Preimages under Queuesort

Lapo Cioni, Luca Ferrari
lapo.cioni@unifi.it, luca.ferrari@unifi.it

Synopsis

Queuesort is an algorithm which tries to sort an input permutation π by using a queue. Similarly to what has been done for Stacksort (more recently by Defant and less recently by Bousquet-Mélou), we study preimages of permutations under Queuesort.
Characterization of preimages. Alternative way of describing the output $q(\pi)$ of Queuesort on input π. Recursive characterization of preimages of a given permutation, from which we deduce a recursive procedure to generate them
Enumeration of preimages. Enumeration of $q^{-1}\left(M_{1} P_{1} M_{2}\right)$, where M_{1}, M_{2} are all the maximal sequences of LTR maxima of π (with M_{2} possibly empty): combinations of Catalan numbers. Catalan numbers when $\left|M_{2}\right|=1$. Enumeration of permutations with one preimage: derangement numbers.

The algorithm Queuesort

for $i=1$ to n do
begin
if $\left(\mathrm{Q}=\emptyset\right.$ or $\left.\operatorname{BACK}(\mathrm{Q})<\pi_{i}\right)$ then ENQUEUE
else
begin
while FRONT (Q) $<\pi_{i}$ do DEQUEUE
OUT
end
end
while $Q \neq \emptyset$ do DEQUEUE

Description of Queuesort on permutations

Read the permutation from right to left, and move each $L T R$ - maxima to the right till we find a number bigger than it.

\rightarrow

Preimage not empty

Let $\pi=\pi_{1} \cdots \pi_{n}$. Then $q^{-1}(\pi) \neq$ \emptyset if and only if $\pi_{n}=n$.

Notation

$\pi=M_{1} P_{1} \cdots M_{k-1} P_{k-1} M_{k}$, in which the M_{i} 's are all the maximal, nonempty sequences of consecutive $L T R$ - maxima. Sometimes we will use N_{i} and R_{j} instead of M_{i} and P_{j}, respectively.

Characterization of preimages

If π is not the identity permutation, then every preimage σ of π is one and only one of the following:

- $\sigma=q^{-1}\left(M_{1} P_{1} \cdots M_{k-2} P_{k-2} M_{k-1}^{\prime} n\right) m_{k-1, m_{k-1}} P_{k-1} M_{k}^{\prime}$, where M_{k-1}^{\prime} is obtained by removing the last element $m_{k-1, m_{k-1}}$ from M_{k-1}^{\prime}, while M_{k}^{\prime} is obtained by removing n from M_{k};
- let π^{\prime} be the permutation obtained by removing n from π; for every preimage $\sigma^{\prime}=N_{1} R_{1} \cdots N_{s-1} R_{s-1} N_{s}$ of π^{\prime}, σ is obtained by inserting n in one of the positions to the right of N_{s-1}.

Associated algorithm

- compute all the preimages of $M_{1} P_{1} \cdots M_{k-2} P_{k-2} M_{k-1}^{\prime} n$, and concatenate them with $m_{k-1, m_{k-1}} P_{k-1} M_{k}^{\prime}$;
- if $\left|M_{k}\right| \geq 2$, then compute a preimage $\sigma^{\prime}=N_{1} R_{1} \cdots N_{s-1} R_{s-1} N_{s}$ of $M_{1} P_{1} \cdots M_{k-1} P_{k-1} M_{k}^{\prime}$, and insert n in each of the positions to the right of N_{s-1}.

Remark

The number of preimages is uniquely determined by the positions of its $L T R$ - maxima.

Permutations with one preimage

A permutation $\pi \in S_{n}$ has exactly one preimage if and only if it ends with n and has no adjacent $L T R$ - maxima. As a consequence, using Foata's fundamental bijection, $\left|\left\{\pi \in S_{n}| | q^{-1}(\pi) \mid=1\right\}\right|$ is the number of derangements of length $n-1$.

Preimages of $M_{1} P_{1} n$

Let $\pi=M_{1} P_{1} M_{2}$, with $\left|M_{2}\right|=1$. Then $q^{-1}(\pi)=\left|C_{m_{1}}\right|$, where C_{k} is the k-th Catalan number.

Preimages of $\pi=M_{1} P_{1} M_{2}$

Let $\pi=M_{1} P_{1} M_{2} \in S_{n}$. Then

$$
\left|q^{-1}(\pi)\right|=\sum_{i=1}^{m_{2}} \sum_{j=0}^{i-1}\binom{i-1}{j}\left(\sum_{l=0}^{m_{1}-2}\left(\binom{m_{1}-l}{j+1}\right) b_{m_{1}-1, l+1}\right)\left(\sum_{k=2}^{m_{2}-i+1} g_{m_{2}-i, k}\left(\binom{k}{p_{1}+i-j-1}\right)\right)
$$

where $b_{r, s}=A 009766(r, s)$, and $g_{r, s}=A 033184(r, s-1)$ are two different incarnations of the ballot numbers.
In the above formula, the sum involving the $b_{r, s}$'s can be rewritten as

$$
\sum_{l=0}^{m_{1}-2}\left(\binom{m_{1}-l}{j+1}\right) b_{m_{1}-1, l+1}=\sum_{i=1}^{\left\lfloor\frac{i+1}{2}\right\rfloor+1}(-1)^{i-1}\binom{j+2-i}{i-1} C_{m_{1}+j+1-i} .
$$

This shows that $\left|q^{-1}(\pi)\right|$ can be expressed as a combination of Catalan numbers.

