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47 Abstract 
 

48 Chronic kidney disease (CKD) is defined by persistent urinary abnormalities or impaired excretory 
 

49 renal function. While progression to end stage kidney disease (ESKD) is a concern, the majority of 
 

50 those with CKD are at risk for accelerated cardiovascular disease and death. For those that do reach 
 

51 ESKD  the  limited  accessibility  to  kidney  replacement  therapy  is  a  problem  in  many  locations 
 

52 worldwide.. Risk factors for CKD include low nephron number at birth and nephron loss due to 
 

53 increasing age or acute and chronic kidney injuries. For example, the pandemic of obesity and type 2 
 

54 diabetes  largely  accounts  for  the  increasing  global  prevalence  of CKD  and  there  is  an increasing 
 

55 awareness of genetic causes for CKD and accelerated CKD progression. The management of CKD is 
 

56 focused on early detection or prevention, treatment of the root cause if possible, and attention to 
 

57 secondary processes which contribute to ongoing nephron loss, i.e. remnant nephron hyperfiltration. 
 

58 Blood  pressure  control  and  inhibition  of  the  renin-angiotensin  system  are  the  corner  stones  of 
 

59 therapy.  CKD  complications  such  as  CKD  complications  such  as  anemia,  metabolic  acidosis,  and 
 

60 secondary hyperparathyroidism impact cardiovascular health, as well as quality of life, and so require 
 

61 diagnosis and therapy. Primary prevention of CKD, early diagnosis, and secondary prevention of CKD 
 

62 progression are needed to reduce cardiovascular disease, CKD-related morbidity, and to prevent 
 

63 ESKD, whether or not kidney replacement therapies are available. 
 

64 
 

65 [H1] Introduction 
 

66 Chronic kidney disease (CKD) is a syndrome defined as persistent alterations in kidney 
 

67 structure,  function  or  both  with  implications  for  health  1.  Examples  of  structural  abnormalities 
 

68 include  cysts,  tumors,  malformations  or  atrophy, which  become  evident  by  imaging.  By contrast, 
 

69 kidney  dysfunction  can  become  evident  as  hypertension,  edema,  growth  delay  in  children,  and 
 

70 changes in output or quality of urine; these changes are most often recognized by increased serum 
 

71 levels of creatinine, cystatin C or blood urea nitrogen. The most common  pathological manifestation, 
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72 regardless of the initiating insult or disease, of CKD is some form of renal fibrosis. 

 

73 The Kidney  Disease Improving Global Outcomes (KDIGO)  initiative classifies  an  individual as  having 
 

74 CKD  if  abnormalities  of  kidney  structure  or  function  persist  for  >3  months.  KDIGO    describes a 
 

75 classification  system based on severity, into  numerous stages of CKD using a two dimensional matrix 
 

76 based  on  estimated  or  measured  glomerular  filtration  rate  (eGFR,  mGFR) and on extent of 
 

77 albuminuria  (FIG. 1) 1. Primary care  settings often do not assess albuminuria  but  proteinuria via  dip 
 

78 stick analysis, but dip stick +, ++, and +++ usually approximates with the three albuminuria stages. 
 

79 GFR and albuminuria/proteinuria are used to classify CKD because GFR is a well-established marker 
 

80 of  renal  excretory  function  and  albuminuria  is  an  indicator  of  renal  barrier  dysfunction,  i.e. 
 

81 glomerular injury. Both have found to be reliable predictors of long term CKD outcomes 
 

82 As the kidney is formed by many independent functional and anatomical ‘units’, the nephrons GFR, 
 

83 can be expressed by the equation: GFR(Total) = GFR(single nephron) × number of nephrons. This implies that 
 

84 when  the  number  of nephrons declines, total GFR  will not  change  as  long  as single  nephrons can 
 

85 increase their individual GFR (known as single-nephron GFR (SNGFR). Vice versa, a decline in total 
 

86 GFR  implies  a  significant  loss  of  nephrons  with  remnant  nephrons  probably  operating  at  their 
 

87 maximum possible SNGFR. That is, CKD can be thought of generally as a loss of functional nephrons 
 

88 but usually represents loss in nephron number. Furthermore, the KDIGO stages are derived from 
 

89 large  databases  of  general,  high  risk  and  nephrology  populations.  The  categories  define  risk  of 
 

90 progression  to  ESKD  that  is  defined  as  G5  (GFR  <15  mL/min/1.73  m2)  and  a  number  of  other 
 

91 outcomes including risk of cardiovascular disease (CVD), death, AKI, infections, and hospitalizations. 
 

92 The  KDIGO  staging  has  proven  to  be  very  instrumental  in  decision  making  on  patient 
 

93 management. 
 

94 Whether CKD should be diagnosed and staged using absolute thresholds irrespective 
 

95 of age remains controversial 2, 3. The mGFR in healthy adults aged 20-40 years is about 107 
 

96 ml/min/1.73 m2 and declines at a rate of about 0.7 ml/min/1.73 m2 per year 4, 5. By age 75 
 

97 years, many otherwise healthy individuals (without significant co-morbidity) will have lost 
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98 50% of their nephrons   and their GFR that was present at age 25 years 6. A substantial 

 

99 number  of  older  healthy  individuals  have  eGFR  <60  ml/min/1.73  m2  and  no  abnormal 
 

100 albuminuria (KDIGO CKD G3a A1) meeting the KDIGO criteria for CKD albeit having only a 
 

101 small increase in relative risk of all-cause mortality 7, 8. The threshold of GFR that should be 
 

102 used to detect CKD in younger persons is equally controversial 9. The upper and lower limits for 
 

103 mGFR in a 25 year old healthy person being considered as a living kidney donor is about 136 to 78 
 

104 ml/min/1.73 m2 respectively 5; some have suggested that a threshold of <75 ml/min/1.73 m2 would 
 

105 be more appropriate for young adults, and values below this threshold are associated with a 
 

106 significantly increased relative risk of all-cause mortality and ESKD 10. 
 

107 The etiology of the impaired kidney function is important, and thus in addition to classifying the 
 

108 severity of CKD by GFR and albumin levels, understanding the risk factors or causes of CKD is 
 

109 essential (Box 1), and recommended by the guidelines 1. In this Primer, we discuss the global 
 

110 prevalence of CKD, the different diseases underlying poor nephron endowment or nephron loss, the 
 

111 pathophysiology of CKD progression, the diagnosis, screening, and prevention of CKD, and CKD 
 

112 management to improve outcomes and quality of life. Finally, we name several research domains 
 

113 113 
 

114 114 

potentially offering improvements for CKD management in the near future. 

 

115 [H1] Epidemiology 
 

116 Rates of age-standardized death and disability due to most non-communicable diseases have 
 

117 decreased over the past 20 years, but such favourable trends are not present for CKD. The Global 
 

118 Burden of Disease study reports indicate an increase burden of CKD (with substantial worldwide 
 

119 variation) to which diabetes mellitus seems to be the most important contributor 11-13. CKD as a cause 
 

120 of mortality has increases over the last 25 years from 21st to 13th’, and now contributes 1.35% of the 
 

121 global burden of disability life years lost, growing at a rate of 1% per annum 11, 13, 14. Note that most 
 

122 prevalence data are based on levels of GFR only, without consideration of albuminuria, based on the 
 

123 first CKD classification system reported in 2002. 
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140 younger people with CKD, albeit sometimes over long period of times 26. Interestingly,while the 
 

141 prevalence of CKD is higher in women than in men, men are more likely to progress to ESKD 26. The 
 

142 most common underlying diseases are diabetes mellitus and hypertension, particularly in in high and 
 

143 middle income countries. In those with diabetes, CKD prevalence is estimated in 30- 40%. Whether 
 

144 this is due to diabetes per se or due to microvascular disease is not known.  However, in LMICs, CKD 
 

145 is  often  due  to  infectious  diseases  and  glomerulonephritis  (a  group  of  diseases  that  lead  to 
 

146 inflammation of the glomerulus) 27. Current and future changes in socio-economic circumstances and 
 

147 population age distributions will increase the absolute number of people with CKD in these countries, 
 

148 where numbers of elderly persons are rising, and with increasing diabetes and obesity epidemic, may 
 

149 change the cause of CKD in those populations as well. Furthermore, low birth weight is associated 

124  

125 [H2] Prevalence 

126 CKD stage G3–5 prevalence in adults varies worldwide, with values reported as 1.7% in China 

127 15, 3.1% in Canada 16, 5.8% in Australia 17 and 6.7% in the USA 18. In Europe the range is slightly 

128 narrower: from 2.3% in Germany 19, 2.4% in Finland 20, 4.0% in Spain 20 to 5.2% in England 21. Such 

129 numbers should be viewed with caution because they are often based on a single eGFR assessment 

130 (that is not considering the actual definition, which includes the factor of time (present for >3 mo; 

131 thus it is possible that positive “CKD cases” may overestimate the true prevalence of CKD 22. The 

132 epidemiology of CKD in low and middle-income countries (LMICs) is poorly characterized due to the 

133 lack of community-based studies, inconsistent assessment of kidney function and non-standardized 

134 or non-calibrated approaches23. Nevertheless, in South-East Asia, some Latin American countries 

135 (such as Mexico) and in sub-Saharan Africa, when assessed, the prevalence of CKD appears to be 

136 consistent with the estimates of 10-16% 23-25. 

 
138 

 
[H2] Risk factors 

139 CKD is more common in people over 65 but the probability of progression to ESKD is higher in 
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150 with CKD later in life; the global risks of preterm birth and low birth weight are around 10% and 15%, 

 

151 respectively. Thus, millions of children are born at risk of CKD later in life and are found at the lower 
 

152 percentile of age-matched GFR 28, 29. Specific populations are at higher risk for CKD, in part due to 
 

153 genetic factors, and others due to interaction of genetic and environmental factors. Those groups at 
 

154 higher  risk  include,  in  alphabetical  order:  Aboriginal  Australians,  African  Americans,  Hispanics, 
 

155 indigenous populations in Canada, South Asians, Oriental Asians, and Pacific Islanders. 
 

156 Endemic forms of CKD suggest regional triggers, which are often difficult to define among 
 

157 potential  candidates  such  as  specific  infections,  toxins,  behaviours  or  climate-related  factors  30. 
 

158 Reports of chronic interstitial nephritis or CKD of undetermined origin (CKDu) in sugar cane and other 
 

159 agricultural workers  in Latin America, Sri Lanka, India, and more recently in Cameroon, Mexico, and 
 

160 Australia, are examples of this 30-32. 
 

161 161 
 

162 [H2] Children 
 

163 Little is known about CKD in children because of the absence of registries, and that they are not 
 

164 included in many clinical studies. In Europe, the 2014 incidence of paediatric ESKD was 5.7 per million 
 

165 age-related population (pmarp) in children aged 0-14 years and the prevalence 32.2 pmarp 33. Earlier 
 

166 estimates suggested the incidence and prevalence were 8.3 pmarp and 58 pmarp, respectively, in 
 

167 children aged 0-19 years 34, which is lower than 14.7 pmarp and 103.9 pmarp for the age group 0-21 
 

168 years in the United States 35. In high income countries, congenital disorders are responsible for the 
 

169 majority of cases of paediatric CKD; by contrast, in acquired causes, such as infection and glomerular 
 

170 diseases, predominate in LMICs 36. 
 

171 171 
 

172 [H2] Kidney replacement 
 

173 Understanding the information on kidney replacement therapy in the context of CKD is important for 
 

174 identifying gaps and focusing on solutions to those gaps 37. Often countries do not know the number 
 

175 of patients with prevalent CKD but do have information on dialysis numbers. Given that not all 
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176 people progress to ESKD, estimates of those with CKD can be extrapolated; conversely if CKD rates 

 

177 are known then numbers on dialysis can reveal inequities in availability of dialysis. Data on the 
 

178 incidence of kidney replacement therapy for ESKD can only be obtained from countries with dialysis 
 

179 registries. Data are missing in particular from LMICs, where such registries do not exist. In 2014, 
 

180 incidence of kidney replacement therapy varied from 49 per million population (pmp) in Bangladesh 
 

181 to as high as 455 pmp in Taiwan 38. The majority of patients started kidney replacement therapy on 
 

182 dialysis, because pre-emptive transplantation as an initial modality is not freely available. Kidney 
 

183 transplant rates differed substantially by country from 1 pmp in Bangladesh to 60 pmp in Jalisco 
 

184 (Mexico). There was also huge variation in the prevalence of kidney replacement therapy (FIG. 2): 
 

185 from 113 pmp in Bangladesh to 3,219 pmp in Taiwan 38. 
 

186 In many European countries, more than half of all kidney replacement therapy patients are 
 

187 transplant recipients 38. This is in contrast to the situation in some Asian countries like Taiwan, Japan 
 

188 and the Philippines where kidney transplantation is hardly performed 38. There are multiple reasons 
 

189 why transplantation is not available despite the availability of expensive dialysis services: cultural, 
 

190 socioeconomic and health care infrastructure deficiencies (lack of biopsy services, lack of surgeons, 
 

191 lack  of  immunology  laboratories)  account  for  many  of  these.  Existence  of  available  dialysis and 
 

192 transplant services has not been systematically documented; however the Global Kidney Health Atlas 
 

193 [38; full report at www.theisn.org] describes availability of kidney replacement therapy worldwide. 
 

194 Note that the registry data for dialysis and transplantation described above does not reflect the true 
 

195 need for kidney replacement therapy, which may account for the wide variability in incidence and 
 

196 prevalence.  Estimates  of  unmet  need  vary  from  2  to  7  million  people  per  year  39.  Note  that 
 

197 availability and accessibility are not the same, and even when services ae available in a country or 
 

198 region, not all individuals may have access to them (depending on cost reimbursement, demand,  and 
 

199 199 
 

200 200 
 

201 201 

specific policies). 
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202  

203 [H1]Mechanisms/pathophysiology 

204 [H2] Nephron loss and compensation 

205 In humans, nephrons are generated from the 12th-36th week of gestation with a mean 

206 number of 950,000 per kidney in a range from approximately 200,000 to >2.5 million 40. No new 

207 nephrons can form upon injury and, during growth from childhood to adulthood, the available 

208 nephrons increase in size to accommodate increased renal demands. However, as people age, GFR 

209 declines (FIG. 3). Although nephrons can deal with transient increases in filtration load (such as upon 

210 food and fluid intake) by transient increases in SNGFR (“renal reserve”) 41, 42, longer or persistent 

211 increases in body mass (for example, during pregnancy or obesity) promote nephron hypertrophy as 

212 the compensatory mechanism. Any injury- (or kidney donation-)related nephron loss may have the 

213 same effect (FIG. 4). Indeed, either severe kidney injury or combinations of injury with ageing-related 

214 nephron losses — especially in individuals with poor nephron endowment and/or obesity — 

215 accelerates persistent increased SNGFR and loss of remnant nephrons43. 

216 Remnant nephron hypertrophy is triggered by persistent elevations of SNGFR and filtration 

217 pressure (that is, glomerular hypertension) across the glomerular filtration barrier, which implies 

218 glomerular hyperfiltration. Specifically, glomerular hyperfiltration and hypertension together 

219 promote the release of tumour growth factor-alpha/epithelial growth factor receptor 44, 45, leading to 
 

220 nephron  hypertrophy  that  reduces  glomerular  hypertension  by  increasing  filtration  surface  46. 
 

221 Indeed, increased SNGFR and remnant nephron hypertrophy allows kidney donors to maintain an 
 

222 apparently  “normal”  renal  function,  despite  lacking 50%  of nephrons.  Obviously,  kidney donation 
 

223 does not necessarily cause CKD progression when donors are carefully selected for good nephron 
 

224 endowment, the absence of obesity, diabetes, and ongoing nephron injury 47, 48. However, in other 
 

225 circumstances, hyperfiltration-driven  increases in  glomerular  dimensions can potentially be harmful 
 

226 42, 46, 49-51. Beyond a certain threshold of hypertrophy, increasing podocyte (which are key octopus- 
 

227 shaped cells that maintain the glomerular filtration barrier of the nephron shear stress promotes 
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228 podocyte detachment, focal segmental glomerulosclerosis (FSGS, a pathological entity in which  renal 

 

229 injury results in sclerotic lesions in segments of glomeruli), global glomerulosclerosis and subsequent 
 

230 nephron  atrophy,  a  vicious  cycle  further  reducing  nephron  number  and  the  SNGFR  of  remnant 
 

231 nephrons (FIG. 5) 44, 46, 52-55. 
 

232 
 

233 [H2] Impaired glomerular filtration and fibrosis 
 

234 Persistent podocyte hypertrophy and glomerular hyperfiltration, maintained by angiotensin II 
 

235 production, ultimately aggravate podocyte loss and proteinuria, eventually impacting on glomerular 
 

236 filtration  Angiotensin-II,  a peptide hormone that  is part  of the renin-angiotensin  system  (RAS)  and 
 

237 drives vasoconstriction  and  aldosterone  secretion  (and  thus  sodium  retention  and  an increase of 
 

238 blood  pressure)  directly  impairs  the  glomerular  barrier  sieving  function,  possibly  via  inhibiting 
 

239 expression of the podocyte protein nephrin, a structural component of the slit diaphragm necessary 
 

240 for  maintaining  the  glomerular  filtration  barrierindependently  of  its  hemodynamic  effects  56. 
 

241 Angiotensin-II  possibly   also   contributes  to   the  dysregulated   response  of  parietal  epithelial cell 
 

242 precursors along Bowman`s capsule, generating FSGS lesions instead of replacing lost podocytes 57. 
 

243 This   structural   remodelling   of   the   glomerular   tuft   barrier   presents   clinically   as proteinuria. 
 

244 Proteinuria not only serves as a marker for nephron damage but also predicts CKD progression 44, 58, 
 

245 59. Mechanistically, albuminuria also impairs the capacity of parietal epithelial cells to regenerate 
 

246 podocytes 44, instead further promoting the formation of FSGS lesions (FIG. 5) 60, 61. 
 

247 247 
 

248 CKD progression also involves non-specific wound healing responses including interstitial fibrosis. 
 

249 Albuminuria and complement, and infiltrating immune cells activate proximal tubular epithelial cells 
 

250 to  induce  the  secretion  of  and  pro-fibrotic  mediators  followed  by  interstitial  inflammation   and 
 

251 fibrosis 62. Interstitial fibrosis is frequently considered as an additional factor driving further nephron 
 

252 injury, e.g. via promoting renal ischemia 62 but, as in other organs, scar formation may also be 
 

253 essential  to  mechanically  stabilize  the  remaining  nephrons  63.  The  increased  tubular  transport 
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254 workload of remnant nephrons also involves anaerobic metabolism, intracellular acidosis, and 

 

255 endoplasmic reticulum stress — all promoting secondary tubular cell injury 44, 60. 
 

256 256 
 

257 [H2]Risk factors 
 

258 Several factors can contribute to the pathogenesis of CKD, including low birth weight, pregnancy, 
 

259 obesity,  diabetes,  and  ageing.  Each  of  these  scenarios  contributes  different  factors  that  lead to 
 

260 and/or exacerbate nephron loss, promoting the cycles of injury and ultimately resulting in kidney 
 

261 261 
 

262 262 

failure. 

 

263 [H3]Prematurity and low birth weight. 
 

264 Newborns  with  low  birth  weight  (owing  to  preterm  birth  or  intrauterine  growth  restriction) 
 

265 frequently display incomplete kidney development 64-66. Depending on the severity of prematurity, 
 

266 poor  nephron  endowment  can  cause  either  early  childhood  CKD  or  CKD  later  in  life  64-70.  The 
 

267 associated  risk  was  estimated  among  US  adolescents  for  every  13  individuals  born  at  low birth 
 

268 weight, one had reduced GFR and one had raised systolic blood pressure, and this risk increases with 
 

269 age 29. The risk of low birth weight infants (<2599 g) to experience CKD up to the age of 17 is fourfold 
 

270 increased compared to infants with a birth weight of >2500 g (FIG.3B) 69. CKD onset at puberty is 
 

271 common in  these  individuals when rapid  body growth  exceeds the capacity  of nephron  number to 
 

272 accommodate the increasing filtration load71. In milder cases, poor nephron endowment at birth 
 

273 promotes  the  development  of  hypertension,  CKD  later  in  adults  or  a  faster  progression  of 
 

29, 66, 70, 72, 73. All of these factors increase the risk of 
 
 
 
 
 
 
 

278 Congenital  abnormalities  of  the  kidney  and   the   urinary  tract  (CAKUT)   are  the   most   common 
 

279 congenital abnormalities  74. CAKUT  present  a wide  spectrum  of  causes  for   kidney  hypodysplasia, 

274 glomerulonephritis to ESKD (FIG.3C) 

275 cardiovascular disease. 

276 
 

277 [H3]Genetic factors. 
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280 imparting low nephron number and risk of CKD later in life75, 76. Genetic testing has revealed that 

 

281 ~20% of early-onset CKD (defined as CKD manifesting before 25 years of age) cases can be attributed 
 

282 to a monogenic cause 77. Beyond CAKUT, these conditions include ciliopathies, cystic kidney diseases, 
 

283 tubulopathies, and podocytopathies causing FSGS 75-78. 
 

284 Until recently, monogenic causes of CKD were mostly reported in children or adolescents, but 
 

285 genetic variants also contribute as co-factors to CKD progression in adults (FIG. 4). For example, an 
 

286 UMOD gene variant, present on 17% of the alleles in the general population, is associated with CKD 
 

287 79-81. Another example is gene variants of apolipoprotein L1 (APOL1) in African Americans, which 
 

288 confer resistance to Trypanosoma brucei infections in sub-Saharan Africa 82. However, these variants 
 

289 affect   endosomal   trafficking   and   autophagic   flux,   which   ultimately   leads   to   podocyte  loss, 
 

290 glomerulosclerosis, nephron loss, and CKD progression 83, 84. This may explain faster CKD progression 
 

291 in many patients with sub-Saharan ancestry 82. 
 

292 292 
 

293 [H3]Obesity. 
 

294 A larger glomerular size on mildly obese (BMI>30 and <35) but otherwise healthy individuals suggests 
 

295 an  increased  SNGFR  85.  In  general,  the  association  between  obesity  and  poorer  renal outcomes 
 

296 persists even  after  adjustments  for higher  blood  pressure  and  diabetes  mellitus, suggesting   that 
 

297 obesity-driven glomerular hyperfiltration directly contributes to nephron loss 86, 87. Severe obesity 
 

298 alone or moderate obesity in combination with other factors such as genetic, low nephron number 
 

299 or aging can lead to development of proteinuria, secondary FSGS, and progressive CKD (FIG. 4) 86, 88-91. 
 

300 300 
 

301 [H3]Pregnancy. 
 

302 The latter trimester of pregnancy involves volume expansion (that is, an increase in blood volume) 
 

303 causing  an  increase  of  total  GFR  by  50%  92,  implying  a  respective  increase  of  SNGFR.  These 
 

304 physiological adaptations are transient and without consequences in women with normal nephron 
 

305 number. However, in women with low nephron endowment or previous injury-related CKD (such as 
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306 in women with lupus nephritis), pregnancy-related glomerular hyperfiltration exacerbates remnant 

 

307 nephron glomerular hyperfiltration and hypertrophy. In some patients, final trimester pregnancy- 
 

308 related glomerular hyperfiltration then passes the threshold of compensation and triggers rapid CKD 
 

309 progression presenting with proteinuria and hypertension — a condition known as eclampsia. Pre- 
 

310 existing CKD G3A2 or higher, obesity, excessive body weight increase during pregnancy are well- 
 

311 known risk-factors for eclampsia 93. 
 

312 312 
 

313 [H3]Diabetes. 
 

314 Diabetes is a well-known condition associated with massive glomerular hyperfiltration, evident from 
 

315 increased  total  GFR  and  renomegaly  51.  Hyperglycemia  promotes  the  sodium-glucose transporter 
 

316 (SGLT)-2-driven  reabsorption  of  sodium  in  the  proximal  tubule,  a  process  that  subsequently 
 

317 inactivates tubuloglomerular feedback and activates the RAS at the macula densa 94, 95. The result is 
 

318 induction  of  a  permanent  dilation  of  the  afferent  arteriole  and  vasoconstriction  of  the efferent 
 

319 arteriole — permanently increasing SNGFR and total GFR 96. 
 

320 Although diabetes-driven glomerular hyperfiltration can be compensated for many years in 
 

321 younger patients with normal nephron number, it serves as a drastic accelerator single nephron 
 

322 hyperfiltration such as patients with low nephron endowment, injury- or ageing-related nephron 
 

323 loss, obesity or those who are pregnant 97. Unfortunately, this is a highly prevalent combination of 
 

324 risk factors in older patients with type 2 diabetes, for which dual SGLT2/RAS inhibition can elicit 
 

325 potent nephroprotective effects 98. 
 

326 326 
 

327 [H3]Acute kidney injury. 
 

328 Acute kidney injury (AKI) is a clinical syndrome defined by an acute deterioration of renal function 
 

329 resulting in the accumulation of metabolic waste and toxins, subsequent uremic complications, and 
 

330 potentially failure of other organs 99. AKI is highly prevalent in hospitalized patients and can imply 
 

331 irreversible losses in nephron number100. In Western countries AKI occurs in both outpatient and 
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332 inpatient settings, the latter of which is simpler to document, and has been the focus of multiple 

 

333 papers  describing  the  phenomenon  and  aiding  in  the  understanding  of  the  strong  association 
 

334 between AKI and CKD. The causes of non hopsital/institutuion-based AKI are diarrhea, infections, 
 

335 dehydration, medications, while in hospital it can be attributed to these same factors and exposures 
 

336 to nephrotoxins (dye) and is mostly observed in patients with multiple morbidities 101.  By contrast, in 
 

337 LMICs and tropical countries, AKI occurs frequently outside the hospital setting following episodes of 
 

338 diarrhoea,  infections  and  obstetric  complications  102.  Nephrotoxins  can  also  cause  AKI-related 
 

339 nephron  loss  inside  and  outside  hospitals;  for  example,  neonates  treated  with aminoglycosides, 
 

340 cancer patients receiving chemotherapy or communities exposed to environmental toxins such as 
 

341 heavy metals or aristolochic acid can experience AKI episodes 30. 
 

342 342 
 

343 [H3]Ageing. 
 

344 The slope of GFR decline varies among individuals depending upon age (FIG. 3), genetic factors, blood 
 

345 pressure,  diseases  implying kidney injury and  body  weight. Histologically, kidney ageing presents as 
 

346 global  glomerulosclerosis,  the  respective  atrophy  of  entire  nephrons,  and  subsequent interstitial 
 

347 fibrosis  53, 85. Whether  ageing-related  nephron  loss is  associated  with hypertrophy (and glomerular 
 

348 hyperfiltration)  of  remnant  nephrons  is  not  consistently  reported  in  the  literature  53, 85,  but the 
 

349 analytical difficulties on how to precisely assess nephron number, glomerular volume, and how to 
 

350 acknowledge  the  different  functions  of  juxtamedullary  versus  cortical  nephrons  can  affect  the 
 

351 interpretation of such data 53, 85. Ageing is associated with decreasing podocyte density and total 
 

352 numbers 53. Endomitosis-related mitotic catastrophe and podocyte detachment may contribute to 
 

353 glomerulosclerosis53, 103, 104. 
 

354 354 
 

355 [H2]Systemic effects 
 

356 The kidney is involved in multiple complex hormonal processes important in anemia, bone 
 

357 integrity, in regulation of acid base and electrolyte homeostasis, as well as blood pressure control 
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358 through neuroendocrine and volume sensors. As nephron mass declines, patients will suffer from 

 

359 complications associated with dysregulation of many of these systems. Anemia, vitamin D deficiency, 
 

360 hyperparathyroidism,  acidosis,  hyperkalemia  and  hyperphosphatemia,  hyperuricemia,  as  well  as 
 

361 hypertension  and expansion  of  effective  circulating  fluid  volume  are  all clinical  manifestations of 
 

362 these derangements. Interestingly, they do not occur in all individuals at the same point in the 
 

363 progressive  loss  of  kidney  function,  and  there  are  some  maintain  excellent  tubular/  excretory 
 

364 function despite derangements in hormonal function (i.e. severe anemia, and normal electrolytes). 
 

365 Not all of the derangements are symptomatic, and the severity of the symptoms is variable 
 

366 between individuals. They include: disorders of fluid and electrolytes, mineral and bone disorder, 
 

367 anemia,   hypertension,   dyslipidemia,   endocrine   abnormalities,   in   children   growth impairment, 
 

368 decreased clearance of renally excreted substances from the body (eg, hyperuricemia), metabolic 
 

369 acidosis.  Related  symptoms  may  be  fatigue, anorexia, weight loss, pruritis, nausea,  vomiting, 
 

370 muscle cramping, edema, shortness of breath, to name a few. None are specific for CKD. 
 

371 371 
 

372 [H3] Fluid and electrolyte abnormalities. 
 

373 Sodium and water balance — Sodium and intravascular volume balance are usually maintained via 
 

374 homeostatic  mechanisms  until  the  GFR  falls  below  10  to  15 mL/min per  1.73  m2.  However,  the 
 

375 patient with mild to moderate CKD, despite being in relative volume balance, is less able to respond 
 

376 to rapid infusions of sodium and is, therefore, prone to fluid overload. In some cases, especially with 
 

377 an acute water load, hyponatremia and hypertension may occur as a consequence of fluid retention. 
 

378 Some patients, such as those with nephronophthisis and some with obstructive uropathy, have an 
 

379 impaired ability to concentrate urine, and have symptoms of polyuria. These children are at risk for 
 

380 hypovolemia, as they will continue to have large urine losses even when they are volume depleted. 
 

381 Hyperkalemia — In   children   with   CKD,   hyperkalemia   develops   due   to   reduced   GFR  causing 
 

382 inadequate potassium excretion. Also, potassium excretion is dependent upon an exchange with 
 

383 sodium at the distal tubule. A low GFR decreases delivery of sodium to this site where there is 
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384 reduction in the exchange rate with potassium into the urinary lumen. Other contributory factors for 

 

385 hyperkalemia  include:  high  dietary  potassium  intake,  catabolic  conditions  with  increased  tissue 
 

386 breakdown, metabolic acidosis, secondary type IV renal tubular acidosis (RTA) in some patients with 
 

387 obstructive  uropathy,  decreased  renin  production  by  the  juxtaglomerular  apparatus,  primary  or 
 

388 secondary hypoaldosteronism related to RAS inhibitor-related impaired cellular uptake of potassium 

389 

390 [H3]Metabolic acidosis. 
 

391 Metabolic  acidosis  is  observed  in  patients  with  advanced  CKD  and  is  related  to  the  fall  in total 
 

392 ammonium  excretion  that  occurs  when  the  GFR  decreases  to  below  40  to  50 mL/min  per  1.73 
 

393 m2  (GFR category G3). In addition, there is a reduction in both titratable acid excretion (primarily as 
 

394 phosphate) and bicarbonate  reabsorption. As the patient  approaches ESKD,  the serum  bicarbonate 
 

395 concentration tends to stabilize between 12 and 20 mEq/L. A level <10 mEq/L is unusual, as buffering 
 

396 of the retained hydrogen ions by various body buffers prevents a progressive fall in the bicarbonate 
 

397 397 
 

398 398 

concentration. In children with CKD, metabolic acidosis has a negative impact on growth. 

 

399 [H3] Anemia. 
 

400 The anemia of CKD is due primarily to reduced renal erythropoietin production. The anemia of CKD  is 
 

401 principally  normocytic  and  normochromic.  By  comparison,  the finding  of microcytosis may reflect 
 

402 iron deficiency or aluminum excess, while macrocytosis may be associated with vitamin B12 or folate 
 

403 deficiency.  If  left  untreated,  the  anemia  of  CKD  is  associated  with  fatigue,  weakness, decreased 
 

404 404 
 

405 405 

attentiveness, increased somnolence, and poor exercise tolerance. 

 

406 [H3]Mineral bone disease. 
 

407 Chronic kidney disease-mineral and bone disorder (CKD-MBD) presents as a broad clinical spectrum 
 

408 encompassing abnormalities in mineral metabolism, bone structure, and extraskeletal calcifications 
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409 that are found with progressive CKD. Patients with mild CKD (G2 KDIGO) may have reduced serum 
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410 calcidiol and/or calcitriol levels, and an elevated serum parathyroid hormone (PTH) and fibroblast 

 

411 growth factor 23 (FGF-23) level 105. Patients with more advanced CKD-MBD have bone pain, difficulty 
 

412 in walking, and/or skeletal deformities and a higher risk of fracture 106. 
 

413 413 
 

414 [H3]Hypertension. 
 

415 Hypertension  can  be  present  in  the  earliest  stages  of  CKD,  and  its  prevalence  increases  with 
 

416 progressive declines in GFR. Hypertension is high in children with CKD, ranging from 54 to  70 percent 
 

417 of patients 107. Hypertension is due to activation of the RAS and volume expansion. In some cases, 
 

418 hypertension arises from corticosteroids or calcineurin inhibitors such as cyclosporine or tacrolimus 
 

419 419 
 

420 420 

used to treat the underlying kidney disease. 

 

421 [H3]Dyslipidemia. 
 

422 Abnormal lipid metabolism is common in patients with CKD and is one of the primary factors that 
 

423 423 
 

424 424 

increase the risk for CVD. 

 

425 [H3]Hyperuricemia. 
 

426 Elevated uric acid levels may develop in patients with CKD due to decreased urinary excretion. Serum 
 

427 uric acid greater than 7.5  mg/dL is an independent risk factor for accelerated progression of CKD and 
 

428 428 
 

429 429 

should be treated to have a better outcome. 

 

430 [H3]Cardiovascular disease. 
 

431 CVD is the leading cause of death in patients with CKD worldwide 14. The increased incidence of CVD 
 

432 is due to the high prevalence of CVD risk factors, such as hypertension, dyslipidemia, hyperuricemia, 
 

433 abnormal glucose metabolism obesity.  Young  adults (25 to 34 years) with CKD have  at  least  a  100- 
 

434 fold higher risk  for CVD-related mortality compared  with the general population  108. Patients with  a 
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435 glomerular etiology  of CKD  and  proteinuria  were  more  likely  to  have  CVD  risk  factors.  The CKD- 
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436 related cardiovascular alterations resemble all aspects of an accelerated ageing process associated 

 

437 with  a  shortening  of  relative  telomere  length  109.  The  vasculature  can  be  affected  by  both, 
 

438 atherosclerosis and arteriosclerosis, with lipid-rich plaques but also abundant media calcification. The 
 

439 burden  of  atherosclerotic  CVD  increases  in  the  early  stages  of  CKD,  and  the  burden  of  non- 
 

440 atherosclerotic  CVD  increases  in  the  more  advanced  stages  of  CKD.  The  „two“  diseases  involve 
 

441 different factors that cause distinct changes in the risk factor profile and contribute differently to 
 

442 outcomes  during  the  course  of  CKD.  Adaptive  changes  of  the  heart  include  left  ventricular 
 

443 hypertrophy (LVH) but also dilatation with subsequent both, systolic and diastolic dysfunction. There 
 

444 are two different patterns of LVH: concentric LVH, which occurs in the presence of hypertension,  and 
 

445 eccentric LVH, which is associated with volume overload and anemia. Early and sustained induction 
 

446 of fibroblast growth factor-23 was recently discovered as a driver of LVH in CKD 110. 
 

447 The absolute risk of cardiovascular events in individuals with pre-dialysis CKD is similar to 
 

448 that  of  patients  with  established  coronary  artery  disease  in  the  general  population  111,  and the 
 

449 increase  in  risk  multifactorial:  a  higher  prevalence  of  insulin  resistance  112,  high  blood pressure, 
 

450 vascular calcification 113, 114, inflammation and protein-energy wasting 115. ESKD is associated with a 
 

451 range of metabolic abnormalities, the so-called milieu of uremic toxicity 116, activation of the neuro- 
 

452 hormonal  axis  117,  vitamin  D  receptors  113,  that  may  all  contribute  to  accelerated  ageing  of the 
 

453 vasculature and damage to the heart. Hemodialysis itself may have a direct negative effect on the 
 

454 heart, so-called myocardial stunning 118. As a consequence the cardiac and vascular mortality are 
 

455 several times higher in patients with low GFR or on dialysis than in the general population. Thus, the 
 

456 risk of CVD in patients who require dialysis depends largely on their cardiovascular health at dialysis 
 

457 initiation.  In  patients  with  healthy  arteries,  the  pre-dialysis  management  strategy  should  be 
 

458 continued  to  prevent  new  cardiovascular  lesions.  Consequently,  risk  factors  for  CVD  should  be 
 

459 459 
 

460 460 

managed intensively in the pre-dialysis period, during transition, and at dialysis initiation. 

 

461 [H3]Endocrine dysfunction. 
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462 In  patients  with  CKD,  the  following  endocrine  systems  become  dysfunctional  as  kidney function 

 

463 progressively  deteriorates.  Each  of  these  is  discussed  in  greater  detail  separately.  There  are 
 

464 abnormalities in gonadal hormones in both male and female patients, which can results in reduced 
 

465 fertility and sexual problems. In children, these abnornalities result in delayed puberty in two-thirds 
 

466 of  adolescents  with ESKD  119. End-organ  resistance to  GH  due to increased levels of insulin  growth 
 

467 factor binding proteins appears to play a major role in growth impairment in children with CKD 120. 
 

468 Abnormalities in thyroid function can also be observed. 
 
 

469 [H3]Neurological signs. 
 
 

470 Uremia is associated with cognitive alterations ijn adults and lower performance in all neurocognitive 
 

471 domains  development  in  children.  The  neurologic  findings  can  range  from  seizures  and  severe 
 

472 intellectual disability to subtle deficits. 
 
 

473 [H3]Sleep and fatigue. 
 
 

474 Daytime sleepiness and fatigue are common and increase with decreasing kidney function. Sleep 
 

475 disorders (restless leg syndrome/paroxysmal leg movements, sleep-disordered breathing, excessive 
 

476 daytime sleepiness, and insomnia) are also common 
 
 

477 [H3]Uremia. 
 
 

478 The onset of ESKD (ie, GFR category G5) results in a constellation of signs and symptoms 
 

479 referred to as uremia. Manifestations of the uremic state include anorexia, nausea, vomiting, growth 
 

480 retardation,  peripheral neuropathy,  and central  nervous system  abnormalities ranging from loss  of 
 

481 concentration and lethargy to seizures, coma, and death. Patients who are uremic also have an 
 

482 increased tendency to bleed secondary to abnormal platelet adhesion and aggregation properties. 
 

483 Pericardial disease (pericarditis and pericardial effusion) is an indication to institute dialysis. The 
 

484 484 
 

485 485 

initiation of RRT should be considered 



22  

 
486 486 

 

487 [H1] Diagnosis, screening and prevention 
 

488 The  clinical  presentation  of  CKD depends upon  the  underlying  disorder  and  the  severity  of renal 
 

489 impairment.  Patients  with  early  stages  of  CKD  G1-2  are  usually  asymptomatic.  From  CKD  G3-5 
 

490 patients  may  experience  weakness  related  to  anemia  and  polyuria.  Only  in  late  stages  and  in 
 

491 untreated  patients  symptoms  may  include  anorexia,  vomiting,  weakness,  and  fatigue,  which are 
 

492 492 
 

493 493 

referred to as symptoms of uremia. 

 

494 [H2]Detection and diagnosis 
 

495 CKD can be detected during a periodic health assessment in an asymptomatic person or during 
 

496 evaluation  of  individuals  at  risk  for  CKD  (Box  1);  as  a  consequence  of  the  incidental  finding  of 
 

497 abnormal laboratory values in connection with an acute or chronic illness; during an investigation of 
 

498 symptoms  and/or  signs  relating  to  the  kidneys  or  urinary  tract  (such  as  haematuria);  or during 
 

499 discovery of abnormal laboratory values in a population-based screening program. Importantly, the 
 

500 two biochemical parameters (GFR and proteinuria) used in the aforementioned KDIGO matrix1 define 
 

501 and classify a “generic” form of CKD, and adding an etiological diagnosis is both highly desirable and 
 

502 recommended  by  KDIGO  (The  Cause/GFR/Albuminuria  [CGA]  classifications  system),  whenever 
 

503 possible,  such  that  the  underlying  conditions  can  be  treated  first  to  halt  progression  of  CKD. 
 

504 Progression is defined according to changes in eGFR by KDIGO1. Several tests can be performed to 
 

505 confirm a CKD diagnosis and identify its cause. It must be stressed that a diagnosis of CKD, according 
 

506 to the KDIGO construct, requires persistence or progression of the defining abnormality for  at least 3 
 

507 507 
 

508 508 

months. A single value of GFR or albuminuria is insufficient and if used for diagnosis of CKD will lead 

 

509 [H3] Measuring and estimating GFR. 
 

510 First, the assessment begins with measurement of serum creatinine concentration (under steady- 
 

511 state conditions) and applying formulas for estimated GFR (eGFR – creatinine, like CKD-EPI eGFR- 
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512 creatinine). It must be recognized that the results of these creatinine based tests  can be influenced 

 

513 by changes in muscle bulk (atrophy or hypertrophy), dietary intake of cooked red meat (strict vegan 
 

514 diet) and alterations in tubular secretion of creatinine from exposure to drugs (e.g. trimethoprim- 
 

515 sulfamethoxazole) 121, 122. Alternative approaches using serum cystatin_C concentrations have also 
 

516 been proposed.  While not influenced by muscled bulk and diet, the cystatin C -based formulas for 
 

517 eGFR can be affected by inflammation, obesity, thyroid disease, diabetes, and steroid administration 
 

518 123. Second, some eGFR  formulashave not been extensively  validated in older  subjects and  may not 
 

519 apply to Asians or Africans 124, 125. Third, the requirements for inclusion of demographic variables of 
 

520 age  and  gender,  to  correct  for  differences  in  creatinine  generation,  may  also  create  unwanted 
 

521 complications in determining prognostic implications of a calculated GFR . Newer eGFR formulas such 
 

522 as FAS (full age spectrum) or CKD-EPI using serum creatinine, cystatin C or a combination or Cystatin 
 

523 C or a combination of both have improved accuracy to predict mGFR 126, 127. Although cumbersome 
 

524 and expensive, mGFR assessments using urinary clearance methodology can sometimes be needed, 
 

525 but  applying  methods of plasma  clearance  of  Iohexol or of  radiolabelled  Iothalamate  could avoid 
 

526 some  of  these  issues.  In  well-defined  circumstances,  such  as  stratifying  long  term  risks  of  uni- 
 

527 nephrectomy for potential living kidney donors, such studies can be useful 128, 129. As mentioned in 
 

528 the   introduction,   caution   should   be   exercised   in   using   a   fixed   and   arbitrary   threshold  of 
 

529 <60ml/min/1.73m2  of  GFR  alone  (in  the  absence  of  abnormal  proteinuria  or  imaging)  for  the 
 

530 diagnosis  of  CKD  in  older  or  elderly  adults.  A  GFR  of  45-59ml/min/1.73m2  is  fairly  common  in 
 

531 otherwise healthy seniors, depending on their age, due to the normal physiologic loss of nephrons 
 

532 and GFR with organ senescence 130. 
 

533 533 
 

534 [H3]Measuring proteinuria. 
 

535 Abnormal rates of urinary excretion of albumin or total protein are essential for detection of 
 

536 CKD  when  GFR  is  normal  and  contribute  to  the  assessment  of  prognosis  131.  Proteinuria  (or 
 

537 albuminuria) can be determined in multiple ways, including simple “dip stick” qualitative methods, 
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538 point-of-care urinary albumin concentration tests, random un-timed urine samples for calculation of 

 

539 urine protein (or albumin) to creatinine ratios (UPCR or UACR in mg/mg or mg/mmol), or timed 24 
 

540 hour urine collections and measuring absolute protein or albumin excretion 132, 133. Each of these has 
 

541 advantages and pitfalls.  But it is important to recognise that not all patients with CKD have abnormal 
 

542 urinary protein excretion.  For example, early in the course of Autosomal Dominant Polycystic Kidney 
 

543 Disease the urinary protein exertion is normal only slightly increased 134. 
 

544 Urinary protein or albumin excretion is more variable than serum creatinine levels, and can 
 

545 be influenced by posture, activity, fever or drugs so multiple specimens must be collected to enhance 
 

546 reliability. UPCR and UACR methods can be influenced by the prevailing urinary creatinine excretion 
 

547 rate;  i.e.  low  creatinine  excretion  (from  sarcopenia)  can  increase  UPCR  or  UACR  values  even at 
 

548 normal  absolute  protein  or  albumin  excretion  rates.  Hence,  adjusting  for  the  effect  of  urinary 
 

549 creatinine excretion can enhance the accuracy of UPCR and UACR measurements 132, 133. 
 

550 In the KDIGO schema, UACR values are divided into three categories 1, namely, normal or 
 

551 low,  which  is  <30  mg/g  creatinine  (<3.0  mg/mmol,  formerly  “normo-albuminuria”);  moderately 
 

552 increased, which is ≥30-299 mg/g creatinine  (>3.0-29 mg/mmol, formerly “micro-albuminuria”); and 
 

553 severely  increased, which  is  ≥300 mg/g creatinine  (30  mg/mmol,  formerly   “macro-albuminuria”). 
 

554 Even with a normal eGFR, CKD can be diagnosed with persistent UACR of >30 mg/g creatinine. Each 
 

555 incremental increase in UACR is associated with an increased risk of mortality and ESKD, so sustained 
 

556 albuminuria (or proteinuria) is a powerful prognostic marker. 
 

557 The corresponding “dipstick” (urinalysis test strip) values (and protein concentration in 
 

558 mg/dL) are negative (<10 mg/dL) to trace (10-15 mg/dL) for normal, 1+ (30 mg/dL) for moderate and 
 

559 2+ (>100 mg/dL) or greater for severe proteinuria. Persistent proteinuria of >1+ is a good predictor of 
 

560 a tendency for CKD progression, i.e. GFR decline of > 5 ml/min/1.73 m2/year or 7 times the normal 
 

561 rate  of  loss  with  ageing  135.  Thus,  albuminuria  or  proteinuria  allow  early  detection  of  CKD (see 
 

562 Screening below), but several forms of progressive CKD can present with normal or only slightly 
 

563 increased  albumin  or  protein  excretion,  especially  tubulo-interstitial  diseases  such  as  autosomal 
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564 dominant  polycystic  kidney  disease  134.  Marked  proteinuria  (in  excess  of  3.5  g/d  in  and  adult), 

 

565 especially  when  accompanied  by  a  reduction  in  serum  albumin  concentration  (referred  to  as 
 

566 “nephrotic syndrome”) nearly always implies a diagnosis of a primary or secondary glomerulopathy 
 

567 underlying CKD 136. 
 

568 568 
 

569 [H3]Biopsy and pathology. 
 

570 Percutaneous kidney  biopsy  is  a very valuable tool in assessement of the  underlying cause for  CKD. 
 

571 The indications for performance of a renal biopsy in a patient with CKD depends upon the benefits to 
 

572 be obtained (precise diagnosis, better prognosis, appropriate therapy) and the risks of a biopsy- 
 

573 related  complications. Kidney biopsies are commonly recommended for adult patients with 
 

574 nephrotic  syndrome (urine protein excretion of >3.5 g/d and serum albumin levels <3.5 g/dL) but 
 

575 may  also  be  indicated  for  evaluation  of  unexplained  rapidly  progressive  loss  of  kidney function, 
 

576 persistent hematuria and low-grade- proteinuria (0.5-3 g/d), of even isolated proteinuria (1-3 g/d) 137. 
 

577 Depending on the circumstances leading to the procedure,  the pathologic findings can vary widely, 
 

578 but in states of marked proteinuria glomerular diseases are most likely be seen.   The degree of 
 

579 tubule-interstitial  scarring  can  provide  useful prognostic  information. The  risks of renal biopsy  are 
 

580 minimal in experienced hands,  and complications are  mostly related  to  post-biopsy  bleeding. Fatal 
 

581 complications are rare (about 1;20,000). Major complications, such as nephrectomy or transfusion 
 

582 requiring bleeding are more common (about 1:250-500) 138, 139. 
 

583 583 
 

584 [H3]Other tests. 
 

585 Continuing advances in the field of serum and urine proteomics, microRNA biology and in serology 
 

586 are providing many new powerful and non-invasive tools to identify specific diseases or groups of 
 

587 diseases that may revolutionize the approach to detecting and diagnosing CKD in the future 140. 
 

588 These  new  tools  may  also  expand  the  horizon  of  prognosis  into  new  areas  beyond  GFR  and 
 

589 proteinuria  estimation —  giving rise to exciting  new  possibilities  for  “precision”  medicine whereby 
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590 care of CKD is personalized based diagnostic and prognostic characteristics. Unfortunately, many 

 

591 patients with CKD are only recognized in the later stage of the disease (Categories G3B-G5) where 
 

592 CKD  complications  such  anemia,  metabolic  acidosis,  mineral-bone  disease  provide  additional 
 

593 593 
 

594 594 

diagnostic clues. 

 

595 In addition, both detection and diagnosis of CKD, also rely on renal imaging (ultrasonography, CT and 
 

596 MRI),  careful examination  of the urinary  sediment,  and  specialized biochemical and  serologic tests 
 

597 suitable to detect specific disorders causing CKD (Box 2). Imaging tests are particularly valuable as 
 

598 they provide information on kidney size, contours, location, and density as well as anatomy of the 
 

599 urinary  drainage  system  (pelvis,  ureters  and  bladder).  Specific  lesions,  such  as  cysts,  dilation of 
 

600 ureters or pelvis, calcification, masses, scars an provide valuable clues to the cause of CKD or even 
 

601 generate a specific diagnosis (such as autosomal dominant polycystic kidney disease or obstructive 
 

602 uropathy) 141. Then urine sediment examination is important for the detection and quantification of 
 

603 haematuria, leukocyturia and casts. 
 

604 Genetic testing is also emerging as an  important  tool for  diagnosing CKD, particularly  in  children or 
 

605 young  adults.  Autosomal  dominant  polycystic  kidney  disease,  podocytopathies  causing  steroid- 
 

606 resistant  nephrotic  syndrome,  Fabry’s  disease,  Alport  syndrome,  are  other  well-known  entities 
 

607 requiring  a  genetic  diagnosis.  Using  next-generation  sequencing  displays  an  unexpected  genetic 
 

608 heterogeneity and alterations in numerous different genes in a significant proportion of not only 
 

609 familial or syndromic patients but also in sporadic cases of CKD. These observations imply the need 
 

610 for updating  the  current management in terms of diagnostic  algorithms and  therapeutic choices  77, 
 

611 142. 

 
612 

 

613 [H2]Screening 

614 In the context of CKD, screening can take two forms: population screening, for example, using 

615 “dipstick” urinary testing of school children or soldiers; or “opportunistic screening”, whereby 
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616 physician encounters for other medical reasons can be used to screen for CKD. Population-based 

 

617 screening can be further divided into general population screening or “targeted” screening of high- 
 

618 risk population groups (such as diabetic or family members related to subjects with diagnosed CKD). 
 

619 Unfortunately, the benefits and harms of both forms of screening for CKD have not been rigorously 
 

620 tested  in  long-term  prospective  studies,  so  the  overall  benefits  and  harms  of  population-based 
 

621 screening  for  CKD  are  poorly  understood  and  further  trials  are  needed  143, 144. Population-based 
 

622 screening for CKD is not recommended by the United States Preventive Task Force largely due to 
 

623 insufficient evidence of benefit (or harm) 145. Evidence in favor of case-finding (i.e., testing for CKD in 
 

624 people with recognized risk factors, such as hypertension or diabetes) is slightly better, but still 
 

625 incomplete. Accordingly, the American College of Physicians determined that current evidence was 
 

626 insufficient to evaluate the benefits (or harms) of screening and case-finding for CKD 146. The  position 
 

627 on screening for CKD varies widely around the world, with several countries having long-established 
 

628 programs  (Japan  and  Singapore  for  example)  and  others  that  have  introduced  them  as  part  of 
 

629 universal health care systems systems (The United Kingdom for example) 147-151. 
 

630 Both screening and case-finding for CKD are logistically hampered by the need for re- 
 

631 evaluation at a defined interval to fulfil the duration requirement for diagnosis. Therefore, one-off 
 

632 testing using  eGFR  or proteinuria has a  high  “false  positive” detection/diagnosis  rate, and possible 
 

633 misclassification of subjects by use of a fixed (non-age-sensitive) eGFR thresholds, as discussed. The 
 

634 potential harms of general population screening involve excessive follow-up diagnostic procedures, 
 

635 unnecessary referral of subjects erroneously diagnosed as having CKD, the anxiety induced by being 
 

636 labelled  as having CKD,  and potential impact  on  insurability.  Nevertheless, several  national kidney 
 

637 organizations advocate screening for CKD. Monte Carlo simulations support case-finding strategies in 
 

638 diabetic  subjects for albuminuria or hypertension  152, because  early treatment may  offer significant 
 

639 effects on delaying CKD progression and ESKD 153. Some studies have suggested that testing for 
 

640 abnormal albuminuria may be an efficient way of stratifying populations for more intensive search 
 

641 for modifiable risk factors for CKD and cardio-vascular events, such as hypertension and diabetes 154. 
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642 Indeed, abnormal proteinuria (even only slightly above the upper limit of normal) identifies people at 

 

643 greater  risk  for  ESKD  and/or  cardiovascular  morbidity  and  mortality  155.  As  mentioned  before, 
 

644 population screening for CKD using eGFR tends to substantially over-diagnose CKD in older subjects 
 

645 with  no  or  minimal  proteinuria.  Opportunistic  testing  for  CKD  has  much  merit,  especially  if the 
 

646 subjects have other  risk  factors  such  as diabetes,  hypertension,  or  a family history of CKD. In such 
 

647 patients an eGFR should be assessed along with an estimate of albuminuria or total protein excretion 
 

648 (“dipstick”), UACR or UPCR- adjusted for creatinine excretion rate). It also must be appreciated that 
 

649 older subjects with CKD G3 (as defined by KDIGO, see above) detected in screening programs or 
 

650 otherwise in primary care practices tend to have a rather benign prognosis, at least over the short 
 

651 term of 5 years or less.  Shardlow et al found  a very low rate of ESKD (0.2%) and stable or remission 
 

652 of CKD was found in 53% of such subjects (average age 73 years at entry) after 5 years of follow-up 
 

653 653 156. 

 

654 Finally, there are a few special circumstances where testing of apparently healthy individuals 
 

655 for CKD may be indicated. For example, first degree relatives of a patient with autosomal-dominant 
 

656 polycystic kidney disease (ADPKD) are eligible for screening with renal ultrasound or MRI regardless 
 

657 of results of eGFR or proteinuria. Siblings of patients with Fabry’s disease, Alport syndrome, or thin 
 

658 basement  membrane  nephropathy  might  also  benefit  from  genetic  analysis  as  well.  African- 
 

659 Americans with hypertension or HIV infection may receive more informed prognosis by assessment 
 

660 of APOL1 risk alleles, but population-based screening for APOL1 risk alleles is not yet justifiable 157 
 

661 661 
 

662 [H2]Prevention 
 

663 From a  societal  perspective,  prevention of CKD  is  preferable to  after- the-fact treatment  of kidney 
 

664 disease at its end-stage by dialysis or transplantation. Both primary prevention (occurring before CKD 
 

665 is established) and secondary prevention (initiated to slow the rate of CKD progression or to affect 
 

666 the associated co-morbidities or complications; see below, Management) should be considered. 
 

667 Primary prevention attacks the root causes of CKD and includes mitigating exposures to 
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668 nephrotoxic agents and events (Box 1). Reduction of the burden of infectious diseases (such as HIV, 

 

669 Malaria,  Streptococcus  infection)  have  already  yielded  some  protection  from  CKD,  but  many 
 

670 challenges  remain.  Preventing  obesity  and  the  associated  type  2  diabetes  mellitus  is  a  global 
 

671 challenge 158. The discovery of a central role for sugar and fructose intake and metabolism in obesity 
 

672 can be cited as an example of progress with implications for primary prevention. Indeed, better 
 

673 glycemic control may also eventually prevent CKD and its progression 153, 159-161. Improved recognition 
 

674 and reduction of the prevalence of AKI may also have dividends on prevention of CKD, especially in 
 

675 counties where AKI is common, under-recognized and under-treated such as equatorial Africa. Given 
 

676 the importance of low nephron endowment, fetal malnutrition and/or dysmaturity and manifested 
 

677 by  low  birth  weight,  global  efforts  to  reduce  fetal  malnutrition  and  dysmaturity  should  have 
 

678 enormous  “pay-back”  in  later years  and  focussed  effects  are beginning to  address this  important 
 

679 topic 66. 
 

680 680 
 

681 [H1] Management 
 

682 Several aspects need to be considered when managing patients with CKD: controlling nephron injury, 
 

683 normalizing single nephron hyperfiltration, controlling CKD-related complications, and preparing the 
 

684 patient  for  kidney  replacement  therapy.  At  the  core  of  these  is  the  principle  of  ‘the earlier-the 
 

685 better’, which is the effort to reduce the progression to ESKD and optimize renal outcomes. 
 

686 The impact of early therapy is well documented for Alport syndrome 162. Initiating RAS 
 

687 blockade based on the genetic diagnosis before any signs of kidney disease can have dramatic effects 
 

688 on renal outcomes, whereas initiating RAS blockade as late as CKD G3 only somewhat delayed ESKD 
 

689 (FIG. 6) 162. Further support comes from a posthoc analysis of clinical trials testing RAS blockade in 
 

690 diabetic kidney disease. The effect on gaining ESKD-free years was highest when RAS blockade was 
 

691 initiated at the time of microalbuminuria and lowest when initiated once a diagnosis of CKD G3 or G4 
 

692 was made 163. Therefore, early diagnosis and treatment are essential to prevent nephron loss  from as 
 

693 early as possible. 
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694 694 

 

695 [H2]Controlling ongoing nephron injury 
 

696 Nephron injury can be driven numerous triggers (Table 1), and abrogating these triggers will slow 
 

697 progression to CKD and ESKD. For example, genetic abnormalities can cause CKD either by fostering 
 

698 nephrocalcinosis  164,  cystic  degeneration  or  by  weakening  epithelial  integrity  such  as  in  genetic 
 

699 podocytopathies or in abnormal processing or storage of metabolites or glycoproteins 78, 165. Specific 
 

700 cures for genetic kidney diseases exist in some forms and are mostly limited to enzyme replacement 
 

701 therapy or  substrate  supplementation  (Table  1).  The  genetic  basis  of immune-mediated  nephron 
 

702 injury is not yet fully explored but C3 glomerulonephritis or atypical hemolytic uremic syndrome 
 

703 (aHUS) can be controlled with complement inhibitors, an area of intense and promising research 166. 
 

704 Most acute forms of immune-mediated nephron injury present either as vasculitis, immune complex 
 

705 glomerulonephritis or interstitial nephritis (including allograft rejection). These disorders can often 
 

706 be targeted with immunomodulatory drugs (and sometimes with plasma exchange) to limit nephron 
 

707 loss from attack by the humoral and/or cellular elements of the immune system 167. 
 

708 In contrast, in smoldering immune injury, such as in chronic IgA nephropathy, it is difficult to 
 

709 dissect  CKD  progression  driven  by  immune  versus  non-immune  mechanisms  and  the  efficacy of 
 

710 immunosuppression versus RAS blockade and blood pressure control is less evident 168. Kidney biopsy 
 

711 may establish the diagnosis and can also guide management by assessing the ongoing activity of 
 

712 immune  injury  versus  irreversible  damage,  e.g.  in  lupus  nephritis,  IgA  nephropathy  or  allograft 
 

713 dysfunction.  Specific  treatments  are   also  available  for  CKD  related  to  urinary  tract  obstruction, 
 

714 infections, and some forms of toxic injury (Table 1). However, even upon complete abrogation of the 
 

715 715 
 

716 716 

injurious trigger, recovery of lost nephrons is impossible. 

 

717 [H3]Preventing any avoidable injury of remnant nephrons. 
 

718 Avoiding  further  episodes  of  AKI  is  crucial  to  minimize  stress  on  the  remnant  nephrons  in CKD 
 

719 kidneys.  This  implies  patient  education on avoidable nephrotoxins  such   as  radio  contrast  media, 
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720 NSAIDs, certain antibiotics or other endemic or occupational toxins. Hypovolemic states as well as 

 

721 urinary  outflow  obstruction should be  avoided. Additionally,  not every  asymptomatic  leukocyturia 
 

722 implies bacterial infection and antibiotic treatment should be limited to the presence of dysuria, 
 

723 bacteriuria, and leukocyturia. Smoking cessation is essential minimize CVD 169. 

724 

725 [H2] Normalizing single nephron hyperfiltration 
 

726 Rigorous RAS inhibition with ACE inhibitors (ACEi) or angiotensin receptor blockers (ARBs) has the 
 

727 capacity to substantially reduce SNGFR and glomerular filtration pressure, which leads to a decline in 
 

728 not only  proteinuria but also total GFR  — and,  hence, moderately increases  serum creatinine levels 
 

729 170.  At  first, this serum creatinine  increase  is  worrisome  to  patients  (and physicians)  and requires 
 

730 clarification that reducing hyperfiltration in remnant nephrons is the central strategy to retard CKD 
 

731 progression in patients with proteinuria. In contrast, ACEi or ARBs  do not retard the progression of 
 

732 non-proteinuric  forms  of  CKD  such  as  ADPKD  but  still  may  have  benefits  on  the  associated 
 

733 cardiovascular complications 171. ACEi or ARBs should be titrated to the maximal possible dose, while 
 

734 hyperkalemia  can  be  corrected  using  loop  diuretics  or  potassium-binding  resins  172.  A moderate 
 

735 increase in serum creatinine levels indicates a decline in SNGFR, which is a powerful predictor of the 
 

736 intended  nephroprotective  effect  173.  Numerous  RCTs  have  documented  the  class  effect  of  RAS 
 

737 inhibitors to retard or even halt CKD progression 44. Reducing dietary salt and drugs that support 
 

738 control of blood pressure and hyperlipidemia, often referred to as “remission clinic protocol”, may 
 

739 further reduce proteinuria and retard CKD progression 174, 175. Such interventions are affordable and 
 

740 are of importance where kidney replacement therapy is not available or affordable. 
 

741 Avoiding or correcting obesity can also reduce filtration load and glomerular hypertension; 
 

742 hence, a normal BMI is a treatment target to retard CKD progression 176. Any immunosuppression- 
 

743 related benefit of using steroids in CKD may be counterbalanced by steroid-related obesity that 
 

744 drives glomerular hyperfiltration and secondary FSGS, which could explain why steroid treatment 
 

745 falls short in retarding progression of IgA nephropathy-related CKD 168. Finally, concomitant diabetes 
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746 has   important   implications   for   CKD   management   177.   Hyperglycemia   maximizes   glomerular 

 

747 hyperfiltration  via  SGLT2-driven  vasodilation  of  the  afferent  arteriole  of  the  remnant  nephrons, 
 

748 which cannot  be controlled  by  RAS  inhibitors  94. Recently,  SGLT2  inhibitors  have  been  shown  to 
 

749 reverse this process and elicit profound additive nephroprotective effects on CKD progression 98, 178. 
 

750 Their capacity to also reduce CVD (in patients with type 2 diabetes) 178, 179 provides a strong rationale 
 

751 751 
 

752 752 

for dual RAS/SGLT2 blockade in patients with diabetes and CKD. 

 

753 [H2]Controlling CKD complications 
 

754 CKD is associated with a number of secondary complications that require management (Box 3), the 
 

755 most relevant of which in terms of overall mortality is CVD 14. Cardiac and vascular alterations also 
 

756 arise from endocrine failure (e.g. lack of erythropoietin, vitamin D, parathyroid hormone), which 
 

757 causes anemia and secondary hyperparathyroidism 180. Myocardial fibrosis is the final consequence 
 

758 of the multiple underlying causes. 
 

759 Large randomized controlled trials in patients on hemodialysis have tested a number of 
 

760 different  interventions  intended  to  reduce  cardiovascular  events  such  as  dialysis  dose  and  flux, 
 

761 erythropoietin-stimulating   agents,   statins,   RAS   blockade,   folic   acid,   cinacalcet   or   vitamin   D 
 

762 derivatives   but   have   largely   been   unsuccessful   181-183.   For   example,   statins   may   prevent 
 

763 cardiovascular events in patients on dialysis, but the magnitude of any relative reduction in risk is 
 

764 substantially smaller as compared to what can be achieved in CKD 2-4 183-186. For example, reduction 
 

765 of LDL cholesterol with simvastatin plus ezetimibe reduced the incidence of major atherosclerotic 
 

766 events  more  efficiently  in  patients  with  CKD  G2-4  than  with  CKD  G5  or  5D  183.  Hence,  early 
 

767 intervention with standard-of-care is essential in patients with CKD 2-4. In parallel, similar concepts 
 

768 for cardiovascular protection are administered for progression of diabetic and non-diabetic kidney 
 

769 disease. For these patients, guideline-directed approaches to achieve target blood pressure through 
 

770 administration of RAS blockers, salt restriction and anemia prevention is the mainstay of therapy 187, 
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771 188. Guidance is also available for the correction of acidosis and mineral and bone metabolism 

 

772 disorders (Box 3) 189. 
 

773 773 
 

774 [H2]Preparing for kidney replacement therapy 
 

775 ESKD typically requires renal replacement therapy, although conservative treatment is a potential 
 

776 alternative option, especially in older adults with limited life span. Counseling on the options (kidney 
 

777 transplant, hemodialysis, peritoneal dialysis or no dialysis) should be coordinated by the nephrologist 
 

778 and involve a multidisciplinary team including the general practitioner. Early counseling is essential 
 

779 because informed patients are better prepared to face kidney failure. Indeed, late referral, i.e. at the 
 

780 time of ESKD, is associated with worse health status at the time of kidney replacement therapy 
 

781 initiation, higher mortality  after starting dialysis,  and decreased  access  to transplant  190.  However, 
 

782 one of the biggest challenges nephrologists face is to predict kidney disease progression, which does 
 

783 not follow a steady linear decline. This unpredictability often becomes a barrier to timely shared 
 

784 decision making between  patients and  physicians and  could  lead  to  adverse patient  outcomes 190, 
 

785 and may offset the relationship between the early pre-dialysis nephrology care for adults with late 
 

786 stage  of CKD  and  improved  outcomes  191  KDIGO  suggested that  dialysis be  initiated  when one or 
. 

 

787 more of the following are present: symptoms or signs attributable to kidney failure (serositis, acid- 
 

788 base or electrolyte abnormalities, pruritus); inability to control volume status or blood pressure; a 
 

789 progressive  deterioration  in  nutritional  status  refractory  to  dietary  intervention;  or  cognitive- 
 

790 impairment   1.   This   often   but   not   invariably   occurs   in   the   GFR   range   between   5   and  10 
 

791 ml/min/1.73m2.  Moreover,  living  donor  preemptive  renal  transplantation  in  adults  should  be 
 

792 considered when the GFR is <20 ml/min/1.73m2, and there is evidence of progressive and irreversible 
 

793 CKD over the preceding 6-12 months 1. 
 

794 794 
 

795 [H3]Hemodialysis. 
 

796 In 1945 Willem Kolff was the first to successfully treat kidney failure of a patient by performing 
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797 hemodialys using an artificial kidney able to clear blood from uremic toxins 192.  Since then numerous 

 

798 technical innovations have optimized the procedure that meanwhile has become available (but not 
 

799 everywhere affordable) all over the world 38. Preparing patients for hemodialysis involves referral for 
 

800 vascular access placement. The types of access include arteriovenous fistulae, arteriovenous grafts 
 

801 and central venous catheters (which are for short-term use) (FIG. 7A-C); arteriovenous  access is the 
 

802 preferred  option  for  hemodialysis,  although  there  is  no  consensus  about  the  optimal  timing for 
 

803 creation, especially for arteriovenous fistulae 193. To protect the blood vessels for permanent vascular 
 

804 access,  attention  should  be  taken  to  avoid  venous  puncture  or  intravenous  catheter  placement 
 

805 proximal to the wrist, which implies that venous puncture at the back of the hand still being possible. 
 

806 Arteriovenous  access  (either  fistulae  or  grafts)  is  associated  with  better  outcomes  than   central 
 

807 venous catheters 194 195. Patients with a central venous catheter have poorer survival than those who 
 

808 subsequently convert to functional arteriovenous access 196. Thus, a functional arteriovenous access 
 

809 809 
 

810 810 

is preferable for all patients in which the vascular status allows to install a fistula. 

 

811 [H3]Peritoneal dialysis. 
 

812 Peritoneal dialysis is another way to eliminate uremic toxins from the blood using the 
 

813 peritoneal membrane as an exchange interface. For this a transcutaneous catheter is implanted into 
 

814 the peritoneal cavity that allows repetitive daily drainage and refills of dialysate fluid. After some 
 

815 hours of reaching equilibrium between uremic blood and fresh dialysate each dwell is expected to 
 

816 drain excess fluid, metabolic waste products including uremic toxins (FIG. 7D). There are published 
 

817 guidelines  regarding  insertion  and  perioperative  management  of  peritoneal  dialysis  catheters.  A 
 

818 peritoneal dialysis catheter may be ready for use after 2 to 3 weeks. However, there is marked 
 

819 variability in peritoneal dialysis catheter insertion techniques (open surgery, blind via trocar or blind 
 

820 via  Seldinger  technique)  and  perioperative  management  197.  Interestingly,  patients  starting  on 
 

821 peritoneal dialysis show better initial outcome and preservation of residual renal function, especially 
 

822 in the first 2 years as compared to patients on hemodialysis 198. 
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823 823 

 

824 [H3]Kidney transplantation. 
 

825 When available, suitability for kidney transplantation should be evaluated according to age and co- 
 

826 morbidities,  but  it  may  take  months  to  complete  199.  Co-morbidities  such  as  cancer,  chronic 
 

827 infections,  cardiac  or  peripheral  vascular  disease,  and  the  risk  for  medical  noncomplicance  are 
 

828 carefully evaluated in this process. Depending on the regional ratio of donors to recipients and on 
 

829 allocation rules, waiting time for a deceased donor kidney can vary from a few months (e.g. Belgium, 
 

830 Austria) to many years (e.g. Germany). Thus, the option of living kidney donation should be explored. 
 

831 To test for eligibility, potential donors must undergo a comprehensive health assessment 
 

832 including  tests  for  blood  group  and  human  leukocyte  antigen  compatibility  with  the  potential 
 

833 recipient, GFR measures, imaging of the kidneys and the urinary tract, cardiac testing, and other tests 
 

834 depending on the medical history. This is because, the donor's short and long-term well-being after 
 

835 donation  remains  a  first  priorityPre-emptive  transplantation  (kidney  transplantation  before even 
 

836 initiating  dialysis)  may  offer  several  benefits  to  ESKD  patients  but  its  impacts  remain  under 
 

837 evaluation 200. The half-life of a transplanted kidney is <20 years, making these patients also potential 
 

838 candidates for CKD treatments during their life span 201. For example, recurrent glomerulonephritis is 
 

839 an unpredictable complication that can have a negative impact on graft outcome 202. 

840 

841 [H2]Conservative treatment/palliative care 
 

842 Kidney replacement therapy may not be available or affordable but it may also not be advisable for 
 

843 medical reasons. Especially in very old ESKD patients, dialysis may neither increase life span nor 
 

844 improve quality of life (QOL) 203-205: in such cases palliative (trying to control the symptoms of uremia 
 

845 affecting QOL 206) and education starting at CKD G4 (aimed at explaining comorbidity management) 
 

846 may  be  appropriate.  Withdrawal  from  dialysis  is  a  related  issue  and  is  common  in  very  old 
 

847 hemodialysis patients 207. 
 

848 848 
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849 [H1] Quality of life 

 

850 CKD-related symptoms increase along CKD progresses and are key drivers of poor QOL in patients 
 

851 with  CKD  and  ESRKD  208-210.  In  contrast,  symptoms  rapidly  improve  upon  kidney transplantation. 
 

852 Symptoms  are  most  severe  in  dialysis  patients,  who  frequently  report  fatigue,  nausea, dyspnea, 
 

853 anorexia,  pruritus,  restless  legs,  and  cramps  211.  Pain  is  especially  common:  in  a  survey  of  205 
 

854 prevalent patients on hemodialysis, approximately 25% had “severe” pain during the 24h preceding 
 

855 the  interview,  and  an  additional 12% had  “moderate pain” 212. Mental  illness  including depression 
 

856 and anxiety are also common 213, but are understudied among people with CKD. Unfortunately, 
 

857 clinical  and  epidemiological  characteristics  associated  with  the  presence,  severity,  onset  and 
 

858 remission   of   uremic   symptoms   are   incompletely   described;   their   pathophysiology   is  poorly 
 

859 understood; and few drugs have been approved by regulatory authorities for their treatment 214. 
 

860 Comorbidity and complications of CKD also substantially contribute to the reduced QOL in 
 

861 CKD patients. In some cases (e.g. anemia), effective treatments are available. In others, treatment is 
 

862 technically possible but has significant limitations, and treatment itself frequently causes additional 
 

863 symptoms and morbidity (e.g. dialytic management of hypervolemia). Despite the best efforts of 
 

864 clinicians, interactions between complications and their treatments can further compromise QOL for 
 

865 patients   (e.g.   volume   overload   resulting   from   sodium   bicarbonate   treatment   of   acidosis). 
 

866 Management of multiple comorbid conditions is already complex in patients with normal kidney 
 

867 function 215; the situation is even more challenging in people with CKD, where the pathophysiology 
 

868 and optimal treatment of common coexisting conditions may differ from the general population (e.g. 
 

869 statins  for  coronary disease  in  dialysis patients). Lack  of  knowledge  about  how  to  prioritize  and 
 

870 manage comorbid conditions undoubtedly contributes to the lower QOL in CKD patients through 
 

871 multiple  mechanisms   –   including   drug-drug  and   drug-condition  interactions;   pill  burden;   and 
 

872 decisional conflict for patients. 
 

873 Dialysis is an effective life-support treatment but has many limitations in addition to those 
 

874 mentioned above. Key challenges for hemodialysis that specifically compromise QOL include poor 
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875 functional status (driven in part by procedure-related immobilisation, uremia-related malnutrition, 

 

876 and muscle wasting), the intrusive and time-consuming nature of the treatment, and vascular access 
 

877 infection and dysfunction 216. Instruction for some home-based, low intensity physicial exercise can 
 

878 improve physical performance and QOL in patients on hemodialysis 217. Peritoneal dialysis also poses 
 

879 significant  challenges  for  QOL  including  gastrointestinal  distension,  hernias,  and  chronic  volume 
 

880 overload. Both forms of dialysis make employment difficult and both are associated with a high 
 

881 prevalence of infectious complications and undue pill burden. Some studies suggest that peritoneal 
 

882 dialysis  is  associated  with  slightly  better  QOL  than  hemodialysis  218,  but  it  is   possible  that  this 
 

883 observation  is  confounded  by  patient  characteristics  219.  Home  dialysis  strategies  are constantly 
 

884 improving and are becoming possible tools to improve QOL 220. Kidney transplantation is associated 
 

885 with substantially better QOL than either form of dialysis 221, but even recipients with good graft 
 

886 function must face CKD-related symptoms as well as complications of immunosuppression and other 
 

887 treatments. 
 

888 Recent emphasis on patient-centred research should help to improve QOL for people with 
 

889 CKD by increasing the likelihood that important but understudied issues such as symptom control are 
 

890 studied and new solutions are identified. In addition, findings from patient-centred research should 
 

891 help  to  drive  uptake  of  patient-centred  care  at  the  bedside,  especially  if  supported  by patient- 
 

892 reported outcomes 222. Such paradigm shifts should help to prioritize the management of patient- 
 

893 893 
 

894 894 

important issues such as reduced QOL. 

 

895 [H1] Outlook 
 

896 There are many unmet medical needs in nephrology as a specialty and improving and refining our 
 

897 understanding  of  disease  mechanisms  in  common  and  rarer  conditions  is  lacking,  as  are  novel 
 

898 therapies to treat rarer and common causes of kidney disease progression and a culture of curiosity 
 

899 and clinical trials that advance the field 37. Key areas are to improve the identification of CKD and to 
 

900 reduce  CKD  risk  factors,  to  improve  the  understanding  of  causes  and  consequences  of  CKD, to 
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901 improve  outcomes  with  current  knowledge,  and  finally  to  develop  and  test  new  therapeutic 

 

902 strategies 37. Here, we highlight eight promising domains expected to produce significant impact on 
 

903 CKD management and outcomes. 
 
 

904 904 
 

905 [H2]How genetic kidney disease contributes to CKD 
 

906 Genetic abnormalities were identified in 20% of CKD cases in children, adolescents, and young adults. 
 

907 Next generation sequencing have unveiled the extreme genetic heterogeneity of kidney disease.  For 
 

908 example  more  than  40  different  genes  were  discovered  as  possible  causes  of  steroid-resistant 
 

909 nephrotic syndrome 142. This requires implementation of current diagnostic strategies that go beyond 
 

910 th renal biopsy and open to personalized diagnosis and treatments 142. In addition, first genetic 
 

911 modifiers of CKD progression such as APOL1 or UMOD have been identified in older adults. CKD in 
 

912 adults may also relate to (genetically- or environmentally-defined) low nephron endowment or AKI 
 

913 episodes early in life, e.g. as early as during neonatal (intensive) care. Thus, CKD in adults, often 
 

914 classified by a single diagnosis, may often be the consequence of several components accumulating 
 

915 with time, a conclusion having important implications for the design of CKD trials, e.g. in prevalent 
 

916 entities such as “diabetic nephropathy”. Progress will require identifying the cause(s) of CKD and 
 

917 dissecting   modifiable   from   non-modifiable   drivers   of   CKD   progression   as   well   as   specific 
 

918 pathophysiological mechanisms that might help to define more homogeneous patient subgroups. 
 

919 The identification of such subgroups is a prerequisite to conducting more targeted clinical trials, 
 

920 which  require  fewer  participants  and  increase  the  possibility  to  identify  appropriate  drugs  for 
 

921 different subtypes of patients. Patient heterogeneity is considered one of the main reasons why 
 

922 clinical trials in nephrology commonly fail 223. Genetic investigations might therefore not only hold 
 

923 promise for individual patients, for example by facilitating the diagnosis of a monogenic disease with 
 

924 potential  implications  for  individualized  treatment,  but  might  also  improve  classification  and 
 

925 ultimately   treatment   and/or   prevention   in   groups   of  patients  224.   The   study   of   the genetic 
 

926 predisposition to kidney diseases has made major progress over the past decade. For the first time, 
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927 researchers have been able to carry out genome-wide screens to study complex kidney diseases, to 

 

928 which genetic susceptibility variants in many genes, as well as environmental factors, contribute. 
 

929 Genome-wide association studies (GWAS) have emerged as an important method to map risk loci for 
 

930 complex dis- eases by  investigating  the association  of genetic  markers across  the genome  with the 
 

931 disease of interest. We can predict that the list of genetic forms of CKD will exponentially increase 
 

932 together with our understanding of the genetic component of kidney function in health and disease 
 

933 933 
 

934 934 

224. 

 

935 [H2]Biomarkers for CKD management 
 

936 As discussed,  using  serum  creatinine-based diagnosis implies diagnosis  as late as CKD G3,  leaving a 
 

937 small  window  of  opportunity  for  modulating  CKD  progression.  Earlier  identification  CKD  with 
 

938 biomarkers   that   can   also   predict   CKD   progression   would   help   to   initiate  nephroprotective 
 

939 interventions 37. Most attractive would be a marker of nephron number. Defining nephron number at 
 

940 birth would display low nephron endowment and help to dissect it from injury- or ageing-related 
 

941 nephron loss later in life. A marker of nephron number would detect CKD G2 and could serve as an 
 

942 end point parameter for clinical trials to quantify nephro-protective effects or drug toxicity. However, 
 

943 identifying  a  clinically  applicable  biomarker  of  nephron  number  in  serum  or  urine  has  been 
 

944 unsuccessful so far. Biomarkers do not clearly discriminate nephron number from the compensatory 
 

945 increase in mass of remnant nephrons upon injury (remnant nephron hypertrophy). Imaging studies 
 

946 with tracers or the combination of imaging with kidney biopsy indicating the number of glomeruli 
 

947 and even SNGFR are promising as a proof-of-concept 85, 225. 

948 

949 [H2]Separating triggers of nephron loss from CKD progression 
 

950 Congenital    low    nephron    endowment,    obesity,    and    AKI/CKD-related    nephron    loss    imply 
 

951 hyperfiltration and hypertrophy of the remnant nephrons, which in turn promote secondary FSGS 
 

952 and  further  nephron  loss.  Interstitial  fibrosis  most  likely  represents  matrix  replacement  of  lost 
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953 nephrons,  thereby stabilizing the remnant  nephrons.  Whether  fibrosis itself contributes to nephron 

 

954 loss remains under debate and several antifibrotic drugs are under study to test this concept 226, 227. 
 

955 Dissecting   the   relative   contribution   of   nephron   injury,   wound   healing,   and   compensatory 
 

956 hyperfiltration remains notoriously difficult in clinical practice. Finding ways to define their relative 
 

957 contribution and selectively target these mechanisms in a personalized manner remains a challenge 
 

958 958 
 

959 959 

for the following years. 

 

960 [H2] Modifying CKD progression 
 

961 Among the many ideas on how to potentially modulate CKD progression some accumulated a large 
 

962 fundament  of  experimental  evidence  but  still   await  successful   validation   in   human   RCTs (e.g. 
 

963 protecting  nephron  loss  by  modulating  kidney  fibrosis)  228.  In  contrast,  the  idea  to  retard  CKD 
 

964 progression with urate-lowering therapies already showed promising results in smaller trials and the 
 

965 results of ongoing multicenter RCT are eagerly awaited 229. In contrast, the nuclear factor (erythroid- 
 

966 derived    2)-like    (NRF)-2    agonist    bardoxolone    or    folic    acid    supplementation    have  shown 
 

967 nephroprotective effects in RCTs in some populations but their mechanisms-of-action are not yet 
 

968 fully understood 182, 230, 231. 
 

969 969 
 

970 [H2]Nephrogenesis and regeneration 
 

971 Given the significant hurdles preventing widespread use of renal transplantation, Current work is 
 

972 exploring whether the transfer of autologous stem (progenitor) cells, stromal cells or other cell types 
 

973 can support the regeneration of injured nephrons (FIG. 8). For this to be a viable option, a growing 
 

974 research  field  is  trying  to  unravel  the  physiology  and  pathophysiology  of  the  nephron’s intrinsic 
 

975 capacity to regenerate. 
 

976 Several   studies   have   identified   possible   drugable   targets   to   specifically   enhance   nephron 
 

977 regeneration  with  pharmacologic  intervention  to  prevent  nephron  loss  in  AKI  and  CKD  232.  In 
 

978 particular, targeting parietal epithelial cells that can act as progenitor for podocytes, to promote 
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979 their differentiation into fully functional podocytes and/or to block their excessive proliferation and 

 

980 matrix  production  can  promote  remission  of  glomerular  disorders  233-235.  In  addition,   enhancing 
 

981 tubular regeneration by promoting tubular epithelial cell proliferation can reduce the occurrence of 
 

982 CKD after AKI  234, 236. Although  in vivo  experimental studies  appear promising,  no  clinical  trials are 
 

983 available  yet  233-235.  Finally,  numerous  Inhibitors  of  maladaptive  repair  induced   improved  tissue 
 

984 structure and even function in experimental models of CKD. Several phase 1-2 clinical trials were 
 

985 started but up to now, but none progressed beyond phase 2 237. However, other new antifibrotic 
 

986 drugs display are currently being tested in clinical trials 234, 237, 238. 
 

987 Regenerative   medicine   is  also   being   explored  for  treatment   of  kidney   disorders.  Therapeutic 
 

988 properties mesenchymal stroma cells (MSC), a population of well-characterized, easily obtainable 
 

989 cells  with  effective  in  numerous  but  not  all  experimental  models  of  CKD  239,  240.  The underlying 
 

990 mechanisms  of  action  of  the  MSC  have  been  extensively  described  and  consist  essentially  in 
 

991 immunomodulatory   and   paracrine   effects.   Similarly,   numerous   experimental   studies reported 
 

992 improvement  of kidney  function and/or structure by using injection of human  renal progenitors  232- 
 

993 236. However, the translation of preclinical studies into robust, effective, and safe patient therapies 
 

994 remains limited 233, 234, 237. 
 

995 Finally, the generation of 3D organ-buds termed 'organoids' from human induced pluripotent stem 
 

996 cells and embryonic stem cells was achieved also for the kidney; these organoids consist of a variety 
 

997 of renal cell types in vitro that mimic organs in vivo 241, 242. The organoid bears great potential in the 
 

998 study of human diseases in vitro, especially when combined with CRISPR/Cas9-based genome-editing 
 

999 243, 244. However, the complexity of kidney structure and function is yet far from being reproduced for 
 

1000 the purpose of clinical use for renal replacement therapy and the question if and when this will be 
 

1001 
 

1002 

eventually possible is still open. 

 

1003 [H2]Animal models and RCT design 



42  

 
 

1004 Innovative approaches to better link translational research to clinical trial findings will need to start 

1005 with well-defined human genotypes and phenotypes to identify molecular targets, which may (or 

1006 may not) subsequently be validated in animal models. Selecting such animal models for validation 

1007 should be based on models that recapitulate CKD progression in humans and applying identical end 

1008 points in subsequent clinical trials. This may include mice with identical pathogenic mutations as in 

1009 human genetic kidney disease as being available for Alport syndrome, mouse models with a partial 

1010 human immune system, or eventually experimentation in pigs or primates to close gaps between 

1011 preclinical and clinical trials 245, 246. 

1012 In addition, trial design may be improved upon reconsidering disease definitions, avoiding 

1013 add-on designs using drugs with redundant mechanisms-of-action, preselecting patients with drug 

1014 mechanisms-related biomarkers, and of study end points that better predict CKD progression to 

1015 ESKD. For example, in order to test efficacy of the C5a receptor inhibitor avacopan in ANCA vasculitis 

1016 the CLEAR trial at first avoided the usual add-on standard of care approach and compared instead 

1017 avacopan plus low-dose steroids versus placebo plus high dose steroids on top of either 

1018 cyclophosphamide or rituximab 247. This way it was proven that avacopan is effective in replacing 

1019 high-dose glucocorticoids in treating vasculitis. 

1020  

1021 [H2]Limiting cardiovascular morbidity and mortality 

1022 Targeting the association of CKD with cardiovascular morbidity and mortality will require more 

1023 functional studies in animals and humans to identify molecular targets potentially suitable for 

1024 therapeutic interventions 37. Controlling hyperlipidemia with PCSK9 inhibitors, suppressing systemic 

1025 inflammation with innovative anti-inflammatory drugs, modulating the intestinal microbiota, or 

1026 directly modulating vascular calcificaton and cardiac fibrosis may offer new solutions for this eminent 

1027 problem in the future. 

1028  

1029 [H2]Translation of advances into daily practice 
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1030 The ever growing complexity of kidney biopsy reading, lab diagnostics, and the increasing need for 

1031 genetic testing will require centers of excellence with sufficient resources to meet the diagnostic 

1032 demands. The same may apply to upcoming costly therapies, where patient selection is of particular 

1033 importance. Educational efforts are also needed to alert patients and general physicians to the 

1034 increasing number of more affordable therapeutic options for CKD patients with diabetes, such as 

1035 SGLT2 inhibitors. Finally, national CKD registries and treatment guidelines advocate awareness in the 

1036 public, among health care providers, and decision takers, which can generate important support for 
 

1037 implementation of standards 37. Global guidelines created by the KDIGO initiative have become 

 

1038 instrumental in this process starting from a global definition of CKD stages up to defining standards 
 

1039 for the management of CKD complications (Box 3). In addition, global initiatives on CKD launched by 
 

1040 the International Society of Nephrology define knowledge gaps in CKD and propose how to address 
 

1041 
 

1042 

them in the future 37. 
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1053 Box 1. Risk factors for chronic kidney disease 

 
 

1054 
 

1055 
 

1056 
 

1057 

• Diabetes mellitus (type 1 or 2) 
 

• Poorly controlled arterial hypertension 
 

• Obesity 
 

• Monogenetic kidney disease (for example, autosomal dominant polycystic kidney disease, 

 

1058 podocytopathies causing steroid-resistant nephrotic syndrome, Fabry’s disease and Alport 
 

1059 
 

1060 

syndrome, complementopathies such as atypical haemolytic-uremic syndrome (aHUS) 
 

• Prolonged exposure to nephrotoxins (e.g., chemotherapy for cancer treatment, proton pump 

 

1061 inhibitors, non-steroidal anti-inflammatory drugs, and anti-microbial agents), contaminated 
 

1062 
 

1063 
 

1064 

herbs, agricultural chemicals, heavy metals, irradiation) 
 

• Climate (excessive heat exposure and dehydration) 
 

• Infections and chronic inflammation (HIV, HCV, HBV, malaria, bacterial infections urinary 

 

1065 
 

1066 
 

1067 
 

1068 
 

1069 
 

1070 
 

1071 
 

1072 
 
 

1073 
 
 

1074 
 
 

1075 
 

 
1076 
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tract 
infecti
ons, 
rheu
matic 
disord
ers 
and 
autoi
mmu
ne 
diseas
es) 

 
• Malig

nancy 
(espe
cially 
lymph
ocyte 
and 
plasm
a cell 
disord
ers 
such 
as 
multi
ple 
myelo
ma) 

 
• Conge

nital 
renal 
abnor
maliti
es 
(CAKU
T, 
vesico
-
ureter
ic 
reflux
) 

 
• Episo

des of 
acute 
kidne
y 
injury 

 

• Low nephron endowment at birth (low birth weight, fetal dysmaturity) 
 

• Obstructive uropathy 
 

• Systemic vasculitis 
 

• Hyperhomocysteinemia 
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1077 Box 2. Biochemical and serologic tests useful for defining causes of CKD 

 
1078 

 
[H1]Auto-immune disease 

 
1079 • Fluorescent anti-nuclear antibody, anti-dsDNA antibody, anti-phospholipaseA2 receptor 

1080 antibody, anti-GBM antibody, anti-neutrophil cytoplasmic antibody, anti-phospholipid 

1081 antibody 

1082 • Serum hemolytic complement activity (C’H50), serum C3 and C4 levels, cryoimmunoglobulins 

 
1083 

 
[H1]Malignancy 

 
1084 • Serum free light chains, serum or urinary immunofixation (multiple myeloma) 

1085 • Serum albumin, phosphorous, total proteins and albumin/globulin ratio 

 
1086 

 
[H1]Infections 

 
1087 • Human Immunodeficiency Virus, hepatitis B virus, hepatitis C virus serology, CD4+ T cell 

1088 counts, urine, blood cultures, anti-streptococcal antibody tests 

 
1089 

 
[H1]Monogenetic kidney disease 

 
1090 • Serum or urinary enzymes, glycolipids 

1091 • Genetic testing using next generation and Sanger sequencing 

 
1092 
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1093 Box 3. Key strategies to managing CKD complications 

 
1094 [H1]Renal anemia 187 

1095 • Erythropoeiesis stimulating agents (ESAs) are only given once all correctable causes of 

1096 anemia (e.g. iron deficiency and inflammatory states) have been addressed 

1097 • Adults received Iron supplementation when transferrin saturation is <30% and ferritin <500 

1098 ng/ml; children (<18 years) receive Iron supplementation when transferrin saturation is 

1099 <20% and ferritin <100 ng/ml 

1100 • ESAs may be used to avoid hemoglobin <9.0 g/l with a target of max.11.5 g/dl 

1101 • Avoid blood transfusion whenever possible, especially in potential transplant recipients. 

1102 Caution in giving ESAs in people at risk of stroke or who have malignancy 

1103 [H1]Arterial hypertension 188 

 
1104 • Individualize blood pressure (BP) targets are based on age and co-morbidities, with special 

1105 recommendations for diabetes 

1106 • Targets include normalizing body weight (BMI 20-25), NaCl intake (<5g/d), achieving regular 

1107 physical exercise, limiting alcohol intake to 2 drinks/d (men), 1 drink/day (women) 

 
1108 [H1]Mineral and bone disorder 189, 248 

 
1109 • Monitor calcium, phosphorus, parathyroid hormone, and alkaline phosphatase activityin 

1110 adults beginning in CKD G3a and in children beginning in with CKD G2 ; 25(OH)D levels 

1111 might also be measured and corrected by vitamin D supplementation as for the general 

1112 population 

1113 • In CKD G3a-G5D lower elevated phosphate levels toward the normal range but avoid 

1114 hypercalcemia by restricting the dose of calcium-based phosphate binders 

1115 • Avoid long-term exposure to aluminium in phosphate binders or dialysate 

1116 • Measure bone mass density in patients with CKD G3a-G5D with evidence of bone disease to 

1117 assess fracture risk if results will impact treatmentIn adults calcitriol and vitamin D 
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1118 analogues are no longer recommended for routine use unless secondary 

 

1119 
 

1120 

hyperparathyroidism in CKD G4-G5 is severe and progressive 
 

• For patients with CKD G5D PTH-lowering therapy calcimimetics, calcitriol, or vitamin D 

 

1121 
 

1122 

analogs are recommended 
 

• Consider patients with vascular calcifications at high risk for cardiovascular disease; avoid 

 

1123 calcium-based phosphate binders in these patients, limit dietary phosphate intake. 
 

1124 [H1]Hyperlipidemia 249 

 
1125 • Adults >50y with CKD should receive a statin; when eGFR <60ml/min, statin or 

 

1126 
 

1127 

statin/ezetimibe combination should be given 
 

• Adults <50y with CKD and other cardiovascular risk factors should receive a statin 

 
 

1128 [H1]Metabolic acidosis 
 

1129 • Oral bicarbonate can be used to correct mild metabolic acidosis 

 
 

1130 [H1]Chronic hyperkalemia 
 

1131 • Dietary restriction, loop diuretics, potassium-binding resins such as patiromer or dose 

 

1132 
 
 

1133 
 

1134 
 

1135 
 

1136 
 

1137 
 

1138 
 

1139 
 

1140 
 

1141 
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1142 Figure legends 

1143  

1144 Figure 1. Kidney Disease Improving Global Outcomes (KDIGO) classification of chronic kidney 

1145 disease (CKD). The 2D matrix illustrates the predictive value of different levels of albuminuria and 

1146 estimated glomerular filtration rate (eGFR). The color code indicates the risk for CKD progression to 

1147 end-stage kidney disease (ESKD) and overall mortality. This matrix defines different stages of CKD 

1148 referred as, for example, CKD G2A2 whereby the eGFR is 60-89 ml/min/1.73m2 albuminuria is 

1149 moderately increased; such a patient would have a moderately increased risk of progressing to ESKD. 

1150 This staging system for CKD G2-G4 may underestimate the extent of irreversible nephron loss 251. 

1151 That is, if total GFR relies on the single nephron GFR (SNGFR) and the number of nephrons, SNGFR 

1152 has to increase to compensate for reduced (or declining) number of nephrons to maintain total GFR. 

1153 However, such a compensation may not occur with physiological ageing 85. Additionally, total GFR 

1154 drops if remnant nephrons are not able to increase SNGFR. Finally, increases in serum creatinine 

1155 levels (representing a GFR of ≤40%) may imply remnant nephrons of ≤30% of a “normal” nephron 

1156 number. Furthermore, the prognosis facet of CKD classification has been developed by large-scale 

1157 population-based epidemiological studies, which suffer from a “false positive” rate of- approximately 

1158 30-35% as in such studies repeat analysis after 3 months was often not available 43. Reprinted with 

1159 permission  from Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. 

1160 KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. 

1161 Kidney Int Suppl. 2013;3:1-150. 

1162  

1163 Figure 2. Global prevalence of treated end-stage kidney disease per 1 million population. The map 

1164 depicts the prevalence of renal replacement therapy represented by kidney replacement therapy 

1165 (kidney replacement therapy: hemodialysis, peritoneal dialysis, and kidney transplantation), for 

1166 [Au:OK?ok] ESKD per 1 million population based on individual country data. Data not available 

1167 indicates that data were either not known or not provided on the questionnaire for countries that 
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1168 received the survey. Reprinted with permission  from Bello, A. K. et al. Assessment of 

1169 Global Kidney Health Care Status. JAMA 317, 1864-1881 (2017 

1170  

1171 Figure 3. Glomerular filtration rate (GFR) over time and impact of low birth weight on progression 

1172 of CKD. A. Population studies assessing estimated GFR document a decline in eGFR with age; here 

1173 the data in men from Marocco are shown 43. P values from P03-P97 represent the percentiles of the 

1174 entire population with P50 representing mean values. This decline is a consequence of loss of 

1175 functioning nephrons via glomerulosclerosis-related nephron atrophy and is not accompanied by a 

1176 compensatory increase in SNGFR in the remaining intact nephrons, unlike what occurs when 

1177 nephrons are lost by injury or surgery 42, 52, 85. At age 70, nephron number is around 50% of that at 

1178 age 25. Whether or not this implies increased SNGFR (single nephron hyperfiltration) of remnant 

1179 nephrons or mirrors the declining demand for filtering metabolic waste is under debate but will 

1180 strongly depend on co-morbidities such as obesity and the life time history of acute kidney injury 

1181 episodes. In such cases, SNGFR should correlate with the total number of nephrons per body mass. B: 

1182 Low birth weight (LBW) increases four-fold the relative risk to develop CKD by the age 17 as shown 

1183 by population studies 69. C: LBW status also significantly shortens the time span of when patients 

1184 with IgA nephropathy reach end stage kidney disease 70. 

1185  

1186 Figure 4. Contributing factors to nephron loss. In addition to ageing, acute and chronic forms of 

1187 kidney injuries further may contribute to nephron loss along life time. Environmental, genetic causes 

1188 and systemic disease-related reasons for low nephron endowment or causes of nephron injury are 

1189 shown during the different phases in life, when they are most commonly (but not exclusively) 

1190 encountered. Combinations of such causes determine the individual risk for CKD throughout life. For 

1191 example, congenital abnormalities of the urinary tract (CAKUT) can lead to end stage kidney disease 

1192 (ESKD) early in life, or to secondary focal segmental glomerulosclerosis (FSGS)-related ESKD later in 

1193 life. Nephrotoxic drugs such as antibiotics, pain killers, contrast media for imaging or chemotherapy 
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1194 can also influence risk, as can infections (bacterial, parasitic, viral). Severe genetic defects that lead to 

1195 FSGS, Alport syndrome, cysts and atypical hemolytic uremic syndrome typically become evident early 

1196 in life, whereas moderate genetic defects (such as mutation in UMOD) can become evident in 

1197 adulthood. Genetic variants in genes such as APOL1 can modify the course of diseases such as lupus 

1198 nephritis. 

1199  

1200 Figure 5. Injury, hyperfiltration and hypertrophy of the nephron. A | In response to nephron loss, 

1201 single nephron hyperfiltration induces an increase in nephron size as a compensatory mechanism to 

1202 maintain overall renal function. Accordingly, podocytes need to undergo hypertrophy to maintain the 

1203 filtration barrier of the increasing dimensions of the filtration surface. However, podocyte 

1204 hypertrophy is limited; beyond a certain threshold, barrier dysfunction first manifests as mild to 

1205 moderate proteinuria. At later stages the increasing podocyte shear stress promotes podocyte 

1206 detachment. Parietal epithelial cells (PEC) host putative podocyte progenitors but proteinuria and 

1207 potentially other factors inhibit their potential to replace lost podocytes and rather promote scar 

1208 formation, i.e. focal segmental glomerulosclerosis (FSGS). B | Hyperfiltration and proteinuria both 

1209 imply an increased reabsorption work load for proximal tubules. Activated tubular cells secrete pro- 

1210 inflammatory mediators that promote interstitial inflammation. Together with the progression from 

1211 FSGS to global glomerulosclerosis the inflammatory microenvironment of the tubulointerstitium 

1212 promotes tubular atrophy and interstitial fibrosis. Scar formation is associated with vascular 

1213 rarefication and ischemia. The remnant nephrons have to further increase in size to meet the 

1214 filtration demands, which accelerates the aforementioned mechanisms of CKD progression in a 

1215 vicious circle. 

1216 Figure 6. The earlier-the-better: renal outcome depending on when starting renin-angiotensin 

1217 system (RAS) blockade in Alport Syndrome. As shown, the time to renal replacement therapy was 

1218 longest for those who started RAS inhibition early, at onset of microhematuria (usually at birth) or 

1219 microalbuminuria (30-300 mg protein per day or per gram creatinine). Delaying until 
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1220 macroproteinuria (>0.3g/day or per gram creatinine (green curve)) or CKD G3/4 has been established 

1221 considerably shortens the time to renal replacement. Untreated patients (red curve) are relatives to 

1222 Reprinted with permission from Gross, O. et al. Early angiotensin-converting enzyme inhibition in Alport 
syndrome delays renal failure and improves life expectancy. Kidney Int 81, 494-501 (2012). 

1223  

1224  

1225  

1226 Figure 7. Access for hemodialysis or peritoneal dialysis. A | Arteriovenous fistulae are created by 

1227 surgical anastomosis of a peripheral artery with a larger subcutaneous vein, e.g. at the forearm. The 

1228 increased flow and perfusion pressure leads to structural modifications in the draining vein allowing 

1229 repetitive venous puncture for hemodialysis. Sometimes declining blood flow to the hand and fingers 

1230 (steal phenomonen), compensatory increases in cardiac output or aneurysm formation cause 

1231 problems and require surgical correction. B | Arteriovenous grafts may become necessary when the 

1232 patient`s vascular status does not allow to build a fistula. Polytetrafluoroethylene grafts are mostly 

1233 used and can be repetitively punctured for hemodialysis. Common problems are sterile inflammatory 

1234 postimplantation syndromes or prosthetic graft infections causing bacterial sepsis. C | Central 

1235 venous catheters become necessary when immediate initiation of renal replacement therapy is 

1236 needed up to when a fistula or graft implant becomes ready for use. Such catheters may remain the 

1237 last vascular access option for patients in which the vascular or cardiac status does not allow fistula 

1238 or graft placement. Catheter infections or thrombotic complications remain constant concerns. 

1239 Peritoneal dialysis requires placement of a transcutaneous catheter into the peritoneal cavity. This 

1240 catheter allows fills, drains and refills of dialysate while the peritoneum serves as exchange 

1241 membrane with the uremic blood. Fluid drains and refills with fresh dialysate are needed in regular 

1242 intervals, usually 4 times a day. 

1243  

1244 Figure 8. Targeting kidney regeneration. In the future, it may be possible to target kidney 

1245 regeneration and maladaptive repair to minimize the loss of injured nephrons and to protect the 
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1246 remnant  nephrons.  Here,  the  most  promising  arenas of  research  include:  1.  Enhancing podocyte 

 

1247 regeneration. This aim may be achieved by drugs that promote differentiation into podocyte of 
 

1248 parietal epithelial cell (PEC) progenitors of the Bowman’s capsule and/or blocking their excessive 
 

1249 proliferation. 2. Blocking fibrosis and/or maladaptive repair by inhibiting fibroblast expansion. 3. 
 

1250 Enhancing  tubular  regeneration  by  blocking  maladaptive  repair  and/or  enhancing  tubular  cell 
 

1251 
 

1252 

proliferation 233-238. 

 

1253 Figure 9. Cell therapy and organoids as potential tools in CKD research and therapy. (A) Injection of 
 

1254 two cell types, mesenchymal stromal cells and renal progenitors, were reported as possible tools for 
 

1255 cell therapy of CKD, improving kidney function and structure in animal models. Numerous phase 1-2 
 

1256 clinical  trials  are  ongoing.  Several  mechanisms  were  proposed  to  explain  the  beneficial  effects 
 

1257 observed, mostly based on secretion of paracrine factors and/or microvesicles. For renal progenitors 
 

1258 also direct engraftment  in the injured  tissue was reported. (B) Kidney  organoids were  generated  in 
 

1259 vitro starting from induced pluripotent stem cells (iPSC) and embryonic stem cells (ESC) and used for 
 

1260 testing  of  drug  toxicity   and  modeling   of  kidney   diseases,  with   or   without  manipulation using 
 

1261 
 

1262 
 

1263 
 

1264 
 

1265 
 

1266 
 

1267 
 

1268 
 

1269 
 

1270 
 

1271 

Crispr/Cas and other genome editing strategies. 
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1272 

1273 

Table 1. Therapeutic interventions for selected conditions associated with CKD risk 

 

Disease entity Diagnostic test Therapeutic interventions 

Genetic injury   

Polycystic kidney disease Echography or MRI to detect cysts Tolvaptan (vasopressin receptor 2 

antagonist of benefit in selected 

patients) 

Alport syndrome Genetic testing for collagen 

mutations 

ACE inhbitors to reduce filtration 

pressure in remnant nephrons 

Fabry disease Serum alpha-galactosidase activity Alpha-galactosidase replacement 

therapy 

Primary hyperoxaluria Echography to detect 

nephrocalcinosis, urinary oxalate 

levels, genetic testing for serine— 

pyruvate aminotransferase , 

glyoxylate 

reductase/hydroxypyruvate 

reductase, and dihydrodipicolinate 

synthase-like 

Increase fluid intake, 

supplementation with potassium 

citrate, magnesium oxide, 

pyridoxine , and orthophosphate, 

oxalate-reduced diet, liver 

transplantation 

Cystinosis Leukocyte cystine levels, slit lamp 

exam of the eyes, genetic testing 

for the cystinosin gene 

Cysteamine substitution 

Coenzyme Q10-related 

gene mutations causing 

FSGS 

Genetic testing for AarF Domain 

Containing Kinase-4, coenzyme Q2, 

coenzyme Q6, and decaprenyl 

diphosphate synthase subunit 2 

Coenzyme Q10 replacement 

therapy 

C3 glomerulonephritis Kidney biopsy, specific 

complement test, genetic testing 

for complement-related genes 

Plasma exchange or blood 

transfusion, rituximab, eculizumab 

(depending on specific cause) 

Immune injury   

Acute or subacute immune 

complex 

glomerulonephritis 

Autoantibodies against nuclear 

autoantigens or neutrophil 

cytoplasmic antigens such as 

proteinase 3 or myeloperoxidase, 

Immunosuppressive drugs, plasma 

exchange (in certain settings) 
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 C3/C4 serum levels urinary 

sediment, kidney biopsy 

 

Renal vasculitis ANCAs, urinary sediment, kidney 

biopsy 

Immunosuppressive drugs, plasma 

exchange (in certain settings) 

Vascular injury   

Recent onset renal artery 

stenosis (fibromuscular or 

vasculitic) 

Angiogram of the renal arteries Surgical revascularization or 

catheter-based angioplasty 

Metabolic injury   

Diabetic kidney disease Blood glucose level, albuminuria, 

kidney biopsy 

Antidiabetic drugs, SGLT2 

blockade, RAS inhibitors 

Chronic urate nephropathy Tophaceous gout, serum uric acid 

levels, kidney biopsy 

Purine-reduced diet, uricosuric 

drugs, xanthine oxidase inhibitors, 

rasburicase 

Toxic injury   

Toxic nephropathies (lead, 

aristolochic acid, 

phenacetin, …) 

History, specific toxin levels, kidney 

biopsy 

Abandon toxin exposure 

Multiple myeloma Serum or urinary free light chain 

test, bone marrow aspirate, kidney 

biopsy 

Myeloma-directed chemotherapy 

Kidney infections   

Bacterial pyelonephritis Urine culture Increased fluid intake, antibiotics 

Viral nephropathies Viral testing, kidney biopsy Antiviral therapy 

Mechanical injury   

Obstructive nephropathy Renal ultrasound Relieve obstruction 

1274 
 

1275 
 

1276 
 

1277 
 

1278 
 

1279 
 

1280 
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