Preimages under Queuesort

Lapo Cioni, Luca Ferrari lapo.cioni@unifi.it, luca.ferrari@unifi.it

Synopsis

Queuesort is an algorithm which tries to sort an input permutation π by using a queue. Similarly to what has been done for Stacksort (more recently by Defant and less recently by Bousquet-Mélou), we study preimages of permutations under Queuesort.

Characterization of preimages. Alternative way of describing the output $q(\pi)$ of Queuesort on input π . Recursive characterization of preimages of a given permutation, from which we deduce a recursive procedure to generate them.

Enumeration of preimages. Enumeration of $q^{-1}(M_1P_1M_2)$, where M_1, M_2 are all the maximal sequences of LTR maxima of π (with M_2 possibly empty): combinations of Catalan numbers. Catalan numbers when $|M_2| = 1$. Enumeration of permutations with one preimage: derangement numbers.

The algorithm Queuesort

for i=1 to n do

begin

if $(Q=\emptyset)$ or $BACK(Q)<\pi_i$) then ENQUEUE

else

begin

while FRONT(Q)< π_i do DEQUEUE

OUT

end

end

while $Q \neq \emptyset$ do DEQUEUE

Description of Queuesort on permutations

Read the permutation from right to left, and move each LTR-maxima to the right till we find a number bigger than it.

Preimage not empty

Let $\pi = \pi_1 \cdots \pi_n$. Then $q^{-1}(\pi) \neq \emptyset$ if and only if $\pi_n = n$.

Notation

 $\pi = M_1 P_1 \cdots M_{k-1} P_{k-1} M_k$, in which the M_i 's are all the maximal, nonempty sequences of consecutive LTR - maxima. Sometimes we will use N_i and R_j instead of M_i and P_j , respectively.

Characterization of preimages

If π is not the identity permutation, then every preimage σ of π is one and only one of the following:

- $\sigma = q^{-1}(M_1P_1 \cdots M_{k-2}P_{k-2}M'_{k-1}n)m_{k-1,m_{k-1}}P_{k-1}M'_k$, where M'_{k-1} is obtained by removing the last element $m_{k-1,m_{k-1}}$ from M_{k-1} , while M'_k is obtained by removing n from M_k ;
- let π' be the permutation obtained by removing n from π ; for every preimage $\sigma' = N_1 R_1 \cdots N_{s-1} R_{s-1} N_s$ of π' , σ is obtained by inserting n in one of the positions to the right of N_{s-1} .

Associated algorithm

- compute all the preimages of $M_1P_1 \cdots M_{k-2}P_{k-2}M'_{k-1}n$, and concatenate them with $m_{k-1,m_{k-1}}P_{k-1}M'_k$;
- if $|M_k| \ge 2$, then compute a preimage $\sigma' = N_1 R_1 \cdots N_{s-1} R_{s-1} N_s$ of $M_1 P_1 \cdots M_{k-1} P_{k-1} M'_k$, and insert n in each of the positions to the right of N_{s-1} .

Remark

The number of preimages is uniquely determined by the positions of its LTR-maxima.

Permutations with one preimage

A permutation $\pi \in S_n$ has exactly one preimage if and only if it ends with n and has no adjacent LTR - maxima. As a consequence, using Foata's fundamental bijection, $|\{\pi \in S_n \mid |q^{-1}(\pi)| = 1\}|$ is the number of derangements of length n-1.

Preimages of M_1P_1n

Let $\pi = M_1 P_1 M_2$, with $|M_2| = 1$. Then $q^{-1}(\pi) = |C_{m_1}|$, where C_k is the k-th Catalan number.

Preimages of $\pi = M_1 P_1 M_2$

Let $\pi = M_1 P_1 M_2 \in S_n$. Then

$$|q^{-1}(\pi)| = \sum_{i=1}^{m_2} \sum_{j=0}^{i-1} {i-1 \choose j} \left(\sum_{l=0}^{m_1-2} \left({m_1 - l \choose j+1} \right) b_{m_1-1,l+1} \right) \left(\sum_{k=2}^{m_2-i+1} g_{m_2-i,k} \left({k \choose p_1 + i - j - 1} \right) \right)$$

where $b_{r,s} = A009766(r,s)$, and $g_{r,s} = A033184(r,s-1)$ are two different incarnations of the ballot numbers. In the above formula, the sum involving the $b_{r,s}$'s can be rewritten as

$$\sum_{l=0}^{m_1-2} \left(\binom{m_1-l}{j+1} \right) b_{m_1-1,l+1} = \sum_{i=1}^{\lfloor \frac{j+1}{2} \rfloor+1} (-1)^{i-1} \binom{j+2-i}{i-1} C_{m_1+j+1-i}.$$

This shows that $|q^{-1}(\pi)|$ can be expressed as a combination of Catalan numbers.