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Abstract

Background: Studies on marine community dynamics and population structures are limited by the lack of
exhaustive knowledge on the larval dispersal component of connectivity. Genetic data represents a powerful tool in
understanding such processes in the marine realm. When dealing with dispersion and connectivity in marine
ecosystems, many evidences show patterns of genetic structure that cannot be explained by any clear geographic
trend and may show temporal instability. This scenario is usually referred to as chaotic genetic patchiness, whose
driving mechanisms are recognized to be selection, temporal shifts in local population dynamics, sweepstakes
reproductive success and collective dispersal.

In this study we focused on the marbled crab Pachygrapsus marmoratus that inhabits the rocky shores of the
Mediterranean Sea, Black Sea and East Atlantic Ocean, and disperses through planktonic larvae for about 1 month.
P. marmoratus exhibits unexpectedly low connectivity levels at local scale, although well-defined phylogeographic
patterns across the species’ distribution range were described. This has been explained as an effect of subtle
geographic barriers or due to sweepstake reproductive success. In order to verify a chaotic genetic patchiness
scenario, and to explore mechanisms underlying it, we planned our investigation within the Ligurian Sea, an
isolated basin of the western Mediterranean Sea, and we genotyped 321 individuals at 11 microsatellite loci.

Results: We recorded genetic heterogeneity among our Ligurian Sea samples with the occurrence of genetic
clusters not matching the original populations and a slight inter-population divergence, with the geographically
most distant populations being the genetically most similar ones. Moreover, individuals from each site were
assigned to all the genetic clusters. We also recorded evidences of self-recruitment and a higher than expected
within-site kinship.
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Conclusions: Overall, our results suggest that the chaotic genetic patchiness we found in P. marmoratus Ligurian
Sea populations is the result of a combination of differences in reproductive success, en masse larval dispersion and
local larval retention. This study defines P. marmoratus as an example of marine spawner whose genetic pool is not
homogenous at population level, but rather split in a chaotic mosaic of slightly differentiated genetic patches
derived from complex and dynamic ecological processes.
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Background

Many theoretical and empirical studies have shown that,
in marine populations, connectivity plays a fundamental
role in population and metapopulation dynamics, com-
munity dynamics and structure, genetic diversity, and
the resilience of populations to human impact [1-5]. A
comprehensive appraisal of the population dynamics of
marine and intertidal organisms, however, can prove dif-
ficult even when genetic data are available. This diffi-
culty often derives from a lack of exhaustive knowledge
on the larval dispersal component of connectivity [6].

The observed spatial genetic structure of marine species
seldom fits models developed for terrestrial populations,
such as the island or the stepping-stone models [7-9]. In
the sea, dispersal usually occurs throughout pelagic larval
phases, which persist in offshore waters from few days to
several weeks [6]. Surface currents and winds contribute
to the dispersal of pelagic larvae and, ultimately, affect the
connectivity of most populations. At fine geographical
scales, linear distances may be a poor proxy of gene flow
[10], since surface currents are highly turbulent and non-
linear [11, 12]. Early gene flow estimates for marine spe-
cies only relied on simplified models based on one-way
oceanic currents acting on passive particles [2]. The re-
cently developed combined biological-physical models
better describe gene flow estimates, since they also include
the possible influence of biological factors such as rates of
larval mortality and active vertical positioning behavior of
larvae on dispersal trajectories [2].

Emerging evidences are showing that marine popula-
tions may be genetically structured over smaller spatial
scales than was previously thought [13]. These new pat-
terns are challenging our assumptions and, ultimately,
our predictions about connectivity in marine species.
Moreover, geographic distribution of population genetic
divergence cannot be fully explained by a clear geo-
graphic trend and may show temporal variability. This
scenario has been reported in many studies [12, 14-26]
and it is usually referred to as Chaotic Genetic Patchi-
ness (CGP, sensu [12]). CGP was defined as the spatial
and temporal patterns of population genetic structure
observed in marine fish and invertebrates at short scale
considering the presumed dispersal range of planktonic
larvae.

Understanding the mechanisms which drive CGP is
still a challenge in marine ecology. Researchers suggest
four main alternative mechanisms to explain CGP [13,
27-29]: selection, temporal shifts in local population dy-
namics, sweepstakes reproductive success and collective
dispersal.

First, natural selection may act on larvae in a pre- or a
post-settlement phase, by means of severely fluctuating
environmental conditions that could drive selection for lo-
cally beneficial alleles through differential survival of re-
cruits [12, 30]. CGP driven by post-larval settlement
selection is particularly important on rocky shores, where
emersion time and fixation on the substrate strongly vary
with intertidal position [31-33]. Pre-settlement selection
plays a crucial role also in benthic marine species, whose
settlement and recruitment success are influenced by the
ability to reach suitable substrata [34].

Second, CGP may be driven by temporal variations in
the cohorts of recruits with respect to the source popu-
lations, with juveniles that recruit in a given population
possibly coming from different sources at different
times. Seasonal or inter-annual changes in currents as
well as asynchrony in spawning events across popula-
tions may operate a stochastic selection on planktonic
larvae and favour recruits from different sources [24, 28,
35]. Thus, mixing, genetically differentiated larval pools
may lead to variation in the genetic composition of re-
cruits, resulting in unpatterned genetic heterogeneity
among populations. This condition is usually met in
semelparous species, but it can be found also in species
with overlapping generations, if parents and offspring
are spatially well separated [36, 37].

Third, the high variance in reproductive success typ-
ical of marine organisms, known as sweepstakes
reproduction, can also greatly contribute to reduce the
effective size of local breeding groups and, consequently,
it might explain the reduced genetic variation within co-
horts of larvae and new recruits that represent the re-
productive output of a minority of adult individuals
(sweepstake reproductive success hypothesis: [19];
reviewed in [38]). This is supported by several genetic
studies that elucidated parentage and relatedness in
wildlife populations and compared genetic diversity of
adults and offspring [24, 25, 29, 39, 40].
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At last, collective dispersal indicates any process lead-
ing to gene flow by groups of individuals [41]. It can be
described as any dispersal process where pairs of immi-
grants in the same population have a higher than ran-
dom chance of having originated from the same natal
population. This type of dispersal may arise from indi-
vidual dispersal strategies, such as collective larval dis-
persal by ocean currents, if pools of larvae released from
a local breeding group do not diffuse randomly but re-
main aggregated to some extent during dispersal and
settlement [27, 42].

The marbled crab Pachygrapsus marmoratus is an
intertidal brachyuran crab that inhabits the rocky shores
of the Mediterranean Sea, Black Sea and East Atlantic
Ocean. The population genetic structure of this species
has been studied at both regional (using hypervariable
nuclear markers: [43—-49]) and macro-geographic scales
(using the cytochrome c oxidase I gene: [43, 44, 46, 48,
50]). Across its entire distribution range, Fratini et al.
[50] identified three genetically differentiated groups,
corresponding to the Portuguese Atlantic Ocean, the
Mediterranean Sea plus Canary Islands, and the Black
Sea. When population structures were investigated at
small geographical scales [44, 45, 47, 49], unexpectedly
low levels of connectivity were recorded, with no clear
relation to any known geographic boundary. The above
studies [44, 45, 47, 49] mainly linked the lack of relation-
ship between geographical features and population
structures to sweepstakes reproductive success, one of
the mechanisms underlying the CGP, although they
could not rule out environmental factors acting as subtle
barriers in influencing larval dispersion.

The present study was specifically planned to assess,
for P. marmoratus, the possible occurrence of a struc-
ture not related to geographic features at local scale, in
order to depict a more defined CGP scenario and to as-
certain the drivers underlying it. Following Pascual et al.
[51], P. marmoratus life history traits make it a good
candidate for local unpatterned population genetic struc-
ture. Adults are low-mobility benthic crabs with a re-
stricted home range [52]. The species is also
characterized by a pelagic larval period of medium dur-
ation (i.e. about 4 weeks) [53].

We selected four close sampling sites in an isolated
basin of the Mediterranean Sea, the Ligurian Sea, to ex-
clude from the analysis any subtle geographic barriers,
such as variation in water temperature and salinity, that
might have driven population structure at local scale.
We sampled a total of 321 P. marmoratus individuals
from the four sites and we genotyped them at eleven
microsatellite loci. In comparison to previous studies
[43—-49], we collected a higher number of individuals per
sites (about 80) in order to avoid both the underrepre-
sentation of genetic diversity in local populations and a
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high influence of chance on the results. The selected
area is the northernmost sector of the western Mediter-
ranean basin and its peculiar hydrodynamic and meteo-
oceanographic features separate it from the Tyrrhenian
sea [54]. The horizontal circulation in the Ligurian Sea,
the Ligurian Current, has a cyclonic aspect and is domi-
nated by a geostrophic flow parallel to the coast, which
enters from Northwest of the Corsica Island. It forms a
permanent and robust flow area (frontal zone) that sepa-
rates the coastal area (peripheral zone) and the inner
area of the basin (central zone) (Fig. 1). The peripheral
zone is less stable in structure than the central zone, as
it is traversed by transient flows influenced by the effects
of surface fluxes. Currents in the coastal area, however,
are mainly flowing northwards [56].

Results

Genetic diversity

The analysis performed with MICROCHEKER indicated
an excess of homozygote at the four sites (Porto Medi-
ceo of Livorno, PM; Secche della Meloria, SM; Le Gra-
zie, LG and Riomaggiore, RM). Since we found a
significant positive relationship between locus specific
sample deviations from the expectations of Hardy-
Weinberg equilibrium (HWE) and the number of indi-
viduals that failed to amplify at each locus (Fg, 3g) =
2541, p<0.001), our data supported the hypothesis of
null alleles for explaining these patterns. Thus, we cor-
rected our dataset for null alleles following the INA
method described in [57].

When assessing linkage disequilibrium among loci
over the entire population, we always recorded a correl-
ation coefficient 7* close to zero for all loci pairs (Table
S1). The highest #* value was recorded for the locus pair
Pm-183 and Pm-6 (+*=0.17: Table S1). Since a thresh-
old 7* value above 0.8 has been used to indicate a non-
random association between the alleles present at two
genetic loci [58], all loci were retained for subsequent
analysis regardless of the significance level of the test
(Table S1).

All loci were polymorphic (except locus Pm-86 that
was excluded from the analyses), with number of alleles
ranging from 3 (locus Pm-79) to 48 (locus Pm-16). Rela-
tively high levels of genetic variability were recorded at
all sampling sites (Table 1). Overall, allelic diversity and
average allelic richness were similar for all sampling
sites, ranging from 16.20 + 4.08 to 18.10 + 3.84 and from
15.84 +3.99 to 17.66 + 3.75, respectively (Table 1). The
total number of private alleles per sampling site ranged
from 10 to 15 with the highest number assessed in SM
(Table 1). The highest values of expected and observed
heterozygosity were recorded for SM (Table 1). No sam-
pling site deviated from HWE after Bonferroni
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Fig. 1 a, map of the study sites (modified from https://commons.wikimedia.org/wiki/File:Map_of_ltaly-it.svg with Inkscape v0.92). Pachygrapsus
marmoratus individuals were sampled for genetic analyses at four sites of the Ligurian Sea: Porto Mediceo (PM), Secche della Meloria (SM),
Riomaggiore (RM), Le Grazie (LG). b, LIME-ROMS monthly mean of the surface horizontal velocity, vertically averaged in the first 20 m of depth
(modified from Sciascia et al. [55] with Inkscape v0.92). The three main areas of the Ligurian basin are also shown (central zone, frontal zone,

peripheral zone)
.

J

correction, except PM at locus Pm-108, RM at locus
Pm-101 and LG at locus Pm-108 (Table 1).

Population assignment and pairwise relatedness

Average pairwise relatedness based on the Lynch and
Ritland estimator [59] for the four sampling sites were:
PM, r =0.003; SM, r =0.000; RM, r =-0.002; and LG,
r =0.000. All values except that of RM were significantly
higher than the average relatedness calculated among all
individuals across locations (r =-0.002 +0.000, P<
0.05). Population assignment results indicated that indi-
viduals from all the four sites assigned to their own
population with a probability always higher than 50%
(PM, 76.25%; SM, 64.20%; RM, 53.75%; LG, 71.25%).

Population structure

There was a weak genetic differentiation among sam-
pling sites. While the Fisher exact test did not reject the
hypothesis of genetic homogeneity of allele frequency
distributions (probability of non-differentiation among
populations P =1.0), a weak but significant overall gen-
etic differentiation among populations was recorded by
F-statistics (Ost = 0.008, P =0.005). The variation among

populations corresponded to 1%, while within popula-
tion variation exceeded 99%. The pairwise comparisons
showed a significant differentiation only between LG
and PM and LG and SM (Table 2).

The outcome of the Bayesian clustering approach im-
plemented in STRUCTURE revealed that the most prob-
able number of clusters for interpreting the observed
genotypes was K =2 based on the highest modal value of
AK =38.77 estimated using the Evanno et al. [60]
method (Fig. Sla, Supporting Information). Four main
partitions were used as a priori population information
for calculating the posterior probability of individual as-
signment (Fig. 2). Individuals from all sites were gener-
ally assigned to both clusters 1 and 2. In particular,
mean assignment probabilities to cluster 1 and 2 were
29 and 71%, 41 and 59%, 35 and 65%, 28 and 72% for
PM, SM, RM and LG, respectively. Based on these
values, populations PM and LG appear to be the most
genetically similar ones, despite they are the most geo-
graphically distant ones.

The Discriminant Analysis of Principal Component
(DAPC) suggested the presence of four distinct genetic
clusters, as indicated by a rapid decrease of the Bayesian
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Table 1 Genetic diversity measures in Pachygrapsus marmoratus from four sampling sites in the Ligurian Sea. For each site, the GPS
coordinates and N, number of analysed individuals, are reported. N, number of alleles; A, allelic richness; Ap, number of private
alleles; Ho, observed heterozygosity; He, expected unbiased heterozygosity. Means + SE values. *, P < 0.005 (after Bonferroni

correction)

Locus 79 109 101 108 183 99 16 187 84 6 Overall
Porto Mediceo (PM) Na 2 40 17 5 14 20 35 16 2 11 16.2 +£4.08
43.549N, 10.294 E Ar 200 3863 1694 483 1318 1988 3483 1544 200 10.71 1584 +3.99
Ap 0.00 2.00 0.00 0.00 1.00 2.00 7.00 1.00 0.00 0.00 13
N =80 Ho 049 095 0.92 063 0.71 0.96 0.99 0.58 037 062 0.72
He 0.50 0.96 087 0.64* 0.69 091 087 0.59 0.32 0.60 0.70
Secche della Meloria (SM) Na 3 35 26 10 16 23 27 22 3 15 180+3.37
43.546 N, 10.218 E Ar 2.87 3490 25.10 961 15.27 22.72 26.78 21.10 2.86 14.52 17.57 £3.31
Ap 0.00 2.00 0.00 1.00 1.00 2.00 4.00 3.00 1.00 1.00 15
N =81 Ho 0.53 0.99 0.89 0.68 0.79 0.96 097 0.77 041 0.73 0.77
He 056 095 0.90 0.71 0.75 0.90 0.84 0.75 040 069 0.75
Riomaggiore (RM) Na 3 39 27 9 13 26 30 17 2 15 18.1£3.84
44.096 N, 9.739 E Ar 2.86 3746 26.77 8.59 1252 2548 29.94 16.53 2.00 14.49 17.66 +3.75
Ap 0.00 1.00 3.00 1.00 0.00 1.00 1.00 1.00 000 200 10
N =80 Ho 0.53 0.99 093 061 073 097 0.99 0.71 028 074 0.75
He 0.50 0.96 0.92* 0.66 0.75 0.93 0.83 0.69 0.28 0.75 0.73
Le Grazie (LG) Na 3 37 24 10 13 26 29 17 2 14 17.5+3.60
44.067 N, 9.841 E Ar 287 3601 2376 949 1260 2531 2889 1700 200 1332 17.12+354
Ap 0.00 0.00 0.00 1.00 0.00 2.00 3.00 1.00 0.00 3.00 10
N =80 Ho 052 09 0.96 062 0.80 0.96 0.97 067 041 0.74 0.76
He 0.55 0.96 0.89 0.68* 0.80 091 0.83 0.68 041 0.73 0.74

information criterion (BIC) values from K=1 to K=4
and a further minimal decrease for K> 4 (Fig. S1b, Sup-
porting Information). Individuals from the four popula-
tions were almost equally distributed among all the four
clusters suggesting a poor or nil genetic differentiation
among original populations (Fig. 3a). The DAPC bar plot
showed that the cluster subdivision did not match the
original populations, as the individuals from each popu-
lation were assigned to all the four clusters (Fig. 3b).
The high overlapping of the genetic clusters on the or-
dination plot, especially between cluster 1 and 4,

Table 2 Pairwise analysis of molecular variance (AMOVA)
calculated among the four populations of Pachygrapsus
marmoratus along the studied area. Ost values (below the
diagonal) and correspondent probability values (above the
diagonal) are shown. Significance at P < 0.008 (after Bonferroni
correction)

PM M RM LG
PM - 0.02 0.06 < 0.001
SM 0.007 - 0.04 0.006
RM 0.005 0.006 - 0.02
LG 0016 0.009 0.007 -

indicated low degree of differentiation between them
(Fig. 3c). When the DAPC was run with geographic sites
used as clusters, it showed low geographical-related dif-
ferentiation among the four sites (Fig. 3d).

Contemporary migration patterns

In order to detect source-sink dynamics among our Li-
gurian Sea populations, we estimated recent migration
rates using a Bayesian approach as implemented in Baye-
sAss. The outcomes of the analysis showed that the re-
cent migration rates between pairs of sites were always
very low, except when LG represented the outgoing site
(Table 3). The proportion of self-recruitment within
each locality was about 0.67 for PM, SM and RM and in-
creased to 0.981 for LG (Table 3). These results are not
in line with the main sea circulation pattern of the study
area, which consists in a northward coastal current.

Discussion

It is well-known that several marine organisms with high
dispersal ability can show much greater spatial genetic
heterogeneity over short distances than expected [61—
64]. This study confirms that the intertidal crab P. mar-
moratus is an example of marine spawner that exhibits
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Fig. 2 Clustering analyses for 321 Pachygrapsus marmoratus individuals performed using a Bayesian clustering approach (STRUCTURE). Each
individual is represented by a vertical line partitioned into K segments, with lengths corresponding to the proportion of its genome originating
from each of the K inferred clusters. Black vertical bars define distinct sampling sites. Site acronyms as in Fig. 1

RM LG

local genetic heterogeneity not related to geography and
patterns of chaotic genetic patchiness.

A weak evidence of population structure is detected by
Fst statistics, but not confirmed by the exact test of
population differentiation. The outcomes of the Bayesian

structure analyses and the DAPC show the presence of
genetically differentiated clusters (two and four, respect-
ively) not related to geography. The clusters identified
by both approaches do not match the original popula-
tions, since the individuals from each site are assigned to
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Fig. 3 Summary of the results of discriminant analysis of principal components (DAPC) for 321 Pachygrapsus marmoratus individuals. a, number
of individuals from each sampling site (vertical axis) assigned to each of the four inferred genetic clusters (horizontal axis). The size of black
squares is proportional to the number of individuals assigned to each cluster (lower legend). b, DAPC compoplot showing the assignment of
individuals to genetic clusters. Each individual is represented by a vertical bar, and colours indicate the probability of an individual's membership
in one of four genetic clusters. ¢, ordination plot for the first two discriminant axes. Dots represent individuals connected to the center of an
inertia ellipsis, which indicates assignment to one of the four genetic clusters inferred by DAPC. d, DAPC with original sampling sites as clusters.

Geographical origin of each population is depicted in the plot by colours and individuals are represented by dots. Location acronyms as in Fig. 1
- J
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Table 3 Mean (+ SE) and 95% confidence intervals (in parentheses) of Bayesian posterior distribution of recent migration rates
between pairs of localities of Pachygrapsus marmoratus. Columns represent the outgoing migration rates and rows represent
incoming migration rates. Bold values along the diagonal axis represent the proportion of non-migrants in each site

Into/from PM M RM LG

PM 0.671 +0.004 (0.663-0.679) 0.004 +0.004 (0.000-0.011) 0.004 +0.004 (0.000-0.011) 0321 +£0.007 (0.308-0.334)
SM 0.004 £ 0.004 (0.000-0.012) 0.672 + 0.005 (0.663-0.681) 0.004 + 0.004 (0.000-0.012) 0.320 £ 0.008 (0.305-0.335)
RM 0.004 + 0.004 (0.000-0.011) 0.004 + 0.004 (0.000-0.012 0.671 + 0.004 (0.663-0.679) 0.321 £0.007 (0.308-0.334)
LG 0.005 + 0.005 (0.000-0.015) 0.008 +0.007 (0.000-0.021) 0.006 + 0.006 (0.000-0.017) 0.981+0.01 (0.962-1.000)

all the genetic clusters. Overall, these results suggest that
dynamic ecological processes act on P. marmoratus pop-
ulations and cause a non-homogenous genetic pool at
population level, which, ultimately, results in a mosaic of
chaotic and slightly differentiated genetic patches. An-
other indication of chaotic genetic patchiness across the
surveyed micro-geographic area comes from the slight
differentiation among populations recorded by the
Bayesian structure analysis, which found the geographic-
ally most distant populations to be the most similar ones
from a genetic point of view.

In recording genetic heterogeneity at local scale, we
first assessed an inter-population genetic divergence not
in line with the geographical distance among our popu-
lations. We then recorded the occurrence of multiple
genetic patches within each population, since our ana-
lyses grouped our specimens according to genetic clus-
ters that did not match the four native populations. This
may indicate that the larval pool is not homogeneously
mixing off shore, due to local ecological factors (varia-
tions in sea water temperature and salinity as well as
food availability [3]), or biological characteristics of the
species (timing of reproduction and spawning as well as
reproductive output [65-67]) that may trigger popula-
tion dispersion and connectivity processes, as already ad-
vocated for other brachyuran species [68].

Across its wide distribution range, P. marmoratus is
structured in few homogenous clusters in correspond-
ence to the main phylogeographic barriers separating
the Mediterranean Sea from the Atlantic Ocean and the
Black Sea [50]. Conversely, local genetic heterogeneity
was already reported in previous population genetic
studies at regional-geographic scales. Silva et al. [49], for
P. marmoratus sampled along the Portuguese coast, de-
tected a genetic heterogeneity not related to geographic
gradients, which they explained by means of coastal
hydrological events influencing larval fluxes. Fratini et al.
[45] recorded a partitioning of genetic variation among
specimens collected along the seven islands of the Tus-
can Archipelago and the mainland Tuscan coast (Medi-
terranean Sea), with all sites separated from each
another, except the two southernmost islands, lying only
a few kilometres apart from each other. Local larval re-
tention and sweepstakes reproductive effect were

ascribed as the main factors driving this pattern. Deli
et al. [44] found population genetic differentiation across
the Siculo-Tunisian Strait and a mixture of three genetic
clusters within the eight African Mediterranean popula-
tions examined. Even this latter differentiation was nei-
ther associated with any geographic boundaries nor with
geographic distances among the populations. Our results
are thus in line with those of Silva et al. [49], Fratini
et al. [45] and Deli et al. [44] in describing patterns of
local genetic heterogeneity not related to geography.
Our results also strengthen the presence of genetic clus-
ters not corresponding to native populations in P. mar-
moratus, as already showed by Deli et al. [44], since our
study is based on a higher number of microsatellites (10
compared to 4 loci) and individuals analysed per popula-
tion (80 compared to 10-20). As discussed in the above-
mentioned studies [44, 45, 49], both local larval reten-
tion and random reproductive success of small subsets
of adults over time and space, which are two of the
drivers advocated for a CGP scenario [13, 27-29], can
play a crucial role in shaping such a genetic pattern in
the P. marmoratus populations of the Ligurian Sea.

The novel evidence of the present study, mainly due to
our intensive sampling approach, is therefore the high
occurrence of self-recruitment and within-site kinship at
the target sites. This may be driven by active larval be-
havioural mechanisms favouring local larval retention to
natal sites [69, 70]. Self-recruitment might also be driven
by the unstable circulation pattern within the Ligurian
Sea peripheral zone, where local eddies, resulting from
instabilities in the surface layer of the coastal current,
may trap larvae for several days along the coast, particu-
larly in inlets and bays, thus favouring retention to natal
sites [71]. Another explanation may be the formation of
aggregates of related larvae in the water column followed
by en masse larval dispersion [72, 73]. Larvae of some
marine spawners, linked by half-sib or full-sib relation-
ships, were found to be transported in the same water
mass and settle in close proximity to each other, thereby
influencing the genetic structuring of the adult popula-
tions [24, 25, 74]. Broadly speaking, the formation of
kin-aggregations, either due to self-recruitment or the
formation of aggregates of related larvae, is an evolution-
ary process that deserves particular attention. At small
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spatial scales, in particular, the kin-aggregation can be
associated with negative evolutionary costs, such as a re-
duction of gene flow and a potential increase of inbreed-
ing rates [75, 76]. The pattern of CGP recorded in P.
marmoratus populations from the Ligurian Sea could
also be an indicator for a possible effect of natural selec-
tion acting on larvae. Indeed, the effect of post-
settlement selection can be particularly relevant on P.
marmoratus megalopae, which settle and grow into juve-
niles within the harsh and unstable intertidal zone char-
acterised by strong daily and seasonal variations in
salinity and temperature [77].

Future directions in marine ecology should address the
mechanisms that affect regional patterns of recruitment
and the events that drive post-settlement selection at a
local scale, and, ultimately, investigate how kin-
aggregation benefits may outweigh the costs of inbreed-
ing on a small geographical scale.

Conclusions

The observed presence of genetically differentiated clus-
ters not corresponding to the native populations,
coupled with a slight inter-population divergence not re-
lated to geography and a high percentage of individuals
assigned to their own populations, strongly support a
multiple set of drivers for the CGP observed in P. mar-
moratus from the Ligurian Sea. In particular, the present
study suggests that mechanisms such as differences in
reproductive success (sweepstakes reproductive effect),
en masse larval dispersion, local larval retention and
post-settlement larval selection may act individually in
driving CGP in marine populations. Yet, we cannot ex-
clude a complex and synergistic effect, especially when
they contemporarily occur in a certain species and in a
determined geographic context.

In this intertidal crab, genetic drift and non-random
mating can also be advocated as key determinants for
local genetic heterogeneity, since P. marmoratus is char-
acterised by large breeding populations, sexual dimorph-
ism towards larger males, high females’ fertility (over
tens of thousands eggs per female per spawning event:
personal authors’ data), and high dispersal potential.
Moreover, natural populations of P. marmoratus are
normally formed by individuals belonging to different
generations and recruited during different events of set-
tlements. We cannot therefore exclude that the genetic
patchiness observed for these populations could reflect
recruitment events from different source populations at
different times, since the genetic patchiness in marine
spawners is known to be ephemeral and temporally fluc-
tuating [78]. Further genetic studies, based on collec-
tions across different years, are needed to definitely
confirm or discard this last hypothesis, as obtained in
previous genetic studies on other marine spawners (e.g.
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[79, 80]). Indeed, future studies aiming at disentangling
the interplay among the possible drivers of CGP in P.
marmoratus should rely on the resolving power offered
by genomics, which allow researchers to depict the ef-
fects of biotic and abiotic factors on population dynam-
ics through a seascape genomic approach.

Methods

Study species

Pachygrapsus marmoratus (Fabricius, 1787) is an inter-
tidal crab belonging to the family Grapsidae (Crustacea;
Brachyura). It is a dominant species in the supratidal
fringe and at the eulittoral of rocky shores [52]. It is also
abundant in harbours and marinas, showing a high re-
silience to anthropogenic disturbance [47]. P. marmora-
tus adults are relatively sedentary and are faithful to a
small activity area [52]. Thus, dispersion and population
connectivity are exclusively guaranteed by the larval
planktonic stages, which persist in the open waters for
about 4 weeks [53]. This species breeds from late April
to late September, depending on the geographical area
[81-84]. Spawning and settlement presumably peak
around the new and full moon (spring tides) [83]. This
rhythmicity, common to many species of brachyuran
crabs, is generally under the control of a biological clock
[85-87].

Study area, sample collection and DNA extraction

We collected a total of 321 males and females P. mar-
moratus from four sites in the Ligurian Sea: Porto Medi-
ceo of Livorno (PM, N = 80), Secche della Meloria (SM,
N=381), Le Grazie (LG, N=80) and Riomaggiore (RM,
N=80) (Fig. 1, Table 1). PM is within the Livorno
harbour, while SM is a small islet about 3 miles offshore
of Livorno, established as a Marine Protected Area
(MPA) in 2009. RM is a small pebble and rocky shore
within the Cinque Terre National Park, and LG is a
small marina, close to La Spezia harbour (Fig. 1).

A pereiopod was detached from each crab and pre-
served in absolute ethanol. DNA was extracted by over-
night digestion at 55°C in a lysis buffer and proteinase
K, followed by isopropanol-ethanol precipitation [88].
Samples were resuspended in DNAase-free water and
preserved at — 20 °C.

Genetic analyses

Allelic variation at 11 microsatellite loci was determined
using primers described for P. marmoratus by Fratini
et al. [45, 47, 89]. Each locus was PCR-amplified in 10 pl
total reaction using 1X reaction buffer, 1.5mM of
MgCl,, 0.5uM of each primer, 200 uM of each dNTP
and 0.5 U of Taq polymerase (Invitrogen). Thermal pro-
files consisted of an initial denaturation step of 5 min at
94.°C, 35 cycles of 60s at 94 °C, annealing for 45 s at 54—
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57 °C (i.e. specific annealing temperature for each locus
are reported in [45, 47, 89]) and extension for 60s at
72 °C, and a final extension for 7 min at 72 °C.

PCR products were then pooled into four multilocus
pools: pool P1 including loci Pm-79, Pm-109 and Pm-101;
pool P2 including Pm-108, Pm-183 and Pm-99; pool P3 in-
cluding Pm-16, Pm-86 and Pm-187; and pool P4 including
Pm-84 and Pm-6. Amplicons were resolved by capillary
electrophoresis in an Applied Biosystems 3130x] Genetic
Analyzer and allele sizes scored against a GeneScan500 LIZ
size standard using GeneMapper 5.0 (Applied Biosystems).

Statistical analysis

Genetic diversity

Microsatellite alleles were checked for scoring errors due to
stuttering, allele dropout and evidence of null alleles using
Microchecker 2.2.3 [90]. Since individuals homozygous for
a null allele or heterozygous for two null alleles appear as
missing data, there may be an association between the
amount of missing data at a locus in a population and devi-
ation from HWE when null alleles are present [25]. Since
all populations showed heterozygote deficiencies, we per-
formed a linear regression between the absolute value of
the difference between expected and observed heterozygos-
ity and the proportion of individuals which failed to amplify
at each locus, in order to understand if homozygote excess
could be due to inbreeding or null alleles.

Since the outcome of our analysis indicated the occur-
rence of null alleles, we used the software FreeNA
(www.montpellier.inra.fr/URLB) to calculate allele fre-
quencies corrected for null alleles following the INA
method described in Chapuis and Estoup [57]. The new
corrected dataset was then used for all further analyses
of population genetic variability and structure patterns.

The number of alleles and allelic richness for each locus
and population were calculated using FSTAT 2.9.3.2 [91].
Linkage disequilibrium among loci was assessed for each
population, each locus and each allele pairs across loci
using FSTAT 2.9.3.2 [91]. For each pair of loci analysed,
the software computes a correlation coefficient * over the
entire population and for each population.

Observed and expected heterozygosity values as well
as deviations from expectations of HWE were assessed
for each population and each locus using ARLEQUIN
3.5 [92]. The test of HWE was an exact test employing a
Markov chain. The number of steps after burn-in was
set to 1,000,000 with 100,000 dememorization steps [92].
Significance levels were adjusted for multiple tests by
using a sequential Bonferroni correction [93].

Population assignment and pairwise relatedness

To investigate whether there was a higher relatedness
within or across the sampled population, we compared
the mean pairwise relatedness calculated among
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individuals for each sampling site to average relatedness
estimated across sampling sites using the Lynch and Rit-
land estimator [59] implemented in GenAlEx 6.5 [94].
Statistical significance was obtained after 1000 permuta-
tions of genotypes. GenAlEx was also used to assess
population assignments following the frequency-based
methods of Paetkau et al. [95].

Population structure

Genetic divergence among sampling sites was estimated
using the exact test for population differentiation imple-
mented in GENEPOP'007 [96]. This test verifies the ex-
istence of differences in allele frequencies at each locus
and for each population. Single locus significance P-
values were calculated using a Markov chain with 1,000
batches and 1,000 iterations per batch combined over
loci using the Fisher method [97]. Genetic differentiation
was also assessed by the Fsyp estimator 6 using ARLE
QUIN 3.5 [92]. Statistical significance of 6 values under
the null hypothesis of no differentiation among sampling
sites was assessed after 10,000 allele permutations.

To infer the number of genetic clusters (K) present in the
microsatellite dataset, two clustering methods were applied:
a Bayesian clustering approach (STRUCTURE, [98]) and a
multivariate discriminant analysis of principal components
(DAPC, [99]). The two approaches rely on different as-
sumptions: STRUCTURE seeks groups in HWE and as-
sumes the absence of linkage disequilibrium among loci
within populations. Conversely, DAPC is free from assump-
tions about HWE or linkage disequilibrium, and then it is a
most powerful test in unraveling genetic structuring.

The Bayesian-model clustering method implemented
in STRUCTURE 2.3.4 [98] was used to infer the most
likely number of genetically distinct clusters (popula-
tions) given the observed genotypes and to evaluate the
proportion of each individual’s genotype belonging to
each inferred population. We used the admixture model,
which is the most appropriate for populations undergo-
ing high rates of gene flow that may allow individuals to
have mixed ancestry (i.e. recent ancestors from more
than one population) [98]. We run 1,000,000 Markov
Chain Monte Carlo (MCMC) iterations without prior
population information for a K number of populations,
ranging from 1 to 6, using a burn-in period of 20,000 it-
erations. We calculated the mean likelihood over 20 runs
for each value of K using the correlated allele frequen-
cies model, which provides greater power than the inde-
pendent allele frequencies model, to detect distinct
populations that are particularly closely related [100],
and estimated the most likely number of clusters as de-
scribed in Evanno et al. [60]. The K value with the high-
est AK, calculated by STRUCTURE Harvester, was then
used as prior information to estimate the proportion of
membership of each genotype in each of the K
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populations. Replicate runs for the same K were clus-
tered and averaged to evaluate major clustering patterns
using the CLUMPAK server [101]. Results were graphic-
ally visualized using STRUCTURE PLOT [102].

The DAPC analysis was performed using ADEGENET
version 1.2.8 [103] in the R statistical environment R 3.2.2.
DAPC is a methodological approach that requires data
transformation using a principal component analysis
(PCA) as a prior step to a discriminant analysis (DA). The
DA analysis minimizes the genetic variation within groups
and maximizes variation among groups at a given value of
genetic clusters (K) [99]. The optimal number of genetic
clusters K describing the data was identified using Bayes-
ian information criterion (BIC) scores and the “find.clus-
ters” function. In this analysis, the optimal K is expected
to be associated with a low BIC score positioned along the
BIC curve where the following BIC scores either increase
or are only slightly lower than the chosen BIC value. To
not overfit the discriminant function, we chose the opti-
mal number of principal components for the DAPC using
the “optim.a.score” function. The a-score captures the
trade-off between the power of discrimination and overfit-
ting using too many principal components in the analysis
by measuring the proportion of successful reassignments
of the DAPC analysis compared to K-means clustering
(observed discrimination) and random clustering (random
discrimination) [104]. We ran DAPC using all the avail-
able discriminant functions and calculated the assignment
probability of individuals to each cluster, which were
graphically visualized with a “compoplot” (i.e., a bar plot
in which each individual is assigned to a particular cluster)
using ADEGENET [104].

Contemporary migration patterns

In order to detect source-sink dynamics among our Ligur-
ian Sea populations, we estimated recent migration rates
using BayesAss 1.3 [105]. Based on the direction of main
currents within the study area a pattern of unidirectional
northward gene flow should have been predicted. Other-
wise, under a CGP scenario we presumed to record migra-
tion rates not related to geographical features. The
software implements a Bayesian approach using MCMC
techniques to estimate the proportion of migrants/non-
migrants in a population over the last few generations.
The method does not assume that populations are at gen-
etic equilibrium. The run consisted of 3 x 10° iterations
with a sampling frequency of 2,000 and the first 1 x 10°
steps discarded as burn-in. We used default setting delta
values for allele frequencies, migration rates and inbreed-
ing coefficients (i.e dM = 0.15, dA = 0.15, dF = 0.15).
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Supplementary information accompanies this paper at https://doi.org/10.
1186/512862-020-01672-x.
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Additional file 1. Dataset supporting the conclusions of this article (text
file formatted as Genepop input).

Additional file 2: Figure S1. Optimal number of clusters defined by
Evanno et al. (2005) AK (A, K=2) and the Bayesian Information Content
(BIC) value (B, K=4).

Additional file 3: Table S1. Linkage disequilibrium among loci assessed
for the totality of populations using FSTAT 2.9.3.2 (Goudet 1995). For each
pair of loci analysed, the software computes a correlation coefficient r’
over the entire population and for each population. A threshold r? value
above 0.8 indicates a non-random association between the alleles
present at two genetic loci (Carlson et al. 2004). Significant P-values (after
Bonferroni corrections at P < 0.001) are also reported.
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