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Abstract

In this age of the digital era, the rapid growth of video content is a common
trend. Automated analysis for video content understanding is one of the most
challenging and well researched area in the domain of artificial intelligence. In
this thesis, we address this issue by analyzing and detecting events in videos.
The automatic recognition of events in videos can be formally defined as: "de-
tecting interactions between human-object, object-object or human-human ac-
tivity in a certain scene". Such events are often referred to as simple events,
whereas, complex event detection is even more demanding as it involves com-
plicated interactions among objects in the scene. Complex event detection often
provides rich semantic understanding in videos, and thus has excellent prospec-
tive for many practical applications, such as entertainment industry, sports ana-
lytic, surveillance video analysis, video indexing and retrieval, andmanymore.

In the context of computer vision, most of the traditional action recogni-
tion techniques assign a single label to a video after analyzing the whole video.
They use various low-level features with learning models and achieve promis-
ing performance. In the past few years, there has been significant progress in
the domain of video understanding. For example, supervised learning and effi-
cient deep learningmodels have been used to classify several possible actions in
videos, representing the whole clip with a single label. However, applying su-
pervised learning to understand each frame in a video is time-consuming and
expensive, since it requires per-frame labels in videos of the event of interest.
To accomplish this task, annotators apply fine-grained labels to videos by man-
ually adding precise labels to every frame in each video. Only then can the
model be trained, and that also mostly on atomic action. Training on new event
requires the process to be repeated. Also, such approaches lack the potential of
interpreting the semantic content associated with complex video events.

To sum up, we believe that understanding of the visual world is not lim-
ited to recognizing a specific action class or individual object instances, but also
extends to how those objects interact in the scene, which implies recognizing
simple and complex events happening in the scene. In this thesis we present
an approach for identifying complex events in videos, starting from detection
of objects and simple events using a state-of-the-art object detector (YOLO). It
is used both to detect and to track objects in video frames. In this way, it is pos-
sible to locate moving objects in a video over time in order to enhance both the
definition of events involving the objects considered and the activity of event
detection. We provide a logic based representation of events by using a real-
ization of the Event calculus that allows us to define complex events in terms of
logical rules. Axioms of the calculus are encoded in a logic program under An-
swer Set semantics in order to reason and formulate queries over the extracted
events. The applicability of the framework is demonstrated over scenarios like
"occupancy of the handicap slot", recognizing different kinds of "kick" events in
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soccer videos. The results compare favorably with those achieved by the use of
deep neural networks.
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Chapter 1

Introduction

The increase in availability of data in both structured and unstructured formats is a
common trend now a days: on the other hand, information extraction for ameaning-
ful use from this ocean of data is still a challenging task. The interpretation of these
data need to be automated in order to be transformed into operational knowledge
(Akbar et al., 2017; Khan et al., 2018). In particular, events are mostly important
pieces of such knowledge, as they represent activities of unique significance. More
precisely, an event is a time-stamped piece of information that represents an occur-
rence within a system or domain of interest (Etzion et al., 2011). For instance, an
event may be a sensor reading, an online activity (e.g., a tweet), a video frame, a
financial transaction etc. On the other hand, it may also be a piece of information re-
sulting from some computational process, e.g., a statement representing the fact that
one object moves towards another object at a particular time, resulting by feeding
the object’s (x; y) coordinates to the system over a period of time.

Events occurring in close proximity may be correlated with other events. For in-
stance, in a traffic management application (Akbar et al., 2015), a congestion event
may be related to a slow average vehicle speed event, which results in averaging sen-
sor data over a period of time. Such correlations between events may be expressed
in rule-like patterns of the form “when the average vehicle speed and average traf-
fic flow are less than the threshold values, then a traffic congestion event occurs”.
An event may occur instantaneously, or it may occur during the period of time. For
instance, a GPS signal event occurs instantaneously, whereas a traffic congestion event
persists over a period of a time. Additionally, events often involve relations between
entities. Consider, for instance, an event that involves two objects e.g., “object1 and
object2 are moving towards or away from each other at a particular time”. In order
to understand the events happening in this context, it is not only essential to under-
stand individual object instances, but also extends to how those objects interact in
the scene.

5



6 Introduction

1.1 Complex Event Recognition
Complex event recognition is a sub-field of complex event processing (Luckham,
2002) that seeks to detect interesting event patterns in temporal data, which allows
scientists and researchers to analyze and extract insights from the data, providing
reactive measures promptly. Examples include recognition of human activity from
videos (Brendel et al., 2011), business process management (Janiesch et al., 2011),
complex event detection from IoT (Internet of things) data streams (Akbar et al.,
2017), and so on.

Figure 1.1: Generic pipeline for complex event recognition
Figure 1.1 illustrates a generic pipeline for the complex event recognition process.

The input stream to an event recognition system consists of basic, or simple events.
The occurrence of these simple events is not dependent on other events. The core of
the event recognition system consists of a reasoning engine that matches the input
stream against the event patterns defined in terms of logical rules (complex event
definitions), which get fired only when several conditions on the event description
are met.

The goal of complex event detection fromunstructured data formats (e.g., videos
and images) consists in identifying and localizing specified spatio-temporal pat-
terns in such data, where each pattern represents a significant event. Understand-
ing of complex events taking place in videos is a challenging problem for the vi-
sion community due to factors such as, e.g. background clutter and variations in
pose, illumination, and camera point of view. Moreover, complex video sequences
(Budvytis et al., 2010) may contain many activities and involve multiple interac-
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tions between objects: the recognition of such composite interactions is thus more
demanding than the classification of single actions. Humans can infer what hap-
pened in a video within a few frames. They can also understand complex situations
happening between a pair of frames. But for computers to understand complex in-
teractions between objects and come up with a piece of meaningful information is
still a challenging problem.

In fact, event recognition is considered to be a paradigm for all computer vi-
sion tasks (Ahmad et al., 2018)(Ahmad and Conci, 2019), also because of its wide
applicability to different real-world scenarios. Advances in deep convolutional neu-
ral networks (CNN) in recent times have mostly focused on developing end-to-end
black box architectures that achieve high accuracy in recognizing events. However,
the major drawback of such approaches is the interpretability of the model (Pra-
pas et al., 2018). For complex events, humans can analyze the properties of com-
plex actions and inject some semantic knowledge to extract semantically meaning-
ful events. Whereas, CNN-based black box architectures often rely on high accuracy
given the event is happening or not.

1.2 Explainability
An exciting and relatively recent development is the uptake of machine learning in
the complex real-world applications, where the major goal is to obtain semantically
rich interpretation from observed data. Usually, CNN based black box architectures
are trained with regard to high accuracy, but recently there is also a high demand
for understanding the way a specific model operates and the underlying reasons for
the predicted output. One motivation behind this is that researchers increasingly
adopt ML(Machine Learning) for optimizing and predicting specific events, where
the model lacks details or explainability in reaching the predicted output.

The core of the black box architectures is the basic ML chain, in which a model
is learned from given input data and with a specific learning paradigm, yielding
output results utilizing the learned model. In order to derive a semantically rich
interpretation of the outcome, either the output results or the model must be ex-
plained. Injecting semantic definition and structural knowledge in these black box
architectures is rather difficult. So, this motivates us to start from the basic building
blocks and rebuild a system that allows exploiting the semantic knowledge about
events using logical frameworks to recognize the intermediate and high-level com-
plex events. The aspects involved in injecting semantic knowledge into the event
definition depend upon the type of knowledge and representation of knowledge.
Knowledge is often given in terms of mathematical equations, as relations between
instances, in the form of rules or constraints. It can also be represented in the form
of ontologies.
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1.3 Motivation of this Thesis
The event recognition system can be divided into two broad categories, keeping
in view different processing mechanisms and event specification languages. The
first category consists of a system that descents from classic database theory, oper-
ates by executing “queries”on stand-alone or real-time data. A well known open-
source event specification language for this category is ESPER1 for performing al-
gebraic operations on data streams, like aggregates, joins, selection and so on. The
second approach for event recognition systems consists of logical rules to represent
event patterns and rely on logical inferences to perform complex event recognition.
Some examples of systems in this category are ETALIS (Anicic et al., 2011), ASP
(Brewka et al., 2011), RTEC (Artikis et al., 2014). Logic-based systems have sev-
eral advantages over the non-logic-based ones. For example, logic-based systems
exhibit a formal, declarative semantics, whereas non-logic based event recognition
systems typically have informal procedural semantics (Cugola and Margara, 2010;
Bry and Eckert, 2007). More importantly, logic-based event recognition systems al-
low to represent and reason with complex relations between entities and utilize rich
background knowledge, contrary to non-logic-based systems.

Logic-based systems require a framework that models the effects of event oc-
currences on properties of a time-evolving system, as well as the duration of such
effects. This is a well-studied problem in the field of artificial intelligence, and sev-
eral temporal logical formalisms exist, designed precisely for that task, such as the
Event Calculus (Kowalski and Sergot, 1986). Such formalisms may be easily in-
corporated in logic-based event recognition systems, in contrast to non-logic-based
systems. The use of Event Calculus for event recognition is performed with success
in the past for several challenging real-world applications (Patroumpas et al., 2017,
2015). However, learning Event Calculus theories that allow us to define complex
events in terms of logical rules where axioms of the calculus are encoded in a logic
program under Answer Set semantics in order to reason and formulate queries over
the extracted events still remains a challenging task, while dealing with video data.

1.4 Problem Description
The focus of our work is to recognize complex events from the scene, starting from
the simple facts that are detectable from the visual information in the input video
frames. In particular, complex events can be characterized by conditions that may
involve the validity of certain situational variables and temporal facts: thus, their
recognition is not limited to verifying that certain sets of atomic events occur in the

1see https://www.espertech.com/esper/

https://www.espertech.com/esper/
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scene, but reasoning on different aspects of the represented situation is required in
general.

Requirements
To process complex event scenario, the following requirements are tackled in this
thesis with in an event-based paradigm.

• A system which supports the detection of meaningful events occurring in a
video.

• A system which exploits the state-of-the-art object detector, providing candi-
date objects for the recognition of events in the video.

• A logical machinery, to encode and satisfy the rules used to represent the de-
fined complex events.

Research questions
The requirementsmentioned above can be further presented into following research
questions.

• How can we perform object-detection and tracking for the extraction of basic
facts from the video?

• How can we exploit the basic facts extracted as simple events from visual data
to represent complex events using logical reasoning?

• How can we reason and formulate queries over the defined complex events?

1.5 Thesis Contribution
In this thesis, we approach the event recognition problem by aiming at bridging the
gap between the methods based on deep learning, used in the extraction of events
from the visual data, and logical reasoning, used for complex inferences on event
conditions. Intuitively, the goal of such hybrid solution is the possibility to exploit
the accuracy of learning and the rich semantic characterization of a logic based rep-
resentation for complex events. To achieve this objective, in this work we propose a
framework which combines both aspects: first, we make use of the state-of-the-art
object detector YOLO (You only look once)(Redmon et al., 2016) for extracting basic
information (appearance and movement) about objects from video streams. Events
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are then represented inside the logical framework of the Event Calculus (Kowal-
ski and Sergot, 1986), which allows for the definition of complex events: the cal-
culus and events representation are implemented as a logic program interpreted
under Answer Set semantics in order to reason and formulate queries about the
represented scenario. In this thesis, we demonstrate and evaluate our approach
over videos from two real-world use-cases, “occupancy of the parking slots” and
“soccer kicks”: in particular, we consider clips extracted from soccer matches and
parking lots and we apply our framework to classify them on the basis of a set of
complex events (namely “corner kick”, “free kick”, “goal kicks” and “occupancy
of the handicap slots” events) that can occur in these videos. We note that under-
standing of such complex events from videos is a very challenging task due to the
dynamics and variation of video sequences (e.g., different camera angles and cuts,
no fixed composition of video sequences).

1.6 Structure of the Thesis
The remainder of the thesis is structured as follows:

• Chapter 2. This chapter provides the state-of-the-art on event recognition in
videos with focus towards the hybrid approaches utilizing deep learning and
logical reasoning.

• Chapter 3. This chapter provides the necessary backgroundmaterial required
for this thesis, starting fromobjection and tracking and finally brief description
of logical reasoning frameworks for event representation.

• Chapter 4. This chapter explains two real-world applications considered to
show the applicability of our approach and the formal definition of events.

• Chapter 5. This chapter explains the extraction of simple events from videos.

• Chapter 6. This chapter explains the encoding of the rules under Answer Set
semantics in order to reason and formulate queries over the extracted events.

• Chapter 7. This Chapter discusses the existing datasets towards event detec-
tion in videos and the dataset created to perform experimental evaluation.

• Chapter 8. This chapter provides the performance evaluation of the the pro-
posed event recognition system. It also provides the comparison of the results
with the state-of-the-art.

• Chapter 9. This chapter provides a discussion and conclusion of the presented
approach. Here, we also discuss limitations and possible research directions.



Chapter 2

State of the Art

In this thesis, we are interested in recognizing events in the video, with particular
attention to the approaches that do event recognition by combining a data driven
approach (machine learning and image/video processing) with high level semantic
approach (logic, ontologies, and reasoning). For this reason, initially we discuss the
approach mostly followed by the computer vision community towards event recog-
nition in videos and the drawbacks attached to them. We then review a number of
approaches integrating sub-symbolic with symbolic knowledge, and the usage of
logical knowledge to recognize events in the video.

2.1 Video Event Detection
Event recognition in videos mostly focuses on understanding videos by classify-
ing them according to the predefined set of action classes. Many event detection
approaches rely on shallow low-level features such as SIFT (Lowe, 2004) for static
key frames and MOSIFT (Xu et al., 2014) for videos. A generic pipeline of a video
event detection system usually consists of the following procedure: feature extrac-
tion, pooling, and classifier training. State-of-the-art shallow video representation
makes use of this pipeline, e.g., dense trajectories (Van Gemert et al., 2015), where
feature vectors are obtained by tracking densely sampled points and describing the
volume around tracklets by histograms of optical flow (HOF) (Van Gemert et al.,
2015), histograms of oriented gradients (HOG) (Dalal and Triggs, 2005). To ag-
gregate video-level features, it then applies Fisher vector coding (Dalal et al., 2006)
on the low-level features to look for a structure from the extracted features using
clustering and then pool them in a way to improve classification.

On the other side, DeepNeural Network(DNN) architectures try to model high-
level abstraction of data by using model architectures composed of multiple non-
linear transformations. Considering the dynamic nature of videos, the encoding of
temporal information as input is a common trend: the concept involves extending

11
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the two-dimensional convolution to three dimensions, leading to 3D CNNs, which
includes temporal information as a distinct input (Tran et al., 2015; Ma et al., 2016).
Another approach to encoding temporal information is through the use of Long-
Short TermMemory (LSTM) networks (Ma et al., 2016). One of the most successful
frameworks for encoding both spatial and temporal information is the two-stream
CNN (Simonyan and Zisserman, 2014). The combination of 3D convolutions and
the two-stream approach recently reported for video classification received appre-
ciation from the scientific community. Early attempts adapt 2D convolutional net-
works to videos through temporal pooling and 3D convolutions (Ji et al., 2012). 3D
convolutional networks are now widely adopted for action recognition with the in-
troduction of feature transfer by inflating pre-trained 2D convolutional kernels from
image classification models trained on ImageNet through 3D kernels. LSTMs have
also shown signs of improved performance over the two-stream network for action
recognition (Donahue et al., 2015). In (Ma et al., 2016) authors have fed the CNN
features of the neighbouring frames to the LSTM architecture to detect actions hap-
pening at every frame. FewDNN-based approaches, NetVLAD (Arandjelovic et al.,
2016) and ActionVLAD (Girdhar et al., 2017) caught the eye of the research com-
munity, which look for co-relations between a set of simple actions representations.

The major drawback of these approaches lies in the fact that, due to the high ca-
pacity of the hidden layers, training them requires large amount of labelled data.
Whereas, sometimes it is still difficult for LSTMs to memorise the information of the
entire sequence, and the downside of 3D kernels is also their computational com-
plexity. Despite the mentioned concerns, deep learning-based action recognition
frameworks have been applied with some success in the domain sports activities,
e.g., event detection in soccer videos recently proposed framework (Liu et al., 2017)
combines temporal action localization using 3D convolutional networks and play-
break (PB) rules for soccer video event detection achieving satisfactory results. In
(Jiang et al., 2016) authors construct a deep neural network for soccer video event
detection combining CNN and RNN, taking advantage of Convolution Neural Net-
work (CNN) in fully exploiting features and the ability of Recurrent Neural Net-
work (RNN) in dealing with the temporal relation. Most of the end-to-end black
box architectures discussed above try to capture the pose, movements that are the
part of actions known as atomic actions (e.g., walking, running, surfing, riding etc.),
but suchmethods are not very successful in capturing semantically meaningful rep-
resentation of actions. Injecting semantic definition and structural knowledge in
these approaches is rather difficult: it is of great importance for the model to be
interpretable, and this is a part where neural networks fall short.
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2.2 Integration of Logical Reasoning and Deep
Learning

In AI applications, computers process symbols rather than numbers or letters. In
the Symbolic approach, AI applications process strings of characters that represent
real-world entities or concepts. The Symbolic approach possess few advantages e.g.,
it offers good performances in reasoning, and is also able to give explanations and
canmanipulate complex data structures. The key advantage of symbolic logic-based
approaches is that the program easily explains how a certain conclusion is reached
and what reasoning steps had been performed. On the other side, the origins of
non-symbolic AI come from the attempt to mimic a human brain and its complex
network of interconnected neurons. Non-symbolic Deep neural networks can learn
high-level abstraction from given input data, they also possess certain advantages
e.g., features are automatically deduced and optimally tuned for the desired out-
come. Massive parallel computations can be performed using GPUs and are scal-
able for large volumes of data. However, despite that optimisation process, during
learning it is difficult for humans to comprehend how a decision has been made
during inference time. Therefore, placing a logic network on top of a deep neural
network to learn the relations of those abstractions, can help the system to be able
to explain itself. The main challenge attached with these non-symbolic networks
is the requirement of large amount of data, whereas small datasets are more prone
to over-fitting. Most of the recent work in the domain of AI have either learning
capabilities or reasoning capabilities rarely they combine both. One of the major
challenges for computer scientists is to develop an effective AI system with a layer
of reasoning, logic and learning capabilities.

The integration of neural-symbolic computing aims at building a system where
it learns from the environment, and its ability to reason from what has been
learned(Garcez et al., 2019). It is evident from many recent studies (Serafini and
Garcez, 2016; Donadello et al., 2017; Tran, 2017) integration of logical reasoning
with deep learning can be helpful in not only improving the overall efficiency of
the neural network, also providing a rich semantic interpretation of the context.
This can be obtained by encoding logical knowledge during the training phase of
the model. The idea behind this is to extract symbolic knowledge from a specific
domain and transfer it to another domain in order to improve the overall learning
process. Another way is to place a logic network on top of deep neural network in
order to define learn relation of the facts extracted from neural network in making
the overall output more explainable. A very recent survey (Besold et al., 2017) on
neural symbolic learning and reasoning highlights the main characteristics and few
challenges towards the integration of neural-symbolic approach. Research towards
the integration of the two have shown promising results in the domain of comput-
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ing and cognitive neuroscience. The challenges for neural-symbolic integration lies
maintaining the right balance between expressive reasoning and robust learning
paradigm.

paper Keyword
(Wali and Alimi, 2010) visual descriptors, SVMs, video surveillance

(Parameswaran et al., 2013)
Object recognition,

object tracking, feature extraction,
video event detection, video surveillance.

(Jiang et al., 2018) Video Classification, Deep Learning, Framework, CNN
LSTM, Fusion

(Bhaskar et al., 2015)
Emotion Classification, Emotions Analysis,

Emotion Detection,
SVM, Speech Emotion Recognition

(Zhang et al., 2015) Multimedia event recognition, deep learning, fusion
(Gan et al., 2015) CNNs , Deep Event Network, spatial-temporal evidences
(Suchan et al., 2018) Reasoning with video data, answer set programming,

object tracking and motion analysis
(Prapas et al., 2018) Activity Recognition, Activity Reasoning,

C3D features,Event Calculus
Table 2.1: Few hybrid approaches towards event detection in videos

2.3 Hybrid Approaches Towards Video Event
Detection

In this section, we present an overview of the pertinent research work carried out
in recent years following hybrid approaches towards event detection in videos in
table 2.1. Research in this area generally falls into two major directions. Mostly the
computer vision community follows an approach in which model is learned from
given input data and with a specific learning paradigm, yielding output results uti-
lizing the learned model. Recently, some approaches use the information extracted
from the computer vision techniques and apply rule-based reasoning to reason on
extracted information and come up with semantically rich interpretations about the
context. We will briefly review few hybrid approaches mentioned in table 2.1 to-
wards event detection in videos.

In (Wali and Alimi, 2010) authors propose a strategy of combined SVMs learn-
ing system for the detection of predefined events in the video. The extraction and
synthesis of a suitable visual descriptor based on the movement of objects are used
for this purpose. They demonstrate the usefulness of the toolbox in the context
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of feature extraction, events learning and detection in a large collection of video
surveillance dataset. This paper (Parameswaran et al., 2013) presents an approach
for detecting and identifying moving objects by their color and spatial information.
The system makes use of the motion of changed regions in tracking multiple mov-
ing objects. The proposed model shows promising results for indoor environments
and different types of background scenes. Another hybrid approach (Bhaskar et al.,
2015) of audio and video has been applied for emotion recognition. The novelty of
this approach is the selection of audio and video features as a unique specification
for classification. Few more recent hybrid approaches e.g., (Jiang et al., 2018) fuse
spatial information, motion information and temporal clues to classify videos of ac-
tivities that have a general label. (Zhang et al., 2015) recognize complex events in
video data by fusing multiple semantic cues, including human actions, objects, and
scenes. They focus on complex event detection in videos while also providing the
key evidences of the detection result. They also generate a spatial-temporal saliency
map and find the key frames in the video which are most indicative of the event. In
this work (Gan et al., 2015) propose a deep CNN infrastructure, Deep Event Net-
work(DevNet), that simultaneously detects pre-defined events and provides key
spatial-temporal evidences. Taking key frames of videos as input, it detects the event
of interest at the video level by aggregating the CNN features of the key frames. The
pieces of evidences which recount the detection results, are also automatically local-
ized, both temporally and spatially.

Although the above-mentioned works have shown promising results in their re-
spective domains, they do not have a clear definition of complex events. Generally,
they use the term to describe events that contain interactions between different el-
ements. Although multimodal data fusion has been explored, they fail to fuse the
information at a semantic level to provide a clear explanation of the result. Finally, in
order to have good performance without the integration of human logic, learning-
based methods necessitate the consumption of large amounts of data with an ex-
pensive annotation process. For clarity, some works provide a formal definition of
complex events benefiting from the rule-based reasoning.

Some recent frameworks (Prapas et al., 2018; Suchan et al., 2018), leverages the
power of deep learning models to process raw data from a video. The instanta-
neous inferences made by the deep learning framework are then fed into rule-based
engines. Such rule-based engines allows for the definition of events that represent
a candidate complex event. For example, in this work (Prapas et al., 2018) authors
extract deep learned features from a state-of-the-art 3D convolutional neural net-
work, with which they train an SVM to classify simple actions. For the complex
ones, which involve interaction betweenmore than one individual, they use the rec-
ognized simple events to generate Event Calculus theories. This process is not very
accurate, as transformations that add noise are needed to prepare the input data to
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the pre-trained neural network. Another work (Suchan et al., 2018) implements a
hybrid architecture for computing visual explanations with video data. They im-
plement the theory for visual explanations combining visual processing for object
detection and tracking, and estimating movements in the scene, with ASP (Answer
Set Programming) based reasoning about events, objects, and spatial-dynamics over
a Movie Dataset. We follow a similar visual pipeline as discussed in (Suchan et al.,
2018), besides we provide a logic-based representation of events by using a realiza-
tion of the Event calculus that allows us to define complex events in terms of logical
rules. Axioms of the calculus are encoded in a logic program under Answer Set
semantics.

We motivate the significance of semantically-driven methods rooted in knowl-
edge representation and reasoning in addressing research questions pertaining to
explainability and interpretability particularly from the viewpoint of high level rep-
resentation of dynamic visual imagery. Although deep learning solutions have been
successful for many applications. We believe that there is a clear need and tremen-
dous potential for hybrid visual sense-making solutions (integrating vision and se-
mantics) towards fulfilling essential responsibilities involving explainability in the
domain of Artificial Intelligence.



Chapter 3

Background

This chapter provides some necessary backgroundmaterial for the thesis. We begin
with the state-of-the-art in the field of object detection and tracking. We then give
a brief overview of logic-based action recognition frameworks and rationale behind
our choice of Event Calculus formalism and the fundamentals of Answer Set Pro-
gramming.

3.1 Object Detection and Tracking

Object Detection
The literature on object detection is enormous and to have a detailed review is out
of the scope of this thesis. Hence, we list the most relevant recent works in the
domain of object detection. For every object detector the initial pipeline consists of
extracting region proposals. These are bounding boxes which potentially contain
an object. Work in the domain of region proposals can be divided into two broad
categories.

• Selective Search: It is based on grouping of pixels (Uijlings et al., 2013).

• Sliding Window: It is based on objectness percentage inside the window
(Alexe et al., 2012).

The Selective search algorithm works by computing hierarchical grouping, where
similar regions are grouped together based on their: shape, size, color and texture.
Selective search starts by over-segmenting the image based on the intensity of the
pixels. The most similar regions are then merged to generate a single region for the
whole image. Finally, similarity is calculated based on the likeness of color, texture,
and shape.

The Sliding Window algorithmworks on the idea of generating grids or windows
of multiple images taking into account various aspect ratios (sizes), angles, shapes,
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and then inputting them into a neural network for the classification. This whole
pipeline is repeated several times, which makes selective search algorithm compu-
tationally expensive.

Now we will discuss some of the most recent works in the domain of object de-
tection. Object detection in videos/images aims to detect objects belonging to a pre-
defined class and localize themwith bounding boxes in a given video stream. Object
detectors based on bounding boxes have seen a steady improvement over the years.
The real improvement in the performance of object detection was seen after the use
of deep learning techniques. Some of the state-of-the-art approaches for object de-
tection are discussed in the following paragraph.

OverFeat(Alexe et al., 2012) gives one of the first improvements in object detec-
tion with deep learning. It is based on a multi-scale sliding window implemented
with a Convolutional Neural Network (CNN).More recently, CNN-based object de-
tector was R-CNN (Girshick et al., 2014), which involved a two-stage pipeline: one
part of the system provides region proposals, then for each proposal CNN is used
for classification. To reduce the computational cost, Region of Interest Pooling is
used in FAST R-CNN (Girshick, 2015), leading to efficient results.Furthermore, the
most recent object detectors (Redmon et al., 2016; Liu et al., 2016) combine the two
tasks of region proposal and classification in one system. Single-shot object detec-
tors, YOLO (YouOnly LookOnce)(Redmon et al., 2016), SSD (single shotmulti-box
detector)(Liu et al., 2016) significantly improved the detection speed compared to
prior object detection systems.

Tracking
Object tracking is one of the important problems of computer vision. The process
can be defined as locking on to a moving object and being able to determine if object
in the current frame is same as the one in the previous frame. Object trackingmostly
works on the following assumption, it starts assigning a unique ID to all possible de-
tections in a frame and the subsequent frames try to carry forward those detections
with the same ID. If a certain detected object has moved away from the frame then
that ID is dropped. If a new object appears then they start off with a fresh ID. In real
world applications one needs to do bounding box detections, so a tracker needs to
be combined with a detector. Once we have the bounding box information for an
object with a ID in frame 1, there are several algorithms which can be used to assign
the IDs in the subsequent frames, we will discuss some of them.

Centroid based ID assignment (Nascimento et al., 1999). Using this technique
we can assign IDs by looking at the bounding box centroids. This can be done by
calculating centroids for each bounding box in frame 1. In frame 2, it looks at the
new centroids and based on the distance from previous centroids it can assign IDs
by looking at relative distance. The basic assumption is that frame to frame cen-



3.2 Recognising and Reasoning About Events 19

troids would only move a little bit. This simple approach works quite well as long
as centroids are spaced apart from each other.

Kalman Filter (Li et al., 2010). Kalman Filter allows us to model tracking based
on the position and velocity of an object and predict where it is likely to be. It mod-
els future position and velocity using gaussian distibution. When it receives a new
reading it can use probability to assign the measurement to its prediction and up-
date itself.

Deep Sort Algorithm (Wojke et al., 2017). This algorithm performs tracking
based on not just distance, velocity but also what that object being tracked looks
like. Deep sort allows us to add this feature by computing deep features for every
bounding box and using the similarity between deep features to also factor into the
tracking logic.

3.2 Recognising and Reasoning About Events
The formalization of logical reasoning and knowledge representation has evolved
over the years, keeping in view the dynamics of changing world. Attempts have
been made to automate the process of reasoning about common-sense knowledge,
i.e., knowledge about how theworldworks. Action recognition theories havemade a
significant progress in defining theoretical foundations to model complex domains.
The objective here is to briefly review some of the knowledge representation and
reasoning techniques from the action recognition point of view that have been devel-
oped and usedwith success by theArtificial Intelligence community. Some of the fa-
mous knowledge-based action recognition formalisms proposed include: Event Cal-
culus (Kowalski and Sergot, 1986), Situation Calculus(McCarthy, 1963), Fluent Cal-
culus, action language C+(Akman et al., 2004), Temporal Action Logics (Doherty
et al., 1998). The elements of all these formalisms consists of two entities: events and
fluents. Events are instantaneous occurrences, whereas fluents are used to describe
the state of the world and they persist in time until affected by an event. Situation
and Fluent Calculus use multiple time-line model, where each point in time has a
single predecessor point, but it may havemultiple successor points. Whereas, Event
Calculus consists of a single time-line for the occurrence of events. In the next sec-
tions, alongside the short overview of the Situation and Fluent Calculus, we also
justify our preferred choice of Event Calculus as a logical framework.

Situation Calculus
Situation calculus was first proposed by McCarthy (McCarthy, 1963), later formal-
ized by Lévesque and Reiter (Levesque et al., 1998; Reiter, 2001). It is designed for
knowledge representation to cater dynamic applications of the real world. In situa-
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tion calculus, the sequence of actions are represented by a term called situation. Re-
lation and functions whose truth value varies from situation to situation are termed
as (functional and relational) fluents. Main ingredients of the situation calculus in-
clude: actions, situations and fluents to reason about real-world complex scenarios.
Two axioms that define every action in situation calculus are called Successor State
and Action Precondition Sate. State axioms define the conditions under which an ac-
tion is executable and how fluents change after the action is performed respectively.
To utilize situation calculus theory in practice, a high-level programming language
Gologwas introduced by Levesque (Lévy and Quantz, 1997). One of the limitations
of the original situation calculus lies in the fact that it does not specify the explicit
duration of performing an action (Reiter, 2001). Hence, in (DeGiacomo et al., 2000),
the authors proposed an extension of Situation calculus which explicitly represents
time by adding a temporal argument to all instantaneous and concurrent actions.

Fluent Calculus
Fluent calculus was first proposed by Thielscher as a logical framework that defines
the sort of states in addition to actions, situations and fluents. Each situation in fluent
calculus represents a unique state. Unlike situation calculus, fluent calculus main-
tains a history of actions that have been performed, whereas, the former refers to
the actual fluents that hold. To utilize fluent calculus theory in practice, a high-
level programming language Flux (Thielscher, 2005) was introduced, which uses
the structure of constraint logic programming. It successfully encodes the incom-
plete states and update the states according to the declared primitive events. The
main advantage Flux language has over Golog is that it adopts the progression prin-
ciple (update axioms, to scale up well during long action sequences performed by
agents) in contrast to regression applied in Golog. Unlike situation calculus in flu-
ent calculus, time is parameterized as an argument of fluents and actions and new
sorts for concurrent actions.

Discussion and Comparative Study
Formany years, situation calculus remained one of themostwidely adopted formal-
ism for action recognition; still, many researchers work on it(Arenas et al., 2018; Ba-
tusov et al., 2019). Extensions of situation calculus support noisy input and stochas-
tic events (Bacchus et al., 1995). However, a major drawback of this approach lies
in the effort required to put theory into practice that limits its applicability in the
real-world complex domains. To their credit, both Situation Calculus and Fluent
Calculus use single time-line on which the events occur, which is suitable for action
recognition where the task is to recognise complex actions in time spaced sequence
of simple actions. Fluent Calculus despite its high-level expressiveness and signif-
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icant results achieved by Flux programming language, could not provide a unified
ontology for most of the problem encountered for complex domains.

In this thesis we employ Event Calculus another famous comprehensive action
recognition framework, which handles reasoning about action and change in a flex-
ible way. It also expresses the multitude of domains in its ontology. Furthermore,
active research in implementing reasoners for this calculus is combined with recent
success in other fields of logic programming, resulting in highly effective new rea-
soners that exploit Answer Set Programming planners.

Event Calculus

Event Calculus (EC) was first introduced by Kowalski and Sergot in (Kowalski and
Sergot, 1986) as a logic framework for representing and reasoning about events and
their effects. Since then, it has been successfully used in numerous event recognition
applications (Artikis et al., 2010),(Artikis et al., 2014), (Khan et al., 2019),(Artikis
et al., 2019). Several alternative formalizations and dialects of the Event Calculus
have been proposed over the years (Miller and Shanahan, 2002; Lifschitz et al., 2008).
Most of these dialects share an ontology consisting of (ordered) time points, events
and fluents. Time points are simply integers or real numbers. A fluent is a property
whose truth value may change over time, such as the location of a physical object.
The expressions referring to temporal entities that occur over some time interval are
called events.

After an event occurs, it may change the truth value of a fluent. It is assumed
that the value of a fluent is preserved in successive time points, if no event changes
its state. In particular, an event can initiate a fluent, meaning that the fluent is true
after the happening of the event, or terminate a fluent, meaning that the occurrence
of the event makes the fluent false. The calculus makes use of the predicates listed
in Table 3.1. The language provides predicates expressing various states of an event
occurrence: happens defines the occurrence of an event at a given time point, while
holdsAt states that a fluent holds in a point in time. The predicates initiates and ter-
minates specify under which circumstances a fluent is initiated or terminated by an
event at a specific time point. We also note some similarities of the chosen approach
with other rule based approaches for reasoning on events. For example, Cached
Event Calculus reasoner (jREC) presented in (Falcionelli et al., 2017) has been suc-
cessfully used with the aim to monitor the health status of patients. Etalis (Anicic
et al., 2011) provides a rich set of operators for specifying how composite events are
derived from primitive ones. A reactive and logic-based version of Event Calculus
REC (Reactive Event Calculus) is presented in (Bragaglia et al., 2012) for providing
a solid formal background for monitoring declarative properties of events.
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Table 3.1: Event Calculus predicates
Basic Predicates Description

holdsAt( f , t) fluent f is true at time-point t
happens(e, t) event e occurs at time-point t

initiates(e, f , t) if event e occurs at time-point t,
then fluent f will be true after t.

terminates(e, f , t) if event e occurs at time-point t,
then fluent f will be false after t

Reasoning About EC Theories

In our work, we are interested in exploiting the EC as a complex action recognition
framework, which requires a reasoning paradigm able to account for a dynamic,
evolving domain. Indeed, complex action recognition focuses on a running exe-
cution, which cannot be described by a single action but by a stream of event oc-
currences. The main objective is to infer how the occurring events impact on the
evolution of fluents. Researchers in (Ma et al., 2013; Kim et al., 2009) studied this is-
sue in the context of active temporal datasets, where the dynamic acquisition of new
facts changes the validity of timed data. In particular, they developed a Prolog-style
reasoning engine based on Answer Set Programming (Eiter et al., 2009). There exist
few examples of the recent works which successfully employed ASP for the recogni-
tion of action or events in the domain of multimedia (Al Machot et al., 2018; Suchan
et al., 2018).

3.3 Answer Set Programming

Answer Set Programming (ASP) is a declarative problem solving approach with
strong roots in non-monotonic reasoning and logic programming. It is mostly used
for automatic problem solving related to: common-sense reasoning, non-monotonic
inferences, modeling reasoning agents and much more. The basic idea behind the
use of ASP is to describe the problem by means of a logic program and provide so-
lutions to the problem, represented in the form of models of the program known
as (answer sets, or stable models). The description of the problem in ASP is pro-
vided in the form of rules, facts and constraints. The encoding of such problem
description is fed to the Answer Set Solvers which provide solutions by presenting
the alternative stable models of the input program.

The success of ASP lies on its ease of usage as a modeling language, and on
the variety of sophisticated algorithms and techniques for evaluating Answer Set
programs, which originated from research on computational complexity of reason-
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ing. Commonly used Answer Set solvers include: DLV1, Cmodels2 and Clingo3 etc.,
which are able to deal with large problem instances.

Syntax of Answer Set Programming
The basic component of any ASP program is an atom. An atom is an expression
of the form p(o1, . . . , on), where p is a predicate symbol of arity n, and o1...on are n
terms belonging to the predicate p, and n ≥ 0. An ASP Program is composed of a
collection of rules of the form given in (Schindlauer, 2006)

a1 ∨ ...∨ an ← b1, ..., bk not bk+1, ..., not bm, n ≥ 0, m ≥ k ≥ 0 (3.1)

The equation (2.1) shows the the syntax for disjunctive datalog. In the rule above
a1, ..., an, b1, ..., bm are known as literals. A literal is basically an atom or a negated
atom. An ASP rule is divided into two parts, head and a body. A head is a literal on
the left side of the rule and a body is a set of literals on the right side of the rule.
In the rule (2.1) we can say that a1, ..., an is the head of rule, while the conjunction
b1, ..., bk, not bk+1, ..., not bm is the body of rule. The head or the body in a rule can be
empty. A rule with an empty head literal is known as a integrity constraint, whereas
a rule with an empty body is called a fact.

Applications of Answer Set Programming
ASP applications can be divided into two main categories discussed by the authors
in (Falkner et al., 2018; Erdem et al., 2016). Firstly, from the perspective of academic
research where real-world data is employed by the research community to test
the feasibility of applying ASP-based problem solving paradigm. Then, from the
commercial aspect, many companies are investing their resources in ASP to solve
business cases with the help of academic people. We will structure the applications
of ASP starting from the application areas in the domain of artificial intelligence,
i.e. planning, classification, configuration. Afterwards, we will report on the recent
and emerging industrial applications of ASP, i.e. healthcare, robotics.

Planning: ASP is applied in many areas of planning such as: planning in
robotics, combination of monitoring, diagnosis and replanning (Nouman et al.,
2016; Erdem et al., 2015). In (Nguyen et al., 2018) a framework is proposed which
comprises a planning module, configuration module and a monitoring module for
the extraction of re-usage of phylogenetic trees. ASP-based system was introduced
to generate plans for setting up the space shuttle for manoeuvres (Nogueira et al.,

1http://www.dlvsystem.com/
2http://www.cs.utexas.edu/users/tag/cmodels/
3https://potassco.org/
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2001). Typically, such plans are prepared for standard situations without taking
into account the aspect of failure as it is not possible to take into account all possible
eventualities in case of failures. Hence, an ASP-based system was implemented,
which generates such plans to help the human controllers. ASP also serves as
an excellent framework for realizing knowledge-based planning e.g. conditional
planners (Yalciner et al., 2017).

Classification: Based on the need of customers, many systems provide a clas-
sification of items or services which best fits the needs of the customer. Following
this approach, the application of ASP exist in e-tourism and intelligent call routing.
The use of ASP in the area of classification is successfully applied by Telecom Italia,
where the classification system for incoming calls to contact centers of Telecom Italia
is implemented by a company called Exeura4. The company developed a platform
for customer profiling for phone-call routing based on ASP that is known as zLog.
The idea behind zLog is to classify customer profiles and try to anticipate their
actual needs for creating a personalized experience of customer care service. Such
a system makes use of the background data of each customer to anticipate the calls.
Operators are enabled to define categories by a decision graph, which is eventually
translated to ASP rules. Following this approach, a tourist advisor implemented in
the ASP was introduced in the e-tourism portal (Ielpa et al., 2009). Keeping in view
the priorities and preferences of the customers, the system automatically selects the
vacation packages which best fit the needs of the customer. The objective here is to
help the staff of the travel agency in analyzing the best possible solutions based on
the need of their clients in short time.

Configuration: The configuration of systems is regarded as one of the most
successful applications of the ASP. ASP was successfully employed for the con-
figuration of Linux packages (Gebser et al., 2011). Siemens evaluated ASP for its
RECONCILE 5 project. Afterward, Siemens successfully applied to configure parts
of a railway safety where specialised configurators failed to provide solutions for
some complex real-world instances. Another interesting application of ASP in the
area of configuration is the management of the workforce by the companies. If we
regard a configuration task as the selection of entities such that certain constraints
are satisfied, e.g., the total number of employees, the service provided by each em-
ployee, the skill set of employees, the role each and every employee in the company.
To accomplish such tasks, ASP is successfully employed by transshipment port
company in the city of Gioia Tauro(Ricca et al., 2012).

4www.exeura.eu
5http://isbi.aau.at/reconcile/
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Bioinformatics: In the domain of bioinformatics, for large scale biological
networks and datasets, ASP has been successfully employed to detect, explain, and
repair errors (Gebser et al., 2010). An abstraction of the protein structure prediction
problem is discussed in (Dovier et al., 2009). The use of ASP in genomics studies,
such as haplotype inference and phylogenetic inference, is investigated in (Erdem
and Türe, 2008). In (Dal Palù et al., 2016) authors employ ASP for the analysis
of cancer after searching time-dependent relationships in the genomic and epige-
nomic. In (Erdem and Oztok, 2015) they show how ASP is used for generating
explanations for complex biomedical queries related to drug discovery.

Robotics : ASP has been successfully employed for many robotic applications,
such as multi robot coordination, multi robot path finding, human-robot interac-
tion. The manufacturing industry makes use of the ASP to implement an optimal
plan for heterogeneous robots to manufacture a specific number of orders in a
given time frame (Erdem et al., 2013). Another interesting approach is to use ASP
for investigating plan failures while monitoring the execution of a specific plan
during monitoring over the Robot Operating System (ROS)(Erdem et al., 2015). In
(Havur et al., 2014), for the geometric re-arrangement of movable objects on a clut-
tered surface, ASP is employed to control themovements of robots on such a surface.

Software engineering and Embedded systems: In software engineering, ASP
is successfully applied for testing, particularly for constrained combinatorial testing
(Banbara et al., 2017). It turned out that the high-level implementation using ASP
showed excellent performance compared to specialised tools for testing. The design
of embedded systems is supported by systems synthesis during which a structural
representation is given to behavioural description for a specific task. To accomplish
this objective, ASP is integrated with background theories developed in the area of
embedded systems, allowing more sophisticated description for the complex sys-
tems(Neubauer et al., 2017) .

Comparison of ASP to traditional approaches
In this section, we address some of the useful features of the ASP and also highlight
some of the advantages of ASP when compared with other existing paradigms like
Prolog and Constraint Programming.

Useful Features

ASP comprises of several useful features, few of these features are mentioned
here. ASP supports a number of arithmetic symbols such as: addition, subtraction,
multiplication, integer division, exponentiation, absolute value, bit-wise AND,
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bit-wise OR, bit-wise exclusive complement. It also braces a number of built-in
predicates , e.g. equal, not equal, less than, less than or equal to , greater than,
greater than or equal to. There also exists an aggregate operation that works on
a multi-set weighted literals which evaluates some value. In combination with
comparisons, one can extract a truth value from an aggregate’s evaluation; thus,
obtaining an aggregate atom. It also supports the constraints to a logic program
that affects the occurrence of stable models in such a way that it eliminates the
stable models that violate the constraint.

ASP and ProLog: The semantics of ASP is more flexible towards multiple
views of the world. The same ideas cannot be implemented flexibly in Prolog and
can lead to confusion as the numerous possible views may manifest themselves
differently, depending on the respective query(De Vos et al., 2005). For example, in
ASP terms, Prolog would answer a query on x as true if there is at least one answer
set in which x is true. But, there is no mention of which of the answer set is true.
Another query on y might also be true, but an additional query would be required
to infer if x and y are true simultaneously. The order of rules is flexible in ASP;
on the other hand strict in Prolog, change in the rules might cause the working of
the program to be less effective or useless. In this sense, ASP is more declarative
and its semantics are more robust to the changes in the order of literals in the rules
(Brewka et al., 2011).

ASP and Constraint Programming: Modeling of problems into constraints
requires a strong mathematical background, and certain level of expertise in
constraint modeling. Whereas, ASP is simple in a sense, it was developed with
knowledge representation applications in mind and their constructs were de-
signed to capture patterns of natural language statements, definitions, and default
negation(Brewka et al., 2011).
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Event Calculus in Answer Set Programs
In literature another popular choice closely related ASP for encoding the EC prob-
lem is satisfiability (SAT)-based approach from (Mueller, 2008) . Discrete event
calculus (DEC) reasoner which uses SAT to solve EC problems can be used to per-
form automated reasoning and model finding. The limitation of these SAT based
approach lies in the fact it can not handle certain recursive axioms of the event calcu-
lus, whereas, ASP based approach can compute the full version of the event calculus
assuming that the domain is given and finite. Compared to SAT solving, ASP offers
many constructs besides negation as failure, and, importantly, allows also problem
descriptions with predicates and variables. This can be utilized for generic problem
solving. An implementation of the Event Calculus in answer set programs is pro-
vided in (Mueller, 2014).The EC axioms determining the relation across fluents and
events are defined by the rules that follow.6

initiated(F, T) ← happens(E, T), initiates(E, F, T). (3.2)
terminated(F, T) ← happens(E, T), terminates(E, F, T). (3.3)

holdsAt(F, T1) ← holdsAt(F, T),¬terminated(F, T), time(T), T1 = T + 1. (3.4)
← holdsAt(F, T1),¬holdsAt(F, T), (3.5)
¬initiated(F, T), time(T), T1 = T + 1.

holdsAt(F, T1) ← happens(E, T), initiates(F, T), time(T), T1 = T + 1. (3.6)
← holdsAt(F, T1), happens(E, T), terminates(F, T), (3.7)

time(T), T1 = T + 1.

Axioms (2.2) and (2.3) state that a fluent is initiated with the occurrence of an event
that initiates it, and that fluent will be terminated when another event occurs and
terminates it. Axiom (2.4) states that if a fluent holds at time-point T and is not
terminated in T, then the fluent is true at the next time-point T1. Axiom (2.6) states
that if a fluent is initiated by some event that occurs at time-point T, then the fluent
is true at T1. Constraint in Axiom (2.5) state that it can not be that a fluent F that is
not initiated nor true at time T becomes true at time T + 1. Similarly, constraint in
axiom (2.7) states that it can not be true that fluent F holds at time T + 1 if an event
happened at time T that terminated F.

6We use the DLV syntax of rules (in particular, for the use of functors and number operations in
rules).





Chapter 4

Complex Event Detection Using Event
Calculus

4.1 Introduction
We propose a generalized approach CEDEC (Complex event detection using event
calculus) for detecting and predicting events in videos. Events can be broadly classi-
fied into two categories (Simple and Complex) according to their abstraction levels.

(i) The occurrence of simple events are not dependent on other events. For ex-
ample, in a video scene, the appearance or disappearance of objects from the scene
can be termed as "simple events". Whereas, complex event detection often involves
complicated interactions among objects in the scene. Complex events often provide
rich semantic understanding of the context in videos.

(ii) The proposed architecture uses deep convolutional neural networks based
methodology for the extraction of simple events from videos. Rule-based logical
reasoning on the extracted simple events for the definition and extraction of complex
events.

CEDEC enables the analysis of unstructured video data for the extraction of sim-
ple events which leads to the recognition of complex events after satisfying the va-
lidity of certain logical conditions and temporal facts. The proposed framework
can support different kinds of operations on multiple applications e.g., Transporta-
tion, Entertainment, Security, Energy Consumption, Temperature readings, etc. In
autonomous vehicle application, our proposed approach can determine the simple
events of the types, appearance and disappearance of vehicles and pedestrians, and
this could be useful to predict the complex event of the type "collision". The en-
tertainment industry in recent years has attracted an increasingly large and diverse
group of people. Most of the scenes involve multiple moving objects and moving
cameras. Object detection and tracking with the movie dataset will result in simple
events explaining the occurrence of missed detection, occlusion, and re-appearance,
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as well as objects entering, and leaving the scene. Based on this information and
chosen high-level commonsense knowledge representation and reasoning method
complex events can be detected. Similarly in the surveillance application, detec-
tion of simple events e.g, appearance and disappearance of persons and other ob-
jects entering and leaving certain premises of sensitive buildings can be helpful to
detect complex event of the type "theft". The proposed framework can utilize ex-
isting deep learning based feature extraction models, and semantically rich event
recognition logical frameworks irrespective of their domain and nature of events.
Figure 4.1 demonstrates the interaction of the proposed systemwith different appli-
cations from simple to complex events defined in more detailed in Figure 4.2. Our
method follows two phases: (1) objects are detected and tracked from every single
frame using YOLO, providing simple events such as appearance and disappearance
of an object; (2) based on those candidate objects and simple events, complex events
are represented in the logical framework of the Event Calculus. Reasoning on com-
plex events is obtained by encoding in logic programs under Answer Set semantics
(in particular, programs are run using DLV (Leone et al., 2002)). More details about
the simple event detection pipeline are provided in Chapter 5, e.g, type of object de-
tector and tracker used to determine appearance, disappearance and movement of
objects. Whereas, Complex event detection pipelines are provided in Chapters 6,
e.g, implementing the theory of Event Calculus to represent complex events related
to the detected objects, and a declarative programming language, Answer set pro-
gramming to implement the logical rules respectively. In the following sections, we
detail the description of the use-cases, and the formal definition of events.

4.2 Example Use-Cases
Use-case 1: handicap parking occupancy The deployment of sensors in parking
lots to address the issue of automatic parking-lot detection is performed with great
success, but results in high deployment cost. Recently, smart cameras have been
used to detect the occupancy of the slots in real-time relying on CNN-based sys-
tems (Amato et al., 2016; Ma et al., 2016). But, most of these camera-based solutions
cannot be generalized for different parking lots. Visual occupancy detection in park-
ing lots essentially involves the detection of vehicles (car, bike, bus, etc.) and park-
ing spaces. However, to the best of our knowledge, the detection of vacant parking
space for people with special needs by considering visual information and logical
reasoning is still an open problem. We recognize the occupancy of the handicap slot
as a complex event, with visual conditions defined by the time line in Figure 4.3: we
recognize the beginning of the event at time T0 when the car and the handicap slot
appear in the scene; then at time T1 the handicap slot disappears from the scene; and
reappears at time T3, whereas from T1 to T2, the car remains parked on the handicap
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Figure 4.1: CEDEC (Complex event detection using event calculus)

Figure 4.2: Block diagram of the proposed architecture.

slot.
Use-case 2: soccer kick events. To show the applicability of our approach, we

also consider the case of videos from soccer matches, in particular videos edited in
the style of television or streaming broadcasting. Several atomic and complex events
related to the soccer match happenings can be recognized, e.g., goals, substitutions,
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Figure 4.3: Time line definition for the “parking occupancy” complex event

fouls, off sides, etc.In this work we concentrate on recognizing different types of
“kick” events, namely different situations inwhich thematch has been stopped (e.g.,
after a foul) and the game is resumed by some player kicking the ball. In particular,
we consider three common cases: corner kicks, goal kicks and free kicks.

A corner kick is an action occurring when the ball passes over the goal line by
being hit by a player of the defending team: the ball is put into play by a player of
the attacking team by taking the kick from the flag on a corner of the playing field.
We recognize a corner kick event as a complex event, with visual conditions defined
by the time line in Figure 4.4: we recognize the beginning of the event at time T0

whenever the ball is seen close to a flag; then at a successive time T1 a player should
come near the position of the ball and kick the ball (i.e. cause the movement of the
ball) at time T2; after the ball has been kicked (usually towards the goal), we require
that at T3 the goal post is visible in the scene.

A free kick occurs when the game has been stopped due to a foul (or other soccer
rules infringement): the game is resumed by a player kicking the ball fromaposition
inside the field of play. The definition of the complex event for free kick is thusmore
relaxed than the one for corner kicks, as shown in Figure 4.5: at the beginning of
the event at time T0, a player comes in possession of the ball; then at time T1 the
ball is kicked (and thus the ball moves at the successive time point T2). No further
conditions on the visibility and nearness of other objects is required: clearly, we have
also to constrain that event types are disjoint and nomultiple kick events can happen
simultaneously.

A goal kick is an action occurring when the ball passes over the goal line being
hit by the player of the attacking team. Goal kicks are mostly taken by goalkeepers
within the defending goal area (referred to as the six-yard box), where often there is
the visibility of the goalpost. We recognize goal kick, with visual conditions defined
in the time line in Figure 4.6: we recognize the beginning of the event at time T0

whenever the goalpost is visible in the scene; then at a successive time T1, a player
should come near the position of the ball and kick the ball (i.e. cause the movement
of the ball) at time T2 and T3, respectively.
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Figure 4.4: Time line definition for the “corner kick” complex event

Figure 4.5: Time line definition for the “free kick” complex event

Figure 4.6: Time line definition for the “goal kick” complex event

4.3 Video-events
A precise ontological definition of events discussed above is still an open point. To
the purpose of this thesis we take the approach recently proposed in (Skarlatidis
et al., 2015) to define the events discussed in the soccer kicks use-case following the
same structure from our previous work (Khan et al., 2018).

Simple Events

A simple event type is defined as follows:

SE = 〈ID, seType, t, 〈role1, oType1〉 , . . . , 〈rolen, oTypen〉〉 (4.1)

where ID is the identifier, seType is the event type, e.g. “kicking the ball”, and t is
the time instant in which the event occurs, role1 . . . , rolen (n = 1, .., nmax) are the
roles that different objects play in an event of this type, e.g. one role of simple event
“kicking the ball” is the subjectwho kicks and a second role is the kicked object; finally
oTypei is the legal type of object that can play the role rolei, e.g., it is only playerswho
can kick, and only balls can be kicked. Summing up, the complete definition of the
event type “kicking the ball” is
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〈ID, Kicking_the_ball, t, 〈Kicking_Player, player〉 , 〈Kicked_Object, ball〉〉

A specific instance of an event of simple type defined in (4.1) is the following tuple:

〈ID, seType, t, 〈role1, O1〉 , . . . , 〈rolen, On〉〉

where ID is the event identifier, O1 and On are identifiers of objects detected in the
frame associated to the time t, respectively. The instance of “Kicking_the_ball”

〈12, Kicking_the_ball, t, 〈Kicking_Player, obj02〉 , 〈Kicked_Object, obj01〉〉

describes a simple event of type “kicking_the_ball” that happened at time t, where
the obj02 throws the obj01. Furthermore obj01 and obj02 are two objects detected in
the frame corresponding to time t, of type ball and player respectively.

Complex Events
Complex events are built by appropriately aggregating events, previously defined.
More precisely, starting from simple events, we can apply logical operators or tem-
poral operators to build higher-level complex events. We can thus define the hier-
archy of events, from the lowest level including the simple events to the higher and
higher levels corresponding to more and more complex events.

• Complex events stems from the application of logical operators like AND, OR,
NOT to a set of events which may be simple or complex.

CE = 〈ID, ceType, t, L =< e1 op e2 op...op en >〉

where ID is the event identity, ceType is the complex event type (such as “The
goal is valid only if there is no foul”), t is the time instance in which the
complex event occurs, L is the set of lower-level simple or complex events
e1. . . . . .en joined by logical operators op (i.e. AND, OR, NOT).

4.4 Examples of Complex Event Definitions
One of the most interesting things about soccer analysis is the ability to recognize
events, such as free-kicks, corner-kicks, goal-kicks, ball possession, etc. from a
common video. Most of the videos previously used in the event recognition use
multiple fixed cameras to observe the position of all the players and the ball on the
soccer field (Girshick et al., 2014). The use of such cameras improves the overall
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accuracy of the system for object tracking but they are computationally expensive.
The fragment of video clips we have used can be easily accessible from the internet.

Player ball possession Event: Player ball possession starts when a player begins
to interact with the ball and ends when the player is no more able to perform any
action with the ball or there is game interruption. We can also state this in a formal
way: the event occurs when the distance between a player and the ball is below a
threshold value and that player is the nearest to the ball.

〈
ID, Player_Ball_Possession, t + k̃, 〈Poss_Player, pi〉 , 〈Poss_Object, b〉

〉
←

player(pi), ball(b), D(pi, b, t) < Th,

∀j 6= i, player(pj), D(pj, b, t) > D(pi, b, t) ∧
∀k = 1 . . . k̃, D(pi, b, t + k) ≈ 0

The event “Ball possession” occurs when the distance D (pi, b, t) between the
player pi and the ball b at time t is less than the threshold Th, and the distance D
(pj, b, t) between the ball and any other player pj, j 6= i, is greater than D(pi, b, t).
Also, after interaction, the distance between the player and the ball is very low
for an appropriate number of consecutive frames. The value Th determines the
threshold value for a player being able to physically interact with the ball and must
be calculated experimentally.

Free-kick Event: In soccer videos, with reference to the consecutive sequence
of frames, the event corresponding to “Free kick” is identified, initially if the
distance between a player and the ball is very low for a few frames. Then, if the
distance between a player and the ball increases in an appropriate number of the
subsequent frames and the player is no longer able to interact with the ball. We can
formally define the event “Free kick” as follows:〈

ID, Free_Kick, t + k̃, 〈Kicking_Player, pi〉 , 〈Kicked_Object, b〉
〉
←

player(pi), ball(b), D(pi, b, t) < Th ∧
∀k = 0 . . . k̃− 1, D(pi, b, t + k) < D(pi, b, t + k + 1)

The expression above holds true as long as the distance between the player and
the ball increases after their interaction.

Corner-kick Event: Keeping in view the conventional definition of the corner-kick
event in use-case 2, objects involved in defining a Corner Kick consist of a Kicking
Player (KP) pi, Kicked Object (KO) ball, Flag f , and Goalpost g. Initially, the
distances between the ball and the flag, and the player and the ball are less then
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respective thresholds Tb f and Th. With reference to the consecutive sequence
of frames, after the player ball interaction, the distance between player and ball
increases and goalpost remains visible in the scene.〈

ID, Corner_Kick, t + k̃, 〈KP, pi〉 , 〈KO, b〉 〈Flag, f 〉 , 〈GP, g〉
〉
←

player(pi), ball(b), f lag( f ), goalpost(g), (D(b, f , t) < Th

∧ D(pi, b, t) < Tpb) ∧ ∀k = 0 . . . k̃− 1, (D(pi, b, t + k) < D(pi, b, t + k + 1))

Goal-kick: Goal kicks can be defined in the similar manner as free-kicks. The
prominent difference between goal kicks and free-kicks is the visibility of the goal-
post when a goal kick takes place.〈

ID, Goal_Kick, t + k̃, 〈KP, pi〉 , 〈KO, b〉 , 〈GP, g〉
〉
←

player(pi), ball(b), goalpost(g), (D(pi, b, t) < Th ∧
∀k = 0 . . . k̃− 1, D(pi, b, t + k) < D(pi, b, t + k + 1)

We remark thatwhile defining the events, we are not considering all special cases
that might occur during the game. In some cases, the player does not interact with
the ball and runs beside the ball without touching it. Player ball possession only
starts with the first touch. Also, considering ball possession for the player nearest
to the ball is wrong, e.g. when that player is standing with back to the ball. Further-
more, for corner kicks, it is not mandatory that after the kick happens, there must be
the visibility of the goalpost as in some cases, the player can kick the ball in the other
direction. Similarly, for goal kicks, visibility of the goal post is strongly dependent
upon the position of the camera.



Chapter 5

Simple Event Detection in Video

Object detection and tracking are arguably the most important problems in the field
of computer vision. The extraction of simple events events takes place using the
object detector and tracker. In this Chapter, we review the state-of-art object detector
Yolo, and also discuss how it works as a tracker on the two use-cases discussed in the
previous chapter. We also throw some light on the detected objects leads to simple
events.

5.1 Yolo
Yolo is a recent approach for object detection from images and videos, where de-
tection is treated as a regression problem, predicting spatially separated bounding
boxes with a certain probability. The key idea behind yolo is the use of small con-
volutional filters applied to feature maps of bounding boxes to predict the category
scores, using separate predictors for different aspect ratios to perform detection on
multiple scales. It uses a single network for the prediction of bounding boxes and
class probabilities, whereas most of the regional proposal-based object detectors
have one part of their systemdedicated to providing region proposalswhich include
re-sampling of pixels and features for each bounding box, followed by a classifier to
classify those proposals. These methods are useful and accurate but at the same
time, computationally expensive and results in a low frame rate. The architecture of
yolo is shown in Figure 5.2, which consists of 24 convolutional layers and two fully
connected layers. yolo takes an input image and resizes it to 448×448 pixels. The
image further goes through the convolutional network and gives output in the form
of 7×7×30 tensor. Tensor gives the information about 1) coordinates of bounding
boxes 2) confidence score of all classes. Using a specific threshold eliminates class
labels below a specific threshold.
A more detailed explanation on how yolo operates (Redmon et al., 2016) is the fol-
lowing: it divides the entire input image into a grid of size S × S, where each grid
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cell predicts fixed number of bounding boxes. Such bounding boxes allow one grid
cell to detect multiple objects. In Figure 5.1, we see that the input image on the left
consists of a dog, a bicycle and a car overlapping in the image. Since the output
vector of each grid cell can only have one class, then it will be forced to pick either
the dog, bicycle or car. But by defining bounding boxes, it can create a longer grid
cell vector and associate multiple classes with each grid cell. Bounding boxes have
a defined aspect ratio, and they try to detect objects that particularly fit into a box
with that ratio. For example, since in thementioned example, we are detecting three
objects we should define one bounding box that is roughly the shape of a dog, an-
other bounding box slightly wider that can fit a bicycle inside of it. The test image
is first broken up into a grid and the network then produces output vectors, one for
each grid cell. These vectors tell, if a grid cell has an object inside it or not, and what
class the object belongs to and finally the bounding boxes coordinates for the object.
Summarizing for each grid cell(Jonathan Hui, 2018):

• it predicts B bounding boxes and each box has a specific confidence score.

• it predicts C conditional class probabilities (one per class for the likeliness of
the object class).

Most of the predicted bounding boxes will have a very low probability of ob-
ject being present inside it. After producing these output vectors, yolo uses non-
maximal suppression to get rid of unlikely bounding boxes. For each class, non-
maximal suppression gets rid of the bounding boxes that have a confidence value
lower than some given threshold. The first step in non-maximal suppression is to
remove all the predicted bounding boxes that have a detection probability less than
a specific threshold. After removing all the predicted bounding boxes that have a
low detection probability, the second step is to select the bounding boxes with the
highest detection probability and eliminate all the bounding boxes whose Intersec-
tion Over Union (IOU) value is higher than a given IOU threshold. It then selects
the bounding boxes with the highest class probability and removes bounding boxes
that are too similar to this. It will repeat this until all of the non-maximal bounding
boxes had been removed for every class. The end result will look like the image in
Figure 5.1 on the right.
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Figure 5.1: yolo grid, (Redmon et al., 2016)

Figure 5.2: yolo architecture, (Redmon et al., 2016)

5.2 Training Yolo
Figure 5.3 shows the steps in the form of a flow chart for training yolo. For training
we use convolutional weights that are pre-trained on Imagenet. yolo needs some
specific files, namely (.data, .names and .cfg) to know how and what to train. The
.data and .names files address the number of classes for which we are training the
system, paths to training and validation set files, and the backup path where we
want to store the yoloweights files after every iteration. In the configuration file, the
batch size (images for every training step) and filter size are set. As mentioned here
(Shinde et al., 2018), yolo requires the following files to start training :

• Pre-trained convolutional weights.

• Total number of action and object classes.

• Text file with the path to all frames for training and validation.

• The path to save trained weight files.

• Configuration file with all convolutional and fully connected layers of yolo
architecture, along with batch size and filter size.
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Figure 5.3: yolo training, (Shinde et al., 2018)

The value of the filter size is not randomly assigned in the configuration file, it
depends upon the number of classes. For example, if we are training the system to
detect 4 classes, filter size can be determined as filters= 5 * (2+ number of classes).
Hence, for 4 classes it will be 30.

Evaluation of Yolo: In order to evaluate the performance of yolo the dataset
for parking occupancy use-case was collected from parking lots of National Univer-
sity Ireland Galway(NUIG) after the security clearance, where fixed cameras were
used to record video clips. The total duration of the video clips is approximately 4
minutes, composed of multiple sequences, where each sequence is approximately
12 to 15 seconds, depicting the event of interest (parking of cars on the handicap
slots) under different viewing conditions including camera movement, ego-motion,
change in illumination, clutter, motion artifacts. The dataset for the soccer use-case
at our disposal consists of approximately 5 minutes long video, consisting of ap-
proximately 7.5k manually annotated frames with four objects classes (player, ball,
flag, goalpost), each clip depicts a specific action under different viewing condi-
tions. Both data sets are manually created using a video annotation tool Vatic. It
allows annotating objects inside each frame drawing a bounding box around them.
The output of this process is a set of images with relative bounding boxes coordi-
nates saved in yolo format. Such data set is later organised in manner to be used as
a training set to produce automatic annotations of objects using yolo.

A common practice to evaluate the performance for object detection task is by
assessing the Average Precision (AP) of each class. AP score is defined as the mean
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precision on the set of 11 equally spaced recall values, Recalli = [0, 0.1, 0.2, . . . , 1.0].
Thus,

AP = 1/11 ∗ (APr(0) + APr(0.1) + ...APr(1)) (5.1)

Like any other object detector, yolo is trained on a fixed set of classes, so it would
locate and classify only those classes in the image. The location of objects is gen-
erally in the form of a rectangle box known as a bounding box. Therefore, it in-
volves both the localisation of the object in the image and classifying that object.
The standard approach to evaluate the performance for image classification prob-
lems is the metric of precision, but it cannot be directly applied here, as here both
the classification and localisation of a model need to be evaluated. This is where
average precision comes into the picture. The metric that tells us the correctness
of a given bounding box is the Intersection Over Union (IOU). IOU measures how
much overlap exists between the ground truth and actual prediction: this measures
how good is our prediction in the object detector with the ground truth (the real
object boundary). For every correct detection that model reports, IOU with ground
truth is calculated, using this value and a fixed IOU threshold, it then calculates the
number of correct detections (True Positives) for each class in an image. Once the
system has calculated the number of correct predictions and the missed detections
(False Negatives), we can calculate the Recall of the model for that class using this
formula Recall = TP/(TP + FN).

Object AP
player 80.46
flag 88.63
goalpost 90.33
ball 51.2
handicap slot 90.55
car 90.76

Table 5.1: Average Precision of the objects.

Table 5.1, shows the average precision of the objects at Intersection over union
(IOU) threshold of (0.5). As it is evident from the table, yolo has problems to detect
small objects, the reason stands in the fact, that the feature map it uses consists of
very low resolution, and the small object features get too small to be detectable.
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5.3 Pros and Cons of Yolo

Pros
When comparedwith conventionalmethods for object detection, yolo possesses cer-
tain advantages.

• It is fast, and a streaming video can be processed in real-time within few mil-
liseconds.

• It consists of a single pipeline for both classification and localization.

• It works better than other detectors when generalizing from real world images
to other domains like artwork.

• It maintains spatial diversity while making predictions.

• It consists of active online community.

Cons
Despite being extremely fast, yolo imposes spatial constraints on bounding box pre-
dictions in situations when the number of nearby objects appears in close proximity,
such as, crowd of people or flock of birds. Another disadvantage remains in diffi-
culty in generalizing in some cases for new objects with an unusual aspect ratio. It
also struggles with small objects.

5.4 Examples of Yolo Output
Figures 5.4 and 5.5, shows the results for detection and tracking produced by yolo
over the sequence of frames, where a car moves towards the handicap slot and oc-
cupies the handicap slot for the first use-case. Whereas, for the second use-case,
Figures 5.6, 5.7 and 5.8, shows the results of yolo for the detection of objects, while
the inputs are free kick, corner kick and goal kick respectively. The sequence of
frames over the period provides the co-ordinates of the bounding for the objects in-
volved during the occurrence of free kick, corner kick and goal kicks respectively.
The extracted information about objects and simple events derived from the visual
data can be considered as the output of the first phase of our workflow: this knowl-
edge will then be used as the input instance data of the logic based representation
of events in the second step of the workflow, detailed in the following Chapter.
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5.5 Simple Event Detection from Yolo Output
In order to extract simple events, we use yolo as an object detector and tracker, It uses
optical flow method from OpenCV 1 to track objects by determining the pattern of
motion of objects for two consecutive frames, which occurs due to the movement of
the objects, helping in image segmentation and tracking. It works on the following
assumptions. (1) Pixels grouped with a similar motion, result in a blob of pixels for
all objects having different motion. (2) Intensities of pixels do not change between
consecutive frames. (3) Neighbouring pixels have similar motion. We trained the
system to detect four objects: player, ball, flag, goalpost.

The objects extracted from yolo consist of a unique frame identifier, class iden-
tifier, track identifier and bounding box co-ordinates for each object in the video.
This information is post-processed using Python for the extraction of simple events,
which include: appears, disappears, moves, close. The appearance and disappear-
ance of the objects are simply identified from the track identifier of the objects.
Whereas, the closeness and movement of objects are determined based on the cen-
troid distance between the objects. For example, close(a,b) could be more precisely
defined by specifying the threshold on the distance between a and b.

1see https://opencv.org/ and https://github.com/AlexeyAB/darknet

https://opencv.org/
https://github.com/AlexeyAB/darknet
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car moving to the handicap parking slot car parked at the handicap slot
Figure 5.4: Object detection using yolo

car3 moving to the handicap parking slot car3 parked at the handicap slot
Figure 5.5: Object tracking using yolo
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Figure 5.6: Example of free kick defined in the context of soccer. The sequence of
frames represents the occurrence of a free kick.

Figure 5.7: Example of a corner kick defined in the context of soccer. The sequence
of frames represents the occurrence of a corner kick.
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Figure 5.8: Example of a goal kick defined in the context of soccer.The sequence of
frames represents the occurrence of a goal kick.



Chapter 6

Inferring Complex Events from
Simple Events

6.1 Logical Reasoning
Logical reasoning is a process that involves taking information about a particular
aspect of the real-world scenario and making inferences based on our knowledge
of the situation or how the world works. Logical reasoning allows us to reconstruct
the given situation so as to make predictions about what will happen in the future
or to draw conclusions about what happened.

Logical reasoning comes naturally to us (humans) and appears to be simple;
on the contrary, despite all the advances in recent times in the domain of artificial
intelligence, it is still a challenging problem for computers. As an example scenario,
if we consider the case of Handicap parking occupancy discussed in Chapter 3. To
automate common-sense reasoning about such a scenario, the first step is to build
the representation of the situation, which defines the structure of the scenario in
terms of logical rules and facilitates the automated reasoning process.

The formal representation to any given scenario requires to represent objects in
the given problem. For example, in use-case 1, objectswhich represent the discussed
situation include cars and handicap slots. Second, we must describe the properties
of the world that change over time, e.g., how the variation of time changes the lo-
cation of objects in the scene. Lastly, we should also observe how the occurrence of
certain events gives origin to other activities. For instance, the disappearance of the
handicap slot from the scene provides a license to a parking event.

After forming a formal representation of the scenario, we should be able to per-
form reasoning. Our goal should be to achieve automation; hence, the method of
logical reasoning should be expressed in the form of rules or an algorithm taking
as basic input facts from any given context to produce a precise output. We should
not only reason about the specific event and its effects, but we must also be able
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to represent and reason about concurrent events and their implications. We should
also be able to express if certain simultaneous events are possible or not in any given
scenario by expressing constraints in the rules.

6.2 Temporal reasoning
Temporal reasoning is an essential requirement to reason for video data. It can
help to detect complex events. The relations between simple events define com-
plex events. For example, in the given scenario of soccer kicks, simple facts such as,
the appearance and disappearance of players, ball, flag, and goalpost must be iden-
tified before the extraction of the complex event of the type free kick, corner kick,
goalpost. Temporal reasoning is used to detect the sequence of simple activities that
occurs over time. Additionally, it can also be used to identify abnormal behavior in
the context; for example, some objects in the scene keep appearing and disappearing
for very short intervals. Hence, keeping in view, the factor of time while reasoning
on simple and complex events is of primary importance along with the availability
of accurate and complete data.

Logical Reasoning in Temporal Domains
Several approaches exist that attempted to learn temporal action theories (Lorenzo
and Otero, 2000; Lorenzo, 2002; Rodrigues et al., 2010). These approaches replace
inertial axioms involving non-monotonic operators by rules which specify the non-
effects of events and make use of the monotonic logic programming approaches to
learn from narratives (Inoue et al., 2005). In the domain of process mining, where
the input consists of logs, e.g., a set of sequence time-stamped traces of events, tem-
porally ordered that capture some specific business logic. The standard approach to
deal with process mining is Event-driven Process Chains(Van Dongen and Van der
Aalst, 2004), but logic-basedmethods have been attracting attention because of their
ability to induce processes in the form of rules that describe dependencies between
the events. A logic-based framework SCIFF (Alberti et al., 2008) used in (Chesani
et al., 2009) to represent actions. It comprises of a logic-based system to learn pat-
terns of the traces of action in the form of SCIFF rules. Such rules contain events in
the body and conjunctions or disjunctions in the head.

The Chronicle Recognition System (CRS)(Ghallab, 1996) is another temporal
reasoning system. It is a temporal constraint network, where the definition of high-
level events is linked together by a set of low-level events via a set of temporal
constraints. CRS has been successfully used in many real-world applications like
medical applications and computer networks (Quiniou et al., 2010; Dousson and
Le Maigat, 2007) for event recognition. Another interesting application of CRS is
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in the stock market(Badea, 2000), where trading rules are represented in the form
of “buy/sell” policies from historical market data organised in temporal manner.
Every trading rule defines a pattern trading technical indicators.

There exist many works for the incorporation of temporal reasoning into ASP
solving technology, one recently proposed in (Cabalar et al., 2018) works by intro-
ducing a variant of Temporal Equilibrium Logic. It offers expressive and semanti-
cally rich language for modeling dynamic systems in ASP. It also enables a logical
analysis of temporal properties from simple ASP specifications or other event recog-
nition languages. In the next sections, we will see how reasoning can be performed
under the semantics of Answer Set Programming.

6.3 Reasoning Based on Answer Set Programming

Answer Set Programming (ASP) has been successfully applied to the wide range
of applications both in academia and industry. A few examples include: planning,
classification, configuration, bio-informatics, software engineering, robotics, data
integration and answering queries, etc. These applications have been discussed in
detail in Chapter 2. The use of ASP can significantly reduce the effort needed to
recognize complex events while obtaining the same level of quality in the detected
events. The formal declarative syntax of ASP is convenient and expressive. Hence,
ASP can be used to detect a large number of simple and compound events within
a reasonable time, which allows real-time operations despite limited hardware re-
sources.

We implement the theory of Event Calculus to represent simple and complex
events related to the detected objects, and a declarative programming language, ASP
to implement the logical rules as expressed in (Mueller, 2014). The general notion
behind the use ASP is depicted in Figure 6.1: given an input instance of the problem,
encoding of the problem in terms of a logic program such that it provides solutions
to the problem by using answer set solver of our choice. There can also more than
one solution to the problem. To summarize, our approach is the combination of
the visual processing pipeline for object detection and tracking, and estimating ap-
pearance, disappearance, and movements of objects in the scene, with ASP-based
reasoning about events, objects, and spatial-dynamics. The main component of the
overall integrated approach is to build complex events from the underlying facts
and simple events extracted from the visual pipeline. In the next section, we see in
some detail how we express our example scenarios of Soccer kicks andOccupancy of
the handicap slots in terms logic based representation of events by using a realiza-
tion of the Event Calculus that allows us to define events in terms of logical rules.
Axioms of the calculus are encoded in a logic program under Answer Set semantics.
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Figure 6.1: Encoding of problems in ASP (Eiter et al., 2009)

Event Reasoning on Use-Case 1

Let us consider the use-case1 explained in chapter 3. For explaining the perceived
dynamics of objects in the scene described inmore detail in Chapter 4, we define the
simple and complex events taking into account the information extracted from the
visual detection pipeline, listed in Table 6.1 below.

Table 6.1: Description of simple and complex events
Simple event Description
appearsCar(A, T) The object corresponding to car A enters

the scene at time T
disappearsCar(A, T) The object corresponding to car A leaves

the scene at time T
appearsSlot(L, T) The object corresponding to parking slot L

appears in the scene at time T
disappearsSlot(L, T) The object corresponding to parking slot L

disappears from the scene at time T
Complex event Description
covers(A, L, T) The object car A covers the slot L at time T

uncovers(A, L, T) The object car A uncovers the slot L at time
T

The focus is on explaining what is visible in the frames by identifying the ap-
pearance and disappearance of objects in the scene: thus, the fluents of our scenario
are visibleCar and visibleSlot, that are true respectively if a car or a slot is currently
visible in the scene.1 The occurrences of these events are directly extracted from
the output of the tracker: in other words, they will be compiled as facts in the final
program. Given this information, complex events are then defined by combining
simple events and conditions on fluents: in our example, we can detect when a car
covers and uncovers a parking slot using the information about what is visible at a
given time-point. Assuming the previous rules defining the EC axioms in section
2.6, we encode our scenario in a logic program with the rules that follow. We first
declare objects, events and fluents of the scenario:

1We are currently assuming a simple scenario with one car and one slot in the scene.
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event(appearsCar(A)) ← agent(A).
event(disappearsCar(A)) ← agent(A).

event( appearsSlot(L)) ← location(L).
event( disappearsSlot(L)) ← location(L).

fluent( visibleCar(A)) ← agent(A).
fluent( visibleSlot(L)) ← location(L).

We can then specify the effects of events on fluents:

initiates(appearsCar(A), visibleCar(A), T) ← agent(A), time(T).
terminates(disappearsCar(A), visibleCar(A), T) ← agent(A), time(T).

initiates(appearsSlot(L), visibleSlot(L), T) ← location(L), time(T).
terminates(disappearsSlot(L), visibleSlot(L), T) ← location(L), time(T).

Basically, the rules define that the appearance of an object (car or slot) initiates its
visibility, while its disappearance from the scene terminates the validity of the vis-
ibility fluent. Occurrences of complex events are derived from event calculus rea-
soning:

happens(covers(A, L), T) ← agent(A), location(L), time(T),
happens(disappearsSlot(L), T),
holdsAt(visibleCar(A), T).

happens(uncovers(A, L), T) ← agent(A), location(L), time(T),
happens(appearsSlot(L), T),
holdsAt(visibleCar(A), T).

By these rules, we recognize that a car covers a slot if the car is visible at the time
that the slot disappears. Similarly, the uncovers event occurs when a slot appears
and the car is still visible. By combining the information on complex events, we can
define that a parking from time T1 to time T2 is detected whenever a car covers a slot
at time T1, uncovers the slot at time T2 and it stands on the slot for at least a number
of frames defined by parkingframes:

parking(A, L, T1, T2) ← happens( covers(A, L), T1), happens(uncovers(A, L), T2),
parking f rames(N), T3 = T1 + N, T2 >= T3.

In our scenario, a query on parking can be used to obtain the parking events detected
in the scenes and their information.

The final program, enconding the scenario, is obtained by combining these rules
(together with the EC axiom rules) with the facts obtained from the tracker output.
Let us consider an example instantiation:
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holdsAt(visibleSlot(hp_slot), 0).
happens(appearsCar(car), 1).
happens(disappearsSlot(hp_slot), 2).
happens(appearsSlot(hp_slot), 4).
happens(disappearsCar(car), 5).

According to the input evidence, initially only one slot hp_slot is visible. Then, ob-
ject car appears and object hp_slot disappears from the scene at time-points 1 and 2,
respectively. Whereas, at time-points 4 and 5, appearance and disappearance of the
hp_slot and car occur. Using the rules, we can thus derive the occurrence of complex
events happens(covers(car, hp_slot), 2) and happens(uncovers(car, hp_slot), 4). Say
that we define parking f rames(1), then we can detect the parking(car, hp_slot, 2, 4),
meaning that car parks on hp_slot at time-point 2 and leaves the slot at time-point 4.
Over our sample video data, we run the program on DLV using the output of the
tracker from previous step. We were able to detect complex events for some of the
video sequences, for example considering Figure 5.4 and Figure 5.5 (car 3 covers the
handicap slot 3 at time-point 87 and uncovers the slot at time-point 107). Unfortu-
nately, we could not apply the method to the whole video: the reason stands in the
ambiguities of tracker output (e.g. multiple labelling of the same object, incorrect
disappearance of objects) which produce unclean data. A solution to this problem
would be to include a pre-processing step for data cleaning (possibly encoded as
logical constraints) which is able to resolve such ambiguities.
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Event reasoning on Use-case2
We approach the problem of classifying different kicks in the soccer domain based
on the objects detected over time. It can be observed that the complexity of the kicks
increases with the number of objects detected in the scene and their defined interac-
tion in the rules. We assume here for the recognition of a free kick only two objects
player and ball are sufficient; on the other hand for the recognition for the goal kick
player, ball, goalpost must be present in the scene. Whereas, for the detection of a
corner kick, four objects player, ball, flag, and goalpostmust be detected. We declare
events and fluents of the scenario in Table 6.2:

Simple event Description
appears(G) The goalpost G enters the scene
disappears(G) The goalpost G leaves the scene
close(A, B) Object A and B are close to each other
movesBall(B) The ball B moves in the scene
Complex event Description
kick(P, B) Player P kicks the ball B

Table 6.2: Description of simple and complex EC events

As discussed in the use-case1, here also the focus is on explaining what is visible
in the frames by identifying the appearance and disappearance of objects and also
the movement of objects in the scene: thus, the fluents defined in the current sce-
nario are visible and possession, that are true respectively if a goalpost is visible in
the scene, or when the player is in possession of the ball.

event(appears(G)) ← goalpost(G).
event(disappears(G)) ← goalpost(G).

event(close(A, B)) ← player(A), ball(B).
event(close(A, B)) ← ball(A), flag(B).

event(movesBall(B)) ← ball(B).

fluent(visible(G)) ← goalpost(G).
fluent(possession(P, B)) ← player(P), ball(B).

We can then specify the effects of events on fluents:

initiates(appears(G), visible(G), T) ← goalpost(G), time(T).
terminates(disappears(G), visible(G), T) ← goalpost(G), time(T).

initiates(close(P, B), possession(P, B), T) ← player(P), ball(B), time(T).
terminates(movesBall(B), possession(P, B), T) ← player(P), ball(B), time(T).
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Basically, the rules define that the appearance of an object initiates its visibility and
its disappearance from the scene terminates the validity of the visibility fluent. For
ball possession, the fluent starts its validity once a player is close to the ball and ter-
minates once the ball startsmoving (away from the player). Occurrences of complex
events are derived from event calculus reasoning:

happens(kick(P, B), T) ← player(P), ball(B), time(T),
holdsAt(possession(P, B), T),
happens(movesBall(B), T).

By this rule, we recognize that a kick event occurs at a certain time slot if a player is
in possession of the ball and the ball starts moving. By combining the information
derived on fluents, simple and complex EC events, we can define the conditions to
recognize the different types of kick events. For example, for corner kicks:

cornerkick(T1) ← player(P), ball(B), flag(F), goalpost(G), time(T1), time(T2), time(T3), time(T4),
happens(close(B, F), T1), holdsAt(possession(P, B), T2),
happens(kick(P, B), T3), holdsAt(visible(G), T4),
T1 ≤ T2, T2 ≤ T3, T3 ≤ T4,
exists_prev_event(T1).

Namely, a corner kick is recognized if: at time T1 the ball starts being close to a flag;
then a player is in possession of the ball at T2 and kicks the ball at T3; after the ball
has been kicked, a goal post has to be visible at time T4. Similar rules can be defined
for the recognition of goal kicks and free kicks:

goalkick(T1) ← player(P), ball(B), flag(F), goalpost(G), time(T1), time(T2),
happens(close(P, B), T1), holdsAt(visible(G), T1),
happens(kick(P, B), T2), T1 ≤ T2, not cornerkick(T1),
not exists_prev_event(T1).

freekick(T1) ← player(P), ball(B), time(T1), time(T2),
happens(close(P, B), T1), happens(kick(P, B), T2),
T1 ≤ T2, not cornerkick(T1), not goalkick(T1)

exists_prev_event(T1).

The rules which define the goal kick and the free kick are relaxations of corner kicks.
During a goal kick, we assume that at time T1, player having the possession of the
ball, and the visibility of the goalpost must co-occur. The last condition in all three
definitions of soccer kicks is a constraint that means only to consider the first kick
event in the video, supported by the following rules:
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kickevent(T1) ← cornerkick(T1).
kickevent(T1) ← freekick(T1).

kickevent(T1) ← goalkick(T1).
exists_prev_event(T2) ← kickevent(T1), time(T2), T1 < T2

The final program, encoding the scenario of a clip, is obtained by combining these
rules (together with the EC axiom rules) with the facts obtained from the tracker
output. Let us consider an example instantiation:

happens(close(player1, ball1), 1).
happens(close(ball1, f lag1), 1).
happens(movesBall(ball1), 3).
happens(appears(goalpost1), 4).

According to the input evidence, first the player is recognized to be near the ball
in frame 1. In the same frame, the ball is recognized to be near a flag. In the
successive frame 3, the ball starts moving and in frame 4 a goalpost appears in
the scene. Using the rules, we can thus derive the occurrence of complex event
happens(kick(player1, ball1), 3) and the validity of fluents,
holdsAt(possession(player1, ball1), 1) and holdsAt(visible(goalpost1), 4). This allow
us to obtain the conditions to derive cornerkick(1). Similarly, the occurrence of goal
kick and free kick takes place, if the input evidence endorses the conditions defined
for these two events. In the next Chapter we provide a detail evaluation for the
detection of kicks.

6.4 Discussion
The key advantage of the proposed architecture is the interpretability of the model.
A human or a domain expert can analyze the properties of the complex event and
decompose into individual events that constitute it. Whereas, deep learning based
(black box) architecture can only reply with relatively high accuracy, given complex
event is happening or not. The contribution of our work mainly relies on bridging
the gap between the effectiveness of opaque black-box deep learning based architec-
tures to make sense of raw data and transparent reasoning of Event Calculus which
allows us to embed human knowledge.

As discussed before in the soccer use-case in section 5.3, we have more than one
object of type player, ball, etc. and for each of these, we can instantiate the rules.
The information extracted from the output of the YOLO tracker consists of a unique
frame identifier, class identifier, track identifier and bounding box co-ordinates for
each object in the video. This information is post processed for the extraction of
simple events which includes: appears, disappears, moves, close. The limitation of
proposed architecture occurs during the visual pipeline, where the ambiguities of



56 Inferring Complex Events from Simple Events

tracker output (e.g. multiple labelling of the same object, incorrect disappearance
of objects) produces unclean data. Basically, the current encoding is an example of
encoding with some limitations/assumptions on the scene. The aim of our work is
to inspire that ASP based reasoning can be performed on dynamic visual data of the
observed scenarios not necessarily covering all possible cases. In our case a "complex
event" is simply a combination of conditions on the domain and the information
from "simple events" extracted from the video. A possible generalized solution can
be of type "graded" version of the rules e.g., for the extraction of a corner kick, if we
recognize that we see a flag, then we are looking at a corner kick with a probability
of 30%, then if we also see the goalpost, this adds another 30% of probability of the
occurrence of the complex event, corner kick.

The existing literature onmodeling complex events based on logic programming
and particularly using Event Calculus for the video data is not much. An activity
recognition approach that is based on logic programming handles complex events
based on Bilattice framework (Ginsberg, 1988). The knowledge base consists of
domain-specific rules, expressing complex events in terms of simple events. Each
complex or simple event is associated with two uncertainty values, indicating a de-
gree of information and confidence respectively. Another logic-based method that
recognises user activities is proposed by (Filippaki et al., 2011). The method recog-
nises complex events from simple events using rules that impose temporal and spa-
tial constraints between simple events. Some of the constraints in complex events
definitions are optional. As a result, a complex event can be recognised from noisy
data, but with lower confidence. The confidence of a complex event increases when
more of the optional simple events are recognised. Another method (Artikis et al.,
2014) employs MLNs (Markov Logic Networks) that have formal probabilistic se-
mantics, as well as an Event Calculus formalism to represent complex events. The
key advantage of modelling complex events in Event Calculus is its ability to in-
corporate non-deterministic actions, concurrent actions, action preconditions and
qualifications etc., explained more detailed in section 3.2.
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Datasets

For the development of detection and classification, the requirement of training
datasets with a large number of images is a must. For the preparation of such
datasets, objects are manually annotated by humans. During this manual annota-
tion process, they draw bounding boxes around the objects. The annotators mostly
prefer open-source manual annotation tools: LabelImg 1, LabelMe2, Vatic3, etc. Us-
ing such tools, they create bounding boxes for the localization of objects and add
labels against the chosen regions. The annotated data can be stored in many differ-
ent formats xml, txt, json, etc. The downside of these manual annotation tools lies
in the fact they are extremely time-consuming and expensive. It requires much of
human labor. In our work, we have tried to utilize these manual annotation tool e.g,
Vatic to create a training set for performing automatic annotation of videos using
state of the art object detection tool yolo discussed in section 4.2.

7.1 Traditional Datasets
Action recognition datasets traditionally used in the literature by the vision com-
munity consist of atomic actions. Among the commonly used spatio-temporal ac-
tion recognition datasets today, typical examples include: (1)KTH dataset (Laptev
et al., 2004) consist of some simple periodic actions, e.g, walking, running, waving.
Figure 7.2 shows a simple action of the type “hand waving". It consists of 6 types
of human actions: boxing, walking, running, jogging, hand waving, hand clapping.
There are in total 599 action classes in this dataset. (2)UT-Interaction dataset (Ryoo
and Aggarwal, 2009) consists of interactions between humans. For example Fig-
ure 7.1 shows human interactions of type “handshake”. The total number of human
interactions in this dataset are of 6 types: handshake, hug, kick, point, punch and

1https://awesomeopensource.com/project/tzutalin/labelImg
2labelme.csail.mit.edu
3see http://www.cs.columbia.edu/~vondrick/vatic/
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push. Here, each interaction consists of 10 videos, so total 60 videos, captured in
different illumination conditions. (3) A more realistic and primarily used dataset
by the vision community isUCF Sports dataset (Rodriguez et al., 2008) which com-
prises of human-human or human-object interactions, as shown in Figure 7.3 which
contains a sports activity "weight lifting". It contains 101 action categories, with
13320 videos in total. Similarly other datasetsHollywood 2 dataset (Marszałek et al.,
2009), UTKinect3Ddataset (Xia et al., 2012), HMDB51 dataset (Kuehne et al., 2011),
Sports-1M dataset (Karpathy et al., 2014) are also used commonly for the recogni-
tion of actions. The fundamental limitation in the above mentioned datasets lies in
the fact that most of them consists of atomic actions with limited number of action
classes. Our goal is toworkwith interesting datasets from everyday activities, where
interaction between objects leads to some meaningful information or an event. This
motivates us to develop two custom data-sets from scratch for the applications of
parking occupancy of the handicap slots in parking lots and classification of kicks
in soccer videos.

Figure 7.1: UT-Interaction
dataset, meeting (Ryoo
and Aggarwal, 2009)

Figure 7.2: KTH dataset,
handwaving (Laptev et al.,
2004)

Figure 7.3: UCF Sports
dataset, weight lifting (Ro-
driguez et al., 2008)

7.2 Experimental Dataset
For soccer kicks, in order to evaluate the performance of our system, we created a
dataset of video clips trimmed from the SoccerNetdataset (Giancola et al., 2018). The
overall SoccerNet dataset consists of 500 games frommain European championships
BundesLiga, Siere A, LaLiga and English Premier League. Each game is composed
of 2 untrimmed videos, one for each half period. The videos are available in a variety
of encoding (MPEG, H264), containers (MKV, MP4, and TS), frame rates (25 to
50 fps), and resolutions (SD to Full HD). We have used this dataset and created a
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customized dataset of trimmed video clips. The trimmed video clips are depicting
a specific class of action. Our sample dataset consists of 90 clips, categorized as 30
free kicks, 30 corner kicks and 30 goal kicks, where each clip is approximately 8 to
12 seconds.





Chapter 8

Experimental Evaluation

In this chapter, we present experimental results for the classification of soccer kicks.
Part of our experiments also aims to compare complex events generated using
our proposed approach with a deep neural network approach (Adrian Rosebrock,
2019). Hence to compare the results of our hybrid approach, the implementation of
a deep neural network for activity recognition in videos was performed. All exper-
iments related to the visual processing pipeline and classification of videos using
neural networks were performed on a GPU: we have used Nvidia Geforce GTX 1080
with 2560 cores running at 1733 MHz frequency on 8 GB onboard GDDR5X mem-
ory. We have used CUDA1 version 8.0 to compile the code. Whereas, complex event
detection pipeline was implemented in a system with 8 GB RAM and Intel Core i7,
2.20 GHz. The code for extracting simple events such as closeness and movement be-
tween objects is implemented in python. The main reasoning component, DLV2 is
used as an ASP solver taking into account its several properties. DLV offers front-
ends for most of the knowledge representation formalisms. It is free for academic
and non-commercial purposes; one of the main strengths of the system is its abil-
ity to deal efficiently with different kinds of applications in the domain of artificial
intelligence. Another advantage of DLV is its high expressive power to represent
problems even with insufficient knowledge.

8.1 Evaluation on Complex Event Detection
The evaluation on complex eventswas performed for the classification of soccer kicks.
Unfortunately, we could not perform evaluation for the occupancy of the handicap
slots. The reason stands in the limitation of the dataset for this category, because
such clips are not publicly available, and security clearance to record such clips from
parking lots make them difficult to collect.

1https://developer.nvidia.com/cuda-gpus
2http://www.dlvsystem.com/
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PC
Corner kick Free kick Goal kick

Actual
Corner kick 22 6 0
Free kick 3 24 0
Goal kick 8 8 14

Table 8.1: Confusion matrix for complex event detection for our approach (PC =
predicted class).

In the application of soccer event detection, our goal is to extract complex events
such as: free kicks, corner kicks and goal kicks from spatio-temporal information ex-
tracted from the video clips like appearance, disappearance and movement of ob-
jects in the scene.

The clips have been processed using the two-step architecture described in pre-
vious chapters withmore details: the information extracted from the visual process-
ing pipeline provides simple events, compiled as facts in the final program. Given
this information, complex events are then extracted by combining simple events and
event conditions. The results of the detection of complex events are expressed in
the form of a confusion matrix in Table 8.1. For the class of corner kick, it can be
observed from Table 8.1, with 30 clips as input to the system; it successfully detects
22 as corner kicks, six as free kicks, whereas 2 of them do not match the definition of
any of the event. For each video clip, rules get fired over the input evidence, and the
occurrence of a complex event takes place once the event definition is fully satisfied.
Intuitively, the conditions for free kicks and goal kicks are relaxations of the ones
for corner kicks, and all three events include a kick event as in their definition.

We remark that these results in Table 8.1 are strongly dependent on the (quite
simplified) definition of rules for simple and complex events we provided in this
example use-case 2 in chapter 6: in other words, independently from the definition
of our architecture, better results could be obtained e.g., by refining the algorithms
used in the extraction of simple events and by imposing further conditions over
other information in the definition of the datalog rules. Another limitation in the
visual event pipeline stands in the ambiguities of the tracker output (e.g., multiple
labeling of the same object, incorrect disappearance of objects) which produce un-
clean data at the end of the first step of the workflow. One solution to this problem
would be to include a pre-processing step for data cleaning (possibly encoded as
logical constraints based on the domain knowledge), which is able to resolve such
ambiguities. Another possible solution could be to exploit other approaches where
object detection and tracking are jointly addressed (Hou et al., 2017; Kang et al.,
2017). To compare the results discussed for the classification of different soccer
kicks, we use a deep neural network in the next section and see how it performs
on every single video clip.
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8.2 Video Classification
Video classification is a computer vision area, and it is about an automated under-
standing of the video, the input is a user labeled video stream, and the objective is to
produce a label of event. A video is just a stack of imageswith the temporal aspect at-
tached to them. As highlighted in the relatedwork section themost commonly used
techniques to deal with the temporal aspect of videos is the use of neural network ar-
chitectures such as Long short-term memory (LSTMs). The major drawback attached
to these approaches is the computational complexity and huge amount of data that
they require when it comes to training such networks. The current generation of
popular deep learning hardware is Nvidia graphics cards, and they are optimized
to process data with extreme parallelism and speed, which CNNs utilize. LSTMs
on the other hand, process things more sequentially, so the deep learning hardware
does not increase its speed by much, especially during the training phase of the
network. Each architecture has advantages and disadvantages that are dependent
upon the type of data that is being modeled. When choosing one framework over
the other, or creating a hybrid approach, the type of data and the job at hand are the
most important points to consider. We had access to a relatively smaller dataset of
regular clean 90 video clips with three different types of events. Mostly in literature,
CNN is a top choice for image classification andmore generally, computer vision ap-
plications. We worked to implement CNN based solution mentioned in (Karpathy
et al., 2014) for the classification of videos in order to comparewith our approach. In
this paper (Karpathy et al., 2014), authors model videos with Convolutional Neural
Networks in an almost similar way to how CNNs model images. They explore two
components of the video classification: (1) how transfer-learning can be applied
to video classification, (2) designing of CNNs which take into account the tempo-
ral connectivity in videos. Based on the discussed approach (Karpathy et al., 2014),
the problem of video classification can also be viewed from the perspective of image
classification. Which in some respect is true as videos can be understood as a series
of individual images; and therefore, many practitioners from the vision community
are at ease to treat video classification as performing image classification. The steps
to classify videos following the approach discussed in (Adrian Rosebrock, 2019) are
:

• Read all the video frames by looping over the video file.

• Classify each frame individually after passing them through the CNN.

• Choose the label with the largest corresponding probability.

The problem encountered while practicing this approach for the task of video
classification is called prediction flickering. It is a visible change in the prediction
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label between cycles displayed on video displays. A simple solution to prevent this
problem is to utilize a technique known as rolling prediction average. The use of rolling
prediction averaging to reduce “flickering” works on the following assumptions.

• Loop over all frames in the video file.

• Pass each frame through the CNN and obtain the prediction.

• Maintain a list of the last L predictions, and compute the average of the last L
predictions and choose the label with the largest corresponding probability.

A brief overview of how it works on the example use-case. Initially, the train-
ing script converts all the trimmed video clips from SoccerNet (Giancola et al., 2018)
into images organized by class. Furthermore, it will only train with free kicks, cor-
ner kicks and goal kicks with 30 videos for each category, after segmenting dataset
into training and testing splits using 80% of the data for training and the remaining
20% for testing. It then grabs the dataset class images, loads the ResNet50 CNN, and
applies fine-tuning of ImageNet weights to train the model. The training script gen-
erates two files: a fine-tuned classifier based on ResNet50 for recognizing different
kicks and serialized label binarizer containing unique class labels. The prediction
script loads an input video and proceeds to classify the video ideally using rolling
average method. Here, after passing all frames through the CNN, it maintains a
list of the last L predictions, and computes the average of the last L predictions and
chooses the label with the largest corresponding probability. The assumption here
is that subsequent frames in a video will have similar semantic contents. The av-
eraging, therefore, enables us to smooth out the predictions and make for a better
video classifier.

The images in Figure 8.1 show some of the results using the CNN based ap-
proach, it can be observed all three categories of soccer kicks are correctly classified
as "free kicks", "corner kicks" and "goal kicks". Whereas, fromFigure 8.2 shows some
of the results where input videos are the wrong classified. Table 8.1 shows the re-
sult of the evaluation where out of 30 clips for each class, 20 are correctly classified
as corner kicks, 21 as free kicks, and 13 as goal kicks. We remark that classifica-
tion of videos into action categories will produce better results with larger datasets
(Soomro et al., 2012; Karpathy et al., 2014).
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PC
Corner kick Free kick Goal kick

Actual
Corner kick 20 10 0
Free kick 9 21 0
Goal kick 11 6 13

Table 8.2: Confusion matrix for complex event detection (PC = predicted class).

Figure 8.1: Sequence of frames from input videos correctly classified as Corner-
Kick, Free-kick and Goal-kick using the approach in (Adrian Rosebrock, 2019)

8.3 Our approach vs Neural Net
To this end, we compare the results of the presented hybrid approach in this thesis
with the above mentioned deep neural network approach to classify videos based
on predictive accuracy. We can see that in Table 8.3 and Table 8.4, our proposed
methodology performs slightly better despite the limitations of the object tracker
mentioned before. From Table 8.3, higher value on precision for corner kicks and
goal kicks should not surprise, as we have strict rules for these classes, which get
fired only when several conditions on the event description are met, whereas for
free kicks, we have more relaxed rules. On the contrary, lower values on recall are
partly justified because of the nature of the events we are taking into consideration:
intuitively, the conditions for free kicks are relaxations of the ones for corner kicks
and goal kicks, and they all include a kick event in their definition.

The comparison of results shows that in terms of precision and recall, our pro-
posed approach outperforms the deep neural network-based video classification,
taking into account we are dealing with datasets relatively smaller size. It is a
well-known fact that a large amount of training data plays a critical role in mak-
ing the deep neural network models successful. On the other hand, even smaller
datasets are sometimes enough to train the state-of-the-art object detectors with
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Figure 8.2: Sequence of frames from input videos incorrectly classified

specific number of object classes. Even though existing deep neural network-based
action recognition approaches (Karpathy et al., 2014), (Simonyan and Zisserman,
2014), (Feichtenhofer et al., 2017), (Kong et al., 2018) have shown impressive per-
formance on large-scale datasets in laboratory settings, it is really challenging to get
the same optimal performancewhile dealingwith relatively smaller datasets. Hence
we argue, a hybrid solution can be a good trade-off between accuracy and semantic
richness while defining events considering relatively smaller datasets. We also re-
mark that the use of logical reasoning on the output of deep learning based solutions
can surely makes the overall event recognition paradigm more explainable.
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Class Precision Recall
Corner kick 66.6 % 73 %
Free kick 63.1 % 80 %
Goal kick 100 % 46.6 %

Table 8.3: Experimental Results for the proposed architecture

Class Precision Recall
Corner kick 50% 66.6 %
Free kick 56.8 % 70 %
Goal kick 100 % 43 %

Table 8.4: Experimental Results for the neural network





Chapter 9

Conclusion and Future Work

9.1 Conclusion
In this thesis, we presented a method to derive complex events from simple facts
which are extracted from the visual recognition techniques. The overall goal of this
work is the integration of knowledge representation and computer vision. In Chap-
ter 1, we discussed the basics of event recognition, and we argue that logic-based
event recognition systems have significant advantages over non-logic-based ones.
In Chapter 2, we discuss the basic components that we need for the thesis. We start
with techniques followed by the vision community to address the issue of event
detection from videos and their limitations followed by the Hybrid approaches to-
wards video event detection andfinally the Integration of logical reasoning anddeep
learning. Chapter 3, explains the necessary Background material used in this thesis
from object detection and tracking to logical framework of event calculus used for
the representation of simple and complex events and rationale behind it. Finally, an
implementation of the Event Calculus into answer set programs is discussed. Chap-
ter 4, explains the workflow for our proposed architecture CEDEC (Complex event
detection using event calculus), and also two fields of application: soccer event de-
tection, and occupancy of handicap slots, finally high-level definitions of the respec-
tive events. Chapter 5, throws some light on how YOLO works in general, and how
it performs for our applications of soccer event detection and handicap parking oc-
cupancy, finally how simple events are extracted from the Yolo output. In Chapter
6, we express our example scenarios in terms of the presented ASP encoding of the
Event Calculus. In Chapter 7, we discuss the traditional and experimental datasets.
In Chapter 8, we evaluate the overall performance of our proposed framework for
event detection in videos. The results of our proposedmethodology compare favor-
ably with those achieved by the use of deep neural networks. We demonstrate that
proposed approach for the detection of events in videos shows impressive perfor-
mance in dealing with relatively smaller data sets.
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9.2 Future work
There are several directions in which we intend to extend the work presented in
this thesis. As discussed before one of the major limitations in our proposed ar-
chitecture is the use of the object tracker which results in noisy data and restricts
us to reason on events for the whole video. As a future work, we aim to manage
these inaccuracies by a (possibly logic based) data cleaning step. In logical data
cleaning, error detection and repair is typically performed using declarative clean-
ing programs (Han et al., 2011). For example, if a cleaning program asserts that a
object detected for a specific class should have a single reading at any time point, it
may also contain a strategy that replaces multiple readings with their average. In
constraint-based cleaning, data dependencies are used to detect data quality prob-
lems. Data that is inconsistent with respect to the constraints can be repaired by
finding a minimal set of changes that fixes the errors (Bohannon et al., 2005; Kolahi
and Lakshmanan, 2009). An important advantage of such approaches is that they
are able to find subtle data quality problems using sophisticated dependencies.

Currently we are utilizing YOLO for both detection and tracking. Another pos-
sibility can be to exploit more recent approaches where the problem of multi object
detection and tracking is addressed, e.g., few recent works have attempted to tackle
detection and tracking in end-to-endmanner (Hou et al., 2017; Kang et al., 2017; An-
driluka et al., 2018), and some works have further used such architectures for even
the detection of high level action recognition (Hou et al., 2017). We strongly believe
our proposed architecture would perform significantly better with clean data from
the tracker output. We also want to apply and evaluate the presentedmethod in dif-
ferent scenarios, such as CAVIAR1 Video data set , EPIC-KITCHENS (Damen et al.,
2018).

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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