
triangles and a red stripes squares, respectively. For CGenFF, NES predictions
exhibit the largest deviation for SM02, as most of the other submissions. For all
other compounds, NES is consistently among the best performing methods. In case
of GAFF, as previously states, all prediction sets appear to overestimate the LogP.
NES submissions are found in most cases in correspondence of the maximum of
the overall SAMPL6 GAFF distribution. For OPLS-AA, overestimation of LogP
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is still evident, and, again, NES submissions are systematically found among the
best performing alchemical methods.

Fig. 3 Detailed NES statistics of MD-based submissions in SAMPL6 challenge for all com-
pounds, classified according to the adopted FF. Green circles: experimental data. Red triangles:
NES-2 (bidirectional) submission. Red stripes squares: NES-1. (unidirectional) submission.

5 NES Results

The performances of the BAR-based bidirectional NES “challenge” submissions,
NES-2, shown in parenthesis in Table 2 and as the black circles in the Figure 2, are
consistently among the highest ranking for each of the FF’s. Only for the CGenFF
submission (see Table S7 in the SI), the unidirectional estimate NES-1 turned out
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to be only marginally better than the bidirectional estimate NES-2, very likely
reflecting just a lucky “shot on goal”.

At variance with FEP or TI submissions, all NES submissions are from mod-
erately to strongly mutually correlated, irrespective of the adopted force field or
of the kind of estimate, unidirectional or bidirectional. In Table 3, we show the
correlation matrix obtained with NES for the three force fields. In the upper and
lower triangles we report R and τ correlation coefficients obtained with NES-2 and
NES-1, respectively.

CgenFF GAFF2 OPLS-AA Exp.
R τ R τ R τ R τ

CgenFF 1 1 0.34 0.31 0.34 0.38 0.55 0.49
GAFF2 0.45 0.29 1 1 0.94 0.85 0.79 0.53

OPLS-AA 0.67 0.53 0.57 0.42 1 1 0.79 0.46
Exp. 0.57 0.42 0.62 0.44 0.73 0.53 1 1

Table 3 NES correlation matrix; Upper triangle NES-2 correlation; Lower triangle NES-1
correlation

As it can be seen from Table 3, for the three NES-2 submissions the mutual
correlation R between FF’s goes from a minimum of 0.34 (CgenFF-OPLS-AA and
CgenFF-GAFF2) to a maximum of 0.94 (OPLS-AA-GAFF2). The mutual Kendall
rank coefficient τ behaves similarly. Mutual correlations do not vary significantly
among the three NES-1 unidirectional estimates, showing similar R and τ indices
among the various FF’s.

The NES-2 and NES-1 correlation, already evident from Figure 3, can be fur-
ther assessed in the Figure 4, where we compare the bidirectional “challenge”
NES-2 and unidirectional fast-growth NES-1 predictions for all 11 compounds,
and for each FF. In the Figure we also report the error on the LogP with the two
estimates. As it can be seen from the Figure, the optimal NES-2 and the “fast”
NES-1 estimates are strongly correlated in all three cases. In case of CGenFF and
GAFF, NES-2 and NES-1 LogP are strikingly similar, yielding a Pearson coeffi-
cient of 0.98 and 0.93. Correlation (R=0.78) is only moderately degraded for



SAMPL6 nonequilibrium alchemy 15

Fig. 4 LogP coefficients computed using NES-2 and NES-1 approaches.
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OPLS-AA. This fact can be easily explained inspecting Tables S4-S6 in Figures
S1-S3 in the SI. The OPLS-AA work distributions failed the AD test in 10 cases
in water or 1-octanol compared to the three cases of CgenFF (SM08 SM11 SM15)
and the two cases of GAFF2 (SM08 SM16). Hence for the OPLS-AA FF, the less
accurate and precise Jarzynski estimate, Eq. 4, was used for the majority of the
compounds, at variance with GAFF2 and CgenFF were the unbiased Gaussian
estimate, Eq. 7, was mostly used.

As expected, the confidence intervals (reported as bar plots in the Figure 4)
are larger for the unidirectional LogP estimates with respect to the bidirectional
BAR computed LogP. NES-2 uses in fact, twice as much work values with respect
to NES-1. It is of note that the largest deviations between the NES-2 and NES-1
LogP estimates are seen in general in correspondence of large NES-1 errors, as in
SM08 for CGenFF and OPLS, and in SM16 for GAFF2. Again, large errors are due
to nature of the unidirectional estimates in the solvation free energies, obtained
from the forward work histograms as assessed by the Anderson Darling normality
test (see Table S4-S6 in the SI): if either ∆Goct or ∆Gwat or both have been
evaluated using the Jarzynski exponential averages Eqs. 4 in lieu of the Gaussian
unbiased estimate Eq. 7, then the confidence interval increases decisively and the
LogP becomes less accurate. We must stress that the computational cost of NES-1
calculation of the LogP for one compound of the series is entirely due to the NES
stage as the cost of the HREX sampling for a single molecule is negligible. NES-1
is hence a matter of few tens of wall-clock minutes on a Tier1 HPC system as the
CRESCO6 cluster provided by ENEA.[57] In our case, the unidirectional water
and 1-octanol solvation energies were computed (see technical details in the SI)
running on about 3500 cores (about 1/8 of the CRESCO6 cluster) in less than a
hour (15 minutes for water and 30 minutes for 1-octanol), yielding an average 95%
confidence interval not exceeding one LogP unit. Accepting a confidence interval
of 80% (i.e. running just 100 trajectories instead of 420), a dedicated CRESCO6
Tier-1 cluster can compute about 1000 NES-1 LogP coefficients per day.

We conclude this section by examining in detail the behavior of the FF’s for the
compounds of the SAMPL6 challenge in terms of the electrostatic and Lennard-
Jones contributions to the solvation free energy in water and in 1-octanol. The
electrostatic contribution (QQ) was obtained from the reverse annihilation, eval-
uating the work distribution at the end of the discharging process (i.e. τ = 30 ps
and τ = 60 ps for water and 1-octanol, respectively). We used the unidirectional
estimate (Gaussian of Jarzinski depending on the AD test) on the QQ work dis-
tributions. The Lennard-Jones contribution (LJ) was computed from the growth
process evaluating the work at τ = 120 and τ = 240 in water and 1-octanol, re-
spectively. In this case all LJ work distributions, with no exception, were found
normal and the Gaussian estimates was hence used in all cases. The results of this
analysis are summarized in Figure 5 where the values of the ∆GQQ and ∆GLJ
contributions are reported for each of the compounds of Figure 1. As expected,
in water (see Figure 5, top panel) the major contribution to the solvation en-
ergy is consistently due to the ∆GQQ free energy. In 1-octanol (Figure 5, bottom
panel), the situation is reversed. For this solvent, the ∆GLJ contribution is signif-
icantly larger than ∆GQQ for almost all compounds, with the notable exception
of SM08, which was the only compound bearing a carboxylate group and where
both CgenFF and GAFF2 predict a ∆GQQ that is of the order of or larger than
the ∆GLJ .
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Fig. 5 Electrostatic and Lennard-Jones contributions (see text for details) to the solvation in
water (top panel) and in 1-octanol (bottom panel) for the series of SAMPL6 compounds.
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In spite of the evident correlation, the balance of the QQ and LJ contributions
in three FF’s exhibits significant differences. OPLS-AA and GAFF2 yield very
similar LJ contributions for virtually all cases and in both solvents. OPLS-AA,
however, has a larger QQ contribution with respect to GAFF2 in both water and,
to a somewhat less extent, in 1-octanol. Probably, the QQ contribution in 1-octanol
is overestimated leading to the observed overestimation of the LogP coefficient in
both OPLS-AA and GAFF2.

CgenFF, on the other hand, is characterized by smaller LJ contributions in
many cases with respect to the other two FFs’ in both solvent. The CgenFF
QQ contributions to the hydration free energy lie in between (except for SM02,
SM14,SM15) with respect to those obtained using the OPLS-AA and the GAFF2
force fields. These subtle differences make apparently CGenFF more balanced with
respect to OPLS-AA and GAFF2, yielding in many cases LogP with significantly
smaller MUE’s. We finally note that for the clorurated compounds (SM04, SM12,
SM16) the extra site representing the chlorine σ-hole[58] in CGenFF (and not
used in OPLS-AA and GAFF2) do seem to have an appreciable impact on the
corresponding MUE’s. CGenFF LogP for SM02, SM12 and SM16 are better than
the corresponding OPLS-AA and GAFF2 values.

6 Conclusions

In this paper, we have given an overview on the MD-based blind predictions
in SAMPL6 LogP challenge using the most popular non polarizable force fields,
CGenFF, GAFF2 and OPLS-AA, in combination with the alchemical approach.
Force fields produce in general moderately consistent predictions. No force field can
be considered as optimal, although CGenFF, in its standard (paramchem) imple-
mentations, appear to be more balanced and predictive with respect to GAFF1 or
GAFF2 and OPLS-AA, yielding in general smaller RMSE’s. On the other hand,
OPLS-AA and GAFF2 show on the overall better Pearson and Kendall coeffi-
cients, both exhibiting a systematic overestimation of the LogP, possibly due to
the overestimation of the electrostatic contribution to the solvation free energy in
1-octanol. Such systematic error could be possible rectified by rescaling the atomic
charges of the solute in 1-octanol and/or the atomic charges of the 1-octanol
molecules in the solvent. Results using polarizable force fields were surprisingly
poor, showing that these force field still need adjustment in the balance between
fixed atom-atom Lennard-Jones interaction and the Coulomb contributions due to
the fluctuating atomic charges or dipoles.

NES emerges has a reliable tool for LogP prediction, systematically being
among the top performing submissions in all force field classes for at least two
among the various indicators (R, τ or RMSE). Contrarily to FEP or TI equilibrium
approaches, which yield apparently very disparate results, all independent NES
prediction sets, irrespective of the adopted force field and of the adopted estimate
(unidirectional or bidirectional) are, mutually, from moderately to strongly corre-
lated (from 0.35 to 0.95). Remarkably, accuracy is only moderately degraded in
the unidirectional (growth) NES-1 submissions, that are on other hand, extremely
convenient from a computational standpoint: a single LogP can be computed in a
matter of minutes on a Tier-1 HPC system such as the CRESCO6 ENEA cluster
equipped with Intel Skylake 48 cores CPU 2.4 GHz. NES, at constant wall time
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cost provides a methodology that bypass the problem of the sampling issue in
MD-based equilibrium approach. Poor convergence or inadequate solute confor-
mational sampling along the alchemical coordinate could in fact be the primary
cause for the observed disparity of FEP or TI submissions even when using the
same simulation setup and force field. Strikingly, the same disparity in equilibrium
alchemical applications, even when using similar simulation protocols, is observed
for the statistical uncertainties (imprecision) of the LogP.

At variance with stratification methods that are based on equilibrium sampling
on each of the strata, in the NES approach equilibrium is required only at the end-
states. The phase-space sampling of the end-states can be acquired as accurately
as possible by using highly parallel and efficient enhanced sampling techniques
affording a fast and accurate canonical sampling of all relevant collective coordi-
nates. In the subsequent NES stage, fast NE trajectories connect the equilibrium
phase-space points of one end-state to the corresponding non equilibrium set of
the other end state. Provided that the equilibrium sampling of the starting end-
state has been adequate, the confidence interval in NES rigorously depends on the
variance of a single work distribution, obtained crossing at fast speed the whole
alchemical coordinate, and on the number of NE trajectories (or equivalently, on
the HREX collected phase-space points). The confidence level in NES industrial
projects can be controlled using only two parameters, that is i) the number of
NE trajectories and ii) the length of the NE trajectories that control the final
dissipation and variance.
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