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Deconvoluting interrelationships between
concentrations and chemical shifts in urine
provides a powerful analysis tool
Panteleimon G. Takis 1, Hartmut Schäfer2, Manfred Spraul2 & Claudio Luchinat 1,3,4

The NMR chemical shifts of a substance in a complex mixture strongly depend on the

composition of the mixture itself, as many weak interactions occur that are hardly

predictable. Chemical shift variability is the major obstacle to automatically assigning, and

subsequently quantitating, metabolite signals in body fluids, particularly urine. Here we

demonstrate that the chemical shifts of signals in urine are actually predictable. This is

achieved by constructing ca. 4000 artificial mixtures where the concentrations of 52 most

abundant urine metabolites—including 11 inorganic ions—are varied, to sparsely but

efficiently populate an N-dimensional concentration matrix. A strong relationship is

established between the concentration matrix and the chemical shift matrix, so that chemical

shifts of > 90 metabolite signals can be accurately predicted in real urine samples.

The concentrations of the invisible inorganic ions are also accurately predicted, along with

those of albumin and of several other abundant urine components.

DOI: 10.1038/s41467-017-01587-0 OPEN

1 Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy. 2 Bruker BioSpin, Silberstreifen, D-76287 Rheinstetten, Germany.
3Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy. 4 Department of Chemistry Ugo Schiff,
University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy. Correspondence and requests for materials should be addressed to
C.L. (email: claudioluchinat@cerm.unifi.it)

NATURE COMMUNICATIONS |8:  1662 |DOI: 10.1038/s41467-017-01587-0 |www.nature.com/naturecommunications 1

http://orcid.org/0000-0002-7224-0412
http://orcid.org/0000-0002-7224-0412
http://orcid.org/0000-0002-7224-0412
http://orcid.org/0000-0002-7224-0412
http://orcid.org/0000-0002-7224-0412
http://orcid.org/0000-0003-2271-8921
http://orcid.org/0000-0003-2271-8921
http://orcid.org/0000-0003-2271-8921
http://orcid.org/0000-0003-2271-8921
http://orcid.org/0000-0003-2271-8921
mailto:claudioluchinat@cerm.unifi.it
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Urine is extremely rich in metabolic information, contain-
ing a total of more than 2000 endogenous metabolites1,
~250 of which (> 400 if exogenous molecules are

included) potentially detectable by NMR in minutes2,3. Progress
toward fully automated and reliable metabolite signal identifica-
tion—and subsequent quantitation—for a relevant number of
metabolites would make NMR an efficient high-throughput tool
for urine analysis4. In fact, while quantitation of metabolites
by lineshape analysis of their NMR signals, once identified, is
conceptually straightforward5–9, a major obstacle to the devel-
opment of this approach is the fact that the chemical shifts of
most urine metabolite signals are extremely variable, making
automated identification very difficult and risky10. pH and some
ion concentrations were already shown to contribute strongly to
chemical shift variability in urine11–13.

Rather than accepting this variability as a fact of life, we took
the view that the variability of chemical shifts of the signals of a
given metabolite must be a function, no matter how complicated,
of the chemical composition of the mixture as a whole, i.e., of the
variable concentrations of all the metabolites in the mixture. If
this relationship was unraveled, chemical shifts (δ hereafter)
would be predictable. To test this hypothesis, we designed a

strategy, which consisted in first building an extensive set of
artificial urine samples with variable metabolite concentrations
(concentration matrix), then constructing a corresponding matrix
of chemical shifts (δ matrix), and finally analyzing the complex
relationship between the two matrices. From this analysis, a shift
predictor is developed, and then successfully tested on real urine
samples.

Results
Construction and testing of the predictor using artificial urine
samples. The metabolites that are most abundant in urine, and
their normal concentration ranges, are shown in Fig. 1, ordered
according to their average concentration according to literature
data1. The strategy to construct the predictor is summarized in
Fig. 2. Based on the data in Fig. 1, we prepared a large number of
artificial urine samples, each containing 40 metabolites, selected
among the most abundant, plus 11 inorganic ions and albumin
(Supplementary Table 1; Supplementary Data 1). In each mixture,
the concentrations of the 52 components were different, although
all within the normal concentration range. The 40 metabolites
were selected because, being usually in high concentrations, they
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Fig. 1 Most abundant urine metabolites and their concentration ranges in physiological conditions. Concentration ranges of the 260 most abundant
metabolites in urine as determined by liquid chromatography coupled with mass spectrometry (LC-MS), NMR spectroscopy, gas chromatography with
mass spectrometry (GC-MS), inductively coupled plasma mass spectrometry (ICP-MS), and high-performance liquid chromatography (HPLC)1.
a Metabolites are sorted according to their mean absolute concentration values in urine. In the literature, urine metabolite concentrations are reported
relative to creatinine1. Consequently, the absolute values were calculated by multiplying the reported minimum and maximum relative concentration of
each metabolite by the minimum and maximum of creatinine, respectively. In this way, the reported ranges extend somewhat more with respect to
the physiological ranges. Green bars and blue bars indicate the active metabolites and the inorganic ions (respectively) used to prepare the mother
solutions of the artificial urine samples. Orange bars indicate the passive metabolites that were only spiked in the mother solutions. b Enlargement of the
first 136 urine metabolites, with mean concentration value >30 μM. Among these metabolites, we have selected 47 (green and blue bars) as a part
of the active metabolites, taking into account not only their high abundance, but also their high occurrence in urine1. Four additional inorganic ions
(rubidium, lithium, aluminum, and zinc) were included among the active metabolites because they affect the metabolite signal chemical shifts even if
they are in low abundance
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were more likely to be active, i.e., capable of significantly
modulate the δ values of the mixture components (Supplemen-
tary Table 2). Some of the inorganic ions were not among the
most abundant metabolites but, from chemical considerations,
they were still expected to interact significantly with many
metabolites. Each mixture was complemented with 24 less
abundant, passive metabolites, as further reporters of the effects
of the active ones. Furthermore, a limited pH variability was
introduced, within the small pH range allowed by the relatively
strong buffer prescribed by the standard operating procedures
(SOPs) for urine NMR14 (Methods). In total, 3775 artificial urine
samples were prepared (Supplementary Data 1). NMR spectra
were recorded for all these samples (Methods) at 300 K. Addi-
tional spectra were recorded for 726 of these samples at 302.7 K,
for a total of 4501 spectra (Supplementary Data 1).

From the known concentrations of ions and metabolites, and
from the observed δ values of metabolites, the relationship
between the concentration matrix and the shift matrix was
constructed, as explained in the Methods section and in the
Supplementary Note 1. From this relationship, given the
concentration values for a given sample, the chemical shifts of
the metabolite signals could be accurately predicted and, vice
versa, given the pattern of chemical shifts, the concentrations
could be accurately predicted. In other words, one can go from a
point in the concentration space to the corresponding point in the
δ space, and vice versa. However, since in a real sample both
concentrations and shifts are unknown, it is necessary to start up
the process by either providing a few concentration values or a
few δ values, provided that the known concentrations are those of
the most active metabolites or the known δ values are those of the
most passive metabolites, i.e., of the metabolites whose δ values
are most affected by concentration variations (Supplementary

Fig. 1). This piece of information is provided by the relationship
between the two matrices, and is illustrated in Fig. 3. In particular,
five signals from three metabolites (citrate, creatinine, and
glycine, see Supplementary Note 1 and Methods) show the
desired characteristic of being very sensitive to concentration
variations and at the same time easily identifiable in urine. These
five signals were termed navigator signals. From the δ values of
the navigator signals, the closest point in the δ space and in the
concentration space can be located, and the search of the optimal
relationship can start. The flowchart of the predictor is shown in
Fig. 4.

The predictor was tested by independently preparing 40
artificial urine samples containing the active metabolites, ions,
and albumin but with all concentrations—and pH values in the
range 6.4–7.6—chosen randomly (Fig. 2). NMR spectra of these
40 samples were acquired at temperature values chosen randomly
between 300 and 302.7 K. Fifty δ values of the active metabolites
present in these 40 samples were accurately predicted (Supple-
mentary Data 2; Supplementary Fig. 2). As explained in the
Supplementary Notes 1, 2 and in the Methods, the δ values of all
signals could be predicted from the navigators, and then the
concentrations of the ions and most active metabolites originating
each specific pattern of δ values could also be predicted
(Supplementary Tables 4, 5; Supplementary Figs. 6–11). On these
40 test samples, the concentrations of the 11 inorganic ions and of
several active metabolites, as well as the values of pH and
temperature, could also be predicted (Supplementary Fig. 3). In
particular, the prediction accuracy of the ion concentrations was
very high. The spectral data set was then supplemented by the
addition of the spectra of the 40 test samples, to achieve
4541 spectra (Fig. 2). A final predictor was constructed from these
4541 spectra, which turned out to be very similar to the original
one. By the way it is constructed, the predictor should be able to
predict the δ values of 94 signals from 63 metabolites. The
predictor was then tested on real urine samples, as described
below.

Testing the predictor on real urine spectra—prediction of
chemical shifts. The predictor was tested on an independent test
set (Fig. 2) consisting of 120 real urine samples (from 60 indi-
viduals (30 males and 30 females), 2 samples each, taken on
different days, see Methods section). All samples were subjected
to standard preclinical treatment14 before the acquisition of their
600MHz1H NMR spectra following the Bruker IVDr method
SOPs14–16. As described in Supplementary Note 1, the five
navigator signals from citrate, creatinine, and glycine were easily
identified in all 120 spectra. All the remaining 89 signals from the
other 60 metabolites were manually identified in all spectra and,
whenever ambiguous, their δ values were checked by spiking.

As mentioned above, Fig. 4 summarizes the flowchart of the δ
predictor. First the five navigator signals are identified, either
automatically or manually. Then, δ predictions are performed by
two routes, one going back to the concentration matrix and the
other exploiting directly the internal relationships within the shift
matrix (Fig. 4). By either route, all concentration values, pH, and
temperature are recovered. Details of the calculations at each step
of the two routes are provided in the Methods section.

Following this procedure, the δ values of 94 signals of all 63
metabolites (including the metabolites containing the five
navigator signals) were predicted for 120 urine samples. All the
δ values could be predicted accurately in all spectra (Fig. 5;
Supplementary Fig. 4; Supplementary Data 3). This amounts to a
total of 11,280 chemical shifts that were measured and that
were all accurately predicted. All linear regressions show R values
of 98.8 or better. Typically, predictions were accurate to within
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Fig. 2 Schematic summary of artificial and real urine samples and spectra
used for training and test of the predictor. Initially, 3775 artificial urine
samples were prepared and their spectra recorded at 300 K. For a subset of
726 samples, selected among those exhibiting high diversity of metabolite
concentrations, spectra were also recorded at 302.7 K. These samples/
spectra were used to build the predictor (Supplementary Data 1;
Supplementary Note 1). The predictor was tested on an independent set of
40 spectra of randomly prepared artificial urine samples. The training of the
predictor was repeated by including the 40 additional samples/spectra. An
independent set of 120 samples of real urine from 60 individuals was
collected and their spectra used as the test set for the predictor
(Supplementary Data 3). For 60 of these samples, the concentrations of 11
inorganic ions was independently measured by analytical/clinical methods
and used to test the prediction of ion concentrations. Finally, another
independent set of 1600 urine spectra17–19 was used to test the prediction
of 28,983 δ values (Supplementary Data 4)
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1.5 linewidths of the signals in question (Fig. 5; Supplementary
Fig. 4). These results should be compared with the typical
spreading in δ for metabolite signals in urine samples
(Supplementary Fig. 1a–j; Supplementary Table 1; Supplementary
Data 3): the experimental uncertainty of the δ prediction for each
signal is in general only a few percent of the shift range where that
signal can be expected to fall in urine.

Overall, out of 94 signals, only 7 were predicted with an accuracy
worse than 10% of the total shift range. For all metabolites, there
was at least one signal which could be predicted with an accuracy of
less than two linewidths, and in at least 30 cases the accuracy was
within half to one linewidth. The signals of xanthine, histidine,
imidazole of the imidazole ring of 3-methylhistidine, and of the
aliphatic protons of histamine constitute exceptions, as their

predicted shifts are within four linewidths; however, their δ range
is extremely large (Supplementary Fig. 4ha, pa, sc, tc, da), so their
relative accuracy is also excellent.

Testing the predictor on real urine spectra—prediction of
concentrations. For one sample from each donor (60 samples in
total), clinical/chemical analyses (Methods) were also performed
to quantitate the 11 ions, invisible by NMR, selected among
the active species (Fig. 2). The performance of the predictor for
these NMR invisible metabolites is shown in Fig. 6a–k. It can be
immediately appreciated that the predicting ability is strikingly
good, and for several of these ions is excellent, as judged from the
estimated uncertainties (vertical error bars), which compare very
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Fig. 3 Importance of metabolite concentrations in determining chemical shifts and vice versa. The importance of the concentrations of the metabolites
listed on the y-axis in determining the chemical shifts of the metabolites listed on the x-axis is shown by the colored boxes (red lowest, violet highest). The
same color codes describe the importance of the knowledge of the chemical shifts of the metabolites listed on the x-axis in predicting the concentrations of
the metabolites listed on the y-axis. ANOVA decomposition (Methods) of the models predicting concentrations and pH yielded the most important
variables for the construction of the models themselves, as well as their relative importance for the best fitting accuracy. For instance, as depicted, chemical
shifts values of 3-aminoisobutyrate H7 protons (last column) were needed for predicting the concentration of very few metabolites, and their significance
was always very low (< 2), except for predicting pH (≈9). Conversely, the chemical shift of the L-histidine H5 proton (first column) is needed for the
prediction of almost all metabolite concentrations as well as of pH, and appears always as a very important (20–100) variable. The 10 most frequently
employed 1H NMR signals for model construction are from the L-histidine H5, creatinine H3 and H7, glycine, citrate H3,6, L-threonine H4 and H6,
3-methylhistidine H5, and glycolate H2 protons. The chemical shift ranges of these signals are large (Supplementary Table 1), and it appears that their
variations are able to reflect the majority of the metabolite concentration (and pH) changes in the artificial urine mixtures. These relationships could
reasonably be translated into chemical interactions. For instance, the imidazole signals of L-histidine and, similarly, of 3-methylhistidine are very sensitive to
any pH and/or ionic change, justifying why they are almost always important variables for predicting pH and the concentration of ions. Five spin systems
(dashed box) from three metabolites—two doublets of doublets of citrate, two singlets of creatinine and one singlet of glycine—are easily identifiable, very
sensitive to the concentrations of the mixture components, and differently sensitive to the concentrations of different components, ensuring the broadest
coverage of the concentration space. These spin systems are thus chosen as navigator signals, as they guide the search of the point in the concentration
space that corresponds to that particular mixture
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Fig. 4 Flowchart of the shift and concentration prediction. The flowchart of the algorithm is highlighted in purple. The algorithm starts a upon the decision
of the user about the automated or manual identification of the five navigator signals: 2 doublets of doublets (dd) of citrate, 2 singlets (s) of creatinine, and
1 singlet (s) of glycine. For citrate and creatinine specific criteria are used (e.g., the J-coupling constants of the doublets as well as the peak intensity ratios),
applied to all peaks detected in a scanned spectral area where each spin system is expected to resonate (Supplementary Table 1). Since no constraints can
be applied for the detection of the singlet of glycine, an extra prediction model is employed that predicts the chemical shift (δ) of the glycine singlet based
upon the δ of creatinine and citrate. The prediction ability of this model was tested in 1600 different urine samples and resulted in no mis-assignments of
the glycine NMR signals17–19. Using as input the five navigator signals, the algorithm initially employs the reduced models (based on the five navigator
signals) to estimate the metabolites/ions concentrations, pH, T, and then predict the δ values for the other metabolites. Afterwards, the algorithm firstly
predicts the δ values, and then concentrations, pH, and T are estimated from the former. The two routes result in two predicted δ values for each signal
(i.e., δreduced and δfull), from which, according to specific selection criteria, the best results are chosen (more details in the Methods section). b The output
of the algorithm consists of the 94 1H NMR signals of 63 metabolites and c of a figure for each urine NMR spectrum, where the predicted δ of each signal
along with its multiplicity is reported. d Moreover, one extra figure is exported comparing the predicted concentrations of 11 ions and albumin with the
normal clinical range for male/female adults (based upon Mayo Clinic, www.MedlinePlus.gov and the reference guides of the laboratories that performed
the clinical analyses in the present study). Two extra files contain the predicted concentrations of 11 ions and albumin, pH, and T values, and the estimated
concentration values of 40 metabolites, respectively
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well with the uncertainties (horizontal error bars) of the clinical/
chemical analyses performed by several officially adopted
methods (Methods). Not all of the ions are predicted with the
same precision. In fact, there is a relationship between the effect
of the variable concentration of an ion on the chemical shifts of

the metabolites, and the ability of back-predicting the
concentration of that ion from the δ (Supplementary Figs. 1k–s,
2, 3). If varying the concentration of an ion had zero impact on
the δ values of the metabolites, the concentration of that ion
would be totally undetermined.
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The above considerations further suggest that, besides estab-
lishing a relationship between the δ values and the concentration
values, internal relationships within the δ values themselves could
be established, and also explain why the latter approach is also
viable (Fig. 4).

For all 120 samples, the predicted concentrations of 12 of the
most active metabolites were also checked by signal lineshape
fitting, and found in good agreement (Fig. 6l–q; Supplementary
Fig. 5). As discussed above for the inorganic ions, only the
concentrations of those metabolites that turned out to be strongly
active could be predicted with good accuracy. However, this is
not a drawback, as the concentrations of metabolites can be
accurately measured by lineshape analysis of one or more of their
signals. The bottleneck for automation of urine metabolomics is
the safe and automatic identification of signals, not the
quantitation of the metabolites they belong to.

Testing the predictor on real urine spectra—prediction of
chemical shifts on preexisting data sets. Finally, the predictor
was tested on a large urine data set (1600 spectra, Fig. 2) available
from three previous studies performed by us17–19. In this case the
original samples were not available, so we only predicted the
chemical shifts, and validated all those for which the assignment
was unambiguous. In total, 28,983 signals in these data sets were
unambiguously assigned, and the chemical shifts of all of them
could be accurately predicted (Supplementary Table 3; Supple-
mentary Data 4). Together with the shift predictions reported in
Supplementary Data 3, more than 40,000 δ values were success-
fully predicted by our predictor.

Potential clinical implications. Our predictor provides in a few
seconds the estimated concentrations of 11 ions with
clinical analysis accuracy. Therefore, any pathology that impacts
on the mineral imbalance in urine20 could be immediately
detectable with minimal costs, once the requirements for clinical
adoption will be satisfied21. The 11 ions included so far in
our predictor are relevant biomarkers for several disorders
of mineral metabolism. As described in Fig. 6c, f, altered
concentrations of Ca2+ and PO4

3− can be related to bone malig-
nancy or damage, as well as vitamin D absorption abnormalities20.
Instead of the four different analytical methods needed for
the determination of Mg2+, K+, Na+, and Cl− (Fig. 6a, b, d, e)
to evaluate kidney function or detect the presence of
hypothyroidism–hyperparathyroidism20,22,23, our predictor can
automatically quantitate these ions. Besides the abundant ions,
our predictor is also able to quantify some trace metal ions
within clinical accuracy: Li+ (biomarker of kidney malfunction),
Zn2+ (biomarker for diabetes mellitus24 and thalassemia25),
Rb+ (biomarker for breast cancer risk assessment26), and Al3+

(biomarker for aluminum poisoning and multiple sclerosis risk

assessment27). The one-shot quantitation of 11 inorganic ions is a
significant feature of our predictor, prospectively allowing for the
establishment of ion panels, rather than single ions, as routine
biomarkers for different pathologies.

The high accuracy of our predictor in predicting chemical
shifts is especially valuable for metabolites whose accurate
quantification is important for clinical diagnosis and that contain
only one NMR signal (i.e., singlet), leading to their safe
quantitation even in the absence of clues like j-splittings or
intensity matching between different signals of the same
molecule. For instance, to diagnose trimethylaminuria,
the accurate ratio of trimethylamine (TMA) to trimethylamine
N-oxide (TMAO) is required28. However, the only TMAO signal
(one singlet at 3.27 ppm) resonates in a very complex/crowded
NMR region, usually overlapped with the signals of betaine
(singlet), taurine (triplet), and myo-inositol (triplet) (Fig. 7a). The
identification of the hidden signals beneath TMAO as shown in
Fig. 7a leads to the total deconvolution of this spectral area and to
the accurate determination of TMAO concentration. A similar
problem is encountered for the determination of the creatine/
creatinine ratio (Fig. 7b), which is an important parameter for the
X-linked inherited creatine transporter deficiency29. In this case,
the creatine signal usually lies, in whole or in part, beneath the
one of creatinine (Fig. 7b), so integration of both signals cannot
be accurate, unless the signal position of creatine is known so as
to make deconvolution feasible.

As already stated, the most challenging part of the assignment/
quantitation of metabolites is related to those metabolites that
exhibit only one singlet. The clinical value of our predictor is also
demonstrated for some of these metabolites in Fig. 7c–e. For
instance, the singlet of guanidoacetate, which is an important
indicator for muscle and renal metabolism disorders30,31, is in a
very crowded spectral area and is very difficult to assign, while
our predictor leads to its immediate and safe identification.
Another two examples are the assignment of dimethyl sulfone
(important biomarker for the evaluation of exposure to DMSO32)
and of succinate, whose high concentration in urine could
indicate a diabetic kidney33.

Discussion
Metabolomics of body fluids, both by MS and NMR, could make
a giant step forward if signal identification and quantitation could
be fully automatized. MS is more sensitive and can potentially
detect above a thousand endogenous metabolite signals34,35, while
NMR can only reach two/3001. However, while quantitation
in MS is not straightforward, metabolite NMR signals, once
identified, can be immediately translated into quantities, which
makes NMR the technique of choice for front line high-
throughput metabolomics screening4. NMR signal identification
is not a severe problem for fluids that are subjected to

Fig. 6 Predicted vs. measured concentrations of inorganic ions and some metabolites in real urine samples. Plots of the predicted vs. measured
concentrations of 11 inorganic ions in 60 real urine samples, and of 6 among the most active metabolites in 120 real urine samples. The panels show:
a chloride (Cl−), b sodium (Na+), c calcium (Ca2+), d potassium (K+), e magnesium (Mg2+), f phosphate (PO4

3−), g sulfate (SO4
2−), h lithium (Li+),

i rubidium (Rb+), j zinc (Zn2+), k aluminum (Al3+), l creatinine, m dimethylamine, n creatine, o hippurate, p guanidoacetate, and q tartrate. Additional
panels for another set of six metabolites are reported in Supplementary Fig. 5. The concentrations of the inorganic ions were determined in clinical analysis
and analytical chemistry laboratories, and the metabolite concentrations were estimated by NMR lineshape fitting analyses (Methods). Horizontal error
bars for ions indicate confidence intervals according to the estimated errors of the analytical technique used (Methods), and the vertical ones both for ions
and active metabolites are based upon the accuracy of each predictive model, extracted from the relative root mean square error (rRMSE) values. In turn,
the rRMSE values were calculated by the predictive efficiency of the models in the 40 randomly prepared artificial urine mixtures (Supplementary Fig. 3)
and the 4501 artificial urine spectra. For the cases of h Li+ and i Rb+, 10 and 6 urine samples, respectively, lie outside the normal concentration range in
urine, as highlighted by an additional panel. It can be seen that the models are able to predict also these outliers with high accuracy. In addition, the
diseases involving alterations of each of the reported ions are reported in orange panels, with the black arrows in the parentheses showing the
concentration trend of the ion for each disease

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01587-0

8 NATURE COMMUNICATIONS |8:  1662 |DOI: 10.1038/s41467-017-01587-0 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


homeostasis, like blood or cerebrospinal fluid, but is a major
drawback for urine, where metabolites experience a larger
variability in concentrations and therefore their signals experi-
ence a large variability in chemical shifts from one sample to
another. Here, we have shown that the complex chemical matrix
that constitutes urine dictates the chemical shifts of all its com-
ponents in a complex but predictable way.

The first implementation of the predictor described here con-
cerns accurate prediction of the chemical shifts of 63 metabolites,
and accurate quantitation of 11 inorganic ions. Extension to more
metabolites is not expected to present particular difficulties. If the
present scheme is followed, about 500 spectra of artificial mixtures
would need to be recorded for each group of six additional meta-
bolites, i.e., slightly above 80 spectra per metabolite. Increasing the
number of metabolites from 63 up to about 250 would thus require
recording ca. 10–20,000 spectra of appropriate artificial mixtures.
However, from the experience gained in this work, predictions of δ
of additional metabolites should become increasingly faster and
more accurate for two reasons: the first is that, having largely

chosen the active metabolites, as well as the first groups of passive
ones, with the criterion of decreasing abundance, the possibility that
additional less abundant metabolites may be affecting the δ of the
previous ones will be more and more unlikely: the second is that,
with increasing number of real urine spectra, we expect that the
prediction of δ from artificial mixtures can be finely adjusted, so
that also the prediction of the shifts of the active metabolites
selected originally should become more accurate. In other words, it
is likely that the system will learn from experience. If so, this feature
can be also automated and implemented inside our algorithm. We
therefore believe that this predictor can significantly contribute to
increasing both throughput and accuracy of metabolomics studies
on large cohorts.

The beta-version of the predictor is available for testing at the
following url: http://150.217.146.252:8080/ using a PIN code.

Methods
Reagents. All the chemical compounds/metabolites used for this study were
purchased from Sigma-Aldrich. Before the preparation of the artificial urine
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Fig. 7 Examples of difficult metabolite assignments—and therefore quantitation—in urine. a TMAO and TMA are biomarkers of trimethylaminuria;
however, accurate determination of TMAO concentration is challenging since many metabolite signals (δobs) are in the same spectral region and should be
properly subtracted. To do so, the position of each of them must be known accurately, and it is indeed successfully predicted (δpred) by our predictor,
leading to accurate quantitation of TMAO. b The creatine/creatinine concentration ratio is an important clinical parameter, but this ratio is difficult to
determine due to the severe overlap between the creatine and creatinine signals. Again, it is shown that the δ value of creatine (although its signal is largely
hidden under the strong creatinine peak) is accurately predicted. In crowded spectral areas, several unique signals of metabolites are present, making their
assignment very risky. Nevertheless, our predictor always provides accurate chemical shifts predictions as shown for c guanidoacetate, d dimethyl sulfone,
and e succinate, in perfect agreement with the observed values, validated by spiking experiments for each metabolite
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mixtures, a 1H NMR 1D spectrum was acquired for each metabolite, to check its
purity.

Experimental procedure of urine samples collection. One hundred-twenty urine
samples (1st in the morning) were collected from 60 volunteers (age range: 19–65
years old) in two random collection periods. Immediately after collection, the urine
samples were used for clinical/chemical analysis (concerning the ions quantifica-
tion) and their 1H-NMR spectra were acquired. Afterwards they were stored at
−80 °C. No medical record was requested, although some of the volunteers were
under medication at the time of collection. A written consent was obtained from
each volunteer before providing the urine samples.

Experimental procedure of urine samples preparation (SOPs). According to
the established protocols (SOPs)14,15, which were followed in previous stu-
dies14,18,19, 630 μl of either real or artificial urine samples were mixed with 70 μl of
the standard urine D2O buffer (1.5 M KH2PO4 dissolved in 99.9% D2O, pH 7.4,
2 mM sodium azide and 0,1% 3-(trimethyl−silyl)propionic acid-d4 (TSP)). Finally,
600 μl out of the 700 μl was transferred into the NMR tube for spectra acquisition.
According to established SOPs, the final NMR sample thus consisted of 90% urine
and 10% buffer.

1H NMR spectra acquisition and processing details. Solution 1H NMR spectra
of artificial and real urine samples were acquired using a Bruker IVDr 600MHz
spectrometer (Bruker BioSpin) operating at 600.13 MHz proton Larmor frequency
and equipped with a 5 mm PATXI H/C/N with 2H-decoupling probe including a z-
axis gradient coil, an automatic tuning-matching (ATM) and an automatic refri-
gerated sample changer (SampleJet). Temperature was regulated to 300± 0.1 K
with a BTO 2000 thermocouple (or up to 302.7± 0.1 K). For each sample, a one-
dimensional (1D) NMR spectrum was acquired with water peak suppression using
the standard NOESY-1D presat pulse sequence36 (noesygppr1d; Bruker BioSpin),
acquiring 32 scans (or 128 scans for the less concentrated mixtures), 65,536 data
points, a spectral width of 12,019 Hz, an acquisition time of 2.7 s, a relaxation delay
of 4 s, and a mixing time of 0.01 s.

Free induction decays were multiplied by an exponential function equivalent to
0.3 Hz line-broadening before applying Fourier transform. All transformed spectra
were automatically corrected for phase and baseline distortions, and referenced to
the TSP singlet at 0 ppm. All spectra had TSP signal linewidth, Δv1/2< 1 Hz.

Construction of the chemical shift matrix. At least one 1H NMR signal of each
active and passive metabolite was assigned in the 4501 spectra (whenever each
passive metabolite was present), and their chemical shift values were recorded till at
least the 5th decimal of ppm in each case. After the assignment, a multidimensional
shift matrix was created (for extra details see Supplementary Table 2 and Sup-
plementary Note 1).

Construction of chemical shift prediction models. Under fast exchange condi-
tions, the observed chemical shift (δ0) value of a spin system in a molecule is given
by the weighted average of the chemical shifts of that spin system in each transient
binary complex that the corresponding molecule can form in the mixture. The δ0
values are directly correlated to the concentration of the interacting compounds.
Moreover, pH and T changes also cause chemical shift variations: consequently,
each 1H-NMR δ0 value from any compound that contains 1H nuclei could be
described by the following function:

δ0 ¼ f x1; ¼ ; xnð Þ ð1Þ

where the x variables are the concentrations of each possible interacting com-
pound, the pH and temperature. In order to construct Eq. (1), the chemical shift
matrices (see above) were employed and the multivariate adaptive regression
(linear and cubic) splines models37 (MARS models) were applied to fit our data. By
this approach, we obtained one predictive model for each chemical shift. All
models exhibited very high cross-validated values (R2CV) and predicting ability,
along with very low root mean square errors (RMSE).

In summary, Eq. (1) for each studied 1H spin system took the following form37:

δ0 ¼ c0 þ
XM

m¼1

cmBm xð Þ ð2Þ

where c0 is the calculated constant value of the derived regression model, M is the
number of linear or cubic spline basis function that are exploited for the
production of the best fitting model, cm is the coefficient of the mth linear or cubic
spline basis function, and Bm xð Þ is the linear or cubic spline basis function. The
calculated R2CV and RMSE values for the 94 models of the studied spin systems
were > 0.98 and < 1e−04 (for L-histidine, imidazole, 3-methylhistidine, xanthine,
and histamine < 5e−04, due to the high variability of their proton chemical shifts),
respectively.

Prediction of concentrations from chemical shifts. By reversing the matrices of
each chemical shift from the active metabolites, a functional relationship among
each concentration of the 52 active metabolites, pH plus T and the 1H NMR
chemical shifts of the active metabolites is accomplished and the following equation
is derived:

C; pH; T ¼ c0 þ
XM

m¼1

cmBm xð Þ; ð3Þ

where C is the concentration of each active metabolite, pH is the measured pH of
each sample (after the addition of the buffer), T is the temperature at which each
NMR experiment was performed and x are the 1H NMR chemical shifts. The other
terms of Eq. (3) have the same meaning as in Eq. (2).

The calculated R2CV values for the 52 concentrations, pH, and T models were
always > 0.90. In particular, the predictive models of the 11 ions and of the other
most abundant active metabolites (e.g., creatinine, urea, hippurate, citrate, glycine,
and trimethylamine-N-oxide, see Fig. 1a) exhibited very high predicting accuracy
with R2CV> 0.97 (several examples in 40 randomly prepared artificial urine
samples are shown in Supplementary Fig. 3).

Determination of the navigator signals. By performing an ANOVA decom-
position37,38 of each metabolite concentration and pH model, all weighted-
important variables (i.e., 1H NMR chemical shifts) for the construction of each
model can be determined, along with their relative statistical importance.
According to Fig. 3, the chemical shifts of L-histidine H5 proton (singlet), citrate
H3,6 protons (2 doublets of doublets), creatinine H3,6 protons (2 singlets), glycine
Ha protons (singlet), L-threonine H4,6 protons (1 doublet and 1 multiplet), 3-
methlyhistidine H5 proton (singlet), glycolate H2 protons (singlet), and asparagine
H6 protons (2 multiplets) appear to be highly important variables for the con-
struction of almost all concentrations and pH models. Among them, creatinine,
citrate, and glycine are the most abundant (Fig. 1b), and their signals are easily
identified in a normal urine 1H NMR profile. The rest of the metabolites signals are
less easily detected, as they are frequently overlapped by other signals and/or the
variability of their concentrations does not allow for their facile identification
(Fig. 1b; Supplementary Table 1). Therefore, the proton signals of creatinine,
glycine, and citrate (five signals in total) were employed as navigator signals.

Chemical shifts prediction from the navigator signals. Employing as variables
xð Þ the five navigator signals and Eqs. (2), (3), new models were constructed for the
direct prediction of the chemical shifts and concentration—pH values. The new
models were always able to sufficiently—and often very accurately—predict the
chemical shifts of the 94 spin systems from the 63 metabolites, as well as the
concentrations of the 52 active metabolites, pH, and T. The calculated R2CV
and RMSE values for the 94 models of the studied spin systems were >0.98 and
< 1.5e–04, respectively (Supplementary Fig. 2c, f, i, l, o, r). The calculated R2CV
values for the concentrations and pH models were > 0.80. In particular, the models
of the 11 ions, of the other most abundant active metabolites (e.g., creatinine, urea,
hippurate, citrate, glycine, and trimethylamine-N-oxide, see Fig. 1a), of pH and
temperature, exhibited very high predicting accuracy with R2CV> 0.96 (Supple-
mentary Fig. 3aa, ca, ea, ga, ia, ka, ma, oa, qa, sa, ua, wa, ya, ab, cb, eb, gb, ib).

Clinical/chemical methods for the quantification of urinary ions. For the
quantification of the ions in urine, several methods were used in order to estimate
the average concentration values, namely, ion chromatography (IC), atomic
absorption spectroscopy (AAS), electrochemical, and photometrical approaches.
For all methods, initially the ions concentration in several artificial urine samples
was measured, and it was compared with the theoretical value. In all cases, the
quantification error was lying between 5 and 10% of the theoretical value.

In detail, for the IC determination of both cations and inorganic anions a three
IC-system (Dionex) was employed39 (more details in ref. 39). The concentration of
total aluminum and zinc ions was also determined by AAS (instrument: SpectrAA‐
300 Zeeman, Agilent Technologies, Santa Clara, CA, USA). Chloride, potassium,
and sodium ions were also measured by ion-selective electrode method
(potentiometric method) using a Cobas c‐501, Roche Diagnostics, Basel,
Switzerland. Calcium cations in urine were also determined by a photometric
method (complexometric approach), exploiting their reaction with 5‐nitro,
5′‐methyl‐BAPTA (NM-BAPTA) (instrument: Cobas c-501, Roche Diagnostics,
Basel, Switzerland). The measurements took place at 376/340 nm wavelength. The
same method (complexometric approach), with the same instrument, was followed
to determine the concentration of phosphate anions, employing the reaction of
ammonium molybdate with phosphate: {(NH4)3[PO4(MoO3)12]}. The
measurements took place at 700/340 nm wavelength. Magnesium was determined
by photometry (instrument: Cobas c‐501), through the Xylidyl blue I reagent. The
measurements took place at 505/600 nm wavelength.

Illustration of the algorithm workflow. The predictor was developed in Matlab
(Mathworks programming environment). Four different kind of models, (i.e., two
based on the five navigator signals (reduced models) and two on the 51 1H NMR
signals chemical shifts and the concentrations of the active metabolites (full

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01587-0

10 NATURE COMMUNICATIONS |8:  1662 |DOI: 10.1038/s41467-017-01587-0 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


models)) were tested for the best (i.e., with the lowest error) predictions. To
accomplish this, 40 random artificial urine mixtures, all 4501 artificial urine training
spectral data, 120 real urine samples, and a large urine data set (1600 spectra)
available from two previous studies were employed (Fig. 2). After establishing a fully
automated approach to accurately assign the five navigator signals in any artificial
test urine spectrum (40 randomly prepared artificial urine samples), the algorithm
was successfully tested in 120 plus 1600 real urine samples spectra. Thus, we
employed the chemical shifts of the navigator signals as the input file of the reduced
models (Fig. 4). If the predictor is unable to assign accurately one or more of the five
navigator signals in a spectrum, the analysis cannot proceed. In this case, the user
has the option of submitting manually the assignment of the five navigator signals.
The prior knowledge of these five signals provides two output files; one with the 52
active metabolites concentrations, pH, and T values, and another with the 94
chemical shifts (δreduced). The predicted δreduced values in the artificial urine samples
exhibited an errormax of ±0.0002 ppm (Supplementary Fig. 2c, f, l, o, r; Supple-
mentary Data 2), except for histidine and 3-methylhistidine:±0.0007 ppm (Sup-
plementary Fig. 2i; Supplementary Data 2). Subsequently, the output files were used
as an input for the full models, where the predictions of all chemical shifts (δfull)
(Supplementary Data 2) had an errormax of ±0.0002 ppm (Supplementary Fig. 2d, g,
m, p, s) and for histidine ±0.0005 ppm (Supplementary Fig. 2j).

When both chemical shift predictions (i.e., from the reduced and full models) fall
one within the estimated uncertainty of the other, the best result is taken as their
weighted average, with weights inversely proportional to the estimated uncertainty
of each prediction. The uncertainty is based upon the predicting performance of the
models in the 40 randomly prepared artificial mixtures and upon the relative
rRMSE values of the fitted models from the 4501 artificial urine data.

So, if:

ðδfull � errorfullÞ<ðδreduced ± errorreducedÞ<ðδfull þ errorfullÞ; ð4Þ

then the weighted average δ is taken. The weights were estimated according to the
comparison of the average rRMSE values of the δreduced and δfull models from the
training data (i.e., the 4501 spectra of the artificial mixtures).

If two predictions differ by more than their uncertainty, then the δreduced values
are taken, based again upon the fact that the average rRMSE of the δreduced models
was the lowest. Following this approach, the lowest error was observed for the
independent 120 and 1600 real urine test sets plus for the total 4541 artificial urine
training set (now including the 40 randomly prepared artificial urine samples).

The metabolites and ions concentration, pH, T models with the lowest rRMSE
were employed for the best concentrations and pH, T values predictions. The ions
concentration models were tested in the 40 independent, randomly prepared
artificial urine mixtures (Supplementary Fig. 3) and 60 real urine samples (that are
reported in Fig. 6) as well as in the 4501 artificial urine training data.

Code availability. The computer code is under E.U. patent application. The pre-
dictor is available at http://150.217.146.252:8080/ and it will also be available as
part of Bruker Biospin Quant-UR platform.

Data availability. All concentration and chemical shift data are available in the
Supplementary Tables 1–5 and Supplementary Data 1–4. All data is available from
the authors upon reasonable request.
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