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Abstract: The high concentration and rapid increase in lung diseases caused by COVID-19 has 
suddenly led medical staff to face a lack of ventilators in emergency situations. In this context, many 
enthusiasts and/or designers all over the world have started to think about low cost and open-source 
solutions for emergency ventilators, with the aim of providing concrete aid. In a small amount of 
time, many different solutions have been proposed, most of which are based on the automatic 
compression of the auxiliary manual breathing unit (AMBU) bag. In particular, many different 
designs have been conceived for the AMBU compression mechanism, which contains the most 
critical parts to be designed. Here arises the aim of this work, i.e., to propose a methodological 
approach to support the creativity of designers involved in inventing increasingly sustainable and 
reliable low-cost compression mechanisms for AMBU-based ventilators. Accordingly, a conceptual 
framework is proposed, capable of collecting existing ideas and organizing the underpinning 
concepts, to provide stimuli for new idea generation and to keep track of (and possibly to share) the 
explored design space. Illustrative examples are provided in order to show how the proposal can 
be used in practice. In particular, a set of currently available solutions is schematically shown 
through the proposed graphical tools, and the generation of new illustrative solutions is presented. 
Additionally, it is shown how to represent further ideas (e.g., those coming from other teams) in the 
framework. 
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1. Introduction 

1.1. The COVID-19 Pandemic and the Role of Low-Cost Ventilators 

The Coronavirus disease, officially acknowledged as COVID-19 by the World Health 
Organization (WHO) [1], suddenly led the world to face a critical emergency, with a lot of patients 
with severe respiratory problems. After the cases in China, Italy was the first occidental country to 
report a very high number of infections, with a very high concentration in the Lombardy region. The 
rapid and vast spreading of the infection is sadly acknowledged by everyone, therefore for the scope 
of this paper it is sufficient to report that currently, more than ten million cases and nearly 500 
thousand deaths have been registered throughout the world (data from the WHO website [2]). It has 
emerged that for supporting the respiration of patients affected by the most severe symptoms, the 
use of automatic ventilators has been one of the crucial parameters for reducing death cases [3,4]. 
Unfortunately, and especially in Italy, it rapidly became evident that the available ventilators were 
outnumbered by the number of patients. Many solutions have been conceived to better exploit the 
available devices. For example, some studies have focused on the possibility of using the same 
ventilator for multiple patients (e.g., [5–7]), while others have concentrated on the optimization of 
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ventilator triage procedures (e.g., [8,9]) or the possibility to share ventilators among hospitals [10]. A 
comprehensive review of the different studies concerning ventilators falls out of the scope of this 
work, where the attention is focused on a particular phenomenon. More specifically, many designers, 
research groups, or simply enthusiasts have started to provide many open-source contributions of 
ideas about how to design and manufacture low-cost ventilators or parts of them (e.g., [11–13]), with 
the aim of supporting the supply of these devices. However, notwithstanding the different attempts 
to solve the problem, the need for ventilators is still crucial [14]. Therefore, this design-related way 
to fight the pandemic can also be very helpful because it strives to produce low-cost ventilators that 
can be easily afforded by hospitals (especially in developing countries, e.g., in Africa or South 
America). The ventilator design task is quite complex, and, even if focusing on low-cost devices, it is 
possible to find many problems that need to be faced. Indeed, ventilators can be both invasive and 
non-invasive [15], and many functionalities need to be carefully considered, from the filtration of the 
exhaled air to the different controls and requirements that should be satisfied [16]. 

However, among the different open-source contributions that can be currently found (a list has 
been recently made [17]), many of them exploit the advantages provided by the adoption of the 
standard auxiliary manual breathing unit, or simply “AMBU bag” (see Figure 1), which is also known 
as a bag valve mask (BVM) unit or “manual resuscitator”. Notably, the considered type of non-
invasive ventilator works by automatically compressing the bag with a mechanical system, hence it 
overcomes the need to employ a human resource. In cases of emergency, AMBU-based devices can 
be used to take care of patients when other ventilation systems are not available. 

 
Figure 1. Standard auxiliary manual breathing unit (AMBU) bag and main accessories. The AMBU 
bag was originally intended to be manually compressed for emergency purposes. 

With the aim of providing emergency and non-invasive ventilation systems, AMBU bags offer 
the opportunity to use parts already available, which are certified according to the standards in force, 
thus allowing the design efforts to be limited to the mechanism that automatically compresses the 
bag (and related controls). Moreover, this type of ventilator can be used for both endotracheal tube 
and non-invasive mechanical ventilation through a mask (similarly to what happens for continuous 
positive airway pressure (CPAP) ventilation) [18]. It is important to state from the outset that the 
selection of the most suitable ventilation system is the total responsibility of the medical staff. Medical 
considerations about the ventilators are not made in this work, which is focused on the conceptual 
stage of the engineering design process. 

The interest of designers, enthusiasts, and users towards this kind of ventilator has grown 
considerably in the last few months, all over the world. Consequently, several design efforts have 
been spent to conceive versatile, simple and low-cost devices to compress the AMBU (e.g., [17]). 

In such a context, this work focuses on BVM-based ventilators, and aims to propose a 
methodological approach to support the creativity of designers, i.e., to support them in conceiving 



Appl. Sci. 2020, 10, 4955 3 of 23 

new ideas for ventilators. To the best of the authors’ knowledge, this is the very first attempt to 
provide a methodological support for creativity for the design of ventilators. 

1.2. Creativity in Engineering Design 

Research groups and/or designers involved in the design of the mentioned low-cost ventilators 
have followed their own design rationale and methodology and indeed obtained very interesting 
results. Their proposals could be considered creative under certain aspects, but it is important to 
preface this with the acknowledgment that the concept of creativity is far from being standardized. 
Accordingly, many definitions of the term creativity can be found in the literature [19,20]. However, 
although it is widely accepted that novelty of ideas is a key concept of creativity [21–24], the case of 
ventilators further highlights the importance of other parameters like the usefulness and feasibility 
of the conceived ideas [25–27]. 

The cognitive mechanisms behind creativity are extremely complex and still a debated topic, but 
it is widely acknowledged that design fixation (the counterproductive and often involuntary 
adherence to specific solutions or rationales) [28–31] is one of the main obstacles that hinder the 
generation of novel and original ideas. The literature offers many hints for overcoming design 
fixation, or in general for supporting creativity (e.g., [32–34]), where the type of representation of 
creative stimuli often plays a key role [35–37]. Indeed, it has been observed that providing examples 
could somehow support creativity, but the form in which such examples are provided may influence 
design outcomes [35]. Moreover, it has been acknowledged that the abstraction level at which ideas 
can be represented and differentiated sensibly influences the degrees of novelty and variety of the 
generated solutions [21,22,38,39]. Additionally, problem-solving and/or design methods claimed to 
support creativity are available in the literature (e.g., [40–45]). Nonetheless, design methods are often 
considered difficult to learn by industrial practitioners [46–48], who usually prefer to follow  
classical “solution-based” or “trial-and-error” approaches. One of the main reasons behind this 
skepticism is the need to comprehensively understand the rationale underpinning the method. More 
specifically, if the fundamental rules are not followed and/or the considered terminology is not well 
understood, the design methods cannot bring the expected support [40]. 

Therefore, in order to exploit the benefits of a design method, it is crucial that the underpinning 
rationale (notwithstanding theoretical robustness) is easily understood. This is the key factor that has 
been taken into consideration for the development of the methodological proposal described in this 
paper. 

1.3. Objective of the Work: Supporting Creative Conceptual Design of Low-Cost Ventilators 

In line with the opinion of Yoram Reich (who raised the question of how design can help in 
challenging the coronavirus) [49], and in light of what has been stated in the paragraphs above, at 
this point a question arises: 

• Is it possible to exploit the suggestions from the design science literature together with 
experience from the already available open-source ventilators, in order to support designers 
during the conceptual design of new, improved, and low-cost ventilators? 

Here arises the objective of the work, i.e., to answer this question by providing an original 
methodological approach that allows the support of the generation of new ideas, and to keep track 
of the performed design space exploration. 

The main difficulty characterizing the development of such a proposal is the need to balance the 
requirement of theoretical robustness (in order to exploit the advice from design science) with the 
need for an easy-to-use tool (in order to rapidly allow its use by any designer anywhere in the world, 
without any particular knowledge of design theories and methods). 

As a result, a structured framework is presented in Section 2, where the co-evolutions of 
problems and solutions are mapped in a specific network, and a chart is used for representing 
alternative solutions from the lowest to the highest abstraction level. Theoretical robustness is 
ensured by considering an original combination of methodological tools, each of them already 
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discussed in authoritative journals. Therefore, theoretical demonstrations of the actual efficiency of 
the proposal are omitted here, where the emphasis is placed on examples and instructions for how 
to use the proposed approach in practice. Accordingly, Section 3 reports illustrative examples to show 
how to use the proposal for supporting idea generation at different abstraction levels. Indeed, it is 
worth highlighting that this paper does not aim to propose any specific new ventilator solution. As 
we have already said, this paper provides a methodological proposal that can be used by designers 
in order to collect, organize, and share existing knowledge about solutions and support design space 
explorations. 

2. Materials and Methods 

2.1. A Simplified Methodological Framework to Support Conceptual Design 

It can be difficult to select design tools and methods from the literature because there are many 
available alternatives, each with its pros and cons. Indeed, one can argue that well-acknowledged 
design textbooks should be taken as a reference (e.g., [40,50–54]), but when talking about how to 
support creativity, it is impossible to select a widely acknowledged “best” method. For example, 
although the German systematic design approach is widely taught and acknowledged [55], some 
non-negligible questions have been raised about its actual capability to support creativity in the 
conceptual design phase [56,57]. Therefore, the selection performed in this work is based only on the 
authors’ experience, by considering the tools and methods that they believed to be the most suited 
for the main purpose of the work, i.e., to support creativity in the method but with limited need of 
practice. 

More specifically, we hypothesized a framework capable of modeling existing solutions 
according to different levels of abstraction, in order to represent them by focusing not only on the 
structural details but also on the working principles. This is a key feature to avoid bias among the 
designers that will consult them. Indeed, complete information about the available open-source 
ventilators can be found, in terms of the electrical scheme, detailed CAD models, videos, and photos. 
However, many of them share the same working principles and differ only in terms of 
manufacturing-related choices and/or forms. On the other hand, other solutions implement 
completely different principles, but are sometimes implemented at a very rough level. It is 
acknowledged in the literature that the way in which a prototype is presented (also called the 
“fidelity” level) can actually influence the opinion of the audience (in this case, of the stakeholders 
involved in the development of new ventilators) [58–60]. Therefore, poorly implemented original 
ideas often risk being discarded because they are “not convincing”, if compared to other (maybe 
older) ideas developed in greater detail. 

In order to avoid this problem, we chose to model the compressing unit of the ventilators in two 
ways, i.e., abstractly with schemas, and graphically with generalized CAD models. For the abstract 
schematization, we chose to apply the problem–solution network (PSN) approach [61]. In particular, 
we took its most recent version, where different abstraction levels are considered to formulate both 
design problems and solutions [44], as a reference. Then, a chart to collect the generalized CAD 
models of key mechanisms was used, and directly linked to the PSN. The following paragraphs 
explain both the PSN and the chart. 

This particular set of graphical tools allows the representation of ventilators by decomposing 
them into the main design problems and the related solutions used to implement them. As well as 
the generation of brand-new solutions for each problem, the proposal allows us to explore different 
combinations of already explored solutions (not to be interpreted as a mere recombination of parts 
from acknowledged ventilators). 

2.1.1. Problem–Solution Network 

According to the objective of the present work, the PSN modeling of ventilators has been limited 
here only to the main functional problem, i.e., that of compressing the AMBU bag. A generic example 
of the PSN is shown in Figure 2, which is aimed at rapidly showing the main graphical parts 
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characterizing the tool. Indeed, as mentioned in Section 1.2, in order to comprehensively exploit the 
claimed benefits, it is crucial to learn the underpinning logic and definitions before the practical 
application of the method. 

The design problems characterizing the system to be modeled (the compression unit in this 
paper) are represented by yellow boxes, while the related solutions are in the green boxes. Problems 
are expressed in the form of “How to verb noun?”, and can be considered as the inputs of Boolean 
“AND” ports. This means that if during the conceptual design activity a designer proposes a solution 
at a certain level (e.g., Solution 1.2), the related sub-problems must be solved in order to consider it 
suitable for the subsequent design phases. For example, if Solution 1.2.1.1 in Figure 2 were not 
present, Problem 1.2.1 would remain unsolved, and then Solution 1.2 could not be considered. On 
the other hand, the solutions can be considered Boolean “OR” ports. Indeed, if a problem presents 
multiple solutions, any of them as well as any combination of solutions can be considered suitable 
for the subsequent design phases (according to the design requirements). For more detailed 
explanations of these fundamental PSN rules, please see [44,61]. 

 
Figure 2. Generic example of the problem–solution network (PSN) used for modeling the AMBU-

based open-source ventilators. 

The small empty boxes within each problem and solution box are used to indicate the abstraction 
level. More specifically, many abstraction frameworks can be used as a reference [62–64], but for the 
purpose of this work, the simplified version was considered according to the function-behavior 
structure presented in [44]: 

• Function (F): A function is identified by an action performed by the system, which can be 
expressed according to energy-material-signal formalism from the German systematic design 
approach [40]. 

• Behavior (B): This abstraction level concerns physical principles, forces, pressures, and any other 
non-structural elements required for performing the functions. In other words, the behavior 
represents the fundamentals of “how” the function is going to be implemented 

• Structure (S): The structure abstraction level is identified by physical elements such as the 
structural components and assemblies required for exploiting the behavior selected for 
implementing a function. 

According to the PSN rules [44], problems can be expressed only at the F and B levels, while 
solutions can be expressed at all three available levels. Therefore, a letter (F, B, or S) is placed as a tag 
in the small box within the yellow and green boxes, this highlights the considered abstraction level 
to which the content of the box refers (see Figure 2). Indeed, a simple rule has been conceived to push 
designers to think abstractly, thus avoiding premature jumps towards concreteness (and then 
overcoming design fixation). In practice, the designer is asked to avoid jumps from F problems to S 
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solutions as much as possible. When it is not possible to avoid the mentioned F-S jump, this is 
highlighted with a thick red arrow in the PSN. The rule was explained and justified in [44], but can 
be summed up as follows: “try to formulate PSN boxes at the highest possible levels”. However, 
additional fundamental PSN rules must be considered [44,61]: 

• Green boxes (when present) must follow yellow boxes and vice versa. Subsequent boxes of the 
same color are not allowed. 

• Ramifications are independent of each other. This means that any ramification is developed 
independently of any other ramification (the independency rule). When information from other 
PSN branches is needed in order to formulate a problem in another ramification, it means that 
the latter cannot be further developed. 

• Each problem or solution box can be reached by only one arrow. 

An additional white box has been introduced in this paper to simplify the representation of the 
different solution variants that characterize the analyzed ventilators at the lowest level (according to 
the independency rule), as shown in Figure 3. 

 
Figure 3. The white box collects all the alternative solutions at the structural level. It indicates the row 
number of the chart (see Figure 4) where the images of the generalized CAD models of each solution 
are reported. 

2.1.2. The Chart of Structural Solution Alternatives 

Each white box in the PSN (Figure 3) is a direct link to a specific row of the chart where the 
images of the generalized CAD models of each solution are reported (Figure 4). The chart appears 
quite similar to a morphological matrix [40,65], but is different in its nature. Indeed, differently from 
a morphological chart, not all the rows can be considered but only those coming from the 
ramifications selected in the PSN. However, with simple computer tools (e.g., Microsoft Excel) it is 
possible to build the whole chart (i.e., with all the rows), and then apply filters to hide the unnecessary 
rows. In other words, only the rows from the selected PSN ramification remain visible. The “filtered 
chart” is then a morphological chart and can be used accordingly, as shown in Figure 5. In particular, 
in the example shown in Figure 5, a filter has been applied to the generic chart in Figure 4, simulating 
the selection of rows 1, 3 and n, i.e., the red boxes from the selected ramifications in a hypothetical 
PSN. Once the filters have been applied and only the selected rows are visualized, the chart allows 
the consideration of many different combinations of the solutions belonging to the different rows 
(i.e., alternative solutions to the low-level problems of the PSN). More specifically, the example in 
Figure 5 shows three different combinations. In other words, this tool allows us to support creativity 
according to what was stated by Boden [66], i.e., that creative ideas can be obtained by novel and 
valuable combinations of acknowledged (familiar) ideas. 

The selection of the type of representation to be inserted into the rows follows specific criteria. 
Indeed, it has been demonstrated in the literature that the way in which stimuli (in this case, the 
representations of the structural solution variants) are represented can affect the creativity of the 
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design outcomes (e.g., [34,35,37]). However, while it seems that there is no difference between 
sketches and more detailed representations (e.g., photographs and CAD models) in terms of the 
novelty of the generated ideas, it seems that CAD models allow designers to obtain ideas 
characterized by higher quality [35]. Therefore, in the chart, an image of the 3D CAD model of the 
structural solution was inserted as a good compromise between a fully accessible 3D model and the 
need to use a 2D representation. Nevertheless, 3D models are also made available. 

2.2. How to Use the PSN–Chart Framework 

The PSN and the chart are intended to support designers in the early conceptual design phases 
when performing design space explorations. However, at least three different uses can be discerned: 

• Adding new ventilator concepts for subsequent activities. 
• Supporting the identification of brand-new solutions. 
• Supporting the identification of new combinations of existing solutions. 

In the following paragraphs, instructions for each of the mentioned uses are provided. 

 
Figure 4. Generic example of a whole chart with all the rows, without filters. It shows all the available 
solutions in the white boxes for all the PSN ramifications. It cannot be used as a morphological chart. 

 
Figure 5. Chart from Figure 4, where filters have been applied (simulating a selection on a 
hypothetical PSN), and only rows 1, 3 and “n” are active. The filtered chart can now be used as a 
morphological chart. 
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2.2.1. Adding New Ventilator Concepts 

In order to model the AMBU-based ventilators available in [17], the PSN rules were applied as 
described in Section 2.1. The obtained results are shown in Section 3, but it is sufficient to anticipate 
here that the resulting PSN constitutes the starting point for further idea generation activities. To 
provide a generic example, we consider the PSN shown in Figure 2 and suppose that it is the final 
network representing the analyzed ventilators. Then, each problem (yellow box) and solution (green 
box) is extracted from the analyzed ventilators. If other ventilators are identified, the following 
procedure allows the updating of the network: 

• Verify if the required ramifications are already present in the PSN. 
• If the PSN ramifications are sufficient to abstractly represent the ventilator, nothing more needs 

to be done in the network. 
• If the PSN ramifications are not sufficient to represent the ventilator, add the required problem-

solution sequences, according to the rules described in Section 2.1. 

If the designer feels that the new ventilator is also characterized by a structural solution that 
could be substituted with other possible alternatives, it is possible to add a new white box in the PSN, 
and then to add the related new row on the chart. Obviously, if the white box is assigned for the first 
time, the new row will be initially populated by only one solution. However, it provides the starting 
point for the generation of new structural solutions belonging to that specific PSN ramification. 

This procedure is fundamental to allow the abstract representation of the compression units, and 
to comprehensively discern differences at different abstraction levels. 

2.2.2. Supporting the Identification of Brand-New Solutions 

Each PSN problem (yellow box) has at least one solution (green box), which has been extracted 
from the analyzed ventilators. Nevertheless, each problem represents a potential starting point for 
new possible design space explorations. Indeed, for each problem new solutions can be added, which 
can be characterized by additional problems and so forth, thus leading to completely new 
ramifications and possibly to new white boxes (and then new rows in the chart). 

According to many acknowledged creativity and idea generation assessment metrics (e.g., 
[21,22,38,39,67–69]), explorations performed at the high abstraction levels used in the PSN offer the 
opportunity to attain greater novelty and variety. However, other explorations can be performed at 
the structural level in the rows of the chart. Indeed, the designer can add an indefinite number of 
solutions in each row. 

2.2.3. Supporting the Identification of New Combinations of Existing Solutions 

After completing the PSN and the chart (or when the designer simply cannot find other 
solutions), it is possible to explore new combinations of the collected solutions. This can be done both 
at the abstract levels in the PSN and at the structural level in the chart (as shown in Figure 5). 

However, the chart can be used only after the application of the filters, and then only after the 
selection of specific ramifications in the PSN. Such a selection actually represents the identification of 
new possible combinations at the high abstract levels. Indeed, by selecting alternative solutions for 
each problem in each branch, it is possible to obtain different combinations of white boxes, and then 
to apply different settings of the filter to the chart. 

Once the chart has been reduced according to the ramifications selected in the PSN, the designers 
can try different morphological combinations (see Figure 5) to stimulate the generation of new ideas 
for the whole ventilator concept (in the same way as the morphological charts of the German 
functional decomposition and morphology approach [40,70]). 

3. Results 

3.1. Network and Chart from the Reviewed Ventilator Projects 
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The AMBU-based ventilators reviewed in [17] were analyzed in order to extract the main 
characteristics of the compression mechanism. In particular, according to the proposed framework, 
the ventilators are represented abstractly by means of the simplified PSN formalism shown in Figure 
3. Although some ventilators showed very similar working principles, a quite articulated network 
was obtained. An overview of the network can be seen in Figure 6. Please note that a full-scale view 
of the PSN shown in Figure 6 was reported in [71] (open access dataset). 

 
Figure 6. Overview and detailed excerpt of the simplified PSN obtained to represent the ventilators 
reviewed in [17]. Please see the freely available dataset [71] for a full-scale view. 
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The obtained chart shows that although more than forty ventilator concepts were analyzed, 
some rows are still poorly populated. This means that the designers explored only some PSN 
branches and the related white boxes (i.e., leading to the specific rows of the chart). Understanding 
the reasons for such preferences falls out of the scope of this work, but it is possible to infer that the 
PSN and the chart provide an immediate overview of the solutions, suggesting that many unexplored 
possibilities exist in the design space. In fact, the preferred mechanisms for compressing the AMBU 
exploit forces generated by one or two rigid bodies moving against the bag while a few concepts 
exploit a flexible belt tightened against the AMBU from one or two sides. As mentioned before, only 
one concept among those reviewed in [17] used external pressure to directly compress the bag (last 
row of the chart in Figure 7). 

 
Figure 7. Overview and detailed excerpt of the chart obtained from the PSN shown in Figure 6. Please 
see the freely available dataset [71] for a full-scale view. 

3.2. Structural Concept Variants from Existing Solutions 

The first and most simple way to exploit the proposed framework is to use it as a design 
catalogue, where the collected information can be used to generate new overall concepts by taking 
inspiration from existing solutions. This is what was done by an Italian firm, who exploited the 
framework to generate a new ventilator concept. 

In particular, the solution took inspiration from the PSN branch that considers two bodies 
moving against the bag, and then from row 4 of the chart shown in Figure 7. More precisely, the PSN 
branches that inspired the firm are depicted in Figure 8 (the other branches of the PSN have been 
compressed). 
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Figure 8. PSN branches that inspired the firm in the design of the new ventilator. For a full-scale view, 
please see the freely available dataset [71]. 

Among those present in row 4 of the chart, one specific solution was considered worthy of 
attention by the firm, because it allowed them to think about a very simple mechanism. In particular, 
the first solution in row 4 of the chart represents two bodies moved by a gear and two gear racks. The 
schematic representation used in the chart avoided any particular reference to the construction 
choices made by the designers of the concepts reviewed in [17]. In this way, the risk of design fixation 
problems was drastically reduced. Accordingly, the designer was able to slightly modify the initial 
idea (rotating the gear racks by 90 degrees), and to obtain a new particular version of the solution 
(Figure 9). Indeed, a central pinion (“drive gear” in Figure 9) moves two gear racks directly connected 
to the bodies that compress the AMBU. Moreover, this particular interpretation of the solution allows 
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designers to exploit the same plastic chassis (e.g., made of Delrin or POM) as a guide for the gear 
racks. 

 

Figure 9. The compression mechanism of the new ventilator concept. It has been derived from the 
first solution in row 4 of the chart (see [71]). 

The motivations that lead designers to get inspiration for a specific solution can be different and 
difficult to extract. However, by asking the designers about the reasons that led to this specific 
solution, it emerged that among the different solution paths that could be extracted from the PSN 
and the chart, this specific one (gear and gear racks) was implementable with elements that were 
often used by the firm. Additionally, the electronic control of the motor (whose design is not 
supported by this proposal) with this configuration was very similar to other applications where the 
internal staff was involved. 

A first prototype has been built and used to perform duration tests aimed at identifying the pros 
and cons of the concept, as well as at identifying failures to be faced in further design iterations. 
Additionally, it is worth mentioning that the actual ventilation efficiency must be tested with care 
and in the presence of medical staff in order to verify compliance with the required safety 
specifications. 

3.3. New Combinations of Existing Solutions 

Another possible use of the proposed framework involves taking inspiration from different 
combinations of the solutions present in the chart’s rows selected through the PSN. 

For example, by considering the PSN ramifications that lead to rows 1 and 3 (see [71]), the related 
filtered chart is that represented in Figure 10. 
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Figure 10. Filtered chart with only the required rows activated. The reference solution for the 
compression mechanism is that in row 3 and column B. It can be combined with each of the solutions 
in row 1. For a full-scale view, please see the Microsoft Excel file in the freely available dataset [71]. 

The solution in row 3 and column B was not developed in detail by the original designers (only 
a rough sketch was presented), and the required AMBU physical constraint is represented only in a 
very schematic form (just a generic plane). Therefore, just for illustrative purposes, new hypothetical 
concepts can be obtained by combining the solution identified by row 3 and column B with each of 
those present in row 1 (see Figure 10), i.e., the structural solutions adopted by the considered 
ventilator concepts to constrain the AMBU against the compressing force. It is important to note that 
this operation is not possible when considering the solutions from the PSN branches (in the simplified 
version shown in Figure 6) regarding “two bodies” moving against the AMBU. Indeed, at the abstract 
level considered in this paper, only one row is sufficient to describe the solution. 

Therefore, the tool offers the opportunity to perform early design considerations about the new 
possible concepts that could be derived from the different combinations. For example, it is possible 
to assert that considering the combination of solutions at row 3 column B with that at row 1 column 
A, some problems could arise with the AMBU bag. Indeed, while the adoption of two parallel 
supports allows the easy location of the belt compression system in the middle of them, it is important 
to consider possible problems due to the bending of the AMBU under the action of the belt. On the 
other hand, if considering the solution at row 1 column B, more efficient compression is possible, but 
lateral stabilization of the AMBU bag is required. 

3.4. Keeping Track of New Solutions 

It is quite probable that meanwhile, as well as the concepts considered in this work [17], others 
have been developed by research teams and/or enthusiasts. As already mentioned in this paper, a 
comprehensive investigation of the state of the art falls out of the scope of the work, but it is important 
to show how to use the proposed tools to keep track of new ideas. 

The first possible way to do that consists of adding new structural solutions in specific rows of 
the chart. As explained in Section 2.2.1, the procedure is quite simple and starts by checking whether 
the available PSN branches are sufficient to describe the new idea abstractly. When this is the case, it 
is possible to identify the specific rows of the chart (white boxes in the PSN), and then to check if 
there is a schematic representation resembling the new idea. This is quite a subjective procedure, 
because designers can focus on different levels of generalization. For example, the mechanism shown 
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in Figure 9 has been developed by taking inspiration from the solution in row 4 column A of the chart 
(see [71]). However, one can argue that the new solution is quite different, because the gear racks and 
the pinion are oriented in a different way. In this case, it is obvious that the PSN branches are 
sufficient to abstractly describe the idea (only for the compression mechanism), since it has been 
inspired by a specific row of the chart, i.e., a specific white box in the simplified PSN. Therefore, it is 
possible to add a new solution to the chart by inserting a new item representing the particular 
structure (see Figure 11). 

 
Figure 11. The solution of Figure 9 added to the same row of the chart that inspired the designer (see 
[71] for the full-size view). 

When PSN branches are not sufficient to represent the new concept (i.e., there is not a specific 
white box and then a row of the chart containing similar ideas), it is necessary to identify the level at 
which the new branch can be added. For example, considering the “Pressure” branch in the PSN (see 
Figure 12a and [71]), this allows us to describe solutions that exploit pressurized gases to compress 
the AMBU, directly in contact with the bag. However, the compressibility of gases can lead to 
uncertainties and additional difficulties for the control system. Indeed, different gas temperatures 
and moisture contents can involve different responses from the compression unit, as well as 
condensation that can cause problems to the pumping system. The use of an incompressible fluid, 
like a liquid, can certainly avoid these problems and also ensures a stable response from the 
compression unit. However, this solution cannot be represented by the current branch. Therefore, the 
additional branch shown in Figure 12b has been added, in order to consider also the use of liquids. 
Coherently, an additional white box is added and then an additional row in the chart (row 11). 
Accordingly, these new box and row allow to represent any new ideas that exploit a liquid to directly 
compress the AMBU bag. Some illustrative examples are provided in Figure 13. In particular, the 
solution in row 11 column A exploits a piston to move the liquid and then to compress the AMBU. 
On the other hand, the solution in column B exploits liquid contained in a tank, moved by means of 
a lobe pump. Both these solutions need a watertight box to contain the AMBU, allowing an easy 
access to both the input and output pipings of the bag. It is important to highlight that differently 
from the solutions in rows 1–9, both the presented solutions also allow control of the expansion of 
the AMBU, thus allowing control of the exhaling of the patient. The solution in row 10 is also 
theoretically exploitable for this additional function but with all the complications derived from using 
a compressible fluid (i.e., possible delays in the AMBU movement and/or behavior variations due to 
different temperature conditions). 

The authors conceived the new ideas shown in Figure 13 by exploiting the proposed framework. 
In particular, the PSN allowed the rapid identification of poorly investigated design spaces, and then 
focused the attention on them in order to find brand-new ideas. Therefore, it can be considered 
another example of how to use the framework to support idea generation. 

New structural solution in the same row 
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Figure 12. Illustrative example to show how to add new branches in the PSN, in order to keep track 
of new ideas that cannot be described in the available rows of the chart (i.e., the available red boxes 
in the PSN). 

 
Figure 13. Two hypothetical solutions for the new row added to the chart (row 11), as a consequence 
of the new PSN branch shown in Figure 12 (see [71] for the full size view). 

4. Discussion 

4.1. Obtained Results 

4.1.1. Methodological Proposal 

As mentioned in Section 1.3, the main research question referred to the possibility of exploiting 
design science and already available open-source ventilators in order to support designers in 
conceiving new and increasingly better low-cost ventilators. What we presented in this paper did not 
aim to perform robust tests of the method or to propose a specific new ventilator. On the contrary, 
priority was assigned to the need to support designers for the purposes of the COVID-19 pandemic. 
Accordingly, the proposed framework provides a new original way to exploit the design tools and 

Current version of the PSN branch New solution that implies the 
addition of a new branch and then a 
new white box 

(a) (b) 
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methods available in the literature to provide creative stimuli and to keep track of design space 
explorations and achieved outcomes. The latter characteristic is of fundamental importance, because 
it means that both the PSN and the chart can be easily upgraded and improved each time by any 
user, allowing them to add an indefinite number of new ideas. Consequently, in this context of open-
source projects and idea sharing, the proposed framework constitutes a valid tool for supporting 
different teams in organizing and sharing ideas systematically and also using them as a potential 
source of inspiration for generating other outcomes. 

Indeed, it has been shown how both the PSN and the chart can be easily exploited not only as a 
source of stimuli for conceptual design, but also as a structured framework to archive new ideas in a 
way that considers different levels of abstraction. Indeed, a further advantage of having a structured 
base of knowledge about the topic is the ability to minimize the resources spent on retrieving and 
collecting useful information for supporting the design tasks. 

Additionally, both the PSN and the chart available in the dataset [71] can be used by designers 
as the starting point for their design space explorations, according to the procedure proposed in this 
work. Then, the proposed framework is intended to support multidisciplinary design tasks where 
different skills and competences cooperate to find solutions starting at the early conceptual design 
phases. This is acknowledged to be crucial for product success, because if designers start from a poor 
concept, it is extremely difficult to obtain optimal results [52]. Indeed, the so-called sunk cost effect 
[72] can additionally actually hinder the possibility of abandoning the initial ideas, even if they are 
affected by obvious problems. 

4.1.2. Additional Results 

The ventilator concept shown in Figure 9 is an example of how the framework can support early 
conceptual design thinking for the generation of new ideas. However, it also allows us to show how 
to use the chart for archiving the new solution. Besides the mere illustrative purpose, such ventilator 
is actually a new and almost ready-to-use solution for the compression unit. Accordingly, it 
represents another solution that can be added to the considered review [17]. 

Other brand-new hypothetical ideas have been generated by the authors (see Figures 12 and 13) 
to illustrate how to use the framework in a generative way (see Section 3.4). In particular, these new 
ideas are very different from the others considered in this work, because they potentially allow the 
active support of patients’ exhalation by the direct control of AMBU expansion. However, any 
consideration of the actual utility and feasibility of these new ideas is out of the scope of the paper. 
Scholars and/or designers interested in these specific ideas must perform comprehensive 
investigations into their advantageous and disadvantageous features. 

Indeed, this paper aims at supporting early conceptual design processes focused on the main 
mechanical components of the compression unit. However, different choices in terms of mechanical 
solutions may have different impacts on the design of the related control systems. For example, 
concepts based on the solution at row 8 column E (the rod-crank mechanism) are surely very simple 
from a merely mechanical point of view. However, the particular mechanism makes it difficult to 
control different speeds for the compression and expansion movements, which are both within a 
single rotation of the drive axis. On the other hand, solutions such as that shown in Figure 9 allow 
the easy discernment of the forward and backward movements. 

4.2. Limitations and Future Developments 

Many limitations can be ascribed to this work. First of all, the performances of the proposed 
framework in terms of creativity enhancement have not been measured, but only examples have been 
provided. Although this could be seen as a non-negligible limitation, hindering any comprehensive 
and scientific validation of the proposed approach and tools, it is worth highlighting that the main 
purpose of the work was to provide a practical approach to support designers in challenging the 
COVID-19 pandemic by generating new ideas for ventilators. Accordingly, the proposal actually 
provides an original way to exploit morphological matrices and the PSN. 
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Nevertheless, also from a design science point of view, it can be considered an interesting result, 
but the actual performance of the proposal needs to be investigated with scientifically sound 
procedures. For that purpose, well-acknowledged metrics and approaches can be exploited for 
designing specific experiments and assessing the design outcomes in terms of creativity (e.g., 
[21,22,68,73,74]). Additionally, in order to better understand how the framework actually stimulates 
designers, experimental procedures based on the analysis of design protocols [75,76] should be 
followed in future studies. 

Concerning the considered ventilators, the paper is focused only on the AMBU-based concepts 
reviewed in [17], without checking for the presence of other ideas. However, it is worth noting that 
the paper aims at providing the fundamentals and the instructions needed to apply the proposal. The 
PSN and the chart compiled in this paper can be updated and upgraded with new ideas, according 
to the procedure described in Section 2 and illustrated in Section 3. This constitutes possible guidance 
for future research activities where the proposed framework can be used to comprehensively collect 
and review all the available ventilator concepts. To this end, it is important to highlight that as 
declared at the beginning of this paper, only the main mechanism of the compression unit was 
considered in this work. However, the PSN and the chart allow users to model the whole ventilator 
system. The reason that led the authors to avoid a comprehensive modeling of the system was the 
need to provide an easy and ready-to-use tool. This implies that the possible combinations of 
solutions from different rows of the chart are quite limited. However, if needed, designers can use 
the PSN to model additional functional problems of the system, and then to obtain more rows on the 
chart. Therefore, a possible direction for future work can be the comprehensive modeling of the 
collected ventilator projects, in order to support design space explorations of the whole system. 

Finally, it is important to highlight that the design of a ventilator is quite a complex activity 
involving different disciplines. This paper only focuses on the mechanical design of the main 
mechanisms, but for obtaining good results, it is important to perform comprehensive discussions 
and co-design activities with medical staff and electronic and software engineers. The ideas whose 
generation is supported by the proposal presented here are intended to promote the mentioned 
discussions in the early design phases, limiting the negative effect of the sunk cost effect. 

Secondary design problems such as the filtration of exhalation, controls, and safety measures 
(although extremely important) were not considered here. This choice was made in order to ease the 
understanding of the proposal, but at the same time to allow designers to exploit it for the most 
impactful part of the system. It is implicitly assumed that for a correct design procedure, designers 
follow robust design procedures (e.g., [40,52,53]), where a thorough definition of the design task also 
plays a key role, and in which all the required functions and related requirements are carefully 
identified [40,77–80]. Accordingly, the proposed framework is intended to be used for early 
conceptual design phases. 

4.3. Expected Impact 

4.3.1. For the COVID-19 Pandemic 

It is surely pretentious to assert that a methodological contribution relating to design methods 
can directly save lives, but new ideas can potentially have this effect. However, cognitive 
psychologists are still unable to find a comprehensive and shared explanation of what actually can 
trigger the generation of new ideas. It may depend on the expertise level of the designer, the working 
environment, the availability of stimuli, and/or simply on her/his innate skills. However, as 
mentioned in Section 1, the adoption of design methods and tools to support design space exploration 
can be useful and worthy of consideration, especially for conceptual engineering design tasks. It is 
impossible to foresee how many new and feasible ideas can actually be generated by the proposed 
approach. Nevertheless, it should be considered an additional resource that actually supports design 
space exploration, and which can potentially lead to multiple stimuli for idea generation. This is how 
this work is expected to practically support the challenging of the COVID-19 pandemic, within the 
context of low-cost ventilators for emergency situations. Indeed, although richer countries may have 
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sufficient resources to acquire more efficient (and costly) ventilation devices, poorly developed 
countries do not have this possibility. Unfortunately, the infection is still spreading, and it is crucial 
to provide as many solutions as possible that could help in reducing deaths and/or patients’ pain. 

4.3.2. For Design Science 

The proposal presented in this paper is one of the first demonstrations of how years of design 
science studies and debates about creativity can actually be helpful for real-life problems. In fact, it is 
the first contribution that proposes a specific design method to support the design of ventilators. 
Therefore, this paper paves the way for a new type of research aimed at studying and exploiting 
creativity from a more practical point of view. Nevertheless, comprehensive investigations of its 
actual support for creativity must be performed with the acknowledged procedures. However, this 
paper is also expected to highlight a further research question: how the current creativity assessment 
approaches can identify those pros and cons of design methods that can actually have an impact on 
real-life applications? 

The answer to this question is not trivial. Indeed, many different concepts and definitions of 
creativity and related parameters can be found in the literature [66,81,82], but it is still not clear which 
of them should be used to better represent specific real-life applications. 

5. Conclusions 

The work described in this paper aimed at presenting a specific methodological approach to 
support designers in conceiving new AMBU-based emergency ventilators for challenging the 
COVID-19 pandemic. In particular, the authors exploited the design science literature and the 
experience gained from a set of available open-source ventilator projects in order to propose a 
structured framework for supporting early conceptual design activities. More specifically, the work 
focused on the main mechanism of the AMBU compression unit projects, thus neglecting detailed 
considerations of secondary mechanical parts. Similarly, considerations of electronical controls were 
also neglected. However, this does not imply that the design of ventilators can be performed without 
considering these features. Instead, the proposed framework is expected to promote discussions 
among designers from different disciplines from the early conceptual design phases onward. Indeed, 
the possibility of performing comprehensive discussions in early conceptual design phases is deemed 
to be very important to overcome the fixation derived from the sunk cost effect. 

The proposed framework consists of two main elements, i.e., the PSN and the chart of structural 
solutions, which are intended to be used by following the specific instructions reported in Section 2. 
In particular, the PSN provides an abstract description of the available ventilators in terms of design 
problems and solutions, expressed at different abstraction levels. This particular representation offers 
the opportunity to focus attention on the underpinnings of the ventilator ideas, avoiding bias effects 
derived from the particular structure used to implement them. Then, specific white boxes in the PSN 
collect the structural solution variants available to solve the design problems expressed at the lowest 
PSN level. In particular, each white box identifies the specific rows of the chart where simplified CAD 
representations of the structural solutions are reported. 

The proposal is intended to provide creative stimuli for designers, as well as to keep track of 
design space explorations performed during the conceptual design of ventilators. More precisely, 
design problems characterizing ventilators can lead to different solutions at different abstraction 
levels. These solutions actually represent the underpinning of different ventilator concepts, and then 
allow to the schematic representation of different concepts with a single graphical tool. Some 
examples were presented in order to better show how to use the proposal. In particular, a ventilator 
was developed by taking inspiration from one of the solutions collected in the chart. 

The limitations of the work have been comprehensively listed and discussed, both from purely 
methodological/theoretical and practical points of view. However, it has been shown that these limits 
are a direct consequence of the priority of this work, i.e., the need to propose an easy-to-use but 
methodologically sound framework to support designers involved in designing/conceiving new 
ventilators. Nevertheless, the same limitations pave the way for future research, also from a design 
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science view. Indeed, acknowledged experimental procedures can be directly applied in order to test 
the proposed approach and to assess its actual effectiveness in supporting creativity. 

Concerning the impact of the outcomes, both social and scientific ones have been considered. In 
particular, it is expected that the presented proposal will provide an effective support for challenging 
the COVID-19 pandemic, within the context of the mechanical design of low-cost ventilators. In 
particular, the creative stimuli and the underpinning rationale of the proposed approach offer the 
opportunity to generate brand-new ideas, as well as original and non-obvious combinations of 
already explored solutions. Additionally, the methodology constitutes a new proposal that should be 
carefully examined from a design science point of view. Indeed, the original combination of the PSN 
and the morphological matrix has been used here for the first time, showing higher potentialities if 
compared with the separate use of these tools. 
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