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Abstract
Pseudomonas savastanoi is a bacterial species included in the Pseudomonas syringae complex. It is further sub-typed in
pathovars which are the causal agents of a group of diseases of woody plants, such as the “knot disease” on olive and oleander
and the bacterial canker on ash. Given its long-established presence in the Mediterranean area, the pathogen causing the afore-
mentioned diseases can be considered endemic. Here, an MLVA approach was developed to assess the genetic relationships
among and within those pathovars, with a specific focus on P. savastanoi pv. savastanoi. By analyzing the genome of the P.
savastanoi pv. savastanoi strain NCPPB 3335 (accession n° CP008742), 14 Tandem Repeat (TR) loci were identified and the
corresponding primers were designed and used for the amplification of genomic DNAs from 84 strains belonging to
Pseudomonas savastanoi pathovars. Data were analyzed using different approaches, such as hierarchical clustering,
STRUCTURE, and k-means clustering with DAPC to evaluate the effectiveness of the assay in describing pathovars and
population structure of the pathogen. Results reveal a very complex articulation of genetic relationships, as expected from a
long-time evolving pathogen, while providing the possibility to discriminate the pathovars between each other. At intra-pathovar
level, the MLVA assay clusters isolates mainly according to their hosts and geographic origin. This resulted particularly useful in
the identification and tracking of P. savastanoi populations at local level.
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Introduction

The term “knot disease” in plant pathology describes the ex-
cessive growth of plant tissues or organs that leads to

hyperplastic and/or hypertrophic masses in the shape of tumors
or knots. These formations can be clearly observed on the aerial
parts of diseased plants mostly on the woody parts of the plant
such as stem, branches, or twigs and, more rarely, on leaves and
fruits. Generally, the disease is caused by the Gram-negative
bacterium Pseudomonas savastanoi (Janse 1982; Iacobellis
2001; Ramos et al. 2012; Buonaurio et al. 2015), which is a
monomorphic pathogenic gamma-proteobacterium species be-
longing to the genomospecies 2 of the Pseudomonas syringae
complex (Gardan et al. 1992). To date, six pathovars have been
described within this species. Pseudomonas pv. savastanoi
(Gardan et al. 1992), pv. fraxini, pv. nerii (Janse 1982), and
pv. retacarpa (Garcia De Los Rios 1999) attack members of
different plant families including Oleaceae (Olea europaea,
Jasminum officinalis, Forsythia spp., Phyllirea spp., and
Ligustrum japonicum), Fabaceae (Retama), Rhamnaceae
(Rhamnus spp.), Myrtaceae (Myrtus communis), Apocinaceae
(Nerium oleander, Mandevilla sanderi), and Lythraceae
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(Punica granatum) (Bradbury 1986; Iacobellis et al. 1998;
Marchi et al. 2011; Moretti et al. 2017). The pathovar
phaseolicola (Gardan et al. 1992) is responsible for the halo
blight of beans (Phaseolus vulgaris L.) (Völksch and Weingart
1997), with the exception of some strains of pv. phaseolicola
that attack mulberry (Dworkin 2006), while pv. glycinea
(Young 1978) is the causal agent of bacterial halo blight of
soybean (Glycine max) and is restricted to this host species.
Pseudomonas savastanoi pathovars are classified based on host
range and genetic information (Mugnai et al. 1994). Early stud-
ies have focused on the differentiation and clarification of dif-
ferent pathovars using an array of morphological, serological,
physiological, nutritional, biochemical, numerical taxonomy
and DNA-DNA hybridization (Janse 1982; Gardan et al.
1992). These methods have shown some limitations over time,
especially when differentiation or relatedness are required at
strain level (Bennasar et al. 2010). The movement of goods
around the world and the open borders have facilitated the
diffusion of plant diseases through the movement of pathogens
into new areas. Furthermore, climate change has helped the
emergence or re-emergence of new pathogens, which negative-
ly affect the food production (Grünwald and Goss 2011).
Therefore, population genetic analyses are necessary to under-
stand how a pathogen emerges and adapts to the environment
(Grünwald et al. 2017). Indeed, the comprehension of popula-
tion genetics has been enhanced by coalescent theory, compu-
tational methods and molecular biology, which have initiated
the genomic era (Hartl and Clark 2007).

Only a few tools have been developed to investigate in
detail and understand the genetic diversity among the strains
of Pseudomonas savastanoi pathovars. Therefore, there is a
necessity for a reliable method that can accurately discrimi-
nate between bacterial strains for crop surveillance, outbreak
investigation and for the study of the evolution of plant path-
ogens in order to establish disease control strategies (Cesbron
et al. 2014). Molecular typing methods are fast and powerful
tools that allow to distinguish between closely related strains
in an epidemiological survey, to determine relationships
among the strains and to track their origin and pathways of
spread. Molecular approaches can also help understanding
evolution, host adaptation, and genetic diversity (Van
Belkum et al. 2001; Scortichini et al. 2004; Wolska and
Szwe 2012). Furthermore, they could reveal biological fea-
tures of the pathogen that can affect virulence, pathogenicity,
and host specificity, helping us to set up sustainable control
measures (Tibayrenc 2005; Vinatzer et al. 2014).

The Restriction fragment Length Polymorphism (RFLP)
has been one of the first molecular approaches to investigate
Pseudomonas savastanoi; it has been used on a group of
Italian strains from olive, oleander and ash trees for the eval-
uation of the differences among these strains (Sisto et al.
2002). PCR and random amplification of polymorphic DNA
(RAPD) have also been used to evaluate associations between

strains of Pseudomonas savastanoi pathovars and their geo-
graphical distribution (Scortichini et al. 2004; Krid et al.
2009). Furthermore, fluorescent Amplified Fragment Length
Polymorphism (f-AFLP) analysis has been used to appreciate
genetic variability among a pool of representative strains from
different olive regions around the world (Sisto et al. 2007). In
Spain, the genetic diversity of Pseudomonas savastanoi pv.
savastanoi has been investigated using the Insertion element
(IS53) as typing method (López et al. 2008).

Despite the good results obtained, these methods remain
time-consuming and poorly reproducible, limiting severely
the possibility to compare results across laboratories
(Cangelosi et al. 2004; Zhao et al. 2012). MLST is one of
the most acknowledged methods for subtyping bacterial plant
pathogens, though Sanger sequencing is always required. The
results obtained by MLST were reported in agreement with
those by DNA-DNA hybridization in P. syringae complex
(Cinelli et al. 2014). More recently, Moretti and colleagues
studied the genotypic diversity of Mediterranean populations
using repetitive element palindromic PCR (rep-PCR) and
MultiLocus Sequence Typing (MLST) of four housekeeping
genes, namely gap, gltA, gyrB, and rpoD (Moretti et al. 2017).
However, the sequences of the housekeeping genes usually
show scarce diversity between individuals at subspecies level,
which could result in failure when the aim is to resolve the
evolutionary patterns of the bacterial populations (Achtman
2008), or to understand the populations pattern of highly ho-
mogeneous bacterial pathogens (Grissa et al. 2008).

In recent years Whole Genome Sequencing (WGS) and
Single Nucleotide Polymorphism (SNPs) have been widely
applied on many plant pathogenic bacteria, including
Pseudomonas savastanoi pathovars (Pérez-Martínez et al.
2008; Rodríguez-Palenzuela et al. 2010; Moretti et al. 2014;
Bartoli et al. 2015). These methods provide details about the
entire genome sequences, but their cost is high; they also
require advanced next-generation sequencing technologies,
and most of all, high knowledge and computational skills, as
well as devoted infrastructural facilities (Poulin et al. 2015;
Davis et al. 2016).

MLVA (Multiple Loci Variable number of tandem repeat
Analysis) is a very efficient typing technique. This molecular
method is based upon the calculation of Variable copy
Numbers of Tandem Repeats (VNTR). These tandemly re-
peated sequences (TR loci) have been found scattered
throughout the prokaryotic and eukaryotic genomes (van
Belkum et al. 1998; Lindstedt 2005); they are among the most
variable regions in bacterial genomes, thus having the poten-
tial to resolve the genetic diversity of monomorphic patho-
gens. TRs occur in the genome due to a mismatch in DNA
strands during replication (slipped-strand mispairing) or DNA
recombination error (Gemayel et al. 2010; Vieira et al. 2016).
TRs have been found to play an important role in bacterial
adaption (Saunders et al. 2000), phase variation (Gemayel
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et al. 2010), and speed of loss gene disorder (Rocha 2003);
they also facilitate evolutionary changes (Oliveira et al. 2006;
Reinar et al. 2018), as well as genome plasticity and variation
(Treangen et al. 2009). In order to calculate these TRs, PCR
primers are designed in the conserved regions around these
TRs. Then, the differences in the dimension of the amplicons
among the strains are measured by capillary electrophoreses
and converted in integers by detracting the right and the left
flanking regions from the PCR amplicons, and dividing the
remaining length by the size of the corresponding repeat unit
in that locus. The numeric data obtained can be exchanged
among laboratories directly or via public MLVA database
(Grissa et al. 2008).

The discriminatory power of MLVA is based on the differ-
ences in the number of repeats in each of several loci, as
generated by amplification of genomic DNA, resulting in a
high level of polymorphism (Li et al. 2009). Moreover,
MLVA is a fast procedure for monitoring recent, local out-
breaks of bacterial pathogens, providing insights about the
relationships at microevolutionary level (Ee et al. 2017).

MLVA methodology was primarily developed for human
(van Belkum et al. 1997; Noller et al. 2003; Marsh et al. 2006)
and animal bacterial pathogens (Le Flèche et al. 2006).
Successively, it was applied for the first time on the plant
pathogenic bacteria Xylella fastidiosa (Della Coletta-Filho
et al. 2001) and, after that, it has been widely used to investi-
gate bacterial plant diseases, as in Xanthomonas citri pv. citri
(Vernière et al. 2014; Pruvost et al. 2014), Xanthomonas
arboricola pv. pruni (Bergsma-Vlami et al. 2012),
Pseudomonas syringae pv. maculicola and Pseudomonas
syringae pv. tomato (Gironde and Manceau 2012),
Xanthomonas oryzae pv. oryzicola (Zhao et al. 2012),
Ralstonia solanacearum (N’Guessan et al. 2013),
Clavibacter michiganensis subsp. michiganensis (Zaluga
et al. 2013), Erwinia amylovora (Bühlmann et al. 2014),
Pseudomonas syringae pv. actinidiae (Ciarroni et al. 2015),
and Ralstonia solanacearum (Guinard et al. 2017).

In this study, we identified for the first time VNTRs loci
and designed anMLVA assay onPseudomonas savastanoi, to
be analyzed by hierarchical clustering, k-means clustering and
STRUCTURE software. The aim was to recognize pathovars
and understand genetic relationships between populations
within a wide collection of strains including worldwide iso-
lates, isolates from an olive orchard from one region and a
single tree of the same orchard.

Materials and methods

Bacterial strains and growth conditions

The study was carried out on a group of 84 strains of
Pseudomonas savastanoi representative of the pathovars

savastanoi, neri, fraxini, retacarpa, and phaseolicola. Sixty-
two strains were obtained from the DAFNE collection of the
University of Tuscia in Viterbo, (Italy) and from the CIHEAM
collection in Bari (Italy). Twenty-four additional samples
were isolated from an olive orchard in Viterbo; 14 of them
were collected randomly in the orchard, while the remaining
10 were obtained from a single tree. The bacteria were grown
on King’s B medium (KB) at 28 °C for 48 h before DNA
extraction.

Genomic DNA extraction

Genomic DNA was extracted from freshly grown colonies
using the QIAGEN kit (GmbH, Germany) following the man-
ufacturer instruction. DNA quantification was obtained by a
Qubit Fluorometer (Invitrogen, Life Technologies Italia,
Monza, Italy), then its concentration was adjusted to 40 ng/
μl with TE (10mMTris-HCl, 1 mM EDTA) buffer at pH 8.0,
before storage at −20 C° until use. The identity of all the
strains as Pseudomonas savastanoi was confirmed through
iaaL gene amplification (Penyalver et al. 2000).

Tandem repeats identification and design of VNTR
primers

The complete genome sequence of the Pseudomonas
savastanoi pv. savastanoi strain NCPPB 3335 (GenBank ac-
cession number CP008742) was analyzed to ascertain the
presence of candidate VNTR loci using Tandem Repeats
Finder program (TRF; https://tandem.bu.edu/trf/trf.html)
(Benson 1999) with the following parameters: tandem repeat
range from 50 to 1000 bp, repeat unit length from 5 to 300 bp
and identity higher than 80% between the copies of the tan-
dem repeat array.

The VNTRs matching the predicted polymorphism size
among savastanoi, neri, and fraxini pathovars were selected.
To confirm the presence of these regions in all the available
WGS sequences, both the right and left flanking regions of
about 100 bp each were tested by BLAST (Altschul et al.
1990). Primer pairs were designed by Primer3plus software
(http://www.bioinformatics.nl/cgi-qbin/primer3plus/
primer3plus) in the flanking regions of each selected tandem
repeat.

PCR amplification, agarose gel electrophoresis

The selected VNTR loci were amplified using a C1000™
Thermal Cycler (Bio-Rad, USA). Each PCR reaction mix
contained 12.5 μL 2X GoTaq® master mix (Promega,
Madison, USA), 9.5 μL nuclease-free water and 1 μL
(40 ng) of template DNA, and 1 μL of each primer corre-
sponding to 10 μM concentration, in a final volume of
25 μL. All the PCR reactions were run with an initial
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denaturation step of 5 min at 94 °C followed by 35 cycles at
94 °C for 30 s, 50 °C to 67 °C (depending on the primer pair)
for 30 s at 72 °C for 2 min with a final extension step of 10min
at 72 °C. PCR products were separated on 1.5% agarose gels
and visualized under UV upon Gel Red® Nucleic Acid to
confirm positive amplification. A random selection of samples
underwent Sanger sequencing to check the exactness of the
number of tandem repeats calculation.

VNTR analysis by capillary electrophoresis

The amplicons were analyzed using a QIAxcel multi-capillary
electrophoresis system (QIAGEN, Milan, Italy). A DNA
High-Resolution gel cartridge and the OM800 method were
used to estimate amplicons sizes below 600 bp, with the fol-
lowing run parameters: 10 s of sample injection time; 5 kV of
sample injection voltage; 3 kV of separation voltage for 700 s
of separation time. The OM500 method was instead used for
amplicons larger than 600 bp, with higher separation voltage
(5 kV) and shorter separation time (500 s). The final results
were analysed and interpreted using the Screen gel software
(QIAGEN), which estimates both size and concentration of
the amplicons.

Data analysis

The data matrix containing the tandem repeats numbers for 15
different loci, among 84 isolates, was imported into R version
3.4.4 (R Core Team 2018) and transformed into a genind
object using the R package adegenet 2.1.1 (Jombart 2008).
All the analyses of population structure and genetic diversity
were performed using R packages poppr, version 2.8.1
(Kamvar et al. 2014, 2015), adegenet 2.1.1 (Jombart 2008),
and ade4 version 1.7-13 (Dray and Dufour 2007). The poppr
clonecorrect() function was used to discard duplicated geno-
types and the biases they could induce, as well as to remove
the clones while collapsing them into unique multilocus ge-
notype (MLGs). To evaluate if the number of loci was enough
to describe the diversity between individuals, the
genotype_curve() function of the poppr package was used
with 1000 random samplings.

A hierarchical clustering analysis was performed with
hclust() function of the package stats (R Core Team 2018)
to reveal the population structure, using Bruvo’s distance
and UPGMA algorithm. The result was visualized as a den-
drogram with the R package factoextra version 1.0.5
(Kassambara and Mundt 2017). Furthermore, poppr
bruvo.boot() function was used to calculate Bruvo’s distance
with bootstraps with a cut-off threshold of 80.

The population structure was also evaluated using
STRUCTURE software version 2.3.4 with K number set from
2 to 10 and 10 iteration runs per each K (Pritchard et al. 2000).
Additionally, Evanno method was applied to obtain the

optimal ΔK estimation (Evanno et al. 2005). STRUCTURE
results were combined using CLUMPP algorithm through the
clumppExport() function of the same package and visualized
with the function plotQ().

Also, a Discriminant Analysis of Principal Components
(DAPC) was carried out using the R package adegenet
(Jombart et al. 2010). The Bayesian Information Criterion
(BIC) and the function xval.Dapc() were used to evaluate
the number of clusters to be selected and the correct number
of principal components to retain.

Results

The search within the Pseudomonas savastanoi pv.
savastanoi genome sequence NCPPB 3335 performed via
TRF program resulted in about 110 candidate VNTR loci.
The comparison of the candidate loci against the WGS se-
quences of other P. savastanoi strains available in NCBI
showed that less than 30% of these loci varied in size. A total
of 20 candidate VNTR loci having a match percentage higher
than 90% were selected and respective primer pairs were con-
sequently designed. The TRs characteristics, the sequence of
the primers, the position of the amplicon along the reference
genome of NCPPB 3335 and the putative gene functions, if
relevant, are summarized in Table 1. The 20 VNTRs loci were
amplified on the 84 isolates for a total of 1680 reactions and
the amplicons were separated via the QIAxcel multi-capillary
electrophoresis system. The entire procedure was repeated
twice for each sample. Five out of 20 loci gave multiple prod-
ucts or lacked reproducibility, which prompted their exclusion
from further analysis.

A total number of 129 alleles were detected in all the final
15 VNTR loci, ranging from only 2 alleles for TRsav8 and
TRsav17 loci, to a maximum of 30 alleles in the locus
TRsav16 (data not shown).

The final data matrix containing the number of repeats,
imported on R and clone corrected, resulted in 84 individuals
collapsing into 78 unique multilocus genotypes (MLGs), ad-
equate to describe the diversity between individuals, as shown
by the genotype accumulation curve in Fig. 1 (Kamvar et al.
2015). The poppr() function from the same R package was
used to obtain the diversity indexes reported in Table 2. More
specifically, besides the number of individuals (N) and MLG
per population, the expected MLG (eMLG) represents the
number of MLG at the lowest sample size. Simpson’s Index
(λ), which is a measure of the probability that two randomly
selected genotypes are different from each other, indicates that
the Pseudomonas savastanoi pv. savastanoi clade, the more
populated in the data set, resulted to be also the most diver-
gent. Genotype Evenness (E.5) measures the genotype abun-
dances within a population. In this case, Pseudomonas
savastanoi pv. fraxini and Pseudomonas savastanoi pv.
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phaseolicola resulted to be the ones with the highest genotype
diversity. Finally, the highest Nei’s diversity, which is the
average genetic diversity per locus, also defined as expected
heterozygosity (Hexp), was measured for Pseudomonas
savastanoi pv. savastanoi.

Hierarchical clustering

The hierarchical clustering performed using Bruvo’s distance
and UPGMA as the agglomerative algorithm, generated the
dendrogram in Fig. 2, where only bootstrap values higher than
80% are shown. According to the intrinsic nature of the meth-
od, the number of clusters depends on the choice of the thresh-
old distance, and thus, in this first step of the analysis, the

organization of the groups was observed as it is, keeping the
bootstrap values as key points for the validation.

In the dendrogram, the two Pseudomonas savastanoi pv.
phaseolicola strains emerge as very similar to each other, and
contemporaneously the most distant from all the other strains
with a 100% bootstrap support, thus representing the outgroup
for the analysis. Regarding the other pathovars, all the Italian
strains belonging to the pathovar nerii clustered together; the
only exception being the strain ITM305, that was instead iso-
lated in California, USA, back in 1981. The same occurs for
the strains of pathovar fraxini, which again form a clear cluster
without exclusion. A single strain (SUPP3085) isolated from
olive in Japan and the only strain belonging to the pathovar
retacarpa are loosely related to this cluster. Then, the

Table 1 Characteristics, putative gene function and primers used for the TRs analyzed in this study

Name of
TRs

TR unit length
(bp)

TRs
length

start- end Gene function Primers

TRsav1 9 158 995,987 Hypothetical protein FR:ATTTCCTGAGCGTCCTGTGT

996,340 RV:ATTAAAGTGTTGATTCTTTC

TRsav2 6 152 1,659,360 Tellurium resistance protein Tera FR: CTTGAACCGCTGGCAAAA

1,659,565 RV:CCGAAACCGGCGCTGGATTT

TRsav3 7 166 1,988,604 Glycosyl transferase FR: ATCTGGTGGGTTTCATGACC

1,990,085 RV: CTCTGCATAATCGTATCCCT

TRsav6 7 193 935,627 Flavodoxin FR:CTGGTGGATAACCGTCAGGT

938,149 RV:AGCTGATCGAGCAAGGACGT

TRsav7 8 179 2,469,543 Transposase FR: CTTGCCCATCTTGTCGACTT

2,469,753 RV:GGCAACGCGCAGGCTCTGGA

TRsav8 6 153 5,324,874 DNA topoisomerase IV subunit A FR: CGACCGTGAACAGAACTG

5,325,044 RV: ACCGCCAGATCGGTCACATA

TRsav10 8 169 2,528,494 4-hydroxy-tetrahydrodipicolinate synthase FR: GATGCTGGCTGAGGGTTG

2,528,694 RV: GCGCAGATGCCCTGTCGATC

TRsav11 6 175 2,659,925 heme ABC transporter ATP-binding protein
CcmA

FR: GCTCAATCTGTTGTGGGTTG

2,660,123 RV:CTGCTGCCCGGCCGACAAGG

TRsav13 24 130 1,219,712 Hypothetical protein FR: AAGATTTGGTACGCCAGCAG

1,219,889 RV: GGTTTTACAGGTGGCCTCAC

TRsav15 8 194 134,818 unknown FR: TTTGATGATCAGCCTTCGTG

135,075 RV: GGCGCGATGATGGAGCGG

TRsav16 6 133 259,976 Hypothetical protein FR: GTCAGATGCTTTTGGCTTGA

260,396 RV:TGGAGATCCCTTTATTAATG
AC

TRsav17 6 187 495,079 Phosphodiesterase FR: ACCTATGGCGTGGTCGATAC

495,294 RV: TTGTGTCGATCGTCATGATT

TRsav18 9 157 996,131 Hypothetical protein FR: ATAACCAGTCCGCGAGCTAA

996,323 RV: TGTTTCATGAGCTAGAGAAA

TRsav19 7 173 1,990,097 GDP-mannose dehydrogenase FR: TAAGTCAGTTGCGAGCCTCA

1,990,297 RV: GACTCCCGAAGGCA
AGCGCG

TRsav20 8 149 3,346,599 unknown FR: GGTTCACTGCATCAAACCAG

3,346,771 RV: ATGGGCGAGGGTTGCTGTTC
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numerous strains belonging to the pathovar savastanoi show a
quite scattered distribution along the dendrogram, providing
for a large genetic variability. Nonetheless, several clusters are
recognizable, often in clear relationship with the plant host,
when it is different from olive, or with their geographical
origin. The cluster “savast. C)”, formed by strains isolated
from Jasminum, or the cluster “savast. G)”whose strains were
obtained from Ligustrum, are examples of liaison to host plant
species, whilst geographic affinities referable to the country of
isolation are evident for clusters “savast. B)”-Albania, “savast.
E)”-Portugal, “savast. F)”-Morocco, “savast. H)”-Syria, and
“savast. C)”-California. An independent position in the den-
drogram is coherently taken by single strains from Japan
(SUPP3129 and SUPP3085) and from Tunisia (TN177).
Regarding the Italian strains, it is worth noting the indepen-
dent grouping of isolates from a single orchard in Viterbo

(Italy), among which those isolated from a single tree furtherly
grouped together forming an additional subcluster.

STRUCTURE analysis

The analysis of MLVA data using STRUCTURE software
was run with K ranging from 2 to 12 and 10 independent
iteration runs for each K. The results were imported in R
environment and Evanno’s method was applied using
evannoMethodStructure() function in the R package
pophelper (Francis 2017) to obtain the optimal K value of 9,
as showed in Fig. 3.

Thus, the 10 iterated results fromK = 9 were combined and
merged using CLUMPP and are shown in Fig. 4, where the
percentage of assignment to each of the 9 groups is represent-
ed in the proportion of respective colors in individual bars.
The previous hierarchical clustering is confirmed for the
pathovar fraxini (Cluster 3 – dark pink), including the excep-
tion of strain NCPPB1006, and the pathovar nerii (Cluster1 –
orange), in which, however, two strains (ITM510 and
PVBa219-2) show a deep admixture of possible clusters, as
well as for the strain ITM305, already described out of this
cluster in hierarchical clustering. It has to be noted that the two
phaseolicola strains did not show a clear fitting to a single
cluster as in the previous analysis. The STRUCTURE group-
ing instead reveals a strong signal of independence for the
savastanoi strains from Viterbo (Cluster 7 – black), from
Greece (Cluster 8 – gray-green), from Morocco and Syria
(Cluster 9 – dark green), and from USA and Pomarico, Italy
(Cluster 5 – light green). All the others show a less significant
grouping admixture.

Discriminant analysis of principal components (DAPC)

The DAPC analysis in Fig. 5 also supported the hypothesis of
grouping the strains in 9 clusters as the best solution, accord-
ing to the Bayesian Information Criterion.

Fig. 1 Genotype accumulation curve for 84 isolates of Pseudomonas
savastanoi. The x-axis represents the number of loci that was randomly
sampled 1000 times up to (n-1) loci while the y-axis represents the num-
ber of multilocus genotypes observed up to 78 MLGs in the dataset. The
dashed lines at the plateau indicate that enough number of loci where used
to discriminate between individuals

Table 2 Poppr function statistics:
number of strains for each
population (N), MultiLocus
genotypes (MLG) and expected
ones (eMLG), eveness (E),
Simpon’s index (lambda) and
Nei’s genetic diversity (expected
heterozygosity)

Pseudomonas savastanoi pathovars N MLG eMLG E.5 lambda Hexp

savastanoi 60 55 9.810206 0.905049 0.978889 0.640589

fraxini 11 11 10 1 0.909091 0.415931

nerii 10 9 9 0.9517 0.88 0.383704

phaseolicola 2 2 2 1 0.5 0.133333

retacarpa 1 1 1 NA 0 0

Total 84 78 9.88875 0.923356 0.985544 0.657298

�Fig. 2 Dendrogram of 84 Pseudomonas savastanoi strains based on
Bruvo’s distance and UPGMA as algorithm; the bootstrap values (for
1000 replicates) are given at the nodes
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The resulting scatterplot in Fig. 6 shows the distribution of
the clusters on LD axes when 15 principal components were
retained, and second and third linear discriminants were se-
lected. Once again, the general structure of groups as reported
from previous analytical approaches is conserved. Indeed, the
strains belonging to pathovar fraxini cluster separately from
all the others (group 5 – yellow), except for the strain NCPPB
1006, along with pathovar nerii (group 3 – grey) and
phaseolicola (group 2 – light blue). The numerous strains of
the pathovar savastanoi are scattered in many groups, with a
more or less admixed composition, which is represented by
the overlapping ellipses, descriptive of the same subgroups
identified before. The DAPC posterior probability of assign-
ment for each individual to the 9 groups is shown in Figure 7.

Discussion

Molecular approaches are often used to define the evolution-
ary history, the host adaptation, and the genetic diversity of a
pathogen (Van Belkum et al. 2001; Scortichini et al. 2004;
Wolska and Szwe 2012). Furthermore, they could reveal bio-
logical features influencing virulence, pathogenicity, and host
specificity of the pathogen, helping to define sustainable con-
trol measures (Tibayrenc 2005, 2009; Vinatzer et al. 2014).
The mentioned molecular tools that allow the discrimination
between individuals of the same taxon according to host pref-
erences, as well as time and geographic origin, are of particu-
lar significance in understanding the spread dynamics of bac-
terial plant pathogens. In this context, an MLVA assay was
tested for the first time to infer the population structure within

Fig. 4 Structure clump output for K = 9 following analysis of 84 isolates
of Pseudomonas savastanoi, each strain represented by a single vertical
line indicating its membership in each of K independent clusters.
Pathovars indicated along the picture are separated by vertical black
dashed lines

Fig. 3 Evanno’s method showing the number of K groups that best
represent the population structure of Pseudomonas savastanoi
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Pseudomonas savastanoi pathovars. The 14 identified loci
have proven to be able to provide enough information to dis-
close relationships among Pseudomonas savastanoi pathovars
and strains.

As a first observation, the assay seems to be able to
assign the samples to corresponding pathovars, as shown
for the strains belonging to phaseolicola, nerii, and
fraxini pathovars. Some exceptions, however, as the

scattered distribution of strains belonging to pathovar
savastanoi, indicate that the high proficiency of MLVA
in revealing very slight differences between individuals
makes this method only partially suitable to gauge this
type of information. Other molecular methods, such as
MLST, are more appropriate for this type of phylogenetic
information and already available to the scientific commu-
nity (Pitt 2010) .

Fig. 5 Bayesian Information Criterion (BIC) curve for the k-means clustering of Pseudomonas savastanoi data set

Fig. 6 Scatterplot of genotypes in
9 groups according to DAPC. The
individuals of the groups are
distinguishable as in the present
figure
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Fig. 7 The barplot shows the
posterior probability of
assignment of individuals in the 9
groups represented in different
colours
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When the data are analysed as a whole, the MLVA assay
was instead able to provide information about population
structure and to further separate strains in groups. Data elab-
oration was approached using three analytical methods and
their congruence was investigated. Interestingly, the prelimi-
nary approach of STRUCTURE, through Evanno’s method,
and DAPC, through the BIC criterion, both recommended
nine clusters as the best fitting to the variability of the input
data set. This grouping was rather consistent between the two
methods, in particular with the groups including strains of the
pathovars phaseolicola, fraxini and nerii that were clearly
defined, as well as with the group of strains isolated from a
single orchard in Viterbo. About the other groups,
STRUCTURE provided less clear results as demonstrated
by strong admixture in the posterior assignment to these
groups. DAPC, as expected from its ability to maximize var-
iance between groups, assigned the individuals to the groups
more sharply. The hierarchical clustering based on Bruvo’s
distance provided detailed results and a higher number of
possible clusters. This suggests an interesting connection be-
tween clusters and both geographical origin of the strains and
host plant species.

In any case, the overall framework depicted in this study
indicates a large amount of genetic variability in
Pseudomonas savastanoi in general and, more specifically,
for the pathovar savastanoi. A first explanation resides in
the heterogeneity of the collection analyzed, which included
strains of worldwide origin, from 13 different countries, and
isolated along a time span of more than 50 years. It is a further
confirmation that MLVA, relying on genetic elements with a
particularly high rate of mutation, finds its ultimate application
in depicting more specific situations, such as, typically, clonal
outbreaks and epidemics.

This leads to another aspect of this research, which con-
cerns the analysis of strains isolated from knots concurrently
collected from 10 olive plants in a small orchard (with a sur-
face less than 1 ha wide) in Viterbo and from different knots of
a single plant in the same orchard. In this scenario, if the
disease would have been related to an outbreak from a single
infective event, it would have been also logical to assume a
substantial genetic homogeneity among its isolates.
Conversely, in our case the level of genetic variability ob-
served was still relatively high, even from knots collected on
a single plant. This could in turn be explained by acknowledg-
ing that P. savastanoi pv. savastanoi is not an epidemic but an
endemic pathogen, widespread in Italy for centuries. Such a
long history of coevolution between the pathogen and its host
plant has probably led to the differentiation of uncountable
genotypes so that even on a single plant, as for plant T2.7,
multiple infections by different genotypes commonly occurs.
Furthermore, few isolates from other plants in the orchard are
included in the cluster of the isolates from this single plant,
just as few individuals from this single plant matched groups

of isolates from other plants. This great admixture on a very
confined plot might be explained by a human-mediated trans-
mission of the bacterial infection through infected tools during
pruning from a plant to another.

In conclusion, this MLVA assay developed and applied for
the first time to Pseudomonas savastanoi, has proven so re-
sponsive that even isolates from a single plant could be dis-
tinguished. Consequently, the most consistent goal of this
method towards an endemic pathogen as Pseudomonas
savastanoi pv. savastanoi should be the analysis of very spe-
cific situations. The method could be valuable to investigate
biological facets such as how single genotypes infect and col-
onize tissues and organs of the same plant. Moreover, it could
be used to evaluate possible interactions between strains col-
onizing the same tissue, or even to reconstruct micro-
evolutive drifts over time in connection to changes in environ-
mental conditions or in orchard management.
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