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Abstract: CruCA4, a coral α-carbonic anhydrase (CA, EC 4.2.1.1) involved in the biomineralization
process of the Mediterranean red coral, Corallium rubrum, was investigated for its activation with a
panel of amino acids and amines. Most compounds showed considerable activating properties, with a
rather well defined structure–activity relationship. The most effective CruCA4 activators were D-His,
4-H2N-L-Phe, Histamine, Dopamine, Serotonin, 1-(2-Aminoethyl)-piperazine, and L-Adrenaline,
with activation constants in the range of 8–98 nM. Other amines and amino acids, such as D-DOPA,
L-Tyr, 2-Pyridyl-methylamine, 2-(2-Aminoethyl) pyridine and 4-(2-Aminoethyl)-morpholine, were
submicromolar CruCA4 activators, with KA ranging between 0.15 and 0.93 µM. Since it has been
shown that CA activators may facilitate the initial phases of in-bone mineralization, our study may
be relevant for finding modulators of enzyme activity, which can enhance the formation of the red
coral skeleton.
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1. Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes, which catalyze the reversible
hydration reaction of carbon dioxide to bicarbonate (HCO3

−) and protons (H+) [1–3]. This simple
but physiologically crucial reaction is essential for maintaining the metabolic balance of the inorganic
carbon in all living organisms [4–9]. CAs are characterized by a catalytic constant (kcat) value
ranging from 104 to 106 s−1 for supporting the fastest metabolic activities of the cell, such as
the transport and secretory processes of the inorganic carbon [1,3,7,8]. The natural spontaneous
CO2 hydration/dehydration reaction has a first-order rate constant of 0.15 s–1 [8,10–14]. In 1940,
an emerging and interesting feature of CAs was discovered: the velocity of this already fast enzyme
could be improved by the use of small molecules [15,16]. These molecules were named CA activators
(CAAs) and were identified to belong to various chemical classes, such as biogenic amines (histamine,
serotonin, and catecholamines), amino acids, oligopeptides, or small proteins [17–20]. In the initial
phases of this research, the CAAs’ discovery created a controversy among the scientists because
some of them supported the thesis that CAAs did not exist, whereas others even reinforced the idea
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that CA activation was an artifact [21–23]. These controversies contributed to a slow progress in
the field of CAAs. Thus, the scientific research on CAs steadfastly progressed with new findings
regarding their catalytic and inhibition mechanisms, but it was necessary to wait until the early 1990’s
for a completely different perception of the CAAs [15,16,24]. Only in 1997, with the report of the
first crystallographic structure of human (h) isoform hCA II complexed with different activators was
the effectiveness of CAAs definitively proven. In addition, the possibility that they could strongly
enhance the enzyme activity was recognized, and thus the idea to design new pharmacological or
environmental applications for this class of modulators of activity was finally considered [25,26]. Today,
through the extensive use of X-ray crystal structure, spectroscopic and kinetic data, it is accepted that
CAAs are molecules which are able to bind within the active site in various regions of the cavity, but far
away enough from the metal ion with which they do not directly interact. Furthermore, the CAAs do
not influence the binding of CO2 to the enzyme, but make easier the transfer of protons from the active
site to the environment, increasing the catalytic constant of the enzyme [17,19,21,25–31]. Intriguingly,
in the last decade, the CAAs, which were considered for long time as molecules of doubtful relevance,
acquired an enormous importance for some pharmacological applications. For example, several
human diseases, such as osteopetrosis, cerebral calcifications, retinal problems, hyperammonemia,
and hyperchlorhidrosis, are characterized by a deficiency in the activity of several human CA
isoforms [21,29–32]. Thus, it is immediately apparent that the aforementioned human disorders
could be treated by using CAAs. Furthermore, it has been demonstrated that CAAs can improve
synaptic efficacy, spatial learning, and memory [18,33,34]. Recently, as described in the literature,
a new and interesting aspect of CAAs has emerged. These molecules are capable of enhancing the
formation of the inorganic salts, such as calcium carbonate and calcium phosphate, which are involved
in the biomineralization process [29,30,32]. Biomineralization activity is typical of all the organisms
characterized by a shell or bones/skeletons [35]. The organism produces minerals such as silicates in
algae and diatoms, carbonates in invertebrates, calcium phosphates and carbonates in vertebrates [35].
In this context, we have here investigated in vitro the effect of CAAs (amino acids and amines) on
the activity of the recombinant CruCA4 from Mediterranean red coral, Corallium rubrum. CruCA4
belongs to the α-CA class and is an enzyme with a significant hydratase activity involved in coral
skeleton formation [36–38]. At the site of calcification, CruCA4 generates bicarbonate which is then
converted into carbonate [37,38]. The carbonate reacts with calcium in order to precipitate as calcium
carbonate (CaCO3), which is responsible for coral skeleton formation [36–39]. Our in vitro results
demonstrate that CruCA4 is effectively activated by several amino acids and amines considered in the
present study. It is interesting to note that the cnidarian coral skeleton represents a good example of
biomedical material because its structure and architecture are similar to that of bones [35]. Since red
corals grow very slowly, about few centimeters per year, one of the possible findings of this paper
raises the possibility of using CAAs for enhancing the in vivo growth rates of coral skeletons.

2. Results and Discussion

2.1. CruCA4 Identification, Heterologous Expression, Purification, and Kinetic Analysis

The inspection of the C. rubrum genome and transcriptome highlighted the presence of six α-CA
isoforms, named with the acronym CruCA and Arabic numerals 1 to 6 (Table 1). Their nucleotide
sequences consist of an open reading frame encoding for a polypeptide chain ranging from 263 to
356 amino acid residues (Table 1). The theoretical molecular weight of all CruCA isoforms ranged
between 29.0 and 41.0 kDa, as determined using the program Compute MW (https://web.expasy.org/
compute_pi/) [40] (Table 1).

Intriguingly, as demonstrated by our groups, even if CruCA4 was expressed at very low levels
with respect to the other isoforms, it was the only isoenzyme expressed in the tissue-calcifying
fraction [37,38]. Thus, CruCA4 attracted our attention as the main coral α-CA involved in the
biomineralization process. The recombinant CruCA4 was prepared by designing a synthetic gene

https://web.expasy.org/compute_pi/
https://web.expasy.org/compute_pi/


Molecules 2018, 23, 66 3 of 10

lacking the signal peptide responsible for CruCA4 secretion. The expression vector was composed of a
chimeric gene resulting from the fusion of the CruCA4 gene having a nucleotide tail encoding for six
residues of histidine at the 5′ extremity. The recombinant enzyme was heterologously expressed in
Eschericia coli. Our results demonstrated that the enzyme was recovered in the soluble fraction of the
E. coli cell extract and purified to an apparent homogeneity by a nickel affinity gel, as demonstrated by
SDS-PAGE (data non shown). The recovered amount of the enzyme was about 1 mg, starting from 1 L
of cellular bacterial culture.

Table 1. Features and physiological localization of the α-CAs identified in the genome of the
Mediterranean red coral, Corallium rubrum.

Acronym GenBank
Accession Number

Amino
Acid Number M.W. (kDa) Calcifying Fraction 1 Non-Calcifying Fraction 1

CruCA1 KU557743.1 356 40.89 − +
CruCA2 KU557744.1 322 36.90 − +
CruCA3 KU557745.1 262 29.04 − +
CruCA4 KU557746.1 284 32.86 + −
CruCA5 KU557747.1 335 36.06 − +
CruCA5 KU557748.1 281 32.06 − +

1 Data from Le Goff and coworkers [38]. M.W. is molecular weight.

The CruCA4 kinetic constants were determined using the stopped-flow technique. The enzyme
had high catalytic activity for the physiological reaction of CO2 hydration to bicarbonate and protons,
with a kcat of 2.4 × 105 s–1 and a catalytic efficiency (kcat/KM) of 5.2 × 107 M–1 s–1. These results are
very interesting because the high catalytic efficiency of the isoenzyme compensates for the low level of
expression of CruCA4 in the tissue-calcifying fraction, underlining the importance of CruCA4 in the
biomineralization process of the red coral.

2.2. CruCA4 Activation Profile

As deduced from the primary structure, the CruCA4 amino acid sequence contains most of the
typical features of an α-CA, such as the three histidine residues, involved in the metal-coordination,
and the two gatekeeper residues, involved in the binding of inhibitors. CruCA4 lacks the proton shuttle
residue His64 (following the hCAI numbering system), the residue involved in the restoration of the
catalytic active form of the enzyme through the transfer of a proton from the water coordinated Zn(II)
ion to the environment. CruCA4 has a residue of Lys instead of His in position 64. This substitution, as
demonstrated for other CAs, leads to a decrease in the kcat value [41,42]. Thus, the treatment of the
enzyme with CAAs represents a very good strategy for stimulating the biomineralization process of
the organism through the increase of the enzymatic activity of CruCA4. We want to stress the fact
that this enzyme is involved in the formation of the coral skeleton. Thus, activators 1–19 have been
investigated as CAAs to be used in conjunction with CruCA4 (Figure 1). Figure 1 includes both natural
and non-natural amino acids and amines.
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Figure 1. Amino acids 1–11 and amines 12–19 investigated as CruCA4 activators.

As seen from the data of Table 2, L-Tyr, one of the effective CruCA4 activators examined here,
did not change the KM of the enzyme but had a notable effect on kcat, which is consistent with
observations of activators of other CAs [43–46]. In fact, 10 µM L-Tyr produced a four-fold enhancement
of kcat compared to the value of this parameter in the absence of the activator. The same effects were
observed for human isoforms hCA I and II, which are significantly activated by L-Tyr (Table 2).

Table 2. Activation of human carbonic anhydrase (hCA) isozymes I, II, and CruCA4 with L-Tyr, at 25 ◦C,
for the CO2 hydration reaction.

Isoenzyme kcat * (s−1) KM * (mM) (kcat)L-Tyr ** (s−1) KA *** L-Tyr (µM)

hCA I a 2.0 × 105 4.0 13.9 × 105 0.020
hCA II a 1.4 × 106 9.3 12.8 × 106 0.011

CruCA4 b 2.4 × 105 4.6 18.7 × 105 0.73

* Observed catalytic rate without activator. KM values in the presence and the absence of activators were the same
for the various CAs (data not shown); ** Observed catalytic rate in the presence of 10 µM of the activator; *** The
activation constant (KA) for each enzyme was obtained by fitting the observed catalytic enhancements as a function
of the activator concentration. Data represents mean from at least three determinations by a stopped-flow, CO2
hydrase method. Standard errors were in the range of 5–10% of the reported values (data not shown). a Human
recombinant isozymes, from Ref. [46]; b Coral recombinant enzyme, from this work.

Amino acids and amines 1–19 (Figure 1) can potently activate CruCA4, with many activators
having been identified that have activation constants in the nanomolar range (Table 3). For comparison,
KA values for hCA I and II are also reported in Table 3. The following structure–activity relationship
(SAR) observations were obtained from the data of Table 3.
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Table 3. Activation constants of hCA I, hCA II and the coral CruCA4 with amino acids and amines
1–19. Data for hCA I and II are from Di Cesare and colleagues [43].

No. Compound
KA (µM) *

hCA I a hCA II a CruCA4 b

1 L-His 0.03 10.9 36.9
2 D-His 0.09 43 0.098
3 L-Phe 0.07 0.013 15.4
4 D-Phe 86 0.035 1.01
5 L-DOPA 3.1 11.4 13.7
6 D-DOPA 4.9 7.8 0.93
7 L-Trp 44 27 9.48
8 D-Trp 41 12 8.35
9 L-Tyr 0.02 0.011 0.73
10 D-Tyr 0.04 0.013 18.9
11 4-H2N-L-Phe 0.24 0.15 0.074
12 Histamine 2.1 125 0.007
13 Dopamine 13.5 9.2 0.005
14 Serotonin 45 50 0.006
15 2-Pyridyl-methylamine 26 34 0.41
16 2-(2-Aminoethyl)pyridine 13 15 0.26
17 1-(2-Aminoethyl)-piperazine 7.4 2.3 0.004
18 4-(2-Aminoethyl)-morpholine 0.14 0.19 0.15
19 L-Adrenaline 0.09 96 0.009

* Data represents mean from three determinations by a stopped-flow, CO2 hydrase method. Standard errors were in
the range of 5–10% of the reported values (data not shown); a Human recombinant isozymes, stopped flow CO2
hydrase assay method [5]; b From this work.

1. The most effective CruCA4 activators were D-His (2), 4-H2N-L-Phe (11), Histamine (12),
Dopamine (13), Serotonin (14), 1-(2-Aminoethyl)-piperazine (17), and L-Adrenaline (19), which have
activation constants in the range of 8–98 nM. It can be observed that amine type compounds are
more effective CruCA4 activators (KA values ranging from 5 to 9 nM) compared to the natural and
non-natural amino acids (KA values ranging from 74 to 98 nM).

2. Most of the amines and amino acids 1–19 were effective submicromolar CruCA4 activators,
with KA values ranging between 0.15 and 0.93 µM. They include D-DOPA (6), L-Tyr (9),
2-Pyridyl-methylamine (15), 2-(2-Aminoethyl)pyridine (16) and 4-(2-Aminoethyl)-morpholine (18)
(Table 2).

3. Except for L-Tyr (9) and D-Tyr (10), in which the L-enantiomer was a more effective activator
than the D-enantiomer, the D-enantiomers were generally more effective activators of CruCA4
compared to their corresponding L-enantiomers. As demonstrated by X-ray crystallographic studies
on human isoforms hCA I and II [44–46], L- and D-enantiomers can bind differently within the active
site binding pocket owing to the different stereochemistry induced by the asymmetric carbon atom.
This can result in different activating properties, as seems to also be the case for the coral enzyme.

4. The least effective CruCA4 activators were L-His (1), L-/D-Phe (3,4), L-DOPA (5), L-/D-Trp
(7,8), and D-Tyr (10), which have relatively limited potency as activators (KA values of 1.01 to 36.9 µM)
(Table 2).

5. An important difference in the activation profile of CruCA4 compared to the human isoforms
hCA I and II was observed for amines and amino acids 1–19 (Table 2). For example, Histamine (12),
Dopamine (13), Serotonin (14), 1-(2-Aminoethyl)-piperazine (17) and L-Adrenaline (19) seemed to
be highly selective for CruCA4, being low nanomolar CruCA4 activators, but also produced activity
in the high micromolar range for hCA I and II. Probably, these activators are more specific to the
coral enzyme because CruCA4 clusterizes in a distinct group, which is different from the two human
isoforms hCA I and hCA II, as demonstrated by the phylogenetic analysis carried out on cnidarian
and human α-CAs [38].
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3. Materials and Methods

3.1. Chemistry

Amino acids and amines 1–19 were the commercially available, highest purity reagents from
Sigma-Aldrich, Milan, Italy. All other chemicals used were from Sigma-Aldrich as well.

3.2. Gene Synthesis, Cloning, Expression, Purification

The GeneArt Company (Thermo Fisher Scientific, Waltham, MA, USA), specialized in gene
synthesis, designed the synthetic CruCA4 gene (Accession number: KU557746.1) without the peptide
signal and with the four base-pair sequences (CACC) at the 5′ end which are necessary for directional
cloning in the pMK-T vector (subcloning vector, Thermo Fisher Scientific). The CruCA4 was
subsequently cloned into the expression vector pET100/D-TOPO (Invitrogen, Carlsbad, CA, USA),
creating the plasmid pET100D-Topo/CruCA4 and containing a nucleotide sequence encoding for a
peptide containing six histidines before the insertion point, for facilitating the purification of the target
protein. In order to confirm the gene integrity and that no errors occurred at the ligation sites, the
vector containing the fragment was subject to bidirectional automated sequencing.

Escherichia coli ArcticExpress (DE3)RIL competent cells were transformed with pET100D-Topo/
CruCA4, grown at 20 ◦C and induced with 1 mM IPTG. ZnSO4 was added after 30 min and after 3 h of
additional growth, cells were harvested and disrupted by sonication at 4 ◦C in 20 mM buffer phosphate,
pH 8.0. Following sonication, the sample was centrifuged at 1200× g at 4 ◦C for 30 min. The supernatant
was dialyzed at 4 ◦C against 0.02 M phosphate buffer (pH 8.0) containing 0.01 M imidazole, and loaded
onto a His-select HF Nickel affinity column (GE Healthcare, dimension: 1.0 × 10 cm). The column
was equilibrated with 0.02 M phosphate buffer (pH 8.0) containing 0.01 M imidazole and 0.5 M KCl at
a flow rate of 1.0 mL/min. The recombinant CgiNAP2X1 was eluted from the column with 0.02 M
phosphate buffer (pH 8.0) containing 0.5 M KCl and 0.3 M imidazole at a flow rate of 1.0 mL/min.
Active fractions (0.5 mL) were collected and combined to a total volume of 2.5 mL. Subsequently, they
were dialyzed, concentrated and analyzed by SDS-PAGE. At this stage of purification, the enzyme was
at least 95% pure and the amount obtained was 1.0 mg.

3.3. SDS-PAGE

Sodium dodecyl sulfate SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed as
described by Laemmli using 12% gels [47].

3.4. CA Enzyme Activation Assay

An Sx.18Mv-R Applied Photophysics (Oxford, UK) stopped-flow instrument was used to assay the
catalytic activity of various CA isozymes for CO2 hydration reaction [48]. Phenol red (at a concentration
of 0.2 mM) was used as indicator, working at the absorbance maximum of 557 nm, with 10 mM Hepes
(pH 7.5) or TRIS (pH 8.3) as buffers, and 0.1 M Na2SO4 (for maintaining constant ionic strength),
following the CA-catalyzed CO2 hydration reaction for a period of 10 s at 25 ◦C. Activity of the α-CA
was measured at pH 7.5, as it has been reported that this is the optimal pH value for enzymes of this
class [49–51]. The CO2 concentrations ranged from 1.7 to 17 mM for the determination of the kinetic
parameters and activation constants. For each activator, at least six traces of the initial 5–10% of the
reaction were used for determining the initial velocity. The uncatalyzed rates were determined in the
same manner and subtracted from the total observed rates. Stock solutions of activators (10 mM) were
prepared in distilled-deionized water and dilutions of up to 1 nM were done thereafter with the assay
buffer. Activator and enzyme solutions were pre-incubated together for 15 min (standard assay at room
temperature) prior to assay, in order to allow for the formation of the E–A complex. The activation
constant (KA), defined similarly with the inhibition constant KI, can be obtained by considering the
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classical Michaelis–Menten equation (Equation (1)), which has been fitted by non-linear least squares
by using PRISM 3:

v = vmax/{1 + KM/[S](1 + [A]f/KA)} (1)

where [A]f is the free concentration of activator.
Working at substrate concentrations considerably lower than KM ([S] << KM), and considering

that [A]f can be represented in the form of the total concentration of the enzyme ([E]t) and activator
([A]t), the obtained competitive steady-state equation for determining the activation constant is given
by Equation (2) [24,25]:

v = v0KA/{KA + ([A]t − 0.5{([A]t + [E]t + KA) − ([A]t + [E]t + KA)2 − 4[A]t[E]t)1/2}} (2)

where v0 represents the initial velocity of the enzyme-catalyzed reaction in the absence of activator.

4. Conclusions

We report here an activation study of the coral α-CA, CruCA4, involved in mineralization,
which was cloned and characterized by us from the Mediterranean red coral, Corallium rubrum.
A panel of amino acids and amines showed considerable activating properties, with a rather well
defined structure–activity relationship. Thus, effective CruCA4 activators were identified, such as
D-His, Histamine, Dopamine, etc. with activation constants in the range of 8–98 nM. Other amines
and amino acids, such as D-DOPA, L-Tyr, 2-Pyridyl-methylamine, 2-(2-Aminoethyl)pyridine and
4-(2-Aminoethyl)-morpholine were submicromolar CruCA4 activators, with KA values ranging
between 0.15 and 0.93 µM. Since Muller’s group [52,53] has shown that CAAs may facilitate processes
in other biological systems, for example the first phases of bone mineralization, our study may be
relevant for finding modulators of enzyme activity, which could enhance the formation of the red
coral skeleton.
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